Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismeannd Structured version   Visualization version   GIF version

Theorem ismeannd 46423
Description: Sufficient condition to prove that 𝑀 is a measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
ismeannd.sal (𝜑𝑆 ∈ SAlg)
ismeannd.mf (𝜑𝑀:𝑆⟶(0[,]+∞))
ismeannd.m0 (𝜑 → (𝑀‘∅) = 0)
ismeannd.iun ((𝜑𝑒:ℕ⟶𝑆Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑀 𝑛 ∈ ℕ (𝑒𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒𝑛)))))
Assertion
Ref Expression
ismeannd (𝜑𝑀 ∈ Meas)
Distinct variable groups:   𝑒,𝑀,𝑛   𝜑,𝑒,𝑛
Allowed substitution hints:   𝑆(𝑒,𝑛)

Proof of Theorem ismeannd
Dummy variables 𝑥 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismeannd.mf . . . . 5 (𝜑𝑀:𝑆⟶(0[,]+∞))
21fdmd 6747 . . . . . 6 (𝜑 → dom 𝑀 = 𝑆)
32feq2d 6723 . . . . 5 (𝜑 → (𝑀:dom 𝑀⟶(0[,]+∞) ↔ 𝑀:𝑆⟶(0[,]+∞)))
41, 3mpbird 257 . . . 4 (𝜑𝑀:dom 𝑀⟶(0[,]+∞))
5 ismeannd.sal . . . . 5 (𝜑𝑆 ∈ SAlg)
62, 5eqeltrd 2839 . . . 4 (𝜑 → dom 𝑀 ∈ SAlg)
74, 6jca 511 . . 3 (𝜑 → (𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg))
8 ismeannd.m0 . . 3 (𝜑 → (𝑀‘∅) = 0)
9 unieq 4923 . . . . . . . . . . . 12 (𝑥 = ∅ → 𝑥 = ∅)
10 uni0 4940 . . . . . . . . . . . . 13 ∅ = ∅
1110a1i 11 . . . . . . . . . . . 12 (𝑥 = ∅ → ∅ = ∅)
129, 11eqtrd 2775 . . . . . . . . . . 11 (𝑥 = ∅ → 𝑥 = ∅)
1312fveq2d 6911 . . . . . . . . . 10 (𝑥 = ∅ → (𝑀 𝑥) = (𝑀‘∅))
1413, 8sylan9eqr 2797 . . . . . . . . 9 ((𝜑𝑥 = ∅) → (𝑀 𝑥) = 0)
15 reseq2 5995 . . . . . . . . . . . . 13 (𝑥 = ∅ → (𝑀𝑥) = (𝑀 ↾ ∅))
16 res0 6004 . . . . . . . . . . . . . 14 (𝑀 ↾ ∅) = ∅
1716a1i 11 . . . . . . . . . . . . 13 (𝑥 = ∅ → (𝑀 ↾ ∅) = ∅)
1815, 17eqtrd 2775 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝑀𝑥) = ∅)
1918fveq2d 6911 . . . . . . . . . . 11 (𝑥 = ∅ → (Σ^‘(𝑀𝑥)) = (Σ^‘∅))
2019adantl 481 . . . . . . . . . 10 ((𝜑𝑥 = ∅) → (Σ^‘(𝑀𝑥)) = (Σ^‘∅))
21 sge00 46332 . . . . . . . . . . 11 ^‘∅) = 0
2221a1i 11 . . . . . . . . . 10 ((𝜑𝑥 = ∅) → (Σ^‘∅) = 0)
2320, 22eqtrd 2775 . . . . . . . . 9 ((𝜑𝑥 = ∅) → (Σ^‘(𝑀𝑥)) = 0)
2414, 23eqtr4d 2778 . . . . . . . 8 ((𝜑𝑥 = ∅) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))
2524adantlr 715 . . . . . . 7 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑥 = ∅) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))
2625adantlr 715 . . . . . 6 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑥 = ∅) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))
27 simpll 767 . . . . . . . 8 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → (𝜑𝑥 ∈ 𝒫 dom 𝑀))
28 simplrr 778 . . . . . . . 8 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → Disj 𝑦𝑥 𝑦)
2927, 28jca 511 . . . . . . 7 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → ((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦))
30 simplrl 777 . . . . . . . 8 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → 𝑥 ≼ ω)
31 neqne 2946 . . . . . . . . 9 𝑥 = ∅ → 𝑥 ≠ ∅)
3231adantl 481 . . . . . . . 8 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → 𝑥 ≠ ∅)
33 id 22 . . . . . . . . . . . 12 (𝑦 = 𝑤𝑦 = 𝑤)
3433cbvdisjv 5126 . . . . . . . . . . 11 (Disj 𝑦𝑥 𝑦Disj 𝑤𝑥 𝑤)
3534biimpi 216 . . . . . . . . . 10 (Disj 𝑦𝑥 𝑦Disj 𝑤𝑥 𝑤)
3635adantl 481 . . . . . . . . 9 ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → Disj 𝑤𝑥 𝑤)
