ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strleund GIF version

Theorem strleund 12483
Description: Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
Hypotheses
Ref Expression
strleund.f (𝜑𝐹 Struct ⟨𝐴, 𝐵⟩)
strleund.g (𝜑𝐺 Struct ⟨𝐶, 𝐷⟩)
strleund.l (𝜑𝐵 < 𝐶)
Assertion
Ref Expression
strleund (𝜑 → (𝐹𝐺) Struct ⟨𝐴, 𝐷⟩)

Proof of Theorem strleund
StepHypRef Expression
1 strleund.f . . . . 5 (𝜑𝐹 Struct ⟨𝐴, 𝐵⟩)
2 isstructim 12408 . . . . 5 (𝐹 Struct ⟨𝐴, 𝐵⟩ → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝐴...𝐵)))
31, 2syl 14 . . . 4 (𝜑 → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝐴...𝐵)))
43simp1d 999 . . 3 (𝜑 → (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵))
54simp1d 999 . 2 (𝜑𝐴 ∈ ℕ)
6 strleund.g . . . . 5 (𝜑𝐺 Struct ⟨𝐶, 𝐷⟩)
7 isstructim 12408 . . . . 5 (𝐺 Struct ⟨𝐶, 𝐷⟩ → ((𝐶 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐶𝐷) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (𝐶...𝐷)))
86, 7syl 14 . . . 4 (𝜑 → ((𝐶 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐶𝐷) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (𝐶...𝐷)))
98simp1d 999 . . 3 (𝜑 → (𝐶 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐶𝐷))
109simp2d 1000 . 2 (𝜑𝐷 ∈ ℕ)
115nnred 8870 . . 3 (𝜑𝐴 ∈ ℝ)
129simp1d 999 . . . 4 (𝜑𝐶 ∈ ℕ)
1312nnred 8870 . . 3 (𝜑𝐶 ∈ ℝ)
1410nnred 8870 . . 3 (𝜑𝐷 ∈ ℝ)
154simp2d 1000 . . . . 5 (𝜑𝐵 ∈ ℕ)
1615nnred 8870 . . . 4 (𝜑𝐵 ∈ ℝ)
174simp3d 1001 . . . 4 (𝜑𝐴𝐵)
18 strleund.l . . . . 5 (𝜑𝐵 < 𝐶)
1916, 13, 18ltled 8017 . . . 4 (𝜑𝐵𝐶)
2011, 16, 13, 17, 19letrd 8022 . . 3 (𝜑𝐴𝐶)
219simp3d 1001 . . 3 (𝜑𝐶𝐷)
2211, 13, 14, 20, 21letrd 8022 . 2 (𝜑𝐴𝐷)
233simp2d 1000 . . . 4 (𝜑 → Fun (𝐹 ∖ {∅}))
248simp2d 1000 . . . 4 (𝜑 → Fun (𝐺 ∖ {∅}))
25 difss 3248 . . . . . . . 8 (𝐹 ∖ {∅}) ⊆ 𝐹
26 dmss 4803 . . . . . . . 8 ((𝐹 ∖ {∅}) ⊆ 𝐹 → dom (𝐹 ∖ {∅}) ⊆ dom 𝐹)
2725, 26mp1i 10 . . . . . . 7 (𝜑 → dom (𝐹 ∖ {∅}) ⊆ dom 𝐹)
283simp3d 1001 . . . . . . 7 (𝜑 → dom 𝐹 ⊆ (𝐴...𝐵))
2927, 28sstrd 3152 . . . . . 6 (𝜑 → dom (𝐹 ∖ {∅}) ⊆ (𝐴...𝐵))
30 difss 3248 . . . . . . . 8 (𝐺 ∖ {∅}) ⊆ 𝐺
31 dmss 4803 . . . . . . . 8 ((𝐺 ∖ {∅}) ⊆ 𝐺 → dom (𝐺 ∖ {∅}) ⊆ dom 𝐺)
3230, 31mp1i 10 . . . . . . 7 (𝜑 → dom (𝐺 ∖ {∅}) ⊆ dom 𝐺)
338simp3d 1001 . . . . . . 7 (𝜑 → dom 𝐺 ⊆ (𝐶...𝐷))
3432, 33sstrd 3152 . . . . . 6 (𝜑 → dom (𝐺 ∖ {∅}) ⊆ (𝐶...𝐷))
35 ss2in 3350 . . . . . 6 ((dom (𝐹 ∖ {∅}) ⊆ (𝐴...𝐵) ∧ dom (𝐺 ∖ {∅}) ⊆ (𝐶...𝐷)) → (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) ⊆ ((𝐴...𝐵) ∩ (𝐶...𝐷)))
3629, 34, 35syl2anc 409 . . . . 5 (𝜑 → (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) ⊆ ((𝐴...𝐵) ∩ (𝐶...𝐷)))
37 fzdisj 9987 . . . . . 6 (𝐵 < 𝐶 → ((𝐴...𝐵) ∩ (𝐶...𝐷)) = ∅)
3818, 37syl 14 . . . . 5 (𝜑 → ((𝐴...𝐵) ∩ (𝐶...𝐷)) = ∅)
39 sseq0 3450 . . . . 5 (((dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) ⊆ ((𝐴...𝐵) ∩ (𝐶...𝐷)) ∧ ((𝐴...𝐵) ∩ (𝐶...𝐷)) = ∅) → (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) = ∅)
