Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismeannd Structured version   Visualization version   GIF version

Theorem ismeannd 46426
Description: Sufficient condition to prove that 𝑀 is a measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
ismeannd.sal (𝜑𝑆 ∈ SAlg)
ismeannd.mf (𝜑𝑀:𝑆⟶(0[,]+∞))
ismeannd.m0 (𝜑 → (𝑀‘∅) = 0)
ismeannd.iun ((𝜑𝑒:ℕ⟶𝑆Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑀 𝑛 ∈ ℕ (𝑒𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒𝑛)))))
Assertion
Ref Expression
ismeannd (𝜑𝑀 ∈ Meas)
Distinct variable groups:   𝑒,𝑀,𝑛   𝜑,𝑒,𝑛
Allowed substitution hints:   𝑆(𝑒,𝑛)

Proof of Theorem ismeannd
Dummy variables 𝑥 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismeannd.mf . . . . 5 (𝜑𝑀:𝑆⟶(0[,]+∞))
21fdmd 6712 . . . . . 6 (𝜑 → dom 𝑀 = 𝑆)
32feq2d 6688 . . . . 5 (𝜑 → (𝑀:dom 𝑀⟶(0[,]+∞) ↔ 𝑀:𝑆⟶(0[,]+∞)))
41, 3mpbird 257 . . . 4 (𝜑𝑀:dom 𝑀⟶(0[,]+∞))
5 ismeannd.sal . . . . 5 (𝜑𝑆 ∈ SAlg)
62, 5eqeltrd 2833 . . . 4 (𝜑 → dom 𝑀 ∈ SAlg)
74, 6jca 511 . . 3 (𝜑 → (𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg))
8 ismeannd.m0 . . 3 (𝜑 → (𝑀‘∅) = 0)
9 unieq 4891 . . . . . . . . . . . 12 (𝑥 = ∅ → 𝑥 = ∅)
10 uni0 4908 . . . . . . . . . . . . 13 ∅ = ∅
1110a1i 11 . . . . . . . . . . . 12 (𝑥 = ∅ → ∅ = ∅)
129, 11eqtrd 2769 . . . . . . . . . . 11 (𝑥 = ∅ → 𝑥 = ∅)
1312fveq2d 6876 . . . . . . . . . 10 (𝑥 = ∅ → (𝑀 𝑥) = (𝑀‘∅))
1413, 8sylan9eqr 2791 . . . . . . . . 9 ((𝜑𝑥 = ∅) → (𝑀 𝑥) = 0)
15 reseq2 5958 . . . . . . . . . . . . 13 (𝑥 = ∅ → (𝑀𝑥) = (𝑀 ↾ ∅))
16 res0 5967 . . . . . . . . . . . . . 14 (𝑀 ↾ ∅) = ∅
1716a1i 11 . . . . . . . . . . . . 13 (𝑥 = ∅ → (𝑀 ↾ ∅) = ∅)
1815, 17eqtrd 2769 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝑀𝑥) = ∅)
1918fveq2d 6876 . . . . . . . . . . 11 (𝑥 = ∅ → (Σ^‘(𝑀𝑥)) = (Σ^‘∅))
2019adantl 481 . . . . . . . . . 10 ((𝜑𝑥 = ∅) → (Σ^‘(𝑀𝑥)) = (Σ^‘∅))
21 sge00 46335 . . . . . . . . . . 11 ^‘∅) = 0
2221a1i 11 . . . . . . . . . 10 ((𝜑𝑥 = ∅) → (Σ^‘∅) = 0)
2320, 22eqtrd 2769 . . . . . . . . 9 ((𝜑𝑥 = ∅) → (Σ^‘(𝑀𝑥)) = 0)
2414, 23eqtr4d 2772 . . . . . . . 8 ((𝜑𝑥 = ∅) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))
2524adantlr 715 . . . . . . 7 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑥 = ∅) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))
2625adantlr 715 . . . . . 6 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑥 = ∅) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))
27 simpll 766 . . . . . . . 8 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → (𝜑𝑥 ∈ 𝒫 dom 𝑀))
28 simplrr 777 . . . . . . . 8 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → Disj 𝑦𝑥 𝑦)
2927, 28jca 511 . . . . . . 7 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → ((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦))
30 simplrl 776 . . . . . . . 8 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → 𝑥 ≼ ω)
31 neqne 2939 . . . . . . . . 9 𝑥 = ∅ → 𝑥 ≠ ∅)
3231adantl 481 . . . . . . . 8 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → 𝑥 ≠ ∅)
33 id 22 . . . . . . . . . . . 12 (𝑦 = 𝑤𝑦 = 𝑤)
3433cbvdisjv 5094 . . . . . . . . . . 11 (Disj 𝑦𝑥 𝑦Disj 𝑤𝑥 𝑤)
3534biimpi 216 . . . . . . . . . 10 (Disj 𝑦𝑥 𝑦Disj 𝑤𝑥 𝑤)
3635adantl 481 . . . . . . . . 9 ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → Disj 𝑤𝑥 𝑤)
3736ad2antlr 727 . . . . . . . 8 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → Disj 𝑤𝑥 𝑤)
