Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snsspr2 | GIF version |
Description: A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 2-May-2009.) |
Ref | Expression |
---|---|
snsspr2 | ⊢ {𝐵} ⊆ {𝐴, 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun2 3291 | . 2 ⊢ {𝐵} ⊆ ({𝐴} ∪ {𝐵}) | |
2 | df-pr 3590 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
3 | 1, 2 | sseqtrri 3182 | 1 ⊢ {𝐵} ⊆ {𝐴, 𝐵} |
Colors of variables: wff set class |
Syntax hints: ∪ cun 3119 ⊆ wss 3121 {csn 3583 {cpr 3584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pr 3590 |
This theorem is referenced by: snsstp2 3731 ssprr 3743 ord3ex 4176 ltrelxr 7980 |
Copyright terms: Public domain | W3C validator |