3736ad2antlr 727 . . . . . . . 8 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → Disj 𝑤𝑥 𝑤)
3830, 32, 37nnfoctbdj 46412 . . . . . . 7 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → ∃𝑒(𝑒:ℕ–onto→(𝑥 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)))
39 simpl 482 . . . . . . . . . 10 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) ∧ (𝑒:ℕ–onto→(𝑥 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛))) → ((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦))
40 simprl 771 . . . . . . . . . 10 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) ∧ (𝑒:ℕ–onto→(𝑥 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛))) → 𝑒:ℕ–onto→(𝑥 ∪ {∅}))
41 simprr 773 . . . . . . . . . 10 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) ∧ (𝑒:ℕ–onto→(𝑥 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛))) → Disj 𝑛 ∈ ℕ (𝑒𝑛))
42 founiiun0 45133 . . . . . . . . . . . . 13 (𝑒:ℕ–onto→(𝑥 ∪ {∅}) → 𝑥 = 𝑛 ∈ ℕ (𝑒𝑛))
4342fveq2d 6911 . . . . . . . . . . . 12 (𝑒:ℕ–onto→(𝑥 ∪ {∅}) → (𝑀 𝑥) = (𝑀 𝑛 ∈ ℕ (𝑒𝑛)))
4443ad2antlr 727 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑀 𝑥) = (𝑀 𝑛 ∈ ℕ (𝑒𝑛)))
45 simplll 775 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → 𝜑)
46 fof 6821 . . . . . . . . . . . . . . . 16 (𝑒:ℕ–onto→(𝑥 ∪ {∅}) → 𝑒:ℕ⟶(𝑥 ∪ {∅}))
4746adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) → 𝑒:ℕ⟶(𝑥 ∪ {∅}))
48 elpwi 4612 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ 𝒫 dom 𝑀𝑥 ⊆ dom 𝑀)
4948adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → 𝑥 ⊆ dom 𝑀)
502adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → dom 𝑀 = 𝑆)
5149, 50sseqtrd 4036 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → 𝑥𝑆)
52 0sal 46276 . . . . . . . . . . . . . . . . . . . 20 (𝑆 ∈ SAlg → ∅ ∈ 𝑆)
535, 52syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∅ ∈ 𝑆)
54 snssi 4813 . . . . . . . . . . . . . . . . . . 19 (∅ ∈ 𝑆 → {∅} ⊆ 𝑆)
5553, 54syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → {∅} ⊆ 𝑆)
5655adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → {∅} ⊆ 𝑆)
5751, 56unssd 4202 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (𝑥 ∪ {∅}) ⊆ 𝑆)
5857adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) → (𝑥 ∪ {∅}) ⊆ 𝑆)
5947, 58fssd 6754 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) → 𝑒:ℕ⟶𝑆)
6059adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → 𝑒:ℕ⟶𝑆)
61 simpr 484 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → Disj 𝑛 ∈ ℕ (𝑒𝑛))
62 ismeannd.iun . . . . . . . . . . . . 13 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑀 𝑛 ∈ ℕ (𝑒𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒𝑛)))))
6345, 60, 61, 62syl3anc 1370 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑀 𝑛 ∈ ℕ (𝑒𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒𝑛)))))
6463adantllr 719 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑀 𝑛 ∈ ℕ (𝑒𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒𝑛)))))
651feqmptd 6977 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 = (𝑦𝑆 ↦ (𝑀𝑦)))
6665reseq1d 5999 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑀𝑥) = ((𝑦𝑆 ↦ (𝑀𝑦)) ↾ 𝑥))
6766adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (𝑀𝑥) = ((𝑦𝑆 ↦ (𝑀𝑦)) ↾ 𝑥))
6867adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ∅ ∈ 𝑥) → (𝑀𝑥) = ((𝑦𝑆 ↦ (𝑀𝑦)) ↾ 𝑥))
