| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > raleqbidv | GIF version | ||
| Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) |
| Ref | Expression |
|---|---|
| raleqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| raleqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| raleqbidv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqbidv.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | raleqdv 2711 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
| 3 | raleqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 3 | ralbidv 2508 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
| 5 | 2, 4 | bitrd 188 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∀wral 2486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 |
| This theorem is referenced by: rspc2vd 3170 ofrfval 6190 fmpox 6309 tfrlemi1 6441 supeq123d 7119 acneq 7345 cvg1nlemcau 11410 cvg1nlemres 11411 cau3lem 11540 fsum2dlemstep 11860 fisumcom2 11864 fprod2dlemstep 12048 fprodcom2fi 12052 pcfac 12788 ptex 13211 prdsex 13216 prdsval 13220 ismgm 13304 mgm1 13317 grpidvalg 13320 gsumress 13342 issgrp 13350 sgrp1 13358 sgrppropd 13360 ismnddef 13365 ismndd 13384 mndpropd 13387 mnd1 13402 ismhm 13408 mhmex 13409 resmhm 13434 isgrp 13453 grppropd 13464 isgrpd2e 13467 grp1 13553 isnsg 13653 nmznsg 13664 isghm 13694 cmnpropd 13746 iscmnd 13749 isrng 13811 rngpropd 13832 dfur2g 13839 issrg 13842 issrgid 13858 isring 13877 iscrng2 13892 ringideu 13894 isringid 13902 ringpropd 13915 ring1 13936 oppr0g 13958 oppr1g 13959 isrhm2d 14042 rhmopp 14053 islring 14069 rrgval 14139 isdomn 14146 opprdomnbg 14151 islmod 14168 islmodd 14170 lmodprop2d 14225 lsssetm 14233 islidlm 14356 rnglidlmmgm 14373 rnglidlmsgrp 14374 mplvalcoe 14567 istopg 14586 restbasg 14755 cnfval 14781 cnpfval 14782 txbas 14845 limccl 15246 sscoll2 16123 |
| Copyright terms: Public domain | W3C validator |