Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismeannd Structured version   Visualization version   GIF version

Theorem ismeannd 46472
Description: Sufficient condition to prove that 𝑀 is a measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
ismeannd.sal (𝜑𝑆 ∈ SAlg)
ismeannd.mf (𝜑𝑀:𝑆⟶(0[,]+∞))
ismeannd.m0 (𝜑 → (𝑀‘∅) = 0)
ismeannd.iun ((𝜑𝑒:ℕ⟶𝑆Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑀 𝑛 ∈ ℕ (𝑒𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒𝑛)))))
Assertion
Ref Expression
ismeannd (𝜑𝑀 ∈ Meas)
Distinct variable groups:   𝑒,𝑀,𝑛   𝜑,𝑒,𝑛
Allowed substitution hints:   𝑆(𝑒,𝑛)

Proof of Theorem ismeannd
Dummy variables 𝑥 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismeannd.mf . . . . 5 (𝜑𝑀:𝑆⟶(0[,]+∞))
21fdmd 6701 . . . . . 6 (𝜑 → dom 𝑀 = 𝑆)
32feq2d 6675 . . . . 5 (𝜑 → (𝑀:dom 𝑀⟶(0[,]+∞) ↔ 𝑀:𝑆⟶(0[,]+∞)))
41, 3mpbird 257 . . . 4 (𝜑𝑀:dom 𝑀⟶(0[,]+∞))
5 ismeannd.sal . . . . 5 (𝜑𝑆 ∈ SAlg)
62, 5eqeltrd 2829 . . . 4 (𝜑 → dom 𝑀 ∈ SAlg)
74, 6jca 511 . . 3 (𝜑 → (𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg))
8 ismeannd.m0 . . 3 (𝜑 → (𝑀‘∅) = 0)
9 unieq 4885 . . . . . . . . . . . 12 (𝑥 = ∅ → 𝑥 = ∅)
10 uni0 4902 . . . . . . . . . . . . 13 ∅ = ∅
1110a1i 11 . . . . . . . . . . . 12 (𝑥 = ∅ → ∅ = ∅)
129, 11eqtrd 2765 . . . . . . . . . . 11 (𝑥 = ∅ → 𝑥 = ∅)
1312fveq2d 6865 . . . . . . . . . 10 (𝑥 = ∅ → (𝑀 𝑥) = (𝑀‘∅))
1413, 8sylan9eqr 2787 . . . . . . . . 9 ((𝜑𝑥 = ∅) → (𝑀 𝑥) = 0)
15 reseq2 5948 . . . . . . . . . . . . 13 (𝑥 = ∅ → (𝑀𝑥) = (𝑀 ↾ ∅))
16 res0 5957 . . . . . . . . . . . . . 14 (𝑀 ↾ ∅) = ∅
1716a1i 11 . . . . . . . . . . . . 13 (𝑥 = ∅ → (𝑀 ↾ ∅) = ∅)
1815, 17eqtrd 2765 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝑀𝑥) = ∅)
1918fveq2d 6865 . . . . . . . . . . 11 (𝑥 = ∅ → (Σ^‘(𝑀𝑥)) = (Σ^‘∅))
2019adantl 481 . . . . . . . . . 10 ((𝜑𝑥 = ∅) → (Σ^‘(𝑀𝑥)) = (Σ^‘∅))
21 sge00 46381 . . . . . . . . . . 11 ^‘∅) = 0
2221a1i 11 . . . . . . . . . 10 ((𝜑𝑥 = ∅) → (Σ^‘∅) = 0)
2320, 22eqtrd 2765 . . . . . . . . 9 ((𝜑𝑥 = ∅) → (Σ^‘(𝑀𝑥)) = 0)
2414, 23eqtr4d 2768 . . . . . . . 8 ((𝜑𝑥 = ∅) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))
2524adantlr 715 . . . . . . 7 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑥 = ∅) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))
2625adantlr 715 . . . . . 6 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑥 = ∅) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))
27 simpll 766 . . . . . . . 8 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → (𝜑𝑥 ∈ 𝒫 dom 𝑀))
28 simplrr 777 . . . . . . . 8 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → Disj 𝑦𝑥 𝑦)
2927, 28jca 511 . . . . . . 7 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → ((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦))
30 simplrl 776 . . . . . . . 8 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → 𝑥 ≼ ω)
31 neqne 2934 . . . . . . . . 9 𝑥 = ∅ → 𝑥 ≠ ∅)
3231adantl 481 . . . . . . . 8 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → 𝑥 ≠ ∅)
33 id 22 . . . . . . . . . . . 12 (𝑦 = 𝑤𝑦 = 𝑤)
3433cbvdisjv 5088 . . . . . . . . . . 11 (Disj 𝑦𝑥 𝑦Disj 𝑤𝑥 𝑤)
3534biimpi 216 . . . . . . . . . 10 (Disj 𝑦𝑥 𝑦Disj 𝑤𝑥 𝑤)
3635adantl 481 . . . . . . . . 9 ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → Disj 𝑤𝑥 𝑤)
