ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylan9bbr Unicode version

Theorem sylan9bbr 463
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.)
Hypotheses
Ref Expression
sylan9bbr.1  |-  ( ph  ->  ( ps  <->  ch )
)
sylan9bbr.2  |-  ( th 
->  ( ch  <->  ta )
)
Assertion
Ref Expression
sylan9bbr  |-  ( ( th  /\  ph )  ->  ( ps  <->  ta )
)

Proof of Theorem sylan9bbr
StepHypRef Expression
1 sylan9bbr.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
2 sylan9bbr.2 . . 3  |-  ( th 
->  ( ch  <->  ta )
)
31, 2sylan9bb 462 . 2  |-  ( (
ph  /\  th )  ->  ( ps  <->  ta )
)
43ancoms 268 1  |-  ( ( th  /\  ph )  ->  ( ps  <->  ta )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm5.75  964  mpteq12f  4109  opelopabsb  4290  elrelimasn  5031  fvelrnb  5604  fmptco  5724  fconstfvm  5776  f1oiso  5869  canth  5871  mpoeq123  5977  elovmporab  6118  elovmporab1w  6119  dfoprab4f  6246  fmpox  6253  nnmword  6571  elfi  7030  ltmpig  7399  mul0eqap  8689  qreccl  9707  0fz1  10111  zmodid2  10423  divgcdcoprm0  12239  cnptoprest  14407  txrest  14444  cbvrald  15280
  Copyright terms: Public domain W3C validator