ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpundi GIF version

Theorem xpundi 4719
Description: Distributive law for cross product over union. Theorem 103 of [Suppes] p. 52. (Contributed by NM, 12-Aug-2004.)
Assertion
Ref Expression
xpundi (𝐴 × (𝐵𝐶)) = ((𝐴 × 𝐵) ∪ (𝐴 × 𝐶))

Proof of Theorem xpundi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xp 4669 . 2 (𝐴 × (𝐵𝐶)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐵𝐶))}
2 df-xp 4669 . . . 4 (𝐴 × 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)}
3 df-xp 4669 . . . 4 (𝐴 × 𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐶)}
42, 3uneq12i 3315 . . 3 ((𝐴 × 𝐵) ∪ (𝐴 × 𝐶)) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)} ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐶)})
5 elun 3304 . . . . . . 7 (𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵𝑦𝐶))
65anbi2i 457 . . . . . 6 ((𝑥𝐴𝑦 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 ∧ (𝑦𝐵𝑦𝐶)))
7 andi 819 . . . . . 6 ((𝑥𝐴 ∧ (𝑦𝐵𝑦𝐶)) ↔ ((𝑥𝐴𝑦𝐵) ∨ (𝑥𝐴𝑦𝐶)))
86, 7bitri 184 . . . . 5 ((𝑥𝐴𝑦 ∈ (𝐵𝐶)) ↔ ((𝑥𝐴𝑦𝐵) ∨ (𝑥𝐴𝑦𝐶)))
98opabbii 4100 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐵𝐶))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∨ (𝑥𝐴𝑦𝐶))}
10 unopab 4112 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)} ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐶)}) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∨ (𝑥𝐴𝑦𝐶))}
119, 10eqtr4i 2220 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐵𝐶))} = ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)} ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐶)})
124, 11eqtr4i 2220 . 2 ((𝐴 × 𝐵) ∪ (𝐴 × 𝐶)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐵𝐶))}
131, 12eqtr4i 2220 1 (𝐴 × (𝐵𝐶)) = ((𝐴 × 𝐵) ∪ (𝐴 × 𝐶))
Colors of variables: wff set class
Syntax hints:  wa 104  wo 709   = wceq 1364  wcel 2167  cun 3155  {copab 4093   × cxp 4661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-opab 4095  df-xp 4669
This theorem is referenced by:  xpun  4724  djuassen  7284  xpdjuen  7285
  Copyright terms: Public domain W3C validator