Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismeannd Structured version   Visualization version   GIF version

Theorem ismeannd 46627
Description: Sufficient condition to prove that 𝑀 is a measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
ismeannd.sal (𝜑𝑆 ∈ SAlg)
ismeannd.mf (𝜑𝑀:𝑆⟶(0[,]+∞))
ismeannd.m0 (𝜑 → (𝑀‘∅) = 0)
ismeannd.iun ((𝜑𝑒:ℕ⟶𝑆Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑀 𝑛 ∈ ℕ (𝑒𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒𝑛)))))
Assertion
Ref Expression
ismeannd (𝜑𝑀 ∈ Meas)
Distinct variable groups:   𝑒,𝑀,𝑛   𝜑,𝑒,𝑛
Allowed substitution hints:   𝑆(𝑒,𝑛)

Proof of Theorem ismeannd
Dummy variables 𝑥 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismeannd.mf . . . . 5 (𝜑𝑀:𝑆⟶(0[,]+∞))
21fdmd 6669 . . . . . 6 (𝜑 → dom 𝑀 = 𝑆)
32feq2d 6643 . . . . 5 (𝜑 → (𝑀:dom 𝑀⟶(0[,]+∞) ↔ 𝑀:𝑆⟶(0[,]+∞)))
41, 3mpbird 257 . . . 4 (𝜑𝑀:dom 𝑀⟶(0[,]+∞))
5 ismeannd.sal . . . . 5 (𝜑𝑆 ∈ SAlg)
62, 5eqeltrd 2833 . . . 4 (𝜑 → dom 𝑀 ∈ SAlg)
74, 6jca 511 . . 3 (𝜑 → (𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg))
8 ismeannd.m0 . . 3 (𝜑 → (𝑀‘∅) = 0)
9 unieq 4871 . . . . . . . . . . . 12 (𝑥 = ∅ → 𝑥 = ∅)
10 uni0 4888 . . . . . . . . . . . . 13 ∅ = ∅
1110a1i 11 . . . . . . . . . . . 12 (𝑥 = ∅ → ∅ = ∅)
129, 11eqtrd 2768 . . . . . . . . . . 11 (𝑥 = ∅ → 𝑥 = ∅)
1312fveq2d 6835 . . . . . . . . . 10 (𝑥 = ∅ → (𝑀 𝑥) = (𝑀‘∅))
1413, 8sylan9eqr 2790 . . . . . . . . 9 ((𝜑𝑥 = ∅) → (𝑀 𝑥) = 0)
15 reseq2 5930 . . . . . . . . . . . . 13 (𝑥 = ∅ → (𝑀𝑥) = (𝑀 ↾ ∅))
16 res0 5939 . . . . . . . . . . . . . 14 (𝑀 ↾ ∅) = ∅
1716a1i 11 . . . . . . . . . . . . 13 (𝑥 = ∅ → (𝑀 ↾ ∅) = ∅)
1815, 17eqtrd 2768 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝑀𝑥) = ∅)
1918fveq2d 6835 . . . . . . . . . . 11 (𝑥 = ∅ → (Σ^‘(𝑀𝑥)) = (Σ^‘∅))
2019adantl 481 . . . . . . . . . 10 ((𝜑𝑥 = ∅) → (Σ^‘(𝑀𝑥)) = (Σ^‘∅))
21 sge00 46536 . . . . . . . . . . 11 ^‘∅) = 0
2221a1i 11 . . . . . . . . . 10 ((𝜑𝑥 = ∅) → (Σ^‘∅) = 0)
2320, 22eqtrd 2768 . . . . . . . . 9 ((𝜑𝑥 = ∅) → (Σ^‘(𝑀𝑥)) = 0)
2414, 23eqtr4d 2771 . . . . . . . 8 ((𝜑𝑥 = ∅) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))
2524adantlr 715 . . . . . . 7 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑥 = ∅) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))
2625adantlr 715 . . . . . 6 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑥 = ∅) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))
27 simpll 766 . . . . . . . 8 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → (𝜑𝑥 ∈ 𝒫 dom 𝑀))
28 simplrr 777 . . . . . . . 8 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → Disj 𝑦𝑥 𝑦)
2927, 28jca 511 . . . . . . 7 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → ((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦))
30 simplrl 776 . . . . . . . 8 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → 𝑥 ≼ ω)
31 neqne 2937 . . . . . . . . 9 𝑥 = ∅ → 𝑥 ≠ ∅)
3231adantl 481 . . . . . . . 8 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → 𝑥 ≠ ∅)
33 id 22 . . . . . . . . . . . 12 (𝑦 = 𝑤𝑦 = 𝑤)
3433cbvdisjv 5073 . . . . . . . . . . 11 (Disj 𝑦𝑥 𝑦Disj 𝑤𝑥 𝑤)
3534biimpi 216 . . . . . . . . . 10 (Disj 𝑦𝑥 𝑦Disj 𝑤𝑥 𝑤)
3635adantl 481 . . . . . . . . 9 ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → Disj 𝑤𝑥 𝑤)
