| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfss3 | GIF version | ||
| Description: Alternate definition of subclass relationship. (Contributed by NM, 14-Oct-1999.) |
| Ref | Expression |
|---|---|
| dfss3 | ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssalel 3172 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | df-ral 2480 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | bitr4i 187 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 ∈ wcel 2167 ∀wral 2475 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-ral 2480 df-in 3163 df-ss 3170 |
| This theorem is referenced by: ssrab 3262 eqsnm 3786 uni0b 3865 uni0c 3866 ssint 3891 ssiinf 3967 sspwuni 4002 dftr3 4136 tfis 4620 rninxp 5114 fnres 5377 eqfnfv3 5664 funimass3 5681 ffvresb 5728 tfrlemibxssdm 6394 tfr1onlembxssdm 6410 tfrcllembxssdm 6423 exmidontriimlem3 7308 suplocsr 7895 4sqlem19 12605 imasaddfnlemg 13018 isbasis2g 14389 tgval2 14395 eltg2b 14398 tgss2 14423 basgen2 14425 bastop1 14427 unicld 14460 neipsm 14498 ssidcn 14554 bdss 15618 |
| Copyright terms: Public domain | W3C validator |