ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunxpconst GIF version

Theorem iunxpconst 4486
Description: Membership in a union of cross products when the second factor is constant. (Contributed by Mario Carneiro, 29-Dec-2014.)
Assertion
Ref Expression
iunxpconst 𝑥𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem iunxpconst
StepHypRef Expression
1 xpiundir 4485 . 2 ( 𝑥𝐴 {𝑥} × 𝐵) = 𝑥𝐴 ({𝑥} × 𝐵)
2 iunid 3780 . . 3 𝑥𝐴 {𝑥} = 𝐴
32xpeq1i 4448 . 2 ( 𝑥𝐴 {𝑥} × 𝐵) = (𝐴 × 𝐵)
41, 3eqtr3i 2110 1 𝑥𝐴 ({𝑥} × 𝐵) = (𝐴 × 𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1289  {csn 3441   ciun 3725   × cxp 4426
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-iun 3727  df-opab 3892  df-xp 4434
This theorem is referenced by:  ralxp  4567  rexxp  4568  mpt2mpt  5722  mpt2mpts  5950  fmpt2  5953  fsumxp  10793
  Copyright terms: Public domain W3C validator