3830, 32, 37nnfoctbdj 46415 . . . . . . 7 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → ∃𝑒(𝑒:ℕ–onto→(𝑥 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)))
39 simpl 482 . . . . . . . . . 10 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) ∧ (𝑒:ℕ–onto→(𝑥 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛))) → ((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦))
40 simprl 770 . . . . . . . . . 10 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) ∧ (𝑒:ℕ–onto→(𝑥 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛))) → 𝑒:ℕ–onto→(𝑥 ∪ {∅}))
41 simprr 772 . . . . . . . . . 10 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) ∧ (𝑒:ℕ–onto→(𝑥 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛))) → Disj 𝑛 ∈ ℕ (𝑒𝑛))
42 founiiun0 45141 . . . . . . . . . . . . 13 (𝑒:ℕ–onto→(𝑥 ∪ {∅}) → 𝑥 = 𝑛 ∈ ℕ (𝑒𝑛))
4342fveq2d 6876 . . . . . . . . . . . 12 (𝑒:ℕ–onto→(𝑥 ∪ {∅}) → (𝑀 𝑥) = (𝑀 𝑛 ∈ ℕ (𝑒𝑛)))
4443ad2antlr 727 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑀 𝑥) = (𝑀 𝑛 ∈ ℕ (𝑒𝑛)))
45 simplll 774 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → 𝜑)
46 fof 6786 . . . . . . . . . . . . . . . 16 (𝑒:ℕ–onto→(𝑥 ∪ {∅}) → 𝑒:ℕ⟶(𝑥 ∪ {∅}))
4746adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) → 𝑒:ℕ⟶(𝑥 ∪ {∅}))
48 elpwi 4580 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ 𝒫 dom 𝑀𝑥 ⊆ dom 𝑀)
4948adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → 𝑥 ⊆ dom 𝑀)
502adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → dom 𝑀 = 𝑆)
5149, 50sseqtrd 3993 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → 𝑥𝑆)
52 0sal 46279 . . . . . . . . . . . . . . . . . . . 20 (𝑆 ∈ SAlg → ∅ ∈ 𝑆)
535, 52syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∅ ∈ 𝑆)
54 snssi 4781 . . . . . . . . . . . . . . . . . . 19 (∅ ∈ 𝑆 → {∅} ⊆ 𝑆)
5553, 54syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → {∅} ⊆ 𝑆)
5655adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → {∅} ⊆ 𝑆)
5751, 56unssd 4165 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (𝑥 ∪ {∅}) ⊆ 𝑆)
5857adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) → (𝑥 ∪ {∅}) ⊆ 𝑆)
5947, 58fssd 6719 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) → 𝑒:ℕ⟶𝑆)
6059adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → 𝑒:ℕ⟶𝑆)
61 simpr 484 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → Disj 𝑛 ∈ ℕ (𝑒𝑛))
62 ismeannd.iun . . . . . . . . . . . . 13 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑀 𝑛 ∈ ℕ (𝑒𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒𝑛)))))
6345, 60, 61, 62syl3anc 1372 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑀 𝑛 ∈ ℕ (𝑒𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒𝑛)))))
6463adantllr 719 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑀 𝑛 ∈ ℕ (𝑒𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒𝑛)))))
651feqmptd 6943 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 = (𝑦𝑆 ↦ (𝑀𝑦)))
6665reseq1d 5962 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑀𝑥) = ((𝑦𝑆 ↦ (𝑀𝑦)) ↾ 𝑥))
6766adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (𝑀𝑥) = ((𝑦𝑆 ↦ (𝑀𝑦)) ↾ 𝑥))
6867adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ∅ ∈ 𝑥) → (𝑀𝑥) = ((𝑦𝑆 ↦ (𝑀𝑦)) ↾ 𝑥))
6951resmptd 6024 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → ((𝑦𝑆 ↦ (𝑀𝑦)) ↾ 𝑥) = (𝑦𝑥 ↦ (𝑀𝑦)))
7069adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ∅ ∈ 𝑥) → ((𝑦𝑆 ↦ (𝑀𝑦)) ↾ 𝑥) = (𝑦𝑥 ↦ (𝑀𝑦)))
71 snssi 4781 . . . . . . . . . . . . . . . . . . . . 21 (∅ ∈ 𝑥 → {∅} ⊆ 𝑥)
