![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylan9bbr | Unicode version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
Ref | Expression |
---|---|
sylan9bbr.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
sylan9bbr.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sylan9bbr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9bbr.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sylan9bbr.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sylan9bb 462 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | ancoms 268 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: pm5.75 964 mpteq12f 4110 opelopabsb 4291 elrelimasn 5032 fvelrnb 5605 fmptco 5725 fconstfvm 5777 f1oiso 5870 canth 5872 mpoeq123 5978 elovmporab 6120 elovmporab1w 6121 dfoprab4f 6248 fmpox 6255 nnmword 6573 elfi 7032 ltmpig 7401 mul0eqap 8691 qreccl 9710 0fz1 10114 zmodid2 10426 divgcdcoprm0 12242 cnptoprest 14418 txrest 14455 cbvrald 15350 |
Copyright terms: Public domain | W3C validator |