ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssiun GIF version

Theorem ssiun 3954
Description: Subset implication for an indexed union. (Contributed by NM, 3-Sep-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ssiun (∃𝑥𝐴 𝐶𝐵𝐶 𝑥𝐴 𝐵)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem ssiun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssel 3173 . . . . 5 (𝐶𝐵 → (𝑦𝐶𝑦𝐵))
21reximi 2591 . . . 4 (∃𝑥𝐴 𝐶𝐵 → ∃𝑥𝐴 (𝑦𝐶𝑦𝐵))
3 r19.37av 2647 . . . 4 (∃𝑥𝐴 (𝑦𝐶𝑦𝐵) → (𝑦𝐶 → ∃𝑥𝐴 𝑦𝐵))
42, 3syl 14 . . 3 (∃𝑥𝐴 𝐶𝐵 → (𝑦𝐶 → ∃𝑥𝐴 𝑦𝐵))
5 eliun 3916 . . 3 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
64, 5imbitrrdi 162 . 2 (∃𝑥𝐴 𝐶𝐵 → (𝑦𝐶𝑦 𝑥𝐴 𝐵))
76ssrdv 3185 1 (∃𝑥𝐴 𝐶𝐵𝐶 𝑥𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2164  wrex 2473  wss 3153   ciun 3912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-in 3159  df-ss 3166  df-iun 3914
This theorem is referenced by:  iunss2  3957  iunpwss  4004  iunpw  4509
  Copyright terms: Public domain W3C validator