Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  strleund GIF version

Theorem strleund 12106
 Description: Combine two structures into one. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 27-Jan-2023.)
Hypotheses
Ref Expression
strleund.f (𝜑𝐹 Struct ⟨𝐴, 𝐵⟩)
strleund.g (𝜑𝐺 Struct ⟨𝐶, 𝐷⟩)
strleund.l (𝜑𝐵 < 𝐶)
Assertion
Ref Expression
strleund (𝜑 → (𝐹𝐺) Struct ⟨𝐴, 𝐷⟩)

Proof of Theorem strleund
StepHypRef Expression
1 strleund.f . . . . 5 (𝜑𝐹 Struct ⟨𝐴, 𝐵⟩)
2 isstructim 12032 . . . . 5 (𝐹 Struct ⟨𝐴, 𝐵⟩ → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝐴...𝐵)))
31, 2syl 14 . . . 4 (𝜑 → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝐴...𝐵)))
43simp1d 994 . . 3 (𝜑 → (𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴𝐵))
54simp1d 994 . 2 (𝜑𝐴 ∈ ℕ)
6 strleund.g . . . . 5 (𝜑𝐺 Struct ⟨𝐶, 𝐷⟩)
7 isstructim 12032 . . . . 5 (𝐺 Struct ⟨𝐶, 𝐷⟩ → ((𝐶 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐶𝐷) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (𝐶...𝐷)))
86, 7syl 14 . . . 4 (𝜑 → ((𝐶 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐶𝐷) ∧ Fun (𝐺 ∖ {∅}) ∧ dom 𝐺 ⊆ (𝐶...𝐷)))
98simp1d 994 . . 3 (𝜑 → (𝐶 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐶𝐷))
109simp2d 995 . 2 (𝜑𝐷 ∈ ℕ)
115nnred 8777 . . 3 (𝜑𝐴 ∈ ℝ)
129simp1d 994 . . . 4 (𝜑𝐶 ∈ ℕ)
1312nnred 8777 . . 3 (𝜑𝐶 ∈ ℝ)
1410nnred 8777 . . 3 (𝜑𝐷 ∈ ℝ)
154simp2d 995 . . . . 5 (𝜑𝐵 ∈ ℕ)
1615nnred 8777 . . . 4 (𝜑𝐵 ∈ ℝ)
174simp3d 996 . . . 4 (𝜑𝐴𝐵)
18 strleund.l . . . . 5 (𝜑𝐵 < 𝐶)
1916, 13, 18ltled 7925 . . . 4 (𝜑𝐵𝐶)
2011, 16, 13, 17, 19letrd 7930 . . 3 (𝜑𝐴𝐶)
219simp3d 996 . . 3 (𝜑𝐶𝐷)
2211, 13, 14, 20, 21letrd 7930 . 2 (𝜑𝐴𝐷)
233simp2d 995 . . . 4 (𝜑 → Fun (𝐹 ∖ {∅}))
248simp2d 995 . . . 4 (𝜑 → Fun (𝐺 ∖ {∅}))
25 difss 3208 . . . . . . . 8 (𝐹 ∖ {∅}) ⊆ 𝐹
26 dmss 4747 . . . . . . . 8 ((𝐹 ∖ {∅}) ⊆ 𝐹 → dom (𝐹 ∖ {∅}) ⊆ dom 𝐹)
2725, 26mp1i 10 . . . . . . 7 (𝜑 → dom (𝐹 ∖ {∅}) ⊆ dom 𝐹)
283simp3d 996 . . . . . . 7 (𝜑 → dom 𝐹 ⊆ (𝐴...𝐵))
2927, 28sstrd 3113 . . . . . 6 (𝜑 → dom (𝐹 ∖ {∅}) ⊆ (𝐴...𝐵))
30 difss 3208 . . . . . . . 8 (𝐺 ∖ {∅}) ⊆ 𝐺
31 dmss 4747 . . . . . . . 8 ((𝐺 ∖ {∅}) ⊆ 𝐺 → dom (𝐺 ∖ {∅}) ⊆ dom 𝐺)
3230, 31mp1i 10 . . . . . . 7 (𝜑 → dom (𝐺 ∖ {∅}) ⊆ dom 𝐺)
