| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfi | GIF version | ||
| Description: Specific properties of an element of (fi‘𝐵). (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.) |
| Ref | Expression |
|---|---|
| elfi | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝐴 = ∩ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fival 7087 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (fi‘𝐵) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑦 = ∩ 𝑥}) | |
| 2 | 1 | eleq2d 2276 | . 2 ⊢ (𝐵 ∈ 𝑊 → (𝐴 ∈ (fi‘𝐵) ↔ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑦 = ∩ 𝑥})) |
| 3 | eqeq1 2213 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 = ∩ 𝑥 ↔ 𝐴 = ∩ 𝑥)) | |
| 4 | 3 | rexbidv 2508 | . . 3 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑦 = ∩ 𝑥 ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝐴 = ∩ 𝑥)) |
| 5 | 4 | elabg 2923 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑦 = ∩ 𝑥} ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝐴 = ∩ 𝑥)) |
| 6 | 2, 5 | sylan9bbr 463 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝐴 = ∩ 𝑥)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 {cab 2192 ∃wrex 2486 ∩ cin 3169 𝒫 cpw 3621 ∩ cint 3891 ‘cfv 5280 Fincfn 6840 ficfi 7085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-iinf 4644 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-er 6633 df-en 6841 df-fin 6843 df-fi 7086 |
| This theorem is referenced by: elfi2 7089 elfir 7090 fiss 7094 |
| Copyright terms: Public domain | W3C validator |