4036, 38, 39syl2anc 409 . . . 4 (𝜑 → (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) = ∅)
41 funun 5232 . . . 4 (((Fun (𝐹 ∖ {∅}) ∧ Fun (𝐺 ∖ {∅})) ∧ (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) = ∅) → Fun ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅})))
4223, 24, 40, 41syl21anc 1227 . . 3 (𝜑 → Fun ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅})))
43 difundir 3375 . . . 4 ((𝐹𝐺) ∖ {∅}) = ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅}))
4443funeqi 5209 . . 3 (Fun ((𝐹𝐺) ∖ {∅}) ↔ Fun ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅})))
4542, 44sylibr 133 . 2 (𝜑 → Fun ((𝐹𝐺) ∖ {∅}))
46 structex 12406 . . . 4 (𝐹 Struct ⟨𝐴, 𝐵⟩ → 𝐹 ∈ V)
471, 46syl 14 . . 3 (𝜑𝐹 ∈ V)
48 structex 12406 . . . 4 (𝐺 Struct ⟨𝐶, 𝐷⟩ → 𝐺 ∈ V)
496, 48syl 14 . . 3 (𝜑𝐺 ∈ V)
50 unexg 4421 . . 3 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹𝐺) ∈ V)
5147, 49, 50syl2anc 409 . 2 (𝜑 → (𝐹𝐺) ∈ V)
52 dmun 4811 . . 3 dom (𝐹𝐺) = (dom 𝐹 ∪ dom 𝐺)
5315nnzd 9312 . . . . . . 7 (𝜑𝐵 ∈ ℤ)
5410nnzd 9312 . . . . . . 7 (𝜑𝐷 ∈ ℤ)
5516, 13, 14, 19, 21letrd 8022 . . . . . . 7 (𝜑𝐵𝐷)
56 eluz2 9472 . . . . . . 7 (𝐷 ∈ (ℤ𝐵) ↔ (𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐵𝐷))
5753, 54, 55, 56syl3anbrc 1171 . . . . . 6 (𝜑𝐷 ∈ (ℤ𝐵))
58 fzss2 9999 . . . . . 6 (𝐷 ∈ (ℤ𝐵) → (𝐴...𝐵) ⊆ (𝐴...𝐷))
5957, 58syl 14 . . . . 5 (𝜑 → (𝐴...𝐵) ⊆ (𝐴...𝐷))
6028, 59sstrd 3152 . . . 4 (𝜑 → dom 𝐹 ⊆ (𝐴...𝐷))
615nnzd 9312 . . . . . . 7 (𝜑𝐴 ∈ ℤ)
6212nnzd 9312 . . . . . . 7 (𝜑𝐶 ∈ ℤ)
63 eluz2 9472 . . . . . . 7 (𝐶 ∈ (ℤ𝐴) ↔ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶))
6461, 62, 20, 63syl3anbrc 1171 . . . . . 6 (𝜑𝐶 ∈ (ℤ𝐴))
65 fzss1 9998 . . . . . 6 (𝐶 ∈ (ℤ𝐴) → (𝐶...𝐷) ⊆ (𝐴...𝐷))
6664, 65syl 14 . . . . 5 (𝜑 → (𝐶...𝐷) ⊆ (𝐴...𝐷))
6733, 66sstrd 3152 . . . 4 (𝜑 → dom 𝐺 ⊆ (𝐴...𝐷))
6860, 67unssd 3298 . . 3 (𝜑 → (dom 𝐹 ∪ dom 𝐺) ⊆ (𝐴...𝐷))
6952, 68eqsstrid 3188 . 2 (𝜑 → dom (𝐹𝐺) ⊆ (𝐴...𝐷))
70 isstructr 12409 . 2 (((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐴𝐷) ∧ (Fun ((𝐹𝐺) ∖ {∅}) ∧ (𝐹𝐺) ∈ V ∧ dom (𝐹𝐺) ⊆ (𝐴...𝐷))) → (𝐹𝐺) Struct ⟨𝐴, 𝐷⟩)
715, 10, 22, 45, 51, 69, 70syl33anc 1243 1 (𝜑 → (𝐹𝐺) Struct ⟨𝐴, 𝐷⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 968   = wceq 1343  wcel 2136  Vcvv 2726  cdif 3113  cun 3114  cin 3115  wss 3116  c0 3409  {csn 3576  cop 3579   class class class wbr 3982  dom cdm 4604  Fun wfun 5182  cfv 5188  (class class class)co 5842   < clt 7933  cle 7934  cn 8857  cz 9191  cuz 9466  ...cfz 9944   Struct cstr 12390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945  df-struct 12396
This theorem is referenced by:  strle2g  12486  strle3g  12487  srngstrd  12517  lmodstrd  12528  ipsstrd  12536
  Copyright terms: Public domain W3C validator