Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfss3 | GIF version |
Description: Alternate definition of subclass relationship. (Contributed by NM, 14-Oct-1999.) |
Ref | Expression |
---|---|
dfss3 | ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3117 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | df-ral 2440 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | bitr4i 186 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1333 ∈ wcel 2128 ∀wral 2435 ⊆ wss 3102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-11 1486 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-ral 2440 df-in 3108 df-ss 3115 |
This theorem is referenced by: ssrab 3206 eqsnm 3718 uni0b 3797 uni0c 3798 ssint 3823 ssiinf 3898 sspwuni 3933 dftr3 4066 tfis 4540 rninxp 5026 fnres 5283 eqfnfv3 5564 funimass3 5580 ffvresb 5627 tfrlemibxssdm 6268 tfr1onlembxssdm 6284 tfrcllembxssdm 6297 exmidontriimlem3 7141 suplocsr 7712 isbasis2g 12403 tgval2 12411 eltg2b 12414 tgss2 12439 basgen2 12441 bastop1 12443 unicld 12476 neipsm 12514 ssidcn 12570 bdss 13399 |
Copyright terms: Public domain | W3C validator |