ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfss3 GIF version

Theorem dfss3 3173
Description: Alternate definition of subclass relationship. (Contributed by NM, 14-Oct-1999.)
Assertion
Ref Expression
dfss3 (𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfss3
StepHypRef Expression
1 ssalel 3172 . 2 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
2 df-ral 2480 . 2 (∀𝑥𝐴 𝑥𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
31, 2bitr4i 187 1 (𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1362  wcel 2167  wral 2475  wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-ral 2480  df-in 3163  df-ss 3170
This theorem is referenced by:  ssrab  3262  eqsnm  3786  uni0b  3865  uni0c  3866  ssint  3891  ssiinf  3967  sspwuni  4002  dftr3  4136  tfis  4620  rninxp  5114  fnres  5377  eqfnfv3  5664  funimass3  5681  ffvresb  5728  tfrlemibxssdm  6394  tfr1onlembxssdm  6410  tfrcllembxssdm  6423  exmidontriimlem3  7306  suplocsr  7893  4sqlem19  12603  imasaddfnlemg  13016  isbasis2g  14365  tgval2  14371  eltg2b  14374  tgss2  14399  basgen2  14401  bastop1  14403  unicld  14436  neipsm  14474  ssidcn  14530  bdss  15594
  Copyright terms: Public domain W3C validator