Step | Hyp | Ref
| Expression |
1 | | 0ex 4127 |
. . . . 5
⊢ ∅
∈ V |
2 | 1 | snid 3622 |
. . . 4
⊢ ∅
∈ {∅} |
3 | | ssrab2 3240 |
. . . . 5
⊢ {𝑧 ∈ {∅} ∣ 𝜑} ⊆
{∅} |
4 | | p0ex 4185 |
. . . . . . 7
⊢ {∅}
∈ V |
5 | 4 | rabex 4144 |
. . . . . 6
⊢ {𝑧 ∈ {∅} ∣ 𝜑} ∈ V |
6 | | sseq12 3180 |
. . . . . . 7
⊢ ((𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} ∧ 𝑦 = {∅}) → (𝑥 ⊆ 𝑦 ↔ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅})) |
7 | | simpl 109 |
. . . . . . . . 9
⊢ ((𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} ∧ 𝑦 = {∅}) → 𝑥 = {𝑧 ∈ {∅} ∣ 𝜑}) |
8 | | simpr 110 |
. . . . . . . . . 10
⊢ ((𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} ∧ 𝑦 = {∅}) → 𝑦 = {∅}) |
9 | 8, 7 | difeq12d 3254 |
. . . . . . . . 9
⊢ ((𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} ∧ 𝑦 = {∅}) → (𝑦 ∖ 𝑥) = ({∅} ∖ {𝑧 ∈ {∅} ∣ 𝜑})) |
10 | 7, 9 | uneq12d 3290 |
. . . . . . . 8
⊢ ((𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} ∧ 𝑦 = {∅}) → (𝑥 ∪ (𝑦 ∖ 𝑥)) = ({𝑧 ∈ {∅} ∣ 𝜑} ∪ ({∅} ∖ {𝑧 ∈ {∅} ∣ 𝜑}))) |
11 | 10, 8 | eqeq12d 2192 |
. . . . . . 7
⊢ ((𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} ∧ 𝑦 = {∅}) → ((𝑥 ∪ (𝑦 ∖ 𝑥)) = 𝑦 ↔ ({𝑧 ∈ {∅} ∣ 𝜑} ∪ ({∅} ∖ {𝑧 ∈ {∅} ∣ 𝜑})) = {∅})) |
12 | 6, 11 | bibi12d 235 |
. . . . . 6
⊢ ((𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} ∧ 𝑦 = {∅}) → ((𝑥 ⊆ 𝑦 ↔ (𝑥 ∪ (𝑦 ∖ 𝑥)) = 𝑦) ↔ ({𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} ↔ ({𝑧 ∈ {∅} ∣ 𝜑} ∪ ({∅} ∖ {𝑧 ∈ {∅} ∣ 𝜑})) =
{∅}))) |
13 | | undifexmid.1 |
. . . . . 6
⊢ (𝑥 ⊆ 𝑦 ↔ (𝑥 ∪ (𝑦 ∖ 𝑥)) = 𝑦) |
14 | 5, 4, 12, 13 | vtocl2 2792 |
. . . . 5
⊢ ({𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} ↔ ({𝑧 ∈ {∅} ∣ 𝜑} ∪ ({∅} ∖ {𝑧 ∈ {∅} ∣ 𝜑})) = {∅}) |
15 | 3, 14 | mpbi 145 |
. . . 4
⊢ ({𝑧 ∈ {∅} ∣ 𝜑} ∪ ({∅} ∖ {𝑧 ∈ {∅} ∣ 𝜑})) = {∅} |
16 | 2, 15 | eleqtrri 2253 |
. . 3
⊢ ∅
∈ ({𝑧 ∈ {∅}
∣ 𝜑} ∪ ({∅}
∖ {𝑧 ∈ {∅}
∣ 𝜑})) |
17 | | elun 3276 |
. . 3
⊢ (∅
∈ ({𝑧 ∈ {∅}
∣ 𝜑} ∪ ({∅}
∖ {𝑧 ∈ {∅}
∣ 𝜑})) ↔ (∅
∈ {𝑧 ∈ {∅}
∣ 𝜑} ∨ ∅
∈ ({∅} ∖ {𝑧 ∈ {∅} ∣ 𝜑}))) |
18 | 16, 17 | mpbi 145 |
. 2
⊢ (∅
∈ {𝑧 ∈ {∅}
∣ 𝜑} ∨ ∅
∈ ({∅} ∖ {𝑧 ∈ {∅} ∣ 𝜑})) |
19 | | biidd 172 |
. . . . . 6
⊢ (𝑧 = ∅ → (𝜑 ↔ 𝜑)) |
20 | 19 | elrab3 2894 |
. . . . 5
⊢ (∅
∈ {∅} → (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ 𝜑)) |
21 | 2, 20 | ax-mp 5 |
. . . 4
⊢ (∅
∈ {𝑧 ∈ {∅}
∣ 𝜑} ↔ 𝜑) |
22 | 21 | biimpi 120 |
. . 3
⊢ (∅
∈ {𝑧 ∈ {∅}
∣ 𝜑} → 𝜑) |
23 | | eldifn 3258 |
. . . 4
⊢ (∅
∈ ({∅} ∖ {𝑧 ∈ {∅} ∣ 𝜑}) → ¬ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}) |
24 | 23, 21 | sylnib 676 |
. . 3
⊢ (∅
∈ ({∅} ∖ {𝑧 ∈ {∅} ∣ 𝜑}) → ¬ 𝜑) |
25 | 22, 24 | orim12i 759 |
. 2
⊢ ((∅
∈ {𝑧 ∈ {∅}
∣ 𝜑} ∨ ∅
∈ ({∅} ∖ {𝑧 ∈ {∅} ∣ 𝜑})) → (𝜑 ∨ ¬ 𝜑)) |
26 | 18, 25 | ax-mp 5 |
1
⊢ (𝜑 ∨ ¬ 𝜑) |