3736ad2antlr 727 . . . . . . . 8 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → Disj 𝑤𝑥 𝑤)
3830, 32, 37nnfoctbdj 46461 . . . . . . 7 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → ∃𝑒(𝑒:ℕ–onto→(𝑥 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)))
39 simpl 482 . . . . . . . . . 10 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) ∧ (𝑒:ℕ–onto→(𝑥 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛))) → ((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦))
40 simprl 770 . . . . . . . . . 10 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) ∧ (𝑒:ℕ–onto→(𝑥 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛))) → 𝑒:ℕ–onto→(𝑥 ∪ {∅}))
41 simprr 772 . . . . . . . . . 10 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) ∧ (𝑒:ℕ–onto→(𝑥 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛))) → Disj 𝑛 ∈ ℕ (𝑒𝑛))
42 founiiun0 45191 . . . . . . . . . . . . 13 (𝑒:ℕ–onto→(𝑥 ∪ {∅}) → 𝑥 = 𝑛 ∈ ℕ (𝑒𝑛))
4342fveq2d 6865 . . . . . . . . . . . 12 (𝑒:ℕ–onto→(𝑥 ∪ {∅}) → (𝑀 𝑥) = (𝑀 𝑛 ∈ ℕ (𝑒𝑛)))
4443ad2antlr 727 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑀 𝑥) = (𝑀 𝑛 ∈ ℕ (𝑒𝑛)))
45 simplll 774 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → 𝜑)
46 fof 6775 . . . . . . . . . . . . . . . 16 (𝑒:ℕ–onto→(𝑥 ∪ {∅}) → 𝑒:ℕ⟶(𝑥 ∪ {∅}))
4746adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) → 𝑒:ℕ⟶(𝑥 ∪ {∅}))
48 elpwi 4573 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ 𝒫 dom 𝑀𝑥 ⊆ dom 𝑀)
4948adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → 𝑥 ⊆ dom 𝑀)
502adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → dom 𝑀 = 𝑆)
5149, 50sseqtrd 3986 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → 𝑥𝑆)
52 0sal 46325 . . . . . . . . . . . . . . . . . . . 20 (𝑆 ∈ SAlg → ∅ ∈ 𝑆)
535, 52syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∅ ∈ 𝑆)
54 snssi 4775 . . . . . . . . . . . . . . . . . . 19 (∅ ∈ 𝑆 → {∅} ⊆ 𝑆)
5553, 54syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → {∅} ⊆ 𝑆)
5655adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → {∅} ⊆ 𝑆)
5751, 56unssd 4158 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (𝑥 ∪ {∅}) ⊆ 𝑆)
5857adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) → (𝑥 ∪ {∅}) ⊆ 𝑆)
5947, 58fssd 6708 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) → 𝑒:ℕ⟶𝑆)
6059adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → 𝑒:ℕ⟶𝑆)
61 simpr 484 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → Disj 𝑛 ∈ ℕ (𝑒𝑛))
62 ismeannd.iun . . . . . . . . . . . . 13 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑀 𝑛 ∈ ℕ (𝑒𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒𝑛)))))
6345, 60, 61, 62syl3anc 1373 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑀 𝑛 ∈ ℕ (𝑒𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒𝑛)))))
6463adantllr 719 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑀 𝑛 ∈ ℕ (𝑒𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒𝑛)))))
651feqmptd 6932 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 = (𝑦𝑆 ↦ (𝑀𝑦)))
6665reseq1d 5952 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑀𝑥) = ((𝑦𝑆 ↦ (𝑀𝑦)) ↾ 𝑥))
6766adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (𝑀𝑥) = ((𝑦𝑆 ↦ (𝑀𝑦)) ↾ 𝑥))
