ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strleund GIF version

Theorem strleund 12721
Description: Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
Hypotheses
Ref Expression
strleund.f (𝜑𝐹 Struct ⟨𝐴, 𝐵⟩)
strleund.g (𝜑𝐺 Struct ⟨𝐶, 𝐷⟩)
strleund.l (𝜑𝐵 < 𝐶)
Assertion
Ref Expression
strleund (𝜑 → (𝐹𝐺) Struct ⟨𝐴, 𝐷⟩)

Proof of Theorem strleund
StepHypRef Expression
1 strleund.f . . . . 5 (𝜑𝐹 Struct ⟨𝐴, 𝐵⟩)
2 isstructim 12632 . . . . 5 (𝐹 Struct ⟨𝐴, 𝐵⟩ → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝐴...𝐵)))
31, 2syl 14 . . . 4 (𝜑 → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝐴...𝐵)))
43simp1d 1011 . . 3 (𝜑 → (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵))
54simp1d 1011 . 2 (𝜑𝐴 ∈ ℕ)
6 strleund.g . . . . 5 (𝜑𝐺 Struct ⟨𝐶, 𝐷⟩)
7 isstructim 12632 . . . . 5 (𝐺 Struct ⟨𝐶, 𝐷⟩ → ((𝐶 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐶𝐷) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (𝐶...𝐷)))
86, 7syl 14 . . . 4 (𝜑 → ((𝐶 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐶𝐷) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (𝐶...𝐷)))
98simp1d 1011 . . 3 (𝜑 → (𝐶 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐶𝐷))
109simp2d 1012 . 2 (𝜑𝐷 ∈ ℕ)
115nnred 8995 . . 3 (𝜑𝐴 ∈ ℝ)
129simp1d 1011 . . . 4 (𝜑𝐶 ∈ ℕ)
1312nnred 8995 . . 3 (𝜑𝐶 ∈ ℝ)
1410nnred 8995 . . 3 (𝜑𝐷 ∈ ℝ)
154simp2d 1012 . . . . 5 (𝜑𝐵 ∈ ℕ)
1615nnred 8995 . . . 4 (𝜑𝐵 ∈ ℝ)
174simp3d 1013 . . . 4 (𝜑𝐴𝐵)
18 strleund.l . . . . 5 (𝜑𝐵 < 𝐶)
1916, 13, 18ltled 8138 . . . 4 (𝜑𝐵𝐶)
2011, 16, 13, 17, 19letrd 8143 . . 3 (𝜑𝐴𝐶)
219simp3d 1013 . . 3 (𝜑𝐶𝐷)
2211, 13, 14, 20, 21letrd 8143 . 2 (𝜑𝐴𝐷)
233simp2d 1012 . . . 4 (𝜑 → Fun (𝐹 ∖ {∅}))
248simp2d 1012 . . . 4 (𝜑 → Fun (𝐺 ∖ {∅}))
25 difss 3285 . . . . . . . 8 (𝐹 ∖ {∅}) ⊆ 𝐹
26 dmss 4861 . . . . . . . 8 ((𝐹 ∖ {∅}) ⊆ 𝐹 → dom (𝐹 ∖ {∅}) ⊆ dom 𝐹)
2725, 26mp1i 10 . . . . . . 7 (𝜑 → dom (𝐹 ∖ {∅}) ⊆ dom 𝐹)
283simp3d 1013 . . . . . . 7 (𝜑 → dom 𝐹 ⊆ (𝐴...𝐵))
2927, 28sstrd 3189 . . . . . 6 (𝜑 → dom (𝐹 ∖ {∅}) ⊆ (𝐴...𝐵))
30 difss 3285 . . . . . . . 8 (𝐺 ∖ {∅}) ⊆ 𝐺
31 dmss 4861 . . . . . . . 8 ((𝐺 ∖ {∅}) ⊆ 𝐺 → dom (𝐺 ∖ {∅}) ⊆ dom 𝐺)
3230, 31mp1i 10 . . . . . . 7 (𝜑 → dom (𝐺 ∖ {∅}) ⊆ dom 𝐺)
338simp3d 1013 . . . . . . 7 (𝜑 → dom 𝐺 ⊆ (𝐶...𝐷))
3432, 33sstrd 3189 . . . . . 6 (𝜑 → dom (𝐺 ∖ {∅}) ⊆ (𝐶...𝐷))
35 ss2in 3387 . . . . . 6 ((dom (𝐹 ∖ {∅}) ⊆ (𝐴...𝐵) ∧ dom (𝐺 ∖ {∅}) ⊆ (𝐶...𝐷)) → (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) ⊆ ((𝐴...𝐵) ∩ (𝐶...𝐷)))
3629, 34, 35syl2anc 411 . . . . 5 (𝜑 → (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) ⊆ ((𝐴...𝐵) ∩ (𝐶...𝐷)))
37 fzdisj 10118 . . . . . 6 (𝐵 < 𝐶 → ((𝐴...𝐵) ∩ (𝐶...𝐷)) = ∅)
3818, 37syl 14 . . . . 5 (𝜑 → ((𝐴...𝐵) ∩ (𝐶...𝐷)) = ∅)
39 sseq0 3488 . . . . 5 (((dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) ⊆ ((𝐴...𝐵) ∩ (𝐶...𝐷)) ∧ ((𝐴...𝐵) ∩ (𝐶...𝐷)) = ∅) → (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) = ∅)
