| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snsspr2 | GIF version | ||
| Description: A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 2-May-2009.) |
| Ref | Expression |
|---|---|
| snsspr2 | ⊢ {𝐵} ⊆ {𝐴, 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun2 3341 | . 2 ⊢ {𝐵} ⊆ ({𝐴} ∪ {𝐵}) | |
| 2 | df-pr 3645 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 3 | 1, 2 | sseqtrri 3232 | 1 ⊢ {𝐵} ⊆ {𝐴, 𝐵} |
| Colors of variables: wff set class |
| Syntax hints: ∪ cun 3168 ⊆ wss 3170 {csn 3638 {cpr 3639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pr 3645 |
| This theorem is referenced by: snsstp2 3790 ssprr 3803 ord3ex 4242 ltrelxr 8153 |
| Copyright terms: Public domain | W3C validator |