6867adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ∅ ∈ 𝑥) → (𝑀𝑥) = ((𝑦𝑆 ↦ (𝑀𝑦)) ↾ 𝑥))
6951resmptd 6014 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → ((𝑦𝑆 ↦ (𝑀𝑦)) ↾ 𝑥) = (𝑦𝑥 ↦ (𝑀𝑦)))
7069adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ∅ ∈ 𝑥) → ((𝑦𝑆 ↦ (𝑀𝑦)) ↾ 𝑥) = (𝑦𝑥 ↦ (𝑀𝑦)))
71 snssi 4775 . . . . . . . . . . . . . . . . . . . . 21 (∅ ∈ 𝑥 → {∅} ⊆ 𝑥)
72 ssequn2 4155 . . . . . . . . . . . . . . . . . . . . 21 ({∅} ⊆ 𝑥 ↔ (𝑥 ∪ {∅}) = 𝑥)
7371, 72sylib 218 . . . . . . . . . . . . . . . . . . . 20 (∅ ∈ 𝑥 → (𝑥 ∪ {∅}) = 𝑥)
7473eqcomd 2736 . . . . . . . . . . . . . . . . . . 19 (∅ ∈ 𝑥𝑥 = (𝑥 ∪ {∅}))
7574mpteq1d 5200 . . . . . . . . . . . . . . . . . 18 (∅ ∈ 𝑥 → (𝑦𝑥 ↦ (𝑀𝑦)) = (𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦)))
7675adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ∅ ∈ 𝑥) → (𝑦𝑥 ↦ (𝑀𝑦)) = (𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦)))
7768, 70, 763eqtrd 2769 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ∅ ∈ 𝑥) → (𝑀𝑥) = (𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦)))
7877fveq2d 6865 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ∅ ∈ 𝑥) → (Σ^‘(𝑀𝑥)) = (Σ^‘(𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦))))
79 nfv 1914 . . . . . . . . . . . . . . . . 17 𝑦((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥)
80 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) → 𝑥 ∈ 𝒫 dom 𝑀)
81 p0ex 5342 . . . . . . . . . . . . . . . . . 18 {∅} ∈ V
8281a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) → {∅} ∈ V)
83 disjsn 4678 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ 𝑥)
8483biimpri 228 . . . . . . . . . . . . . . . . . 18 (¬ ∅ ∈ 𝑥 → (𝑥 ∩ {∅}) = ∅)
8584adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) → (𝑥 ∩ {∅}) = ∅)
861ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑦𝑥) → 𝑀:𝑆⟶(0[,]+∞))
8751sselda 3949 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑦𝑥) → 𝑦𝑆)
8886, 87ffvelcdmd 7060 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑦𝑥) → (𝑀𝑦) ∈ (0[,]+∞))
8988adantlr 715 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) ∧ 𝑦𝑥) → (𝑀𝑦) ∈ (0[,]+∞))
90 elsni 4609 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ {∅} → 𝑦 = ∅)
9190fveq2d 6865 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ {∅} → (𝑀𝑦) = (𝑀‘∅))
9291adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ {∅}) → (𝑀𝑦) = (𝑀‘∅))
931, 53ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑀‘∅) ∈ (0[,]+∞))
9493adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ {∅}) → (𝑀‘∅) ∈ (0[,]+∞))
9592, 94eqeltrd 2829 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ {∅}) → (𝑀𝑦) ∈ (0[,]+∞))
9695ad4ant14 752 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) ∧ 𝑦 ∈ {∅}) → (𝑀𝑦) ∈ (0[,]+∞))
9779, 80, 82, 85, 89, 96sge0splitmpt 46416 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) → (Σ^‘(𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦))) = ((Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) +𝑒^‘(𝑦 ∈ {∅} ↦ (𝑀𝑦)))))
98 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = ∅ → (𝑀𝑦) = (𝑀‘∅))
9998adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 = ∅) → (𝑀𝑦) = (𝑀‘∅))
1008adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 = ∅) → (𝑀‘∅) = 0)
10199, 100eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 = ∅) → (𝑀𝑦) = 0)
