| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfss3 | GIF version | ||
| Description: Alternate definition of subclass relationship. (Contributed by NM, 14-Oct-1999.) |
| Ref | Expression |
|---|---|
| dfss3 | ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssalel 3212 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | df-ral 2513 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | bitr4i 187 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1393 ∈ wcel 2200 ∀wral 2508 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-ral 2513 df-in 3203 df-ss 3210 |
| This theorem is referenced by: ssrab 3302 eqsnm 3832 uni0b 3912 uni0c 3913 ssint 3938 ssiinf 4014 sspwuni 4049 dftr3 4185 tfis 4674 rninxp 5171 fnres 5439 eqfnfv3 5733 funimass3 5750 ffvresb 5797 tfrlemibxssdm 6471 tfr1onlembxssdm 6487 tfrcllembxssdm 6500 exmidontriimlem3 7401 suplocsr 7992 4sqlem19 12927 imasaddfnlemg 13342 isbasis2g 14713 tgval2 14719 eltg2b 14722 tgss2 14747 basgen2 14749 bastop1 14751 unicld 14784 neipsm 14822 ssidcn 14878 bdss 16185 |
| Copyright terms: Public domain | W3C validator |