Proof of Theorem strleund
| Step | Hyp | Ref
 | Expression | 
| 1 |   | strleund.f | 
. . . . 5
⊢ (𝜑 → 𝐹 Struct 〈𝐴, 𝐵〉) | 
| 2 |   | isstructim 12692 | 
. . . . 5
⊢ (𝐹 Struct 〈𝐴, 𝐵〉 → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 ≤ 𝐵) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝐴...𝐵))) | 
| 3 | 1, 2 | syl 14 | 
. . . 4
⊢ (𝜑 → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 ≤ 𝐵) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝐴...𝐵))) | 
| 4 | 3 | simp1d 1011 | 
. . 3
⊢ (𝜑 → (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 ≤ 𝐵)) | 
| 5 | 4 | simp1d 1011 | 
. 2
⊢ (𝜑 → 𝐴 ∈ ℕ) | 
| 6 |   | strleund.g | 
. . . . 5
⊢ (𝜑 → 𝐺 Struct 〈𝐶, 𝐷〉) | 
| 7 |   | isstructim 12692 | 
. . . . 5
⊢ (𝐺 Struct 〈𝐶, 𝐷〉 → ((𝐶 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐶 ≤ 𝐷) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (𝐶...𝐷))) | 
| 8 | 6, 7 | syl 14 | 
. . . 4
⊢ (𝜑 → ((𝐶 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐶 ≤ 𝐷) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (𝐶...𝐷))) | 
| 9 | 8 | simp1d 1011 | 
. . 3
⊢ (𝜑 → (𝐶 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐶 ≤ 𝐷)) | 
| 10 | 9 | simp2d 1012 | 
. 2
⊢ (𝜑 → 𝐷 ∈ ℕ) | 
| 11 | 5 | nnred 9003 | 
. . 3
⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| 12 | 9 | simp1d 1011 | 
. . . 4
⊢ (𝜑 → 𝐶 ∈ ℕ) | 
| 13 | 12 | nnred 9003 | 
. . 3
⊢ (𝜑 → 𝐶 ∈ ℝ) | 
| 14 | 10 | nnred 9003 | 
. . 3
⊢ (𝜑 → 𝐷 ∈ ℝ) | 
| 15 | 4 | simp2d 1012 | 
. . . . 5
⊢ (𝜑 → 𝐵 ∈ ℕ) | 
| 16 | 15 | nnred 9003 | 
. . . 4
⊢ (𝜑 → 𝐵 ∈ ℝ) | 
| 17 | 4 | simp3d 1013 | 
. . . 4
⊢ (𝜑 → 𝐴 ≤ 𝐵) | 
| 18 |   | strleund.l | 
. . . . 5
⊢ (𝜑 → 𝐵 < 𝐶) | 
| 19 | 16, 13, 18 | ltled 8145 | 
. . . 4
⊢ (𝜑 → 𝐵 ≤ 𝐶) | 
| 20 | 11, 16, 13, 17, 19 | letrd 8150 | 
. . 3
⊢ (𝜑 → 𝐴 ≤ 𝐶) | 
| 21 | 9 | simp3d 1013 | 
. . 3
⊢ (𝜑 → 𝐶 ≤ 𝐷) | 
| 22 | 11, 13, 14, 20, 21 | letrd 8150 | 
. 2
⊢ (𝜑 → 𝐴 ≤ 𝐷) | 
| 23 | 3 | simp2d 1012 | 
. . . 4
⊢ (𝜑 → Fun (𝐹 ∖ {∅})) | 
| 24 | 8 | simp2d 1012 | 
. . . 4
⊢ (𝜑 → Fun (𝐺 ∖ {∅})) | 
| 25 |   | difss 3289 | 
. . . . . . . 8
⊢ (𝐹 ∖ {∅}) ⊆
𝐹 | 
| 26 |   | dmss 4865 | 
