ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunxpconst GIF version

Theorem iunxpconst 4756
Description: Membership in a union of cross products when the second factor is constant. (Contributed by Mario Carneiro, 29-Dec-2014.)
Assertion
Ref Expression
iunxpconst 𝑥𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem iunxpconst
StepHypRef Expression
1 xpiundir 4755 . 2 ( 𝑥𝐴 {𝑥} × 𝐵) = 𝑥𝐴 ({𝑥} × 𝐵)
2 iunid 4000 . . 3 𝑥𝐴 {𝑥} = 𝐴
32xpeq1i 4716 . 2 ( 𝑥𝐴 {𝑥} × 𝐵) = (𝐴 × 𝐵)
41, 3eqtr3i 2232 1 𝑥𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1375  {csn 3646   ciun 3944   × cxp 4694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-iun 3946  df-opab 4125  df-xp 4702
This theorem is referenced by:  ralxp  4842  rexxp  4843  mpompt  6067  mpompts  6314  fmpo  6317  fsumxp  11913  fprodxp  12101  dvfvalap  15320  pwle2  16275  pwf1oexmid  16276
  Copyright terms: Public domain W3C validator