| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elvv | GIF version | ||
| Description: Membership in universal class of ordered pairs. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| elvv | ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp 4700 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))) | |
| 2 | vex 2776 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | vex 2776 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | pm3.2i 272 | . . . 4 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
| 5 | 4 | biantru 302 | . . 3 ⊢ (𝐴 = 〈𝑥, 𝑦〉 ↔ (𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))) |
| 6 | 5 | 2exbii 1630 | . 2 ⊢ (∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉 ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))) |
| 7 | 1, 6 | bitr4i 187 | 1 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1373 ∃wex 1516 ∈ wcel 2177 Vcvv 2773 〈cop 3641 × cxp 4681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-opab 4114 df-xp 4689 |
| This theorem is referenced by: elvvv 4746 elvvuni 4747 ssrel 4771 elrel 4785 relop 4836 elreldm 4913 dmsnm 5157 1stval2 6254 2ndval2 6255 dfopab2 6288 dfoprab3s 6289 dftpos4 6362 tpostpos 6363 fundmen 6912 fundm2domnop0 11012 |
| Copyright terms: Public domain | W3C validator |