| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > raleqbidv | GIF version | ||
| Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) |
| Ref | Expression |
|---|---|
| raleqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| raleqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| raleqbidv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqbidv.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | raleqdv 2708 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
| 3 | raleqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 3 | ralbidv 2506 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
| 5 | 2, 4 | bitrd 188 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∀wral 2484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 |
| This theorem is referenced by: rspc2vd 3162 ofrfval 6169 fmpox 6288 tfrlemi1 6420 supeq123d 7095 acneq 7316 cvg1nlemcau 11328 cvg1nlemres 11329 cau3lem 11458 fsum2dlemstep 11778 fisumcom2 11782 fprod2dlemstep 11966 fprodcom2fi 11970 pcfac 12706 ptex 13129 prdsex 13134 prdsval 13138 ismgm 13222 mgm1 13235 grpidvalg 13238 gsumress 13260 issgrp 13268 sgrp1 13276 sgrppropd 13278 ismnddef 13283 ismndd 13302 mndpropd 13305 mnd1 13320 ismhm 13326 mhmex 13327 resmhm 13352 isgrp 13371 grppropd 13382 isgrpd2e 13385 grp1 13471 isnsg 13571 nmznsg 13582 isghm 13612 cmnpropd 13664 iscmnd 13667 isrng 13729 rngpropd 13750 dfur2g 13757 issrg 13760 issrgid 13776 isring 13795 iscrng2 13810 ringideu 13812 isringid 13820 ringpropd 13833 ring1 13854 oppr0g 13876 oppr1g 13877 isrhm2d 13960 rhmopp 13971 islring 13987 rrgval 14057 isdomn 14064 opprdomnbg 14069 islmod 14086 islmodd 14088 lmodprop2d 14143 lsssetm 14151 islidlm 14274 rnglidlmmgm 14291 rnglidlmsgrp 14292 mplvalcoe 14485 istopg 14504 restbasg 14673 cnfval 14699 cnpfval 14700 txbas 14763 limccl 15164 sscoll2 15961 |
| Copyright terms: Public domain | W3C validator |