4036, 38, 39syl2anc 411 . . . 4 (𝜑 → (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) = ∅)
41 funun 5298 . . . 4 (((Fun (𝐹 ∖ {∅}) ∧ Fun (𝐺 ∖ {∅})) ∧ (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) = ∅) → Fun ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅})))
4223, 24, 40, 41syl21anc 1248 . . 3 (𝜑 → Fun ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅})))
43 difundir 3412 . . . 4 ((𝐹𝐺) ∖ {∅}) = ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅}))
4443funeqi 5275 . . 3 (Fun ((𝐹𝐺) ∖ {∅}) ↔ Fun ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅})))
4542, 44sylibr 134 . 2 (𝜑 → Fun ((𝐹𝐺) ∖ {∅}))
46 structex 12630 . . . 4 (𝐹 Struct ⟨𝐴, 𝐵⟩ → 𝐹 ∈ V)
471, 46syl 14 . . 3 (𝜑𝐹 ∈ V)
48 structex 12630 . . . 4 (𝐺 Struct ⟨𝐶, 𝐷⟩ → 𝐺 ∈ V)
496, 48syl 14 . . 3 (𝜑𝐺 ∈ V)
50 unexg 4474 . . 3 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹𝐺) ∈ V)
5147, 49, 50syl2anc 411 . 2 (𝜑 → (𝐹𝐺) ∈ V)
52 dmun 4869 . . 3 dom (𝐹𝐺) = (dom 𝐹 ∪ dom 𝐺)
5315nnzd 9438 . . . . . . 7 (𝜑𝐵 ∈ ℤ)
5410nnzd 9438 . . . . . . 7 (𝜑𝐷 ∈ ℤ)
5516, 13, 14, 19, 21letrd 8143 . . . . . . 7 (𝜑𝐵𝐷)
56 eluz2 9598 . . . . . . 7 (𝐷 ∈ (ℤ𝐵) ↔ (𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐵𝐷))
5753, 54, 55, 56syl3anbrc 1183 . . . . . 6 (𝜑𝐷 ∈ (ℤ𝐵))
58 fzss2 10130 . . . . . 6 (𝐷 ∈ (ℤ𝐵) → (𝐴...𝐵) ⊆ (𝐴...𝐷))
5957, 58syl 14 . . . . 5 (𝜑 → (𝐴...𝐵) ⊆ (𝐴...𝐷))
6028, 59sstrd 3189 . . . 4 (𝜑 → dom 𝐹 ⊆ (𝐴...𝐷))
615nnzd 9438 . . . . . . 7 (𝜑𝐴 ∈ ℤ)
6212nnzd 9438 . . . . . . 7 (𝜑𝐶 ∈ ℤ)
63 eluz2 9598 . . . . . . 7 (𝐶 ∈ (ℤ𝐴) ↔ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶))
6461, 62, 20, 63syl3anbrc 1183 . . . . . 6 (𝜑𝐶 ∈ (ℤ𝐴))
65 fzss1 10129 . . . . . 6 (𝐶 ∈ (ℤ𝐴) → (𝐶...𝐷) ⊆ (𝐴...𝐷))
6664, 65syl 14 . . . . 5 (𝜑 → (𝐶...𝐷) ⊆ (𝐴...𝐷))
6733, 66sstrd 3189 . . . 4 (𝜑 → dom 𝐺 ⊆ (𝐴...𝐷))
6860, 67unssd 3335 . . 3 (𝜑 → (dom 𝐹 ∪ dom 𝐺) ⊆ (𝐴...𝐷))
6952, 68eqsstrid 3225 . 2 (𝜑 → dom (𝐹𝐺) ⊆ (𝐴...𝐷))
70 isstructr 12633 . 2 (((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐴𝐷) ∧ (Fun ((𝐹𝐺) ∖ {∅}) ∧ (𝐹𝐺) ∈ V ∧ dom (𝐹𝐺) ⊆ (𝐴...𝐷))) → (𝐹𝐺) Struct ⟨𝐴, 𝐷⟩)
715, 10, 22, 45, 51, 69, 70syl33anc 1264 1 (𝜑 → (𝐹𝐺) Struct ⟨𝐴, 𝐷⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1364  wcel 2164  Vcvv 2760  cdif 3150  cun 3151  cin 3152  wss 3153  c0 3446  {csn 3618  cop 3621   class class class wbr 4029  dom cdm 4659  Fun wfun 5248  cfv 5254  (class class class)co 5918   < clt 8054  cle 8055  cn 8982  cz 9317  cuz 9592  ...cfz 10074   Struct cstr 12614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075  df-struct 12620
This theorem is referenced by:  strle2g  12725  strle3g  12726  srngstrd  12763  lmodstrd  12781  ipsstrd  12793  psrvalstrd  14154
  Copyright terms: Public domain W3C validator