338simp3d 996 . . . . . . 7 (𝜑 → dom 𝐺 ⊆ (𝐶...𝐷))
3432, 33sstrd 3113 . . . . . 6 (𝜑 → dom (𝐺 ∖ {∅}) ⊆ (𝐶...𝐷))
35 ss2in 3310 . . . . . 6 ((dom (𝐹 ∖ {∅}) ⊆ (𝐴...𝐵) ∧ dom (𝐺 ∖ {∅}) ⊆ (𝐶...𝐷)) → (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) ⊆ ((𝐴...𝐵) ∩ (𝐶...𝐷)))
3629, 34, 35syl2anc 409 . . . . 5 (𝜑 → (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) ⊆ ((𝐴...𝐵) ∩ (𝐶...𝐷)))
37 fzdisj 9883 . . . . . 6 (𝐵 < 𝐶 → ((𝐴...𝐵) ∩ (𝐶...𝐷)) = ∅)
3818, 37syl 14 . . . . 5 (𝜑 → ((𝐴...𝐵) ∩ (𝐶...𝐷)) = ∅)
39 sseq0 3410 . . . . 5 (((dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) ⊆ ((𝐴...𝐵) ∩ (𝐶...𝐷)) ∧ ((𝐴...𝐵) ∩ (𝐶...𝐷)) = ∅) → (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) = ∅)
4036, 38, 39syl2anc 409 . . . 4 (𝜑 → (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) = ∅)
41 funun 5176 . . . 4 (((Fun (𝐹 ∖ {∅}) ∧ Fun (𝐺 ∖ {∅})) ∧ (dom (𝐹 ∖ {∅}) ∩ dom (𝐺 ∖ {∅})) = ∅) → Fun ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅})))
4223, 24, 40, 41syl21anc 1216 . . 3 (𝜑 → Fun ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅})))
43 difundir 3335 . . . 4 ((𝐹𝐺) ∖ {∅}) = ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅}))
4443funeqi 5153 . . 3 (Fun ((𝐹𝐺) ∖ {∅}) ↔ Fun ((𝐹 ∖ {∅}) ∪ (𝐺 ∖ {∅})))
4542, 44sylibr 133 . 2 (𝜑 → Fun ((𝐹𝐺) ∖ {∅}))
46 structex 12030 . . . 4 (𝐹 Struct ⟨𝐴, 𝐵⟩ → 𝐹 ∈ V)
471, 46syl 14 . . 3 (𝜑𝐹 ∈ V)
48 structex 12030 . . . 4 (𝐺 Struct ⟨𝐶, 𝐷⟩ → 𝐺 ∈ V)
496, 48syl 14 . . 3 (𝜑𝐺 ∈ V)
50 unexg 4373 . . 3 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹𝐺) ∈ V)
5147, 49, 50syl2anc 409 . 2 (𝜑 → (𝐹𝐺) ∈ V)
52 dmun 4755 . . 3 dom (𝐹𝐺) = (dom 𝐹 ∪ dom 𝐺)
5315nnzd 9216 . . . . . . 7 (𝜑𝐵 ∈ ℤ)
5410nnzd 9216 . . . . . . 7 (𝜑𝐷 ∈ ℤ)
5516, 13, 14, 19, 21letrd 7930 . . . . . . 7 (𝜑𝐵𝐷)
56 eluz2 9376 . . . . . . 7 (𝐷 ∈ (ℤ𝐵) ↔ (𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐵𝐷))
5753, 54, 55, 56syl3anbrc 1166 . . . . . 6 (𝜑𝐷 ∈ (ℤ𝐵))
58 fzss2 9895 . . . . . 6 (𝐷 ∈ (ℤ𝐵) → (𝐴...𝐵) ⊆ (𝐴...𝐷))
5957, 58syl 14 . . . . 5 (𝜑 → (𝐴...𝐵) ⊆ (𝐴...𝐷))
6028, 59sstrd 3113 . . . 4 (𝜑 → dom 𝐹 ⊆ (𝐴...𝐷))
615nnzd 9216 . . . . . . 7 (𝜑𝐴 ∈ ℤ)
6212nnzd 9216 . . . . . . 7 (𝜑𝐶 ∈ ℤ)
63 eluz2 9376 . . . . . . 7 (𝐶 ∈ (ℤ𝐴) ↔ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶))
