ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strleund GIF version

Theorem strleund 12506
Description: Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
Hypotheses
Ref Expression
strleund.f (𝜑𝐹 Struct ⟨𝐴, 𝐵⟩)
strleund.g (𝜑𝐺 Struct ⟨𝐶, 𝐷⟩)
strleund.l (𝜑𝐵 < 𝐶)
Assertion
Ref Expression
strleund (𝜑 → (𝐹𝐺) Struct ⟨𝐴, 𝐷⟩)

Proof of Theorem strleund
StepHypRef Expression
1 strleund.f . . . . 5 (𝜑𝐹 Struct ⟨𝐴, 𝐵⟩)
2 isstructim 12430 . . . . 5 (𝐹 Struct ⟨𝐴, 𝐵⟩ → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝐴...𝐵)))
31, 2syl 14 . . . 4 (𝜑 → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝐴...𝐵)))
43simp1d 1004 . . 3 (𝜑 → (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵))
54simp1d 1004 . 2 (𝜑𝐴 ∈ ℕ)
6 strleund.g . . . . 5 (𝜑𝐺 Struct ⟨𝐶, 𝐷⟩)
7 isstructim 12430 . . . . 5 (𝐺 Struct ⟨𝐶, 𝐷⟩ → ((𝐶 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐶𝐷) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (𝐶...𝐷)))
86, 7syl 14 . . . 4 (𝜑 → ((𝐶 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐶𝐷) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (𝐶...𝐷)))
98simp1d 1004 . . 3 (𝜑 → (𝐶 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐶𝐷))
109simp2d 1005 . 2 (𝜑𝐷 ∈ ℕ)
115nnred 8891 . . 3 (𝜑𝐴 ∈ ℝ)
129simp1d 1004 . . . 4 (𝜑𝐶 ∈ ℕ)
1312nnred 8891 . . 3 (𝜑𝐶 ∈ ℝ)
1410nnred 8891 . . 3 (𝜑𝐷 ∈ ℝ)
154simp2d 1005 . . . . 5 (𝜑𝐵 ∈ ℕ)
1615nnred 8891 . . . 4 (𝜑𝐵 ∈ ℝ)
174simp3d 1006 . . . 4 (𝜑𝐴𝐵)
18 strleund.l . . . . 5 (𝜑𝐵 < 𝐶)
1916, 13, 18ltled 8038 . . . 4 (𝜑𝐵𝐶)
2011, 16, 13, 17, 19letrd 8043 . . 3 (𝜑𝐴𝐶)
219simp3d 1006 . . 3 (𝜑𝐶𝐷)
2211, 13, 14, 20, 21letrd 8043 . 2 (𝜑𝐴𝐷)
233simp2d 1005 . . . 4 (𝜑 → Fun (𝐹 ∖ {∅}))
248simp2d 1005 . . . 4 (𝜑 → Fun (𝐺 ∖ {∅}))
25 difss 3253 . . . . . . . 8 (𝐹 ∖ {∅}) ⊆ 𝐹
26 dmss 4810 . . . . . . . 8 ((𝐹 ∖ {∅}) ⊆ 𝐹 → dom (𝐹 ∖ {∅}) ⊆ dom 𝐹)
2725, 26mp1i 10 . . . . . . 7 (𝜑 → dom (𝐹 ∖ {∅}) ⊆ dom 𝐹)
283simp3d 1006 . . . . . . 7 (𝜑 → dom 𝐹 ⊆ (𝐴...𝐵))
2927, 28sstrd 3157 . . . . . 6 (𝜑 → dom (𝐹 ∖ {∅}) ⊆ (𝐴...𝐵))
30 difss 3253 . . . . . . . 8 (𝐺 ∖ {∅}) ⊆ 𝐺
31 dmss 4810 . . . . . . . 8 ((𝐺 ∖ {∅}) ⊆ 𝐺 → dom (𝐺 ∖ {∅}) ⊆ dom 𝐺)
3230, 31mp1i 10 . . . . . . 7 (𝜑 → dom (𝐺 ∖ {∅}) ⊆ dom 𝐺)
338simp3d 1006 . . . . . . 7 (𝜑 → dom 𝐺 ⊆ (𝐶...𝐷))
3432, 33sstrd 3157 . . . . . 6 (𝜑 → dom (𝐺 ∖ {∅}) ⊆ (𝐶...𝐷))
35 ss2in 3355 . . . . . 6 ((dom (𝐹 ∖ {∅}) ⊆ (𝐴...𝐵) ∧ dom (𝐺 ∖ {∅}) ⊆ (𝐶...𝐷)) → (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) ⊆ ((𝐴...𝐵) ∩ (𝐶...𝐷)))
3629, 34, 35syl2anc 409 . . . . 5 (𝜑 → (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) ⊆ ((𝐴...𝐵) ∩ (𝐶...𝐷)))
37 fzdisj 10008 . . . . . 6 (𝐵 < 𝐶 → ((𝐴...𝐵) ∩ (𝐶...𝐷)) = ∅)
3818, 37syl 14 . . . . 5 (𝜑 → ((𝐴...𝐵) ∩ (𝐶...𝐷)) = ∅)
39 sseq0 3456 . . . . 5 (((dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) ⊆ ((𝐴...𝐵) ∩ (𝐶...𝐷)) ∧ ((𝐴...𝐵) ∩ (𝐶...𝐷)) = ∅) → (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) = ∅)