3736ad2antlr 727 . . . . . . . 8 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → Disj 𝑤𝑥 𝑤)
3830, 32, 37nnfoctbdj 46616 . . . . . . 7 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → ∃𝑒(𝑒:ℕ–onto→(𝑥 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)))
39 simpl 482 . . . . . . . . . 10 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) ∧ (𝑒:ℕ–onto→(𝑥 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛))) → ((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦))
40 simprl 770 . . . . . . . . . 10 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) ∧ (𝑒:ℕ–onto→(𝑥 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛))) → 𝑒:ℕ–onto→(𝑥 ∪ {∅}))
41 simprr 772 . . . . . . . . . 10 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) ∧ (𝑒:ℕ–onto→(𝑥 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛))) → Disj 𝑛 ∈ ℕ (𝑒𝑛))
42 founiiun0 45350 . . . . . . . . . . . . 13 (𝑒:ℕ–onto→(𝑥 ∪ {∅}) → 𝑥 = 𝑛 ∈ ℕ (𝑒𝑛))
4342fveq2d 6835 . . . . . . . . . . . 12 (𝑒:ℕ–onto→(𝑥 ∪ {∅}) → (𝑀 𝑥) = (𝑀 𝑛 ∈ ℕ (𝑒𝑛)))
4443ad2antlr 727 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑀 𝑥) = (𝑀 𝑛 ∈ ℕ (𝑒𝑛)))
45 simplll 774 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → 𝜑)
46 fof 6743 . . . . . . . . . . . . . . . 16 (𝑒:ℕ–onto→(𝑥 ∪ {∅}) → 𝑒:ℕ⟶(𝑥 ∪ {∅}))
4746adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) → 𝑒:ℕ⟶(𝑥 ∪ {∅}))
48 elpwi 4558 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ 𝒫 dom 𝑀𝑥 ⊆ dom 𝑀)
4948adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → 𝑥 ⊆ dom 𝑀)
502adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → dom 𝑀 = 𝑆)
5149, 50sseqtrd 3967 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → 𝑥𝑆)
52 0sal 46480 . . . . . . . . . . . . . . . . . . . 20 (𝑆 ∈ SAlg → ∅ ∈ 𝑆)
535, 52syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∅ ∈ 𝑆)
54 snssi 4761 . . . . . . . . . . . . . . . . . . 19 (∅ ∈ 𝑆 → {∅} ⊆ 𝑆)
5553, 54syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → {∅} ⊆ 𝑆)
5655adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → {∅} ⊆ 𝑆)
5751, 56unssd 4141 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (𝑥 ∪ {∅}) ⊆ 𝑆)
5857adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) → (𝑥 ∪ {∅}) ⊆ 𝑆)
5947, 58fssd 6676 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) → 𝑒:ℕ⟶𝑆)
6059adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → 𝑒:ℕ⟶𝑆)
61 simpr 484 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → Disj 𝑛 ∈ ℕ (𝑒𝑛))
62 ismeannd.iun . . . . . . . . . . . . 13 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑀 𝑛 ∈ ℕ (𝑒𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒𝑛)))))
6345, 60, 61, 62syl3anc 1373 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑀 𝑛 ∈ ℕ (𝑒𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒𝑛)))))
6463adantllr 719 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑀 𝑛 ∈ ℕ (𝑒𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒𝑛)))))
651feqmptd 6899 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 = (𝑦𝑆 ↦ (𝑀𝑦)))
6665reseq1d 5934 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑀𝑥) = ((𝑦𝑆 ↦ (𝑀𝑦)) ↾ 𝑥))
6766adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (𝑀𝑥) = ((𝑦𝑆 ↦ (𝑀𝑦)) ↾ 𝑥))
6867adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ∅ ∈ 𝑥) → (𝑀𝑥) = ((𝑦𝑆 ↦ (𝑀𝑦)) ↾ 𝑥))
6951resmptd 5996 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → ((𝑦𝑆 ↦ (𝑀𝑦)) ↾ 𝑥) = (𝑦𝑥 ↦ (𝑀𝑦)))
