Step | Hyp | Ref
| Expression |
1 | | df-xp 4610 |
. 2
⊢ (𝐴 × (𝐵 ∪ 𝐶)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐵 ∪ 𝐶))} |
2 | | df-xp 4610 |
. . . 4
⊢ (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
3 | | df-xp 4610 |
. . . 4
⊢ (𝐴 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} |
4 | 2, 3 | uneq12i 3274 |
. . 3
⊢ ((𝐴 × 𝐵) ∪ (𝐴 × 𝐶)) = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)}) |
5 | | elun 3263 |
. . . . . . 7
⊢ (𝑦 ∈ (𝐵 ∪ 𝐶) ↔ (𝑦 ∈ 𝐵 ∨ 𝑦 ∈ 𝐶)) |
6 | 5 | anbi2i 453 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐵 ∪ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ∨ 𝑦 ∈ 𝐶))) |
7 | | andi 808 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ∨ 𝑦 ∈ 𝐶)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∨ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶))) |
8 | 6, 7 | bitri 183 |
. . . . 5
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐵 ∪ 𝐶)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∨ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶))) |
9 | 8 | opabbii 4049 |
. . . 4
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐵 ∪ 𝐶))} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∨ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶))} |
10 | | unopab 4061 |
. . . 4
⊢
({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)}) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∨ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶))} |
11 | 9, 10 | eqtr4i 2189 |
. . 3
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐵 ∪ 𝐶))} = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)}) |
12 | 4, 11 | eqtr4i 2189 |
. 2
⊢ ((𝐴 × 𝐵) ∪ (𝐴 × 𝐶)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐵 ∪ 𝐶))} |
13 | 1, 12 | eqtr4i 2189 |
1
⊢ (𝐴 × (𝐵 ∪ 𝐶)) = ((𝐴 × 𝐵) ∪ (𝐴 × 𝐶)) |