ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snsspr2 GIF version

Theorem snsspr2 3729
Description: A singleton is a subset of an unordered pair containing its member. (Contributed by NM, 2-May-2009.)
Assertion
Ref Expression
snsspr2 {𝐵} ⊆ {𝐴, 𝐵}

Proof of Theorem snsspr2
StepHypRef Expression
1 ssun2 3291 . 2 {𝐵} ⊆ ({𝐴} ∪ {𝐵})
2 df-pr 3590 . 2 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
31, 2sseqtrri 3182 1 {𝐵} ⊆ {𝐴, 𝐵}
Colors of variables: wff set class
Syntax hints:  cun 3119  wss 3121  {csn 3583  {cpr 3584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pr 3590
This theorem is referenced by:  snsstp2  3731  ssprr  3743  ord3ex  4176  ltrelxr  7980
  Copyright terms: Public domain W3C validator