| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zmodid2 | GIF version | ||
| Description: Identity law for modulo restricted to integers. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| zmodid2 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) = 𝑀 ↔ 𝑀 ∈ (0...(𝑁 − 1)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zq 9782 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℚ) | |
| 2 | 1 | adantr 276 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℚ) |
| 3 | nnq 9789 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℚ) | |
| 4 | 3 | adantl 277 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℚ) |
| 5 | nngt0 9096 | . . . 4 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
| 6 | 5 | adantl 277 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 0 < 𝑁) |
| 7 | modqid2 10533 | . . 3 ⊢ ((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → ((𝑀 mod 𝑁) = 𝑀 ↔ (0 ≤ 𝑀 ∧ 𝑀 < 𝑁))) | |
| 8 | 2, 4, 6, 7 | syl3anc 1250 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) = 𝑀 ↔ (0 ≤ 𝑀 ∧ 𝑀 < 𝑁))) |
| 9 | nnz 9426 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
| 10 | 0z 9418 | . . . . . 6 ⊢ 0 ∈ ℤ | |
| 11 | elfzm11 10248 | . . . . . 6 ⊢ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ (0...(𝑁 − 1)) ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀 ∧ 𝑀 < 𝑁))) | |
| 12 | 10, 11 | mpan 424 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑀 ∈ (0...(𝑁 − 1)) ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀 ∧ 𝑀 < 𝑁))) |
| 13 | 3anass 985 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 0 ≤ 𝑀 ∧ 𝑀 < 𝑁) ↔ (𝑀 ∈ ℤ ∧ (0 ≤ 𝑀 ∧ 𝑀 < 𝑁))) | |
| 14 | 12, 13 | bitrdi 196 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑀 ∈ (0...(𝑁 − 1)) ↔ (𝑀 ∈ ℤ ∧ (0 ≤ 𝑀 ∧ 𝑀 < 𝑁)))) |
| 15 | 9, 14 | syl 14 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑀 ∈ (0...(𝑁 − 1)) ↔ (𝑀 ∈ ℤ ∧ (0 ≤ 𝑀 ∧ 𝑀 < 𝑁)))) |
| 16 | ibar 301 | . . . 4 ⊢ (𝑀 ∈ ℤ → ((0 ≤ 𝑀 ∧ 𝑀 < 𝑁) ↔ (𝑀 ∈ ℤ ∧ (0 ≤ 𝑀 ∧ 𝑀 < 𝑁)))) | |
| 17 | 16 | bicomd 141 | . . 3 ⊢ (𝑀 ∈ ℤ → ((𝑀 ∈ ℤ ∧ (0 ≤ 𝑀 ∧ 𝑀 < 𝑁)) ↔ (0 ≤ 𝑀 ∧ 𝑀 < 𝑁))) |
| 18 | 15, 17 | sylan9bbr 463 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 ∈ (0...(𝑁 − 1)) ↔ (0 ≤ 𝑀 ∧ 𝑀 < 𝑁))) |
| 19 | 8, 18 | bitr4d 191 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) = 𝑀 ↔ 𝑀 ∈ (0...(𝑁 − 1)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2178 class class class wbr 4059 (class class class)co 5967 0cc0 7960 1c1 7961 < clt 8142 ≤ cle 8143 − cmin 8278 ℕcn 9071 ℤcz 9407 ℚcq 9775 ...cfz 10165 mod cmo 10504 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-po 4361 df-iso 4362 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-n0 9331 df-z 9408 df-q 9776 df-rp 9811 df-fz 10166 df-fl 10450 df-mod 10505 |
| This theorem is referenced by: zmodidfzo 10535 |
| Copyright terms: Public domain | W3C validator |