![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ralrimivva | GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by Jeff Madsen, 19-Jun-2011.) |
Ref | Expression |
---|---|
ralrimivva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝜓) |
Ref | Expression |
---|---|
ralrimivva | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimivva.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝜓) | |
2 | 1 | ex 114 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜓)) |
3 | 2 | ralrimivv 2472 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 1448 ∀wral 2375 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1391 ax-gen 1393 ax-4 1455 ax-17 1474 |
This theorem depends on definitions: df-bi 116 df-nf 1405 df-ral 2380 |
This theorem is referenced by: swopo 4166 sosng 4550 fcof1 5616 fliftfund 5630 isoresbr 5642 isocnv 5644 f1oiso 5659 caovclg 5855 caovcomg 5858 off 5926 caofrss 5937 dmmpog 6037 fnmpoovd 6042 fmpoco 6043 poxp 6059 f1od2 6062 eroprf 6452 dom2lem 6596 xpf1o 6667 fidifsnid 6694 nnwetri 6733 undiffi 6742 fidcenumlemim 6768 supmoti 6795 supsnti 6807 supisoti 6812 difinfsnlem 6899 addlocpr 7245 mullocpr 7280 cauappcvgprlemloc 7361 cauappcvgprlemlim 7370 caucvgprlemloc 7384 caucvgprprlemloc 7412 rereceu 7574 ltordlem 8111 cju 8577 exbtwnz 9869 frec2uzf1od 10020 frec2uzisod 10021 frecuzrdgrrn 10022 frec2uzrdg 10023 frecuzrdgrcl 10024 frecuzrdgsuc 10028 frecuzrdgrclt 10029 frecuzrdgg 10030 frecuzrdgsuctlem 10037 seqvalcd 10073 seqovcd 10077 seq3caopr3 10095 seq3caopr2 10096 iseqf1olemqf1o 10107 seq3homo 10124 seq3distr 10127 fimaxq 10414 zfz1isolem1 10424 rsqrmo 10639 climcn2 10917 addcn2 10918 mulcn2 10920 fsum2dlemstep 11042 fisumcom2 11046 cvgratnn 11139 divalglemeunn 11413 divalglemeuneg 11415 bezoutlemeu 11488 isprm6 11618 pw2dvdseu 11638 crth 11692 ennnfonelemim 11729 tgclb 12016 txbas 12208 txcnp 12221 txcnmpt 12223 cnmpt21 12241 isxmetd 12275 isxmet2d 12276 xmettpos 12298 blfvalps 12313 xmetresbl 12368 metss2 12426 comet 12427 bdmet 12430 bdmopn 12432 qtopbasss 12443 elcncf1di 12479 cncffvrn 12482 mulc1cncf 12489 cncfco 12491 exmidsbthrlem 12801 cvgcmp2n 12812 |
Copyright terms: Public domain | W3C validator |