6951resmptd 6060 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → ((𝑦𝑆 ↦ (𝑀𝑦)) ↾ 𝑥) = (𝑦𝑥 ↦ (𝑀𝑦)))
7069adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ∅ ∈ 𝑥) → ((𝑦𝑆 ↦ (𝑀𝑦)) ↾ 𝑥) = (𝑦𝑥 ↦ (𝑀𝑦)))
71 snssi 4813 . . . . . . . . . . . . . . . . . . . . 21 (∅ ∈ 𝑥 → {∅} ⊆ 𝑥)
72 ssequn2 4199 . . . . . . . . . . . . . . . . . . . . 21 ({∅} ⊆ 𝑥 ↔ (𝑥 ∪ {∅}) = 𝑥)
7371, 72sylib 218 . . . . . . . . . . . . . . . . . . . 20 (∅ ∈ 𝑥 → (𝑥 ∪ {∅}) = 𝑥)
7473eqcomd 2741 . . . . . . . . . . . . . . . . . . 19 (∅ ∈ 𝑥𝑥 = (𝑥 ∪ {∅}))
7574mpteq1d 5243 . . . . . . . . . . . . . . . . . 18 (∅ ∈ 𝑥 → (𝑦𝑥 ↦ (𝑀𝑦)) = (𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦)))
7675adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ∅ ∈ 𝑥) → (𝑦𝑥 ↦ (𝑀𝑦)) = (𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦)))
7768, 70, 763eqtrd 2779 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ∅ ∈ 𝑥) → (𝑀𝑥) = (𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦)))
7877fveq2d 6911 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ∅ ∈ 𝑥) → (Σ^‘(𝑀𝑥)) = (Σ^‘(𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦))))
79 nfv 1912 . . . . . . . . . . . . . . . . 17 𝑦((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥)
80 simplr 769 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) → 𝑥 ∈ 𝒫 dom 𝑀)
81 p0ex 5390 . . . . . . . . . . . . . . . . . 18 {∅} ∈ V
8281a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) → {∅} ∈ V)
83 disjsn 4716 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ 𝑥)
8483biimpri 228 . . . . . . . . . . . . . . . . . 18 (¬ ∅ ∈ 𝑥 → (𝑥 ∩ {∅}) = ∅)
8584adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) → (𝑥 ∩ {∅}) = ∅)
861ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑦𝑥) → 𝑀:𝑆⟶(0[,]+∞))
8751sselda 3995 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑦𝑥) → 𝑦𝑆)
8886, 87ffvelcdmd 7105 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑦𝑥) → (𝑀𝑦) ∈ (0[,]+∞))
8988adantlr 715 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) ∧ 𝑦𝑥) → (𝑀𝑦) ∈ (0[,]+∞))
90 elsni 4648 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ {∅} → 𝑦 = ∅)
9190fveq2d 6911 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ {∅} → (𝑀𝑦) = (𝑀‘∅))
9291adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ {∅}) → (𝑀𝑦) = (𝑀‘∅))
931, 53ffvelcdmd 7105 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑀‘∅) ∈ (0[,]+∞))
9493adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ {∅}) → (𝑀‘∅) ∈ (0[,]+∞))
9592, 94eqeltrd 2839 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ {∅}) → (𝑀𝑦) ∈ (0[,]+∞))
9695ad4ant14 752 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) ∧ 𝑦 ∈ {∅}) → (𝑀𝑦) ∈ (0[,]+∞))
9779, 80, 82, 85, 89, 96sge0splitmpt 46367 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) → (Σ^‘(𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦))) = ((Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) +𝑒^‘(𝑦 ∈ {∅} ↦ (𝑀𝑦)))))
98 fveq2 6907 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = ∅ → (𝑀𝑦) = (𝑀‘∅))
9998adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 = ∅) → (𝑀𝑦) = (𝑀‘∅))
1008adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 = ∅) → (𝑀‘∅) = 0)
10199, 100eqtrd 2775 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 = ∅) → (𝑀𝑦) = 0)
