| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > raleqbidv | GIF version | ||
| Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) |
| Ref | Expression |
|---|---|
| raleqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| raleqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| raleqbidv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqbidv.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | raleqdv 2708 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
| 3 | raleqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 3 | ralbidv 2506 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
| 5 | 2, 4 | bitrd 188 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∀wral 2484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 |
| This theorem is referenced by: rspc2vd 3162 ofrfval 6167 fmpox 6286 tfrlemi1 6418 supeq123d 7093 acneq 7314 cvg1nlemcau 11295 cvg1nlemres 11296 cau3lem 11425 fsum2dlemstep 11745 fisumcom2 11749 fprod2dlemstep 11933 fprodcom2fi 11937 pcfac 12673 ptex 13096 prdsex 13101 prdsval 13105 ismgm 13189 mgm1 13202 grpidvalg 13205 gsumress 13227 issgrp 13235 sgrp1 13243 sgrppropd 13245 ismnddef 13250 ismndd 13269 mndpropd 13272 mnd1 13287 ismhm 13293 mhmex 13294 resmhm 13319 isgrp 13338 grppropd 13349 isgrpd2e 13352 grp1 13438 isnsg 13538 nmznsg 13549 isghm 13579 cmnpropd 13631 iscmnd 13634 isrng 13696 rngpropd 13717 dfur2g 13724 issrg 13727 issrgid 13743 isring 13762 iscrng2 13777 ringideu 13779 isringid 13787 ringpropd 13800 ring1 13821 oppr0g 13843 oppr1g 13844 isrhm2d 13927 rhmopp 13938 islring 13954 rrgval 14024 isdomn 14031 opprdomnbg 14036 islmod 14053 islmodd 14055 lmodprop2d 14110 lsssetm 14118 islidlm 14241 rnglidlmmgm 14258 rnglidlmsgrp 14259 mplvalcoe 14452 istopg 14471 restbasg 14640 cnfval 14666 cnpfval 14667 txbas 14730 limccl 15131 sscoll2 15924 |
| Copyright terms: Public domain | W3C validator |