| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan9bbr | Unicode version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
| Ref | Expression |
|---|---|
| sylan9bbr.1 |
|
| sylan9bbr.2 |
|
| Ref | Expression |
|---|---|
| sylan9bbr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9bbr.1 |
. . 3
| |
| 2 | sylan9bbr.2 |
. . 3
| |
| 3 | 1, 2 | sylan9bb 462 |
. 2
|
| 4 | 3 | ancoms 268 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.75 965 mpteq12f 4125 opelopabsb 4307 elrelimasn 5049 fvelrnb 5628 fmptco 5748 fconstfvm 5804 f1oiso 5897 canth 5899 mpoeq123 6006 elovmporab 6148 elovmporab1w 6149 dfoprab4f 6281 fmpox 6288 nnmword 6606 elfi 7075 ltmpig 7454 mul0eqap 8745 qreccl 9765 0fz1 10169 zmodid2 10499 divgcdcoprm0 12456 cnptoprest 14744 txrest 14781 cbvrald 15761 |
| Copyright terms: Public domain | W3C validator |