ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zmodid2 GIF version

Theorem zmodid2 10018
Description: Identity law for modulo restricted to integers. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
zmodid2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) = 𝑀𝑀 ∈ (0...(𝑁 − 1))))

Proof of Theorem zmodid2
StepHypRef Expression
1 zq 9320 . . . 4 (𝑀 ∈ ℤ → 𝑀 ∈ ℚ)
21adantr 272 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℚ)
3 nnq 9327 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℚ)
43adantl 273 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℚ)
5 nngt0 8655 . . . 4 (𝑁 ∈ ℕ → 0 < 𝑁)
65adantl 273 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 0 < 𝑁)
7 modqid2 10017 . . 3 ((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → ((𝑀 mod 𝑁) = 𝑀 ↔ (0 ≤ 𝑀𝑀 < 𝑁)))
82, 4, 6, 7syl3anc 1199 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) = 𝑀 ↔ (0 ≤ 𝑀𝑀 < 𝑁)))
9 nnz 8977 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
10 0z 8969 . . . . . 6 0 ∈ ℤ
11 elfzm11 9764 . . . . . 6 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ (0...(𝑁 − 1)) ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀𝑀 < 𝑁)))
1210, 11mpan 418 . . . . 5 (𝑁 ∈ ℤ → (𝑀 ∈ (0...(𝑁 − 1)) ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀𝑀 < 𝑁)))
13 3anass 949 . . . . 5 ((𝑀 ∈ ℤ ∧ 0 ≤ 𝑀𝑀 < 𝑁) ↔ (𝑀 ∈ ℤ ∧ (0 ≤ 𝑀𝑀 < 𝑁)))
1412, 13syl6bb 195 . . . 4 (𝑁 ∈ ℤ → (𝑀 ∈ (0...(𝑁 − 1)) ↔ (𝑀 ∈ ℤ ∧ (0 ≤ 𝑀𝑀 < 𝑁))))
159, 14syl 14 . . 3 (𝑁 ∈ ℕ → (𝑀 ∈ (0...(𝑁 − 1)) ↔ (𝑀 ∈ ℤ ∧ (0 ≤ 𝑀𝑀 < 𝑁))))
16 ibar 297 . . . 4 (𝑀 ∈ ℤ → ((0 ≤ 𝑀𝑀 < 𝑁) ↔ (𝑀 ∈ ℤ ∧ (0 ≤ 𝑀𝑀 < 𝑁))))
1716bicomd 140 . . 3 (𝑀 ∈ ℤ → ((𝑀 ∈ ℤ ∧ (0 ≤ 𝑀𝑀 < 𝑁)) ↔ (0 ≤ 𝑀𝑀 < 𝑁)))
1815, 17sylan9bbr 456 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 ∈ (0...(𝑁 − 1)) ↔ (0 ≤ 𝑀𝑀 < 𝑁)))
198, 18bitr4d 190 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) = 𝑀𝑀 ∈ (0...(𝑁 − 1))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 945   = wceq 1314  wcel 1463   class class class wbr 3895  (class class class)co 5728  0cc0 7547  1c1 7548   < clt 7724  cle 7725  cmin 7856  cn 8630  cz 8958  cq 9313  ...cfz 9683   mod cmo 9988
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-mulrcl 7644  ax-addcom 7645  ax-mulcom 7646  ax-addass 7647  ax-mulass 7648  ax-distr 7649  ax-i2m1 7650  ax-0lt1 7651  ax-1rid 7652  ax-0id 7653  ax-rnegex 7654  ax-precex 7655  ax-cnre 7656  ax-pre-ltirr 7657  ax-pre-ltwlin 7658  ax-pre-lttrn 7659  ax-pre-apti 7660  ax-pre-ltadd 7661  ax-pre-mulgt0 7662  ax-pre-mulext 7663  ax-arch 7664
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rmo 2398  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-po 4178  df-iso 4179  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-fv 5089  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729  df-le 7730  df-sub 7858  df-neg 7859  df-reap 8255  df-ap 8262  df-div 8346  df-inn 8631  df-n0 8882  df-z 8959  df-q 9314  df-rp 9344  df-fz 9684  df-fl 9936  df-mod 9989
This theorem is referenced by:  zmodidfzo  10019
  Copyright terms: Public domain W3C validator