ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undifexmid GIF version

Theorem undifexmid 4226
Description: Union of complementary parts producing the whole and excluded middle. Although special cases such as undifss 3531 and undifdcss 6984 are provable, the full statement implies excluded middle as shown here. (Contributed by Jim Kingdon, 16-Jun-2022.)
Hypothesis
Ref Expression
undifexmid.1 (𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) = 𝑦)
Assertion
Ref Expression
undifexmid (𝜑 ∨ ¬ 𝜑)
Distinct variable group:   𝜑,𝑥,𝑦

Proof of Theorem undifexmid
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 0ex 4160 . . . . 5 ∅ ∈ V
21snid 3653 . . . 4 ∅ ∈ {∅}
3 ssrab2 3268 . . . . 5 {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅}
4 p0ex 4221 . . . . . . 7 {∅} ∈ V
54rabex 4177 . . . . . 6 {𝑧 ∈ {∅} ∣ 𝜑} ∈ V
6 sseq12 3208 . . . . . . 7 ((𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} ∧ 𝑦 = {∅}) → (𝑥𝑦 ↔ {𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅}))
7 simpl 109 . . . . . . . . 9 ((𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} ∧ 𝑦 = {∅}) → 𝑥 = {𝑧 ∈ {∅} ∣ 𝜑})
8 simpr 110 . . . . . . . . . 10 ((𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} ∧ 𝑦 = {∅}) → 𝑦 = {∅})
98, 7difeq12d 3282 . . . . . . . . 9 ((𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} ∧ 𝑦 = {∅}) → (𝑦𝑥) = ({∅} ∖ {𝑧 ∈ {∅} ∣ 𝜑}))
107, 9uneq12d 3318 . . . . . . . 8 ((𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} ∧ 𝑦 = {∅}) → (𝑥 ∪ (𝑦𝑥)) = ({𝑧 ∈ {∅} ∣ 𝜑} ∪ ({∅} ∖ {𝑧 ∈ {∅} ∣ 𝜑})))
1110, 8eqeq12d 2211 . . . . . . 7 ((𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} ∧ 𝑦 = {∅}) → ((𝑥 ∪ (𝑦𝑥)) = 𝑦 ↔ ({𝑧 ∈ {∅} ∣ 𝜑} ∪ ({∅} ∖ {𝑧 ∈ {∅} ∣ 𝜑})) = {∅}))
126, 11bibi12d 235 . . . . . 6 ((𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} ∧ 𝑦 = {∅}) → ((𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) = 𝑦) ↔ ({𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} ↔ ({𝑧 ∈ {∅} ∣ 𝜑} ∪ ({∅} ∖ {𝑧 ∈ {∅} ∣ 𝜑})) = {∅})))
13 undifexmid.1 . . . . . 6 (𝑥𝑦 ↔ (𝑥 ∪ (𝑦𝑥)) = 𝑦)
145, 4, 12, 13vtocl2 2819 . . . . 5 ({𝑧 ∈ {∅} ∣ 𝜑} ⊆ {∅} ↔ ({𝑧 ∈ {∅} ∣ 𝜑} ∪ ({∅} ∖ {𝑧 ∈ {∅} ∣ 𝜑})) = {∅})
153, 14mpbi 145 . . . 4 ({𝑧 ∈ {∅} ∣ 𝜑} ∪ ({∅} ∖ {𝑧 ∈ {∅} ∣ 𝜑})) = {∅}
162, 15eleqtrri 2272 . . 3 ∅ ∈ ({𝑧 ∈ {∅} ∣ 𝜑} ∪ ({∅} ∖ {𝑧 ∈ {∅} ∣ 𝜑}))
17 elun 3304 . . 3 (∅ ∈ ({𝑧 ∈ {∅} ∣ 𝜑} ∪ ({∅} ∖ {𝑧 ∈ {∅} ∣ 𝜑})) ↔ (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ∨ ∅ ∈ ({∅} ∖ {𝑧 ∈ {∅} ∣ 𝜑})))
1816, 17mpbi 145 . 2 (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ∨ ∅ ∈ ({∅} ∖ {𝑧 ∈ {∅} ∣ 𝜑}))
19 biidd 172 . . . . . 6 (𝑧 = ∅ → (𝜑𝜑))
2019elrab3 2921 . . . . 5 (∅ ∈ {∅} → (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ 𝜑))
212, 20ax-mp 5 . . . 4 (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ 𝜑)
2221biimpi 120 . . 3 (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} → 𝜑)
23 eldifn 3286 . . . 4 (∅ ∈ ({∅} ∖ {𝑧 ∈ {∅} ∣ 𝜑}) → ¬ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})
2423, 21sylnib 677 . . 3 (∅ ∈ ({∅} ∖ {𝑧 ∈ {∅} ∣ 𝜑}) → ¬ 𝜑)
2522, 24orim12i 760 . 2 ((∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ∨ ∅ ∈ ({∅} ∖ {𝑧 ∈ {∅} ∣ 𝜑})) → (𝜑 ∨ ¬ 𝜑))
2618, 25ax-mp 5 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  wo 709   = wceq 1364  wcel 2167  {crab 2479  cdif 3154  cun 3155  wss 3157  c0 3450  {csn 3622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator