ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undifexmid GIF version

Theorem undifexmid 4179
Description: Union of complementary parts producing the whole and excluded middle. Although special cases such as undifss 3495 and undifdcss 6900 are provable, the full statement implies excluded middle as shown here. (Contributed by Jim Kingdon, 16-Jun-2022.)
Hypothesis
Ref Expression
undifexmid.1 (𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) = 𝑦)
Assertion
Ref Expression
undifexmid (𝜑 ∨ ¬ 𝜑)
Distinct variable group:   𝜑,𝑥,𝑦

Proof of Theorem undifexmid
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 0ex 4116 . . . . 5 ∅ ∈ V
21snid 3614 . . . 4 ∅ ∈ {∅}
3 ssrab2 3232 . . . . 5 {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅}
4 p0ex 4174 . . . . . . 7 {∅} ∈ V
54rabex 4133 . . . . . 6 {𝑧 ∈ {∅} ∣ 𝜑} ∈ V
6 sseq12 3172 . . . . . . 7 ((𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} ∧ 𝑦 = {∅}) → (𝑥𝑦 ↔ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅}))
7 simpl 108 . . . . . . . . 9 ((𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} ∧ 𝑦 = {∅}) → 𝑥 = {𝑧 ∈ {∅} ∣ 𝜑})
8 simpr 109 . . . . . . . . . 10 ((𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} ∧ 𝑦 = {∅}) → 𝑦 = {∅})
98, 7difeq12d 3246 . . . . . . . . 9 ((𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} ∧ 𝑦 = {∅}) → (𝑦𝑥) = ({∅} ∖ {𝑧 ∈ {∅} ∣ 𝜑}))
107, 9uneq12d 3282 . . . . . . . 8 ((𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} ∧ 𝑦 = {∅}) → (𝑥 ∪ (𝑦𝑥)) = ({𝑧 ∈ {∅} ∣ 𝜑} ∪ ({∅} ∖ {𝑧 ∈ {∅} ∣ 𝜑})))
1110, 8eqeq12d 2185 . . . . . . 7 ((𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} ∧ 𝑦 = {∅}) → ((𝑥 ∪ (𝑦𝑥)) = 𝑦 ↔ ({𝑧 ∈ {∅} ∣ 𝜑} ∪ ({∅} ∖ {𝑧 ∈ {∅} ∣ 𝜑})) = {∅}))
126, 11bibi12d 234 . . . . . 6 ((𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} ∧ 𝑦 = {∅}) → ((𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) = 𝑦) ↔ ({𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} ↔ ({𝑧 ∈ {∅} ∣ 𝜑} ∪ ({∅} ∖ {𝑧 ∈ {∅} ∣ 𝜑})) = {∅})))
13 undifexmid.1 . . . . . 6 (𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) = 𝑦)
145, 4, 12, 13vtocl2 2785 . . . . 5 ({𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} ↔ ({𝑧 ∈ {∅} ∣ 𝜑} ∪ ({∅} ∖ {𝑧 ∈ {∅} ∣ 𝜑})) = {∅})
153, 14mpbi 144 . . . 4 ({𝑧 ∈ {∅} ∣ 𝜑} ∪ ({∅} ∖ {𝑧 ∈ {∅} ∣ 𝜑})) = {∅}
162, 15eleqtrri 2246 . . 3 ∅ ∈ ({𝑧 ∈ {∅} ∣ 𝜑} ∪ ({∅} ∖ {𝑧 ∈ {∅} ∣ 𝜑}))
17 elun 3268 . . 3 (∅ ∈ ({𝑧 ∈ {∅} ∣ 𝜑} ∪ ({∅} ∖ {𝑧 ∈ {∅} ∣ 𝜑})) ↔ (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ∨ ∅ ∈ ({∅} ∖ {𝑧 ∈ {∅} ∣ 𝜑})))
1816, 17mpbi 144 . 2 (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ∨ ∅ ∈ ({∅} ∖ {𝑧 ∈ {∅} ∣ 𝜑}))
19 biidd 171 . . . . . 6 (𝑧 = ∅ → (𝜑𝜑))
2019elrab3 2887 . . . . 5 (∅ ∈ {∅} → (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ 𝜑))
212, 20ax-mp 5 . . . 4 (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ 𝜑)
2221biimpi 119 . . 3 (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} → 𝜑)
23 eldifn 3250 . . . 4 (∅ ∈ ({∅} ∖ {𝑧 ∈ {∅} ∣ 𝜑}) → ¬ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})
2423, 21sylnib 671 . . 3 (∅ ∈ ({∅} ∖ {𝑧 ∈ {∅} ∣ 𝜑}) → ¬ 𝜑)
2522, 24orim12i 754 . 2 ((∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ∨ ∅ ∈ ({∅} ∖ {𝑧 ∈ {∅} ∣ 𝜑})) → (𝜑 ∨ ¬ 𝜑))
2618, 25ax-mp 5 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103  wb 104  wo 703   = wceq 1348  wcel 2141  {crab 2452  cdif 3118  cun 3119  wss 3121  c0 3414  {csn 3583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator