| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfss3 | GIF version | ||
| Description: Alternate definition of subclass relationship. (Contributed by NM, 14-Oct-1999.) |
| Ref | Expression |
|---|---|
| dfss3 | ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssalel 3180 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | df-ral 2488 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | bitr4i 187 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1370 ∈ wcel 2175 ∀wral 2483 ⊆ wss 3165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-ral 2488 df-in 3171 df-ss 3178 |
| This theorem is referenced by: ssrab 3270 eqsnm 3795 uni0b 3874 uni0c 3875 ssint 3900 ssiinf 3976 sspwuni 4011 dftr3 4145 tfis 4630 rninxp 5125 fnres 5391 eqfnfv3 5678 funimass3 5695 ffvresb 5742 tfrlemibxssdm 6412 tfr1onlembxssdm 6428 tfrcllembxssdm 6441 exmidontriimlem3 7334 suplocsr 7921 4sqlem19 12674 imasaddfnlemg 13088 isbasis2g 14459 tgval2 14465 eltg2b 14468 tgss2 14493 basgen2 14495 bastop1 14497 unicld 14530 neipsm 14568 ssidcn 14624 bdss 15733 |
| Copyright terms: Public domain | W3C validator |