Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunxpconst GIF version

Theorem iunxpconst 4599
 Description: Membership in a union of cross products when the second factor is constant. (Contributed by Mario Carneiro, 29-Dec-2014.)
Assertion
Ref Expression
iunxpconst 𝑥𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem iunxpconst
StepHypRef Expression
1 xpiundir 4598 . 2 ( 𝑥𝐴 {𝑥} × 𝐵) = 𝑥𝐴 ({𝑥} × 𝐵)
2 iunid 3868 . . 3 𝑥𝐴 {𝑥} = 𝐴
32xpeq1i 4559 . 2 ( 𝑥𝐴 {𝑥} × 𝐵) = (𝐴 × 𝐵)
41, 3eqtr3i 2162 1 𝑥𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵)
 Colors of variables: wff set class Syntax hints:   = wceq 1331  {csn 3527  ∪ ciun 3813   × cxp 4537 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-iun 3815  df-opab 3990  df-xp 4545 This theorem is referenced by:  ralxp  4682  rexxp  4683  mpompt  5863  mpompts  6096  fmpo  6099  fsumxp  11212  dvfvalap  12829  pwle2  13223  pwf1oexmid  13224
 Copyright terms: Public domain W3C validator