Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fieq0 | GIF version |
Description: A set is empty iff the class of all the finite intersections of that set is empty. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.) |
Ref | Expression |
---|---|
fieq0 | ⊢ (𝐴 ∈ 𝑉 → (𝐴 = ∅ ↔ (fi‘𝐴) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 5496 | . . 3 ⊢ (𝐴 = ∅ → (fi‘𝐴) = (fi‘∅)) | |
2 | fi0 6952 | . . 3 ⊢ (fi‘∅) = ∅ | |
3 | 1, 2 | eqtrdi 2219 | . 2 ⊢ (𝐴 = ∅ → (fi‘𝐴) = ∅) |
4 | ssfii 6951 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ (fi‘𝐴)) | |
5 | sseq0 3456 | . . . 4 ⊢ ((𝐴 ⊆ (fi‘𝐴) ∧ (fi‘𝐴) = ∅) → 𝐴 = ∅) | |
6 | 4, 5 | sylan 281 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ (fi‘𝐴) = ∅) → 𝐴 = ∅) |
7 | 6 | ex 114 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((fi‘𝐴) = ∅ → 𝐴 = ∅)) |
8 | 3, 7 | impbid2 142 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 = ∅ ↔ (fi‘𝐴) = ∅)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 ∈ wcel 2141 ⊆ wss 3121 ∅c0 3414 ‘cfv 5198 ficfi 6945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1o 6395 df-er 6513 df-en 6719 df-fin 6721 df-fi 6946 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |