![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > raleqbidv | GIF version |
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) |
Ref | Expression |
---|---|
raleqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
raleqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
raleqbidv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqbidv.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | raleqdv 2696 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
3 | raleqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 3 | ralbidv 2494 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
5 | 2, 4 | bitrd 188 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∀wral 2472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 |
This theorem is referenced by: rspc2vd 3149 ofrfval 6139 fmpox 6253 tfrlemi1 6385 supeq123d 7050 cvg1nlemcau 11128 cvg1nlemres 11129 cau3lem 11258 fsum2dlemstep 11577 fisumcom2 11581 fprod2dlemstep 11765 fprodcom2fi 11769 pcfac 12488 ptex 12875 prdsex 12880 ismgm 12940 mgm1 12953 grpidvalg 12956 gsumress 12978 issgrp 12986 sgrp1 12994 sgrppropd 12996 ismnddef 12999 ismndd 13018 mndpropd 13021 mnd1 13027 ismhm 13033 mhmex 13034 resmhm 13059 isgrp 13078 grppropd 13089 isgrpd2e 13092 grp1 13178 isnsg 13272 nmznsg 13283 isghm 13313 cmnpropd 13365 iscmnd 13368 isrng 13430 rngpropd 13451 dfur2g 13458 issrg 13461 issrgid 13477 isring 13496 iscrng2 13511 ringideu 13513 isringid 13521 ringpropd 13534 ring1 13555 oppr0g 13577 oppr1g 13578 isrhm2d 13661 rhmopp 13672 islring 13688 rrgval 13758 isdomn 13765 opprdomnbg 13770 islmod 13787 islmodd 13789 lmodprop2d 13844 lsssetm 13852 islidlm 13975 rnglidlmmgm 13992 rnglidlmsgrp 13993 istopg 14167 restbasg 14336 cnfval 14362 cnpfval 14363 txbas 14426 limccl 14813 sscoll2 15480 |
Copyright terms: Public domain | W3C validator |