10290, 101sylan2 593 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ {∅}) → (𝑀𝑦) = 0)
103102mpteq2dva 5203 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑦 ∈ {∅} ↦ (𝑀𝑦)) = (𝑦 ∈ {∅} ↦ 0))
104103fveq2d 6865 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (Σ^‘(𝑦 ∈ {∅} ↦ (𝑀𝑦))) = (Σ^‘(𝑦 ∈ {∅} ↦ 0)))
105 nfv 1914 . . . . . . . . . . . . . . . . . . . 20 𝑦𝜑
10681a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → {∅} ∈ V)
107105, 106sge0z 46380 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (Σ^‘(𝑦 ∈ {∅} ↦ 0)) = 0)
108104, 107eqtrd 2765 . . . . . . . . . . . . . . . . . 18 (𝜑 → (Σ^‘(𝑦 ∈ {∅} ↦ (𝑀𝑦))) = 0)
109108oveq2d 7406 . . . . . . . . . . . . . . . . 17 (𝜑 → ((Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) +𝑒^‘(𝑦 ∈ {∅} ↦ (𝑀𝑦)))) = ((Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) +𝑒 0))
110109ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) → ((Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) +𝑒^‘(𝑦 ∈ {∅} ↦ (𝑀𝑦)))) = ((Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) +𝑒 0))
111 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → 𝑥 ∈ 𝒫 dom 𝑀)
11267, 69eqtrd 2765 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (𝑀𝑥) = (𝑦𝑥 ↦ (𝑀𝑦)))
1131adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → 𝑀:𝑆⟶(0[,]+∞))
114113, 51fssresd 6730 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (𝑀𝑥):𝑥⟶(0[,]+∞))
115112, 114feq1dd 6674 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (𝑦𝑥 ↦ (𝑀𝑦)):𝑥⟶(0[,]+∞))
116111, 115sge0xrcl 46390 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) ∈ ℝ*)
117116xaddridd 13210 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → ((Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) +𝑒 0) = (Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))))
118112fveq2d 6865 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (Σ^‘(𝑀𝑥)) = (Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))))
119118eqcomd 2736 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) = (Σ^‘(𝑀𝑥)))
120117, 119eqtrd 2765 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → ((Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) +𝑒 0) = (Σ^‘(𝑀𝑥)))
121120adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) → ((Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) +𝑒 0) = (Σ^‘(𝑀𝑥)))
12297, 110, 1213eqtrrd 2770 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) → (Σ^‘(𝑀𝑥)) = (Σ^‘(𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦))))
12378, 122pm2.61dan 812 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (Σ^‘(𝑀𝑥)) = (Σ^‘(𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦))))
124123ad2antrr 726 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (Σ^‘(𝑀𝑥)) = (Σ^‘(𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦))))
125 nfv 1914 . . . . . . . . . . . . . 14 𝑦(((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛))
126 nfv 1914 . . . . . . . . . . . . . . 15 𝑛((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅}))
127 nfdisj1 5091 . . . . . . . . . . . . . . 15 𝑛Disj 𝑛 ∈ ℕ (𝑒𝑛)
128126, 127nfan 1899 . . . . . . . . . . . . . 14 𝑛(((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛))
129 fveq2 6861 . . . . . . . . . . . . . 14 (𝑦 = (𝑒𝑛) → (𝑀𝑦) = (𝑀‘(𝑒𝑛)))
