| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elvv | GIF version | ||
| Description: Membership in universal class of ordered pairs. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| elvv | ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp 4690 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))) | |
| 2 | vex 2774 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | vex 2774 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | pm3.2i 272 | . . . 4 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
| 5 | 4 | biantru 302 | . . 3 ⊢ (𝐴 = 〈𝑥, 𝑦〉 ↔ (𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))) |
| 6 | 5 | 2exbii 1628 | . 2 ⊢ (∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉 ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))) |
| 7 | 1, 6 | bitr4i 187 | 1 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1372 ∃wex 1514 ∈ wcel 2175 Vcvv 2771 〈cop 3635 × cxp 4671 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-opab 4105 df-xp 4679 |
| This theorem is referenced by: elvvv 4736 elvvuni 4737 ssrel 4761 elrel 4775 relop 4826 elreldm 4902 dmsnm 5145 1stval2 6231 2ndval2 6232 dfopab2 6265 dfoprab3s 6266 dftpos4 6339 tpostpos 6340 fundmen 6883 |
| Copyright terms: Public domain | W3C validator |