| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan9bbr | Unicode version | ||
| Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
| Ref | Expression |
|---|---|
| sylan9bbr.1 |
|
| sylan9bbr.2 |
|
| Ref | Expression |
|---|---|
| sylan9bbr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9bbr.1 |
. . 3
| |
| 2 | sylan9bbr.2 |
. . 3
| |
| 3 | 1, 2 | sylan9bb 462 |
. 2
|
| 4 | 3 | ancoms 268 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.75 968 mpteq12f 4164 opelopabsb 4348 elrelimasn 5094 fvelrnb 5681 fmptco 5801 fconstfvm 5857 f1oiso 5950 canth 5952 mpoeq123 6063 elovmporab 6205 elovmporab1w 6206 dfoprab4f 6339 fmpox 6346 nnmword 6664 elfi 7138 ltmpig 7526 mul0eqap 8817 qreccl 9837 0fz1 10241 zmodid2 10574 divgcdcoprm0 12623 cnptoprest 14913 txrest 14950 uhgreq12g 15876 cbvrald 16152 |
| Copyright terms: Public domain | W3C validator |