| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iunxpconst | GIF version | ||
| Description: Membership in a union of cross products when the second factor is constant. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| iunxpconst | ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpiundir 4755 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 {𝑥} × 𝐵) = ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) | |
| 2 | iunid 4000 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 | |
| 3 | 2 | xpeq1i 4716 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 {𝑥} × 𝐵) = (𝐴 × 𝐵) |
| 4 | 1, 3 | eqtr3i 2232 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1375 {csn 3646 ∪ ciun 3944 × cxp 4694 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-iun 3946 df-opab 4125 df-xp 4702 |
| This theorem is referenced by: ralxp 4842 rexxp 4843 mpompt 6067 mpompts 6314 fmpo 6317 fsumxp 11913 fprodxp 12101 dvfvalap 15320 pwle2 16275 pwf1oexmid 16276 |
| Copyright terms: Public domain | W3C validator |