130 nnex 12199 . . . . . . . . . . . . . . 15 ℕ ∈ V
131130a1i 11 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → ℕ ∈ V)
132 simplr 768 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → 𝑒:ℕ–onto→(𝑥 ∪ {∅}))
133 eqidd 2731 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) ∧ 𝑛 ∈ ℕ) → (𝑒𝑛) = (𝑒𝑛))
1341ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑦 ∈ (𝑥 ∪ {∅})) → 𝑀:𝑆⟶(0[,]+∞))
13557sselda 3949 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑦 ∈ (𝑥 ∪ {∅})) → 𝑦𝑆)
136134, 135ffvelcdmd 7060 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑦 ∈ (𝑥 ∪ {∅})) → (𝑀𝑦) ∈ (0[,]+∞))
137136ad4ant14 752 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) ∧ 𝑦 ∈ (𝑥 ∪ {∅})) → (𝑀𝑦) ∈ (0[,]+∞))
13845, 101sylan 580 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) ∧ 𝑦 = ∅) → (𝑀𝑦) = 0)
139125, 128, 129, 131, 132, 61, 133, 137, 138sge0fodjrn 46422 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (Σ^‘(𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦))) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒𝑛)))))
140124, 139eqtr2d 2766 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒𝑛)))) = (Σ^‘(𝑀𝑥)))
141140adantllr 719 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒𝑛)))) = (Σ^‘(𝑀𝑥)))
14244, 64, 1413eqtrd 2769 . . . . . . . . . 10 (((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))
14339, 40, 41, 142syl21anc 837 . . . . . . . . 9 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) ∧ (𝑒:ℕ–onto→(𝑥 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛))) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))
144143ex 412 . . . . . . . 8 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) → ((𝑒:ℕ–onto→(𝑥 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥))))
145144exlimdv 1933 . . . . . . 7 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) → (∃𝑒(𝑒:ℕ–onto→(𝑥 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥))))
14629, 38, 145sylc 65 . . . . . 6 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))
14726, 146pm2.61dan 812 . . . . 5 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))
148147ex 412 . . . 4 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥))))
149148ralrimiva 3126 . . 3 (𝜑 → ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥))))
1507, 8, 149jca31 514 . 2 (𝜑 → (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))))
151 ismea 46456 . 2 (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))))
152150, 151sylibr 234 1 (𝜑𝑀 ∈ Meas)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2926  wral 3045  Vcvv 3450  cun 3915  cin 3916  wss 3917  c0 4299  𝒫 cpw 4566  {csn 4592   cuni 4874   ciun 4958  Disj wdisj 5077   class class class wbr 5110  cmpt 5191  dom cdm 5641  cres 5643  wf 6510  ontowfo 6512  cfv 6514  (class class class)co 7390  ωcom 7845  cdom 8919  0cc0 11075  +∞cpnf 11212  cn 12193   +𝑒 cxad 13077  [,]cicc 13316  SAlgcsalg 46313  Σ^csumge0 46367  Meascmea 46454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-xadd 13080  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-salg 46314  df-sumge0 46368  df-mea 46455
This theorem is referenced by:  volmea  46479  caratheodory  46533
  Copyright terms: Public domain W3C validator