4036, 38, 39syl2anc 409 . . . 4 (𝜑 → (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) = ∅)
41 funun 5242 . . . 4 (((Fun (𝐹 ∖ {∅}) ∧ Fun (𝐺 ∖ {∅})) ∧ (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) = ∅) → Fun ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅})))
4223, 24, 40, 41syl21anc 1232 . . 3 (𝜑 → Fun ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅})))
43 difundir 3380 . . . 4 ((𝐹𝐺) ∖ {∅}) = ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅}))
4443funeqi 5219 . . 3 (Fun ((𝐹𝐺) ∖ {∅}) ↔ Fun ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅})))
4542, 44sylibr 133 . 2 (𝜑 → Fun ((𝐹𝐺) ∖ {∅}))
46 structex 12428 . . . 4 (𝐹 Struct ⟨𝐴, 𝐵⟩ → 𝐹 ∈ V)
471, 46syl 14 . . 3 (𝜑𝐹 ∈ V)
48 structex 12428 . . . 4 (𝐺 Struct ⟨𝐶, 𝐷⟩ → 𝐺 ∈ V)
496, 48syl 14 . . 3 (𝜑𝐺 ∈ V)
50 unexg 4428 . . 3 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹𝐺) ∈ V)
5147, 49, 50syl2anc 409 . 2 (𝜑 → (𝐹𝐺) ∈ V)
52 dmun 4818 . . 3 dom (𝐹𝐺) = (dom 𝐹 ∪ dom 𝐺)
5315nnzd 9333 . . . . . . 7 (𝜑𝐵 ∈ ℤ)
5410nnzd 9333 . . . . . . 7 (𝜑𝐷 ∈ ℤ)
5516, 13, 14, 19, 21letrd 8043 . . . . . . 7 (𝜑𝐵𝐷)
56 eluz2 9493 . . . . . . 7 (𝐷 ∈ (ℤ𝐵) ↔ (𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐵𝐷))
5753, 54, 55, 56syl3anbrc 1176 . . . . . 6 (𝜑𝐷 ∈ (ℤ𝐵))
58 fzss2 10020 . . . . . 6 (𝐷 ∈ (ℤ𝐵) → (𝐴...𝐵) ⊆ (𝐴...𝐷))
5957, 58syl 14 . . . . 5 (𝜑 → (𝐴...𝐵) ⊆ (𝐴...𝐷))
6028, 59sstrd 3157 . . . 4 (𝜑 → dom 𝐹 ⊆ (𝐴...𝐷))
615nnzd 9333 . . . . . . 7 (𝜑𝐴 ∈ ℤ)
6212nnzd 9333 . . . . . . 7 (𝜑𝐶 ∈ ℤ)
63 eluz2 9493 . . . . . . 7 (𝐶 ∈ (ℤ𝐴) ↔ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶))
6461, 62, 20, 63syl3anbrc 1176 . . . . . 6 (𝜑𝐶 ∈ (ℤ𝐴))
65 fzss1 10019 . . . . . 6 (𝐶 ∈ (ℤ𝐴) → (𝐶...𝐷) ⊆ (𝐴...𝐷))
6664, 65syl 14 . . . . 5 (𝜑 → (𝐶...𝐷) ⊆ (𝐴...𝐷))
6733, 66sstrd 3157 . . . 4 (𝜑 → dom 𝐺 ⊆ (𝐴...𝐷))
6860, 67unssd 3303 . . 3 (𝜑 → (dom 𝐹 ∪ dom 𝐺) ⊆ (𝐴...𝐷))
6952, 68eqsstrid 3193 . 2 (𝜑 → dom (𝐹𝐺) ⊆ (𝐴...𝐷))
70 isstructr 12431 . 2 (((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐴𝐷) ∧ (Fun ((𝐹𝐺) ∖ {∅}) ∧ (𝐹𝐺) ∈ V ∧ dom (𝐹𝐺) ⊆ (𝐴...𝐷))) → (𝐹𝐺) Struct ⟨𝐴, 𝐷⟩)
715, 10, 22, 45, 51, 69, 70syl33anc 1248 1 (𝜑 → (𝐹𝐺) Struct ⟨𝐴, 𝐷⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 973   = wceq 1348  wcel 2141  Vcvv 2730  cdif 3118  cun 3119  cin 3120  wss 3121  c0 3414  {csn 3583  cop 3586   class class class wbr 3989  dom cdm 4611  Fun wfun 5192  cfv 5198  (class class class)co 5853   < clt 7954  cle 7955  cn 8878  cz 9212  cuz 9487  ...cfz 9965   Struct cstr 12412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966  df-struct 12418
This theorem is referenced by:  strle2g  12509  strle3g  12510  srngstrd  12540  lmodstrd  12551  ipsstrd  12559
  Copyright terms: Public domain W3C validator