| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan9bbr | Unicode version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
| Ref | Expression |
|---|---|
| sylan9bbr.1 |
|
| sylan9bbr.2 |
|
| Ref | Expression |
|---|---|
| sylan9bbr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9bbr.1 |
. . 3
| |
| 2 | sylan9bbr.2 |
. . 3
| |
| 3 | 1, 2 | sylan9bb 462 |
. 2
|
| 4 | 3 | ancoms 268 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.75 964 mpteq12f 4113 opelopabsb 4294 elrelimasn 5035 fvelrnb 5608 fmptco 5728 fconstfvm 5780 f1oiso 5873 canth 5875 mpoeq123 5981 elovmporab 6123 elovmporab1w 6124 dfoprab4f 6251 fmpox 6258 nnmword 6576 elfi 7037 ltmpig 7406 mul0eqap 8697 qreccl 9716 0fz1 10120 zmodid2 10444 divgcdcoprm0 12269 cnptoprest 14475 txrest 14512 cbvrald 15434 |
| Copyright terms: Public domain | W3C validator |