Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfss3 | GIF version |
Description: Alternate definition of subclass relationship. (Contributed by NM, 14-Oct-1999.) |
Ref | Expression |
---|---|
dfss3 | ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3136 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | df-ral 2453 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | bitr4i 186 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1346 ∈ wcel 2141 ∀wral 2448 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-ral 2453 df-in 3127 df-ss 3134 |
This theorem is referenced by: ssrab 3225 eqsnm 3742 uni0b 3821 uni0c 3822 ssint 3847 ssiinf 3922 sspwuni 3957 dftr3 4091 tfis 4567 rninxp 5054 fnres 5314 eqfnfv3 5595 funimass3 5612 ffvresb 5659 tfrlemibxssdm 6306 tfr1onlembxssdm 6322 tfrcllembxssdm 6335 exmidontriimlem3 7200 suplocsr 7771 isbasis2g 12837 tgval2 12845 eltg2b 12848 tgss2 12873 basgen2 12875 bastop1 12877 unicld 12910 neipsm 12948 ssidcn 13004 bdss 13899 |
Copyright terms: Public domain | W3C validator |