ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfss3 GIF version

Theorem dfss3 3186
Description: Alternate definition of subclass relationship. (Contributed by NM, 14-Oct-1999.)
Assertion
Ref Expression
dfss3 (𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfss3
StepHypRef Expression
1 ssalel 3185 . 2 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
2 df-ral 2490 . 2 (∀𝑥𝐴 𝑥𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
31, 2bitr4i 187 1 (𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1371  wcel 2177  wral 2485  wss 3170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-ral 2490  df-in 3176  df-ss 3183
This theorem is referenced by:  ssrab  3275  eqsnm  3802  uni0b  3881  uni0c  3882  ssint  3907  ssiinf  3983  sspwuni  4018  dftr3  4154  tfis  4639  rninxp  5135  fnres  5402  eqfnfv3  5692  funimass3  5709  ffvresb  5756  tfrlemibxssdm  6426  tfr1onlembxssdm  6442  tfrcllembxssdm  6455  exmidontriimlem3  7351  suplocsr  7942  4sqlem19  12807  imasaddfnlemg  13221  isbasis2g  14592  tgval2  14598  eltg2b  14601  tgss2  14626  basgen2  14628  bastop1  14630  unicld  14663  neipsm  14701  ssidcn  14757  bdss  15938
  Copyright terms: Public domain W3C validator