| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfss3 | GIF version | ||
| Description: Alternate definition of subclass relationship. (Contributed by NM, 14-Oct-1999.) |
| Ref | Expression |
|---|---|
| dfss3 | ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssalel 3185 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | df-ral 2490 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | bitr4i 187 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1371 ∈ wcel 2177 ∀wral 2485 ⊆ wss 3170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-ral 2490 df-in 3176 df-ss 3183 |
| This theorem is referenced by: ssrab 3275 eqsnm 3802 uni0b 3881 uni0c 3882 ssint 3907 ssiinf 3983 sspwuni 4018 dftr3 4154 tfis 4639 rninxp 5135 fnres 5402 eqfnfv3 5692 funimass3 5709 ffvresb 5756 tfrlemibxssdm 6426 tfr1onlembxssdm 6442 tfrcllembxssdm 6455 exmidontriimlem3 7351 suplocsr 7942 4sqlem19 12807 imasaddfnlemg 13221 isbasis2g 14592 tgval2 14598 eltg2b 14601 tgss2 14626 basgen2 14628 bastop1 14630 unicld 14663 neipsm 14701 ssidcn 14757 bdss 15938 |
| Copyright terms: Public domain | W3C validator |