10290, 101sylan2 593 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ {∅}) → (𝑀𝑦) = 0)
103102mpteq2dva 5248 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑦 ∈ {∅} ↦ (𝑀𝑦)) = (𝑦 ∈ {∅} ↦ 0))
104103fveq2d 6911 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (Σ^‘(𝑦 ∈ {∅} ↦ (𝑀𝑦))) = (Σ^‘(𝑦 ∈ {∅} ↦ 0)))
105 nfv 1912 . . . . . . . . . . . . . . . . . . . 20 𝑦𝜑
10681a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → {∅} ∈ V)
107105, 106sge0z 46331 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (Σ^‘(𝑦 ∈ {∅} ↦ 0)) = 0)
108104, 107eqtrd 2775 . . . . . . . . . . . . . . . . . 18 (𝜑 → (Σ^‘(𝑦 ∈ {∅} ↦ (𝑀𝑦))) = 0)
109108oveq2d 7447 . . . . . . . . . . . . . . . . 17 (𝜑 → ((Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) +𝑒^‘(𝑦 ∈ {∅} ↦ (𝑀𝑦)))) = ((Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) +𝑒 0))
110109ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) → ((Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) +𝑒^‘(𝑦 ∈ {∅} ↦ (𝑀𝑦)))) = ((Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) +𝑒 0))
111 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → 𝑥 ∈ 𝒫 dom 𝑀)
11267, 69eqtrd 2775 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (𝑀𝑥) = (𝑦𝑥 ↦ (𝑀𝑦)))
1131adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → 𝑀:𝑆⟶(0[,]+∞))
114113, 51fssresd 6776 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (𝑀𝑥):𝑥⟶(0[,]+∞))
115112, 114feq1dd 6722 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (𝑦𝑥 ↦ (𝑀𝑦)):𝑥⟶(0[,]+∞))
116111, 115sge0xrcl 46341 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) ∈ ℝ*)
117116xaddridd 13282 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → ((Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) +𝑒 0) = (Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))))
118112fveq2d 6911 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (Σ^‘(𝑀𝑥)) = (Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))))
119118eqcomd 2741 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) = (Σ^‘(𝑀𝑥)))
120117, 119eqtrd 2775 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → ((Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) +𝑒 0) = (Σ^‘(𝑀𝑥)))
121120adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) → ((Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) +𝑒 0) = (Σ^‘(𝑀𝑥)))
12297, 110, 1213eqtrrd 2780 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) → (Σ^‘(𝑀𝑥)) = (Σ^‘(𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦))))
12378, 122pm2.61dan 813 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (Σ^‘(𝑀𝑥)) = (Σ^‘(𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦))))
124123ad2antrr 726 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (Σ^‘(𝑀𝑥)) = (Σ^‘(𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦))))
125 nfv 1912 . . . . . . . . . . . . . 14 𝑦(((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛))
126 nfv 1912 . . . . . . . . . . . . . . 15 𝑛((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅}))
127 nfdisj1 5129 . . . . . . . . . . . . . . 15 𝑛Disj 𝑛 ∈ ℕ (𝑒𝑛)
128126, 127nfan 1897 . . . . . . . . . . . . . 14 𝑛(((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛))
129 fveq2 6907 . . . . . . . . . . . . . 14 (𝑦 = (𝑒𝑛) → (𝑀𝑦) = (𝑀‘(𝑒𝑛)))
