ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfss3 GIF version

Theorem dfss3 3213
Description: Alternate definition of subclass relationship. (Contributed by NM, 14-Oct-1999.)
Assertion
Ref Expression
dfss3 (𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfss3
StepHypRef Expression
1 ssalel 3212 . 2 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
2 df-ral 2513 . 2 (∀𝑥𝐴 𝑥𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
31, 2bitr4i 187 1 (𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1393  wcel 2200  wral 2508  wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-ral 2513  df-in 3203  df-ss 3210
This theorem is referenced by:  ssrab  3302  eqsnm  3832  uni0b  3912  uni0c  3913  ssint  3938  ssiinf  4014  sspwuni  4049  dftr3  4185  tfis  4674  rninxp  5171  fnres  5439  eqfnfv3  5733  funimass3  5750  ffvresb  5797  tfrlemibxssdm  6471  tfr1onlembxssdm  6487  tfrcllembxssdm  6500  exmidontriimlem3  7401  suplocsr  7992  4sqlem19  12927  imasaddfnlemg  13342  isbasis2g  14713  tgval2  14719  eltg2b  14722  tgss2  14747  basgen2  14749  bastop1  14751  unicld  14784  neipsm  14822  ssidcn  14878  bdss  16185
  Copyright terms: Public domain W3C validator