| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zmodid2 | GIF version | ||
| Description: Identity law for modulo restricted to integers. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| zmodid2 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) = 𝑀 ↔ 𝑀 ∈ (0...(𝑁 − 1)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zq 9817 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℚ) | |
| 2 | 1 | adantr 276 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℚ) |
| 3 | nnq 9824 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℚ) | |
| 4 | 3 | adantl 277 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℚ) |
| 5 | nngt0 9131 | . . . 4 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
| 6 | 5 | adantl 277 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 0 < 𝑁) |
| 7 | modqid2 10568 | . . 3 ⊢ ((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → ((𝑀 mod 𝑁) = 𝑀 ↔ (0 ≤ 𝑀 ∧ 𝑀 < 𝑁))) | |
| 8 | 2, 4, 6, 7 | syl3anc 1271 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) = 𝑀 ↔ (0 ≤ 𝑀 ∧ 𝑀 < 𝑁))) |
| 9 | nnz 9461 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
| 10 | 0z 9453 | . . . . . 6 ⊢ 0 ∈ ℤ | |
| 11 | elfzm11 10283 | . . . . . 6 ⊢ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ (0...(𝑁 − 1)) ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀 ∧ 𝑀 < 𝑁))) | |
| 12 | 10, 11 | mpan 424 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑀 ∈ (0...(𝑁 − 1)) ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀 ∧ 𝑀 < 𝑁))) |
| 13 | 3anass 1006 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 0 ≤ 𝑀 ∧ 𝑀 < 𝑁) ↔ (𝑀 ∈ ℤ ∧ (0 ≤ 𝑀 ∧ 𝑀 < 𝑁))) | |
| 14 | 12, 13 | bitrdi 196 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑀 ∈ (0...(𝑁 − 1)) ↔ (𝑀 ∈ ℤ ∧ (0 ≤ 𝑀 ∧ 𝑀 < 𝑁)))) |
| 15 | 9, 14 | syl 14 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑀 ∈ (0...(𝑁 − 1)) ↔ (𝑀 ∈ ℤ ∧ (0 ≤ 𝑀 ∧ 𝑀 < 𝑁)))) |
| 16 | ibar 301 | . . . 4 ⊢ (𝑀 ∈ ℤ → ((0 ≤ 𝑀 ∧ 𝑀 < 𝑁) ↔ (𝑀 ∈ ℤ ∧ (0 ≤ 𝑀 ∧ 𝑀 < 𝑁)))) | |
| 17 | 16 | bicomd 141 | . . 3 ⊢ (𝑀 ∈ ℤ → ((𝑀 ∈ ℤ ∧ (0 ≤ 𝑀 ∧ 𝑀 < 𝑁)) ↔ (0 ≤ 𝑀 ∧ 𝑀 < 𝑁))) |
| 18 | 15, 17 | sylan9bbr 463 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 ∈ (0...(𝑁 − 1)) ↔ (0 ≤ 𝑀 ∧ 𝑀 < 𝑁))) |
| 19 | 8, 18 | bitr4d 191 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) = 𝑀 ↔ 𝑀 ∈ (0...(𝑁 − 1)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 class class class wbr 4082 (class class class)co 6000 0cc0 7995 1c1 7996 < clt 8177 ≤ cle 8178 − cmin 8313 ℕcn 9106 ℤcz 9442 ℚcq 9810 ...cfz 10200 mod cmo 10539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-po 4386 df-iso 4387 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-n0 9366 df-z 9443 df-q 9811 df-rp 9846 df-fz 10201 df-fl 10485 df-mod 10540 |
| This theorem is referenced by: zmodidfzo 10570 |
| Copyright terms: Public domain | W3C validator |