. . . . . . . 8
⊢ ((𝐹 ∖ {∅}) ⊆
𝐹 → dom (𝐹 ∖ {∅}) ⊆ dom
𝐹) | 
| 27 | 25, 26 | mp1i 10 | 
. . . . . . 7
⊢ (𝜑 → dom (𝐹 ∖ {∅}) ⊆ dom 𝐹) | 
| 28 | 3 | simp3d 1013 | 
. . . . . . 7
⊢ (𝜑 → dom 𝐹 ⊆ (𝐴...𝐵)) | 
| 29 | 27, 28 | sstrd 3193 | 
. . . . . 6
⊢ (𝜑 → dom (𝐹 ∖ {∅}) ⊆ (𝐴...𝐵)) | 
| 30 |   | difss 3289 | 
. . . . . . . 8
⊢ (𝐺 ∖ {∅}) ⊆
𝐺 | 
| 31 |   | dmss 4865 | 
. . . . . . . 8
⊢ ((𝐺 ∖ {∅}) ⊆
𝐺 → dom (𝐺 ∖ {∅}) ⊆ dom
𝐺) | 
| 32 | 30, 31 | mp1i 10 | 
. . . . . . 7
⊢ (𝜑 → dom (𝐺 ∖ {∅}) ⊆ dom 𝐺) | 
| 33 | 8 | simp3d 1013 | 
. . . . . . 7
⊢ (𝜑 → dom 𝐺 ⊆ (𝐶...𝐷)) | 
| 34 | 32, 33 | sstrd 3193 | 
. . . . . 6
⊢ (𝜑 → dom (𝐺 ∖ {∅}) ⊆ (𝐶...𝐷)) | 
| 35 |   | ss2in 3391 | 
. . . . . 6
⊢ ((dom
(𝐹 ∖ {∅})
⊆ (𝐴...𝐵) ∧ dom (𝐺 ∖ {∅}) ⊆ (𝐶...𝐷)) → (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) ⊆
((𝐴...𝐵) ∩ (𝐶...𝐷))) | 
| 36 | 29, 34, 35 | syl2anc 411 | 
. . . . 5
⊢ (𝜑 → (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) ⊆
((𝐴...𝐵) ∩ (𝐶...𝐷))) | 
| 37 |   | fzdisj 10127 | 
. . . . . 6
⊢ (𝐵 < 𝐶 → ((𝐴...𝐵) ∩ (𝐶...𝐷)) = ∅) | 
| 38 | 18, 37 | syl 14 | 
. . . . 5
⊢ (𝜑 → ((𝐴...𝐵) ∩ (𝐶...𝐷)) = ∅) | 
| 39 |   | sseq0 3492 | 
. . . . 5
⊢ (((dom
(𝐹 ∖ {∅}) ∩
dom (𝐺 ∖ {∅}))
⊆ ((𝐴...𝐵) ∩ (𝐶...𝐷)) ∧ ((𝐴...𝐵) ∩ (𝐶...𝐷)) = ∅) → (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) =
∅) | 
| 40 | 36, 38, 39 | syl2anc 411 | 
. . . 4
⊢ (𝜑 → (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) =
∅) | 
| 41 |   | funun 5302 | 
. . . 4
⊢ (((Fun
(𝐹 ∖ {∅}) ∧
Fun (𝐺 ∖ {∅}))
∧ (dom (𝐹 ∖
{∅}) ∩ dom (𝐺
∖ {∅})) = ∅) → Fun ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅}))) | 
| 42 | 23, 24, 40, 41 | syl21anc 1248 | 
. . 3
⊢ (𝜑 → Fun ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅}))) | 
| 43 |   | difundir 3416 | 
. . . 4
⊢ ((𝐹 ∪ 𝐺) ∖ {∅}) = ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅})) | 
| 44 | 43 | funeqi 5279 | 
. . 3
⊢ (Fun
((𝐹 ∪ 𝐺) ∖ {∅}) ↔ Fun ((𝐹 ∖ {∅}) ∪ (𝐺 ∖
{∅}))) | 
| 45 | 42, 44 | sylibr 134 | 
. 2
⊢ (𝜑 → Fun ((𝐹 ∪ 𝐺) ∖ {∅})) | 
| 46 |   | structex 12690 | 
. . . 4
⊢ (𝐹 Struct 〈𝐴, 𝐵〉 → 𝐹 ∈ V) | 
| 47 | 1, 46 | syl 14 | 
