Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismeannd Structured version   Visualization version   GIF version

Theorem ismeannd 44782
Description: Sufficient condition to prove that 𝑀 is a measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
ismeannd.sal (𝜑𝑆 ∈ SAlg)
ismeannd.mf (𝜑𝑀:𝑆⟶(0[,]+∞))
ismeannd.m0 (𝜑 → (𝑀‘∅) = 0)
ismeannd.iun ((𝜑𝑒:ℕ⟶𝑆Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑀 𝑛 ∈ ℕ (𝑒𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒𝑛)))))
Assertion
Ref Expression
ismeannd (𝜑𝑀 ∈ Meas)
Distinct variable groups:   𝑒,𝑀,𝑛   𝜑,𝑒,𝑛
Allowed substitution hints:   𝑆(𝑒,𝑛)

Proof of Theorem ismeannd
Dummy variables 𝑥 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismeannd.mf . . . . 5 (𝜑𝑀:𝑆⟶(0[,]+∞))
21fdmd 6684 . . . . . 6 (𝜑 → dom 𝑀 = 𝑆)
32feq2d 6659 . . . . 5 (𝜑 → (𝑀:dom 𝑀⟶(0[,]+∞) ↔ 𝑀:𝑆⟶(0[,]+∞)))
41, 3mpbird 257 . . . 4 (𝜑𝑀:dom 𝑀⟶(0[,]+∞))
5 ismeannd.sal . . . . 5 (𝜑𝑆 ∈ SAlg)
62, 5eqeltrd 2838 . . . 4 (𝜑 → dom 𝑀 ∈ SAlg)
74, 6jca 513 . . 3 (𝜑 → (𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg))
8 ismeannd.m0 . . 3 (𝜑 → (𝑀‘∅) = 0)
9 unieq 4881 . . . . . . . . . . . 12 (𝑥 = ∅ → 𝑥 = ∅)
10 uni0 4901 . . . . . . . . . . . . 13 ∅ = ∅
1110a1i 11 . . . . . . . . . . . 12 (𝑥 = ∅ → ∅ = ∅)
129, 11eqtrd 2777 . . . . . . . . . . 11 (𝑥 = ∅ → 𝑥 = ∅)
1312fveq2d 6851 . . . . . . . . . 10 (𝑥 = ∅ → (𝑀 𝑥) = (𝑀‘∅))
1413, 8sylan9eqr 2799 . . . . . . . . 9 ((𝜑𝑥 = ∅) → (𝑀 𝑥) = 0)
15 reseq2 5937 . . . . . . . . . . . . 13 (𝑥 = ∅ → (𝑀𝑥) = (𝑀 ↾ ∅))
16 res0 5946 . . . . . . . . . . . . . 14 (𝑀 ↾ ∅) = ∅
1716a1i 11 . . . . . . . . . . . . 13 (𝑥 = ∅ → (𝑀 ↾ ∅) = ∅)
1815, 17eqtrd 2777 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝑀𝑥) = ∅)
1918fveq2d 6851 . . . . . . . . . . 11 (𝑥 = ∅ → (Σ^‘(𝑀𝑥)) = (Σ^‘∅))
2019adantl 483 . . . . . . . . . 10 ((𝜑𝑥 = ∅) → (Σ^‘(𝑀𝑥)) = (Σ^‘∅))
21 sge00 44691 . . . . . . . . . . 11 ^‘∅) = 0
2221a1i 11 . . . . . . . . . 10 ((𝜑𝑥 = ∅) → (Σ^‘∅) = 0)
2320, 22eqtrd 2777 . . . . . . . . 9 ((𝜑𝑥 = ∅) → (Σ^‘(𝑀𝑥)) = 0)
2414, 23eqtr4d 2780 . . . . . . . 8 ((𝜑𝑥 = ∅) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))
2524adantlr 714 . . . . . . 7 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑥 = ∅) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))
2625adantlr 714 . . . . . 6 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑥 = ∅) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))
27 simpll 766 . . . . . . . 8 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → (𝜑𝑥 ∈ 𝒫 dom 𝑀))
28 simplrr 777 . . . . . . . 8 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → Disj 𝑦𝑥 𝑦)
2927, 28jca 513 . . . . . . 7 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → ((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦))
30 simplrl 776 . . . . . . . 8 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → 𝑥 ≼ ω)
31 neqne 2952 . . . . . . . . 9 𝑥 = ∅ → 𝑥 ≠ ∅)
3231adantl 483 . . . . . . . 8 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → 𝑥 ≠ ∅)
33 id 22 . . . . . . . . . . . 12 (𝑦 = 𝑤𝑦 = 𝑤)
3433cbvdisjv 5086 . . . . . . . . . . 11 (Disj 𝑦𝑥 𝑦Disj 𝑤𝑥 𝑤)
3534biimpi 215 . . . . . . . . . 10 (Disj 𝑦𝑥 𝑦Disj 𝑤𝑥 𝑤)
3635adantl 483 . . . . . . . . 9 ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → Disj 𝑤𝑥 𝑤)
3736ad2antlr 726 . . . . . . . 8 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → Disj 𝑤𝑥 𝑤)
3830, 32, 37nnfoctbdj 44771 . . . . . . 7 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → ∃𝑒(𝑒:ℕ–onto→(𝑥 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)))
39 simpl 484 . . . . . . . . . 10 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) ∧ (𝑒:ℕ–onto→(𝑥 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛))) → ((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦))