72 ssequn2 4162 . . . . . . . . . . . . . . . . . . . . 21 ({∅} ⊆ 𝑥 ↔ (𝑥 ∪ {∅}) = 𝑥)
7371, 72sylib 218 . . . . . . . . . . . . . . . . . . . 20 (∅ ∈ 𝑥 → (𝑥 ∪ {∅}) = 𝑥)
7473eqcomd 2740 . . . . . . . . . . . . . . . . . . 19 (∅ ∈ 𝑥𝑥 = (𝑥 ∪ {∅}))
7574mpteq1d 5207 . . . . . . . . . . . . . . . . . 18 (∅ ∈ 𝑥 → (𝑦𝑥 ↦ (𝑀𝑦)) = (𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦)))
7675adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ∅ ∈ 𝑥) → (𝑦𝑥 ↦ (𝑀𝑦)) = (𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦)))
7768, 70, 763eqtrd 2773 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ∅ ∈ 𝑥) → (𝑀𝑥) = (𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦)))
7877fveq2d 6876 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ∅ ∈ 𝑥) → (Σ^‘(𝑀𝑥)) = (Σ^‘(𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦))))
79 nfv 1913 . . . . . . . . . . . . . . . . 17 𝑦((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥)
80 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) → 𝑥 ∈ 𝒫 dom 𝑀)
81 p0ex 5351 . . . . . . . . . . . . . . . . . 18 {∅} ∈ V
8281a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) → {∅} ∈ V)
83 disjsn 4684 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ 𝑥)
8483biimpri 228 . . . . . . . . . . . . . . . . . 18 (¬ ∅ ∈ 𝑥 → (𝑥 ∩ {∅}) = ∅)
8584adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) → (𝑥 ∩ {∅}) = ∅)
861ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑦𝑥) → 𝑀:𝑆⟶(0[,]+∞))
8751sselda 3956 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑦𝑥) → 𝑦𝑆)
8886, 87ffvelcdmd 7071 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑦𝑥) → (𝑀𝑦) ∈ (0[,]+∞))
8988adantlr 715 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) ∧ 𝑦𝑥) → (𝑀𝑦) ∈ (0[,]+∞))
90 elsni 4616 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ {∅} → 𝑦 = ∅)
9190fveq2d 6876 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ {∅} → (𝑀𝑦) = (𝑀‘∅))
9291adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ {∅}) → (𝑀𝑦) = (𝑀‘∅))
931, 53ffvelcdmd 7071 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑀‘∅) ∈ (0[,]+∞))
9493adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ {∅}) → (𝑀‘∅) ∈ (0[,]+∞))
9592, 94eqeltrd 2833 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ {∅}) → (𝑀𝑦) ∈ (0[,]+∞))
9695ad4ant14 752 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) ∧ 𝑦 ∈ {∅}) → (𝑀𝑦) ∈ (0[,]+∞))
9779, 80, 82, 85, 89, 96sge0splitmpt 46370 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) → (Σ^‘(𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦))) = ((Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) +𝑒^‘(𝑦 ∈ {∅} ↦ (𝑀𝑦)))))
98 fveq2 6872 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = ∅ → (𝑀𝑦) = (𝑀‘∅))
9998adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 = ∅) → (𝑀𝑦) = (𝑀‘∅))
1008adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 = ∅) → (𝑀‘∅) = 0)
10199, 100eqtrd 2769 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 = ∅) → (𝑀𝑦) = 0)
10290, 101sylan2 593 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ {∅}) → (𝑀𝑦) = 0)
103102mpteq2dva 5211 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑦 ∈ {∅} ↦ (𝑀𝑦)) = (𝑦 ∈ {∅} ↦ 0))
104103fveq2d 6876 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (Σ^‘(𝑦 ∈ {∅} ↦ (𝑀𝑦))) = (Σ^‘(𝑦 ∈ {∅} ↦ 0)))
105 nfv 1913 . . . . . . . . . . . . . . . . . . . 20 𝑦𝜑
10681a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → {∅} ∈ V)
