ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpundi GIF version

Theorem xpundi 4660
Description: Distributive law for cross product over union. Theorem 103 of [Suppes] p. 52. (Contributed by NM, 12-Aug-2004.)
Assertion
Ref Expression
xpundi (𝐴 × (𝐵𝐶)) = ((𝐴 × 𝐵) ∪ (𝐴 × 𝐶))

Proof of Theorem xpundi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xp 4610 . 2 (𝐴 × (𝐵𝐶)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐵𝐶))}
2 df-xp 4610 . . . 4 (𝐴 × 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)}
3 df-xp 4610 . . . 4 (𝐴 × 𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐶)}
42, 3uneq12i 3274 . . 3 ((𝐴 × 𝐵) ∪ (𝐴 × 𝐶)) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)} ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐶)})
5 elun 3263 . . . . . . 7 (𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵𝑦𝐶))
65anbi2i 453 . . . . . 6 ((𝑥𝐴𝑦 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 ∧ (𝑦𝐵𝑦𝐶)))
7 andi 808 . . . . . 6 ((𝑥𝐴 ∧ (𝑦𝐵𝑦𝐶)) ↔ ((𝑥𝐴𝑦𝐵) ∨ (𝑥𝐴𝑦𝐶)))
86, 7bitri 183 . . . . 5 ((𝑥𝐴𝑦 ∈ (𝐵𝐶)) ↔ ((𝑥𝐴𝑦𝐵) ∨ (𝑥𝐴𝑦𝐶)))
98opabbii 4049 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐵𝐶))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∨ (𝑥𝐴𝑦𝐶))}
10 unopab 4061 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)} ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐶)}) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∨ (𝑥𝐴𝑦𝐶))}
119, 10eqtr4i 2189 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐵𝐶))} = ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)} ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐶)})
124, 11eqtr4i 2189 . 2 ((𝐴 × 𝐵) ∪ (𝐴 × 𝐶)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐵𝐶))}
131, 12eqtr4i 2189 1 (𝐴 × (𝐵𝐶)) = ((𝐴 × 𝐵) ∪ (𝐴 × 𝐶))
Colors of variables: wff set class
Syntax hints:  wa 103  wo 698   = wceq 1343  wcel 2136  cun 3114  {copab 4042   × cxp 4602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-opab 4044  df-xp 4610
This theorem is referenced by:  xpun  4665  djuassen  7173  xpdjuen  7174
  Copyright terms: Public domain W3C validator