7069adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ∅ ∈ 𝑥) → ((𝑦𝑆 ↦ (𝑀𝑦)) ↾ 𝑥) = (𝑦𝑥 ↦ (𝑀𝑦)))
71 snssi 4761 . . . . . . . . . . . . . . . . . . . . 21 (∅ ∈ 𝑥 → {∅} ⊆ 𝑥)
72 ssequn2 4138 . . . . . . . . . . . . . . . . . . . . 21 ({∅} ⊆ 𝑥 ↔ (𝑥 ∪ {∅}) = 𝑥)
7371, 72sylib 218 . . . . . . . . . . . . . . . . . . . 20 (∅ ∈ 𝑥 → (𝑥 ∪ {∅}) = 𝑥)
7473eqcomd 2739 . . . . . . . . . . . . . . . . . . 19 (∅ ∈ 𝑥𝑥 = (𝑥 ∪ {∅}))
7574mpteq1d 5185 . . . . . . . . . . . . . . . . . 18 (∅ ∈ 𝑥 → (𝑦𝑥 ↦ (𝑀𝑦)) = (𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦)))
7675adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ∅ ∈ 𝑥) → (𝑦𝑥 ↦ (𝑀𝑦)) = (𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦)))
7768, 70, 763eqtrd 2772 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ∅ ∈ 𝑥) → (𝑀𝑥) = (𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦)))
7877fveq2d 6835 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ∅ ∈ 𝑥) → (Σ^‘(𝑀𝑥)) = (Σ^‘(𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦))))
79 nfv 1915 . . . . . . . . . . . . . . . . 17 𝑦((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥)
80 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) → 𝑥 ∈ 𝒫 dom 𝑀)
81 p0ex 5326 . . . . . . . . . . . . . . . . . 18 {∅} ∈ V
8281a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) → {∅} ∈ V)
83 disjsn 4665 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ 𝑥)
8483biimpri 228 . . . . . . . . . . . . . . . . . 18 (¬ ∅ ∈ 𝑥 → (𝑥 ∩ {∅}) = ∅)
8584adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) → (𝑥 ∩ {∅}) = ∅)
861ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑦𝑥) → 𝑀:𝑆⟶(0[,]+∞))
8751sselda 3930 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑦𝑥) → 𝑦𝑆)
8886, 87ffvelcdmd 7027 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑦𝑥) → (𝑀𝑦) ∈ (0[,]+∞))
8988adantlr 715 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) ∧ 𝑦𝑥) → (𝑀𝑦) ∈ (0[,]+∞))
90 elsni 4594 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ {∅} → 𝑦 = ∅)
9190fveq2d 6835 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ {∅} → (𝑀𝑦) = (𝑀‘∅))
9291adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ {∅}) → (𝑀𝑦) = (𝑀‘∅))
931, 53ffvelcdmd 7027 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑀‘∅) ∈ (0[,]+∞))
9493adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ {∅}) → (𝑀‘∅) ∈ (0[,]+∞))
9592, 94eqeltrd 2833 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ {∅}) → (𝑀𝑦) ∈ (0[,]+∞))
9695ad4ant14 752 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) ∧ 𝑦 ∈ {∅}) → (𝑀𝑦) ∈ (0[,]+∞))
9779, 80, 82, 85, 89, 96sge0splitmpt 46571 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) → (Σ^‘(𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦))) = ((Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) +𝑒^‘(𝑦 ∈ {∅} ↦ (𝑀𝑦)))))
98 fveq2 6831 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = ∅ → (𝑀𝑦) = (𝑀‘∅))
9998adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 = ∅) → (𝑀𝑦) = (𝑀‘∅))
1008adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 = ∅) → (𝑀‘∅) = 0)
10199, 100eqtrd 2768 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 = ∅) → (𝑀𝑦) = 0)
10290, 101sylan2 593 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ {∅}) → (𝑀𝑦) = 0)
