Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfss3 | GIF version |
Description: Alternate definition of subclass relationship. (Contributed by NM, 14-Oct-1999.) |
Ref | Expression |
---|---|
dfss3 | ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3131 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | df-ral 2449 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | bitr4i 186 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1341 ∈ wcel 2136 ∀wral 2444 ⊆ wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-ral 2449 df-in 3122 df-ss 3129 |
This theorem is referenced by: ssrab 3220 eqsnm 3735 uni0b 3814 uni0c 3815 ssint 3840 ssiinf 3915 sspwuni 3950 dftr3 4084 tfis 4560 rninxp 5047 fnres 5304 eqfnfv3 5585 funimass3 5601 ffvresb 5648 tfrlemibxssdm 6295 tfr1onlembxssdm 6311 tfrcllembxssdm 6324 exmidontriimlem3 7179 suplocsr 7750 isbasis2g 12683 tgval2 12691 eltg2b 12694 tgss2 12719 basgen2 12721 bastop1 12723 unicld 12756 neipsm 12794 ssidcn 12850 bdss 13746 |
Copyright terms: Public domain | W3C validator |