. . 3
⊢ (𝜑 → 𝐹 ∈ V) | 
| 48 |   | structex 12690 | 
. . . 4
⊢ (𝐺 Struct 〈𝐶, 𝐷〉 → 𝐺 ∈ V) | 
| 49 | 6, 48 | syl 14 | 
. . 3
⊢ (𝜑 → 𝐺 ∈ V) | 
| 50 |   | unexg 4478 | 
. . 3
⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹 ∪ 𝐺) ∈ V) | 
| 51 | 47, 49, 50 | syl2anc 411 | 
. 2
⊢ (𝜑 → (𝐹 ∪ 𝐺) ∈ V) | 
| 52 |   | dmun 4873 | 
. . 3
⊢ dom
(𝐹 ∪ 𝐺) = (dom 𝐹 ∪ dom 𝐺) | 
| 53 | 15 | nnzd 9447 | 
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ℤ) | 
| 54 | 10 | nnzd 9447 | 
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ ℤ) | 
| 55 | 16, 13, 14, 19, 21 | letrd 8150 | 
. . . . . . 7
⊢ (𝜑 → 𝐵 ≤ 𝐷) | 
| 56 |   | eluz2 9607 | 
. . . . . . 7
⊢ (𝐷 ∈
(ℤ≥‘𝐵) ↔ (𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐵 ≤ 𝐷)) | 
| 57 | 53, 54, 55, 56 | syl3anbrc 1183 | 
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ (ℤ≥‘𝐵)) | 
| 58 |   | fzss2 10139 | 
. . . . . 6
⊢ (𝐷 ∈
(ℤ≥‘𝐵) → (𝐴...𝐵) ⊆ (𝐴...𝐷)) | 
| 59 | 57, 58 | syl 14 | 
. . . . 5
⊢ (𝜑 → (𝐴...𝐵) ⊆ (𝐴...𝐷)) | 
| 60 | 28, 59 | sstrd 3193 | 
. . . 4
⊢ (𝜑 → dom 𝐹 ⊆ (𝐴...𝐷)) | 
| 61 | 5 | nnzd 9447 | 
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℤ) | 
| 62 | 12 | nnzd 9447 | 
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ ℤ) | 
| 63 |   | eluz2 9607 | 
. . . . . . 7
⊢ (𝐶 ∈
(ℤ≥‘𝐴) ↔ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) | 
| 64 | 61, 62, 20, 63 | syl3anbrc 1183 | 
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ (ℤ≥‘𝐴)) | 
| 65 |   | fzss1 10138 | 
. . . . . 6
⊢ (𝐶 ∈
(ℤ≥‘𝐴) → (𝐶...𝐷) ⊆ (𝐴...𝐷)) | 
| 66 | 64, 65 | syl 14 | 
. . . . 5
⊢ (𝜑 → (𝐶...𝐷) ⊆ (𝐴...𝐷)) | 
| 67 | 33, 66 | sstrd 3193 | 
. . . 4
⊢ (𝜑 → dom 𝐺 ⊆ (𝐴...𝐷)) | 
| 68 | 60, 67 | unssd 3339 | 
. . 3
⊢ (𝜑 → (dom 𝐹 ∪ dom 𝐺) ⊆ (𝐴...𝐷)) | 
| 69 | 52, 68 | eqsstrid 3229 | 
. 2
⊢ (𝜑 → dom (𝐹 ∪ 𝐺) ⊆ (𝐴...𝐷)) | 
| 70 |   | isstructr 12693 | 
. 2
⊢ (((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐴 ≤ 𝐷) ∧ (Fun ((𝐹 ∪ 𝐺) ∖ {∅}) ∧ (𝐹 ∪ 𝐺) ∈ V ∧ dom (𝐹 ∪ 𝐺) ⊆ (𝐴...𝐷))) → (𝐹 ∪ 𝐺) Struct 〈𝐴, 𝐷〉) | 
| 71 | 5, 10, 22, 45, 51, 69, 70 | syl33anc 1264 | 
1
⊢ (𝜑 → (𝐹 ∪ 𝐺) Struct 〈𝐴, 𝐷〉) |