103102mpteq2dva 5188 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑦 ∈ {∅} ↦ (𝑀𝑦)) = (𝑦 ∈ {∅} ↦ 0))
104103fveq2d 6835 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (Σ^‘(𝑦 ∈ {∅} ↦ (𝑀𝑦))) = (Σ^‘(𝑦 ∈ {∅} ↦ 0)))
105 nfv 1915 . . . . . . . . . . . . . . . . . . . 20 𝑦𝜑
10681a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → {∅} ∈ V)
107105, 106sge0z 46535 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (Σ^‘(𝑦 ∈ {∅} ↦ 0)) = 0)
108104, 107eqtrd 2768 . . . . . . . . . . . . . . . . . 18 (𝜑 → (Σ^‘(𝑦 ∈ {∅} ↦ (𝑀𝑦))) = 0)
109108oveq2d 7371 . . . . . . . . . . . . . . . . 17 (𝜑 → ((Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) +𝑒^‘(𝑦 ∈ {∅} ↦ (𝑀𝑦)))) = ((Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) +𝑒 0))
110109ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) → ((Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) +𝑒^‘(𝑦 ∈ {∅} ↦ (𝑀𝑦)))) = ((Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) +𝑒 0))
111 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → 𝑥 ∈ 𝒫 dom 𝑀)
11267, 69eqtrd 2768 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (𝑀𝑥) = (𝑦𝑥 ↦ (𝑀𝑦)))
1131adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → 𝑀:𝑆⟶(0[,]+∞))
114113, 51fssresd 6698 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (𝑀𝑥):𝑥⟶(0[,]+∞))
115112, 114feq1dd 6642 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (𝑦𝑥 ↦ (𝑀𝑦)):𝑥⟶(0[,]+∞))
116111, 115sge0xrcl 46545 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) ∈ ℝ*)
117116xaddridd 13149 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → ((Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) +𝑒 0) = (Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))))
118112fveq2d 6835 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (Σ^‘(𝑀𝑥)) = (Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))))
119118eqcomd 2739 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) = (Σ^‘(𝑀𝑥)))
120117, 119eqtrd 2768 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → ((Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) +𝑒 0) = (Σ^‘(𝑀𝑥)))
121120adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) → ((Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) +𝑒 0) = (Σ^‘(𝑀𝑥)))
12297, 110, 1213eqtrrd 2773 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) → (Σ^‘(𝑀𝑥)) = (Σ^‘(𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦))))
12378, 122pm2.61dan 812 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (Σ^‘(𝑀𝑥)) = (Σ^‘(𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦))))
124123ad2antrr 726 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (Σ^‘(𝑀𝑥)) = (Σ^‘(𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦))))
125 nfv 1915 . . . . . . . . . . . . . 14 𝑦(((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛))
126 nfv 1915 . . . . . . . . . . . . . . 15 𝑛((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅}))
127 nfdisj1 5076 . . . . . . . . . . . . . . 15 𝑛Disj 𝑛 ∈ ℕ (𝑒𝑛)
128126, 127nfan 1900 . . . . . . . . . . . . . 14 𝑛(((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛))
129 fveq2 6831 . . . . . . . . . . . . . 14 (𝑦 = (𝑒𝑛) → (𝑀𝑦) = (𝑀‘(𝑒𝑛)))
130 nnex 12142 . . . . . . . . . . . . . . 15 ℕ ∈ V
131130a1i 11 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → ℕ ∈ V)