40 simprl 770 . . . . . . . . . 10 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) ∧ (𝑒:ℕ–onto→(𝑥 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛))) → 𝑒:ℕ–onto→(𝑥 ∪ {∅}))
41 simprr 772 . . . . . . . . . 10 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) ∧ (𝑒:ℕ–onto→(𝑥 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛))) → Disj 𝑛 ∈ ℕ (𝑒𝑛))
42 founiiun0 43483 . . . . . . . . . . . . 13 (𝑒:ℕ–onto→(𝑥 ∪ {∅}) → 𝑥 = 𝑛 ∈ ℕ (𝑒𝑛))
4342fveq2d 6851 . . . . . . . . . . . 12 (𝑒:ℕ–onto→(𝑥 ∪ {∅}) → (𝑀 𝑥) = (𝑀 𝑛 ∈ ℕ (𝑒𝑛)))
4443ad2antlr 726 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑀 𝑥) = (𝑀 𝑛 ∈ ℕ (𝑒𝑛)))
45 simplll 774 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → 𝜑)
46 fof 6761 . . . . . . . . . . . . . . . 16 (𝑒:ℕ–onto→(𝑥 ∪ {∅}) → 𝑒:ℕ⟶(𝑥 ∪ {∅}))
4746adantl 483 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) → 𝑒:ℕ⟶(𝑥 ∪ {∅}))
48 elpwi 4572 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ 𝒫 dom 𝑀𝑥 ⊆ dom 𝑀)
4948adantl 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → 𝑥 ⊆ dom 𝑀)
502adantr 482 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → dom 𝑀 = 𝑆)
5149, 50sseqtrd 3989 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → 𝑥𝑆)
52 0sal 44635 . . . . . . . . . . . . . . . . . . . 20 (𝑆 ∈ SAlg → ∅ ∈ 𝑆)
535, 52syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∅ ∈ 𝑆)
54 snssi 4773 . . . . . . . . . . . . . . . . . . 19 (∅ ∈ 𝑆 → {∅} ⊆ 𝑆)
5553, 54syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → {∅} ⊆ 𝑆)
5655adantr 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → {∅} ⊆ 𝑆)
5751, 56unssd 4151 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (𝑥 ∪ {∅}) ⊆ 𝑆)
5857adantr 482 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) → (𝑥 ∪ {∅}) ⊆ 𝑆)
5947, 58fssd 6691 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) → 𝑒:ℕ⟶𝑆)
6059adantr 482 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → 𝑒:ℕ⟶𝑆)
61 simpr 486 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → Disj 𝑛 ∈ ℕ (𝑒𝑛))
62 ismeannd.iun . . . . . . . . . . . . 13 ((𝜑𝑒:ℕ⟶𝑆Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑀 𝑛 ∈ ℕ (𝑒𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒𝑛)))))
6345, 60, 61, 62syl3anc 1372 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑀 𝑛 ∈ ℕ (𝑒𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒𝑛)))))
6463adantllr 718 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑀 𝑛 ∈ ℕ (𝑒𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒𝑛)))))
651feqmptd 6915 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 = (𝑦𝑆 ↦ (𝑀𝑦)))
6665reseq1d 5941 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑀𝑥) = ((𝑦𝑆 ↦ (𝑀𝑦)) ↾ 𝑥))
6766adantr 482 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (𝑀𝑥) = ((𝑦𝑆 ↦ (𝑀𝑦)) ↾ 𝑥))
6867adantr 482 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ∅ ∈ 𝑥) → (𝑀𝑥) = ((𝑦𝑆 ↦ (𝑀𝑦)) ↾ 𝑥))
6951resmptd 5999 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → ((𝑦𝑆 ↦ (𝑀𝑦)) ↾ 𝑥) = (𝑦𝑥 ↦ (𝑀𝑦)))
7069adantr 482 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ∅ ∈ 𝑥) → ((𝑦𝑆 ↦ (𝑀𝑦)) ↾ 𝑥) = (𝑦𝑥 ↦ (𝑀𝑦)))
71 snssi 4773 . . . . . . . . . . . . . . . . . . . . 21 (∅ ∈ 𝑥 → {∅} ⊆ 𝑥)
72 ssequn2 4148 . . . . . . . . . . . . . . . . . . . . 21 ({∅} ⊆ 𝑥 ↔ (𝑥 ∪ {∅}) = 𝑥)
7371, 72sylib 217 . . . . . . . . . . . . . . . . . . . 20 (∅ ∈ 𝑥 → (𝑥 ∪ {∅}) = 𝑥)
7473eqcomd 2743 . . . . . . . . . . . . . . . . . . 19 (∅ ∈ 𝑥𝑥 = (𝑥 ∪ {∅}))
7574mpteq1d 5205 . . . . . . . . . . . . . . . . . 18 (∅ ∈ 𝑥 → (𝑦𝑥 ↦ (𝑀𝑦)) = (𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦)))
7675adantl 483 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