ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovord GIF version

Theorem caovord 5986
Description: Convert an operation ordering law to class notation. (Contributed by NM, 19-Feb-1996.)
Hypotheses
Ref Expression
caovord.1 𝐴 ∈ V
caovord.2 𝐵 ∈ V
caovord.3 (𝑧𝑆 → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))
Assertion
Ref Expression
caovord (𝐶𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧

Proof of Theorem caovord
StepHypRef Expression
1 oveq1 5825 . . . 4 (𝑧 = 𝐶 → (𝑧𝐹𝐴) = (𝐶𝐹𝐴))
2 oveq1 5825 . . . 4 (𝑧 = 𝐶 → (𝑧𝐹𝐵) = (𝐶𝐹𝐵))
31, 2breq12d 3978 . . 3 (𝑧 = 𝐶 → ((𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵) ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
43bibi2d 231 . 2 (𝑧 = 𝐶 → ((𝐴𝑅𝐵 ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵)) ↔ (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵))))
5 caovord.1 . . 3 𝐴 ∈ V
6 caovord.2 . . 3 𝐵 ∈ V
7 breq1 3968 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑅𝑦𝐴𝑅𝑦))
8 oveq2 5826 . . . . . . 7 (𝑥 = 𝐴 → (𝑧𝐹𝑥) = (𝑧𝐹𝐴))
98breq1d 3975 . . . . . 6 (𝑥 = 𝐴 → ((𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦) ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝑦)))
107, 9bibi12d 234 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)) ↔ (𝐴𝑅𝑦 ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝑦))))
11 breq2 3969 . . . . . 6 (𝑦 = 𝐵 → (𝐴𝑅𝑦𝐴𝑅𝐵))
12 oveq2 5826 . . . . . . 7 (𝑦 = 𝐵 → (𝑧𝐹𝑦) = (𝑧𝐹𝐵))
1312breq2d 3977 . . . . . 6 (𝑦 = 𝐵 → ((𝑧𝐹𝐴)𝑅(𝑧𝐹𝑦) ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵)))
1411, 13bibi12d 234 . . . . 5 (𝑦 = 𝐵 → ((𝐴𝑅𝑦 ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝑦)) ↔ (𝐴𝑅𝐵 ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵))))
1510, 14sylan9bb 458 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)) ↔ (𝐴𝑅𝐵 ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵))))
1615imbi2d 229 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑧𝑆 → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦))) ↔ (𝑧𝑆 → (𝐴𝑅𝐵 ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵)))))
17 caovord.3 . . 3 (𝑧𝑆 → (𝑥𝑅𝑦 ↔ (𝑧𝐹𝑥)𝑅(𝑧𝐹𝑦)))
185, 6, 16, 17vtocl2 2767 . 2 (𝑧𝑆 → (𝐴𝑅𝐵 ↔ (𝑧𝐹𝐴)𝑅(𝑧𝐹𝐵)))
194, 18vtoclga 2778 1 (𝐶𝑆 → (𝐴𝑅𝐵 ↔ (𝐶𝐹𝐴)𝑅(𝐶𝐹𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1335  wcel 2128  Vcvv 2712   class class class wbr 3965  (class class class)co 5818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-rex 2441  df-v 2714  df-un 3106  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-iota 5132  df-fv 5175  df-ov 5821
This theorem is referenced by:  caovord2  5987  caovord3  5988
  Copyright terms: Public domain W3C validator