![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfss3 | GIF version |
Description: Alternate definition of subclass relationship. (Contributed by NM, 14-Oct-1999.) |
Ref | Expression |
---|---|
dfss3 | ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3168 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | df-ral 2477 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | bitr4i 187 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 ∈ wcel 2164 ∀wral 2472 ⊆ wss 3153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-ral 2477 df-in 3159 df-ss 3166 |
This theorem is referenced by: ssrab 3257 eqsnm 3781 uni0b 3860 uni0c 3861 ssint 3886 ssiinf 3962 sspwuni 3997 dftr3 4131 tfis 4615 rninxp 5109 fnres 5370 eqfnfv3 5657 funimass3 5674 ffvresb 5721 tfrlemibxssdm 6380 tfr1onlembxssdm 6396 tfrcllembxssdm 6409 exmidontriimlem3 7283 suplocsr 7869 4sqlem19 12547 imasaddfnlemg 12897 isbasis2g 14213 tgval2 14219 eltg2b 14222 tgss2 14247 basgen2 14249 bastop1 14251 unicld 14284 neipsm 14322 ssidcn 14378 bdss 15356 |
Copyright terms: Public domain | W3C validator |