| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > raleqbidv | GIF version | ||
| Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) |
| Ref | Expression |
|---|---|
| raleqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| raleqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| raleqbidv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqbidv.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | raleqdv 2699 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
| 3 | raleqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 3 | ralbidv 2497 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
| 5 | 2, 4 | bitrd 188 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 |
| This theorem is referenced by: rspc2vd 3153 ofrfval 6144 fmpox 6258 tfrlemi1 6390 supeq123d 7057 cvg1nlemcau 11149 cvg1nlemres 11150 cau3lem 11279 fsum2dlemstep 11599 fisumcom2 11603 fprod2dlemstep 11787 fprodcom2fi 11791 pcfac 12519 ptex 12935 prdsex 12940 ismgm 13000 mgm1 13013 grpidvalg 13016 gsumress 13038 issgrp 13046 sgrp1 13054 sgrppropd 13056 ismnddef 13059 ismndd 13078 mndpropd 13081 mnd1 13087 ismhm 13093 mhmex 13094 resmhm 13119 isgrp 13138 grppropd 13149 isgrpd2e 13152 grp1 13238 isnsg 13332 nmznsg 13343 isghm 13373 cmnpropd 13425 iscmnd 13428 isrng 13490 rngpropd 13511 dfur2g 13518 issrg 13521 issrgid 13537 isring 13556 iscrng2 13571 ringideu 13573 isringid 13581 ringpropd 13594 ring1 13615 oppr0g 13637 oppr1g 13638 isrhm2d 13721 rhmopp 13732 islring 13748 rrgval 13818 isdomn 13825 opprdomnbg 13830 islmod 13847 islmodd 13849 lmodprop2d 13904 lsssetm 13912 islidlm 14035 rnglidlmmgm 14052 rnglidlmsgrp 14053 istopg 14235 restbasg 14404 cnfval 14430 cnpfval 14431 txbas 14494 limccl 14895 sscoll2 15634 |
| Copyright terms: Public domain | W3C validator |