132 simplr 768 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → 𝑒:ℕ–onto→(𝑥 ∪ {∅}))
133 eqidd 2734 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) ∧ 𝑛 ∈ ℕ) → (𝑒𝑛) = (𝑒𝑛))
1341ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑦 ∈ (𝑥 ∪ {∅})) → 𝑀:𝑆⟶(0[,]+∞))
13557sselda 3930 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑦 ∈ (𝑥 ∪ {∅})) → 𝑦𝑆)
136134, 135ffvelcdmd 7027 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑦 ∈ (𝑥 ∪ {∅})) → (𝑀𝑦) ∈ (0[,]+∞))
137136ad4ant14 752 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) ∧ 𝑦 ∈ (𝑥 ∪ {∅})) → (𝑀𝑦) ∈ (0[,]+∞))
13845, 101sylan 580 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) ∧ 𝑦 = ∅) → (𝑀𝑦) = 0)
139125, 128, 129, 131, 132, 61, 133, 137, 138sge0fodjrn 46577 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (Σ^‘(𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦))) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒𝑛)))))
140124, 139eqtr2d 2769 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒𝑛)))) = (Σ^‘(𝑀𝑥)))
141140adantllr 719 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒𝑛)))) = (Σ^‘(𝑀𝑥)))
14244, 64, 1413eqtrd 2772 . . . . . . . . . 10 (((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))
14339, 40, 41, 142syl21anc 837 . . . . . . . . 9 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) ∧ (𝑒:ℕ–onto→(𝑥 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛))) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))
144143ex 412 . . . . . . . 8 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) → ((𝑒:ℕ–onto→(𝑥 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥))))
145144exlimdv 1934 . . . . . . 7 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) → (∃𝑒(𝑒:ℕ–onto→(𝑥 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥))))
14629, 38, 145sylc 65 . . . . . 6 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))
14726, 146pm2.61dan 812 . . . . 5 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))
148147ex 412 . . . 4 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥))))
149148ralrimiva 3125 . . 3 (𝜑 → ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥))))
1507, 8, 149jca31 514 . 2 (𝜑 → (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))))
151 ismea 46611 . 2 (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))))
152150, 151sylibr 234 1 (𝜑𝑀 ∈ Meas)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2113  wne 2929  wral 3048  Vcvv 3437  cun 3896  cin 3897  wss 3898  c0 4282  𝒫 cpw 4551  {csn 4577   cuni 4860   ciun 4943  Disj wdisj 5062   class class class wbr 5095  cmpt 5176  dom cdm 5621  cres 5623  wf 6485  ontowfo 6487  cfv 6489  (class class class)co 7355  ωcom 7805  cdom 8877  0cc0 11017  +∞cpnf 11154  cn 12136   +𝑒 cxad 13015  [,]cicc 13255  SAlgcsalg 46468  Σ^csumge0 46522  Meascmea 46609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-oi 9407  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-n0 12393  df-z 12480  df-uz 12743  df-rp 12897  df-xadd 13018  df-ico 13258  df-icc 13259  df-fz 13415  df-fzo 13562  df-seq 13916  df-exp 13976  df-hash 14245  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-clim 15402  df-sum 15601  df-salg 46469  df-sumge0 46523  df-mea 46610
This theorem is referenced by:  volmea  46634  caratheodory  46688
  Copyright terms: Public domain W3C validator