Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssiun | GIF version |
Description: Subset implication for an indexed union. (Contributed by NM, 3-Sep-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
ssiun | ⊢ (∃𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 → 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3136 | . . . . 5 ⊢ (𝐶 ⊆ 𝐵 → (𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐵)) | |
2 | 1 | reximi 2563 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 → ∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐵)) |
3 | r19.37av 2619 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐵) → (𝑦 ∈ 𝐶 → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) | |
4 | 2, 3 | syl 14 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 → (𝑦 ∈ 𝐶 → ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) |
5 | eliun 3870 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
6 | 4, 5 | syl6ibr 161 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 → (𝑦 ∈ 𝐶 → 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵)) |
7 | 6 | ssrdv 3148 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 → 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ∃wrex 2445 ⊆ wss 3116 ∪ ciun 3866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-in 3122 df-ss 3129 df-iun 3868 |
This theorem is referenced by: iunss2 3911 iunpwss 3957 iunpw 4458 |
Copyright terms: Public domain | W3C validator |