ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zmodid2 GIF version

Theorem zmodid2 10308
Description: Identity law for modulo restricted to integers. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
zmodid2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) = 𝑀𝑀 ∈ (0...(𝑁 − 1))))

Proof of Theorem zmodid2
StepHypRef Expression
1 zq 9585 . . . 4 (𝑀 ∈ ℤ → 𝑀 ∈ ℚ)
21adantr 274 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℚ)
3 nnq 9592 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℚ)
43adantl 275 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℚ)
5 nngt0 8903 . . . 4 (𝑁 ∈ ℕ → 0 < 𝑁)
65adantl 275 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 0 < 𝑁)
7 modqid2 10307 . . 3 ((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → ((𝑀 mod 𝑁) = 𝑀 ↔ (0 ≤ 𝑀𝑀 < 𝑁)))
82, 4, 6, 7syl3anc 1233 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) = 𝑀 ↔ (0 ≤ 𝑀𝑀 < 𝑁)))
9 nnz 9231 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
10 0z 9223 . . . . . 6 0 ∈ ℤ
11 elfzm11 10047 . . . . . 6 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ (0...(𝑁 − 1)) ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀𝑀 < 𝑁)))
1210, 11mpan 422 . . . . 5 (𝑁 ∈ ℤ → (𝑀 ∈ (0...(𝑁 − 1)) ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀𝑀 < 𝑁)))
13 3anass 977 . . . . 5 ((𝑀 ∈ ℤ ∧ 0 ≤ 𝑀𝑀 < 𝑁) ↔ (𝑀 ∈ ℤ ∧ (0 ≤ 𝑀𝑀 < 𝑁)))
1412, 13bitrdi 195 . . . 4 (𝑁 ∈ ℤ → (𝑀 ∈ (0...(𝑁 − 1)) ↔ (𝑀 ∈ ℤ ∧ (0 ≤ 𝑀𝑀 < 𝑁))))
159, 14syl 14 . . 3 (𝑁 ∈ ℕ → (𝑀 ∈ (0...(𝑁 − 1)) ↔ (𝑀 ∈ ℤ ∧ (0 ≤ 𝑀𝑀 < 𝑁))))
16 ibar 299 . . . 4 (𝑀 ∈ ℤ → ((0 ≤ 𝑀𝑀 < 𝑁) ↔ (𝑀 ∈ ℤ ∧ (0 ≤ 𝑀𝑀 < 𝑁))))
1716bicomd 140 . . 3 (𝑀 ∈ ℤ → ((𝑀 ∈ ℤ ∧ (0 ≤ 𝑀𝑀 < 𝑁)) ↔ (0 ≤ 𝑀𝑀 < 𝑁)))
1815, 17sylan9bbr 460 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 ∈ (0...(𝑁 − 1)) ↔ (0 ≤ 𝑀𝑀 < 𝑁)))
198, 18bitr4d 190 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) = 𝑀𝑀 ∈ (0...(𝑁 − 1))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141   class class class wbr 3989  (class class class)co 5853  0cc0 7774  1c1 7775   < clt 7954  cle 7955  cmin 8090  cn 8878  cz 9212  cq 9578  ...cfz 9965   mod cmo 10278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-n0 9136  df-z 9213  df-q 9579  df-rp 9611  df-fz 9966  df-fl 10226  df-mod 10279
This theorem is referenced by:  zmodidfzo  10309
  Copyright terms: Public domain W3C validator