6461, 62, 20, 63syl3anbrc 1166 . . . . . 6 (𝜑𝐶 ∈ (ℤ𝐴))
65 fzss1 9894 . . . . . 6 (𝐶 ∈ (ℤ𝐴) → (𝐶...𝐷) ⊆ (𝐴...𝐷))
6664, 65syl 14 . . . . 5 (𝜑 → (𝐶...𝐷) ⊆ (𝐴...𝐷))
6733, 66sstrd 3113 . . . 4 (𝜑 → dom 𝐺 ⊆ (𝐴...𝐷))
6860, 67unssd 3258 . . 3 (𝜑 → (dom 𝐹 ∪ dom 𝐺) ⊆ (𝐴...𝐷))
6952, 68eqsstrid 3149 . 2 (𝜑 → dom (𝐹𝐺) ⊆ (𝐴...𝐷))
70 isstructr 12033 . 2 (((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ ∧ 𝐴𝐷) ∧ (Fun ((𝐹𝐺) ∖ {∅}) ∧ (𝐹𝐺) ∈ V ∧ dom (𝐹𝐺) ⊆ (𝐴...𝐷))) → (𝐹𝐺) Struct ⟨𝐴, 𝐷⟩)
715, 10, 22, 45, 51, 69, 70syl33anc 1232 1 (𝜑 → (𝐹𝐺) Struct ⟨𝐴, 𝐷⟩)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ w3a 963   = wceq 1332   ∈ wcel 1481  Vcvv 2690   ∖ cdif 3074   ∪ cun 3075   ∩ cin 3076   ⊆ wss 3077  ∅c0 3369  {csn 3533  ⟨cop 3536   class class class wbr 3938  dom cdm 4548  Fun wfun 5126  ‘cfv 5132  (class class class)co 5783   < clt 7844   ≤ cle 7845  ℕcn 8764  ℤcz 9098  ℤ≥cuz 9370  ...cfz 9841   Struct cstr 12014 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4055  ax-pow 4107  ax-pr 4140  ax-un 4364  ax-setind 4461  ax-cnex 7755  ax-resscn 7756  ax-1cn 7757  ax-1re 7758  ax-icn 7759  ax-addcl 7760  ax-addrcl 7761  ax-mulcl 7762  ax-addcom 7764  ax-addass 7766  ax-distr 7768  ax-i2m1 7769  ax-0lt1 7770  ax-0id 7772  ax-rnegex 7773  ax-cnre 7775  ax-pre-ltirr 7776  ax-pre-ltwlin 7777  ax-pre-lttrn 7778  ax-pre-ltadd 7780 This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2692  df-sbc 2915  df-dif 3079  df-un 3081  df-in 3083  df-ss 3090  df-nul 3370  df-pw 3518  df-sn 3539  df-pr 3540  df-op 3542  df-uni 3746  df-int 3781  df-br 3939  df-opab 3999  df-mpt 4000  df-id 4224  df-xp 4554  df-rel 4555  df-cnv 4556  df-co 4557  df-dm 4558  df-rn 4559  df-res 4560  df-ima 4561  df-iota 5097  df-fun 5134  df-fn 5135  df-f 5136  df-fv 5140  df-riota 5739  df-ov 5786  df-oprab 5787  df-mpo 5788  df-pnf 7846  df-mnf 7847  df-xr 7848  df-ltxr 7849  df-le 7850  df-sub 7979  df-neg 7980  df-inn 8765  df-n0 9022  df-z 9099  df-uz 9371  df-fz 9842  df-struct 12020 This theorem is referenced by:  strle2g  12109  strle3g  12110  srngstrd  12140  lmodstrd  12151  ipsstrd  12159
 Copyright terms: Public domain W3C validator