Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iunxpconst | GIF version |
Description: Membership in a union of cross products when the second factor is constant. (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
iunxpconst | ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpiundir 4670 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 {𝑥} × 𝐵) = ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) | |
2 | iunid 3928 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 | |
3 | 2 | xpeq1i 4631 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 {𝑥} × 𝐵) = (𝐴 × 𝐵) |
4 | 1, 3 | eqtr3i 2193 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵) |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 {csn 3583 ∪ ciun 3873 × cxp 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-iun 3875 df-opab 4051 df-xp 4617 |
This theorem is referenced by: ralxp 4754 rexxp 4755 mpompt 5945 mpompts 6177 fmpo 6180 fsumxp 11399 fprodxp 11587 dvfvalap 13444 pwle2 14031 pwf1oexmid 14032 |
Copyright terms: Public domain | W3C validator |