130 nnex 12270 . . . . . . . . . . . . . . 15 ℕ ∈ V
131130a1i 11 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → ℕ ∈ V)
132 simplr 769 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → 𝑒:ℕ–onto→(𝑥 ∪ {∅}))
133 eqidd 2736 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) ∧ 𝑛 ∈ ℕ) → (𝑒𝑛) = (𝑒𝑛))
1341ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑦 ∈ (𝑥 ∪ {∅})) → 𝑀:𝑆⟶(0[,]+∞))
13557sselda 3995 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑦 ∈ (𝑥 ∪ {∅})) → 𝑦𝑆)
136134, 135ffvelcdmd 7105 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑦 ∈ (𝑥 ∪ {∅})) → (𝑀𝑦) ∈ (0[,]+∞))
137136ad4ant14 752 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) ∧ 𝑦 ∈ (𝑥 ∪ {∅})) → (𝑀𝑦) ∈ (0[,]+∞))
13845, 101sylan 580 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) ∧ 𝑦 = ∅) → (𝑀𝑦) = 0)
139125, 128, 129, 131, 132, 61, 133, 137, 138sge0fodjrn 46373 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (Σ^‘(𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦))) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒𝑛)))))
140124, 139eqtr2d 2776 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒𝑛)))) = (Σ^‘(𝑀𝑥)))
141140adantllr 719 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒𝑛)))) = (Σ^‘(𝑀𝑥)))
14244, 64, 1413eqtrd 2779 . . . . . . . . . 10 (((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))
14339, 40, 41, 142syl21anc 838 . . . . . . . . 9 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) ∧ (𝑒:ℕ–onto→(𝑥 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛))) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))
144143ex 412 . . . . . . . 8 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) → ((𝑒:ℕ–onto→(𝑥 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥))))
145144exlimdv 1931 . . . . . . 7 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) → (∃𝑒(𝑒:ℕ–onto→(𝑥 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥))))
14629, 38, 145sylc 65 . . . . . 6 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))
14726, 146pm2.61dan 813 . . . . 5 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))
148147ex 412 . . . 4 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥))))
149148ralrimiva 3144 . . 3 (𝜑 → ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥))))
1507, 8, 149jca31 514 . 2 (𝜑 → (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))))
151 ismea 46407 . 2 (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))))
152150, 151sylibr 234 1 (𝜑𝑀 ∈ Meas)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1537  wex 1776  wcel 2106  wne 2938  wral 3059  Vcvv 3478  cun 3961  cin 3962  wss 3963  c0 4339  𝒫 cpw 4605  {csn 4631   cuni 4912   ciun 4996  Disj wdisj 5115   class class class wbr 5148  cmpt 5231  dom cdm 5689  cres 5691  wf 6559  ontowfo 6561  cfv 6563  (class class class)co 7431  ωcom 7887  cdom 8982  0cc0 11153  +∞cpnf 11290  cn 12264   +𝑒 cxad 13150  [,]cicc 13387  SAlgcsalg 46264  Σ^csumge0 46318  Meascmea 46405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-xadd 13153  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-salg 46265  df-sumge0 46319  df-mea 46406
This theorem is referenced by:  volmea  46430  caratheodory  46484
  Copyright terms: Public domain W3C validator