ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snsspr2 GIF version

Theorem snsspr2 3767
Description: A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 2-May-2009.)
Assertion
Ref Expression
snsspr2 {𝐵} ⊆ {𝐴, 𝐵}

Proof of Theorem snsspr2
StepHypRef Expression
1 ssun2 3323 . 2 {𝐵} ⊆ ({𝐴} ∪ {𝐵})
2 df-pr 3625 . 2 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
31, 2sseqtrri 3214 1 {𝐵} ⊆ {𝐴, 𝐵}
Colors of variables: wff set class
Syntax hints:  cun 3151  wss 3153  {csn 3618  {cpr 3619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pr 3625
This theorem is referenced by:  snsstp2  3769  ssprr  3782  ord3ex  4219  ltrelxr  8080
  Copyright terms: Public domain W3C validator