ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fieq0 GIF version

Theorem fieq0 6872
Description: A set is empty iff the class of all the finite intersections of that set is empty. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fieq0 (𝐴𝑉 → (𝐴 = ∅ ↔ (fi‘𝐴) = ∅))

Proof of Theorem fieq0
StepHypRef Expression
1 fveq2 5429 . . 3 (𝐴 = ∅ → (fi‘𝐴) = (fi‘∅))
2 fi0 6871 . . 3 (fi‘∅) = ∅
31, 2eqtrdi 2189 . 2 (𝐴 = ∅ → (fi‘𝐴) = ∅)
4 ssfii 6870 . . . 4 (𝐴𝑉𝐴 ⊆ (fi‘𝐴))
5 sseq0 3409 . . . 4 ((𝐴 ⊆ (fi‘𝐴) ∧ (fi‘𝐴) = ∅) → 𝐴 = ∅)
64, 5sylan 281 . . 3 ((𝐴𝑉 ∧ (fi‘𝐴) = ∅) → 𝐴 = ∅)
76ex 114 . 2 (𝐴𝑉 → ((fi‘𝐴) = ∅ → 𝐴 = ∅))
83, 7impbid2 142 1 (𝐴𝑉 → (𝐴 = ∅ ↔ (fi‘𝐴) = ∅))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1332  wcel 1481  wss 3076  c0 3368  cfv 5131  ficfi 6864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-1o 6321  df-er 6437  df-en 6643  df-fin 6645  df-fi 6865
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator