| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dfss3 | GIF version | ||
| Description: Alternate definition of subclass relationship. (Contributed by NM, 14-Oct-1999.) | 
| Ref | Expression | 
|---|---|
| dfss3 | ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfss2 3172 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | df-ral 2480 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | bitr4i 187 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 ∈ wcel 2167 ∀wral 2475 ⊆ wss 3157 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-ral 2480 df-in 3163 df-ss 3170 | 
| This theorem is referenced by: ssrab 3261 eqsnm 3785 uni0b 3864 uni0c 3865 ssint 3890 ssiinf 3966 sspwuni 4001 dftr3 4135 tfis 4619 rninxp 5113 fnres 5374 eqfnfv3 5661 funimass3 5678 ffvresb 5725 tfrlemibxssdm 6385 tfr1onlembxssdm 6401 tfrcllembxssdm 6414 exmidontriimlem3 7290 suplocsr 7876 4sqlem19 12578 imasaddfnlemg 12957 isbasis2g 14281 tgval2 14287 eltg2b 14290 tgss2 14315 basgen2 14317 bastop1 14319 unicld 14352 neipsm 14390 ssidcn 14446 bdss 15510 | 
| Copyright terms: Public domain | W3C validator |