107105, 106sge0z 46334 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (Σ^‘(𝑦 ∈ {∅} ↦ 0)) = 0)
108104, 107eqtrd 2769 . . . . . . . . . . . . . . . . . 18 (𝜑 → (Σ^‘(𝑦 ∈ {∅} ↦ (𝑀𝑦))) = 0)
109108oveq2d 7415 . . . . . . . . . . . . . . . . 17 (𝜑 → ((Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) +𝑒^‘(𝑦 ∈ {∅} ↦ (𝑀𝑦)))) = ((Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) +𝑒 0))
110109ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) → ((Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) +𝑒^‘(𝑦 ∈ {∅} ↦ (𝑀𝑦)))) = ((Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) +𝑒 0))
111 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → 𝑥 ∈ 𝒫 dom 𝑀)
11267, 69eqtrd 2769 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (𝑀𝑥) = (𝑦𝑥 ↦ (𝑀𝑦)))
1131adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → 𝑀:𝑆⟶(0[,]+∞))
114113, 51fssresd 6741 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (𝑀𝑥):𝑥⟶(0[,]+∞))
115112, 114feq1dd 6687 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (𝑦𝑥 ↦ (𝑀𝑦)):𝑥⟶(0[,]+∞))
116111, 115sge0xrcl 46344 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) ∈ ℝ*)
117116xaddridd 13251 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → ((Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) +𝑒 0) = (Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))))
118112fveq2d 6876 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (Σ^‘(𝑀𝑥)) = (Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))))
119118eqcomd 2740 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) = (Σ^‘(𝑀𝑥)))
120117, 119eqtrd 2769 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → ((Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) +𝑒 0) = (Σ^‘(𝑀𝑥)))
121120adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) → ((Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) +𝑒 0) = (Σ^‘(𝑀𝑥)))
12297, 110, 1213eqtrrd 2774 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) → (Σ^‘(𝑀𝑥)) = (Σ^‘(𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦))))
12378, 122pm2.61dan 812 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (Σ^‘(𝑀𝑥)) = (Σ^‘(𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦))))
124123ad2antrr 726 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (Σ^‘(𝑀𝑥)) = (Σ^‘(𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦))))
125 nfv 1913 . . . . . . . . . . . . . 14 𝑦(((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛))
126 nfv 1913 . . . . . . . . . . . . . . 15 𝑛((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅}))
127 nfdisj1 5097 . . . . . . . . . . . . . . 15 𝑛Disj 𝑛 ∈ ℕ (𝑒𝑛)
128126, 127nfan 1898 . . . . . . . . . . . . . 14 𝑛(((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛))
129 fveq2 6872 . . . . . . . . . . . . . 14 (𝑦 = (𝑒𝑛) → (𝑀𝑦) = (𝑀‘(𝑒𝑛)))
130 nnex 12238 . . . . . . . . . . . . . . 15 ℕ ∈ V
131130a1i 11 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → ℕ ∈ V)
132 simplr 768 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → 𝑒:ℕ–onto→(𝑥 ∪ {∅}))
133 eqidd 2735 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) ∧ 𝑛 ∈ ℕ) → (𝑒𝑛) = (𝑒𝑛))
1341ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑦 ∈ (𝑥 ∪ {∅})) → 𝑀:𝑆⟶(0[,]+∞))
13557sselda 3956 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑦 ∈ (𝑥 ∪ {∅})) → 𝑦𝑆)
136134, 135ffvelcdmd 7071 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑦 ∈ (𝑥 ∪ {∅})) → (𝑀𝑦) ∈ (0[,]+∞))
137136ad4ant14 752 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) ∧ 𝑦 ∈ (𝑥 ∪ {∅})) → (𝑀𝑦) ∈ (0[,]+∞))
13845, 101sylan 580 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) ∧ 𝑦 = ∅) → (𝑀𝑦) = 0)
139125, 128, 129, 131, 132, 61, 133, 137, 138sge0fodjrn 46376 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (Σ^‘(𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦))) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒𝑛)))))
140124, 139eqtr2d 2770 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒𝑛)))) = (Σ^‘(𝑀𝑥)))
141140adantllr 719 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒𝑛)))) = (Σ^‘(𝑀𝑥)))
14244, 64, 1413eqtrd 2773 . . . . . . . . . 10 (((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))
14339, 40, 41, 142syl21anc 837 . . . . . . . . 9 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) ∧ (𝑒:ℕ–onto→(𝑥 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛))) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))
144143ex 412 . . . . . . . 8 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) → ((𝑒:ℕ–onto→(𝑥 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥))))
145144exlimdv 1932 . . . . . . 7 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) → (∃𝑒(𝑒:ℕ–onto→(𝑥 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥))))
14629, 38, 145sylc 65 . . . . . 6 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))
14726, 146pm2.61dan 812 . . . . 5 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))
148147ex 412 . . . 4 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥))))
149148ralrimiva 3130 . . 3 (𝜑 → ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥))))
1507, 8, 149jca31 514 . 2 (𝜑 → (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))))
151 ismea 46410 . 2 (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))))
152150, 151sylibr 234 1 (𝜑𝑀 ∈ Meas)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1539  wex 1778  wcel 2107  wne 2931  wral 3050  Vcvv 3457  cun 3922  cin 3923  wss 3924  c0 4306  𝒫 cpw 4573  {csn 4599   cuni 4880   ciun 4964  Disj wdisj 5083   class class class wbr 5116  cmpt 5198  dom cdm 5651  cres 5653  wf 6523  ontowfo 6525  cfv 6527  (class class class)co 7399  ωcom 7855  cdom 8951  0cc0 11121  +∞cpnf 11258  cn 12232   +𝑒 cxad 13118  [,]cicc 13356  SAlgcsalg 46267  Σ^csumge0 46321  Meascmea 46408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-inf2 9647  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198  ax-pre-sup 11199
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-int 4920  df-iun 4966  df-disj 5084  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-se 5604  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-isom 6536  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-1st 7982  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-1o 8474  df-er 8713  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-sup 9448  df-oi 9516  df-card 9945  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-div 11887  df-nn 12233  df-2 12295  df-3 12296  df-n0 12494  df-z 12581  df-uz 12845  df-rp 13001  df-xadd 13121  df-ico 13359  df-icc 13360  df-fz 13514  df-fzo 13661  df-seq 14009  df-exp 14069  df-hash 14337  df-cj 15105  df-re 15106  df-im 15107  df-sqrt 15241  df-abs 15242  df-clim 15491  df-sum 15690  df-salg 46268  df-sumge0 46322  df-mea 46409
This theorem is referenced by:  volmea  46433  caratheodory  46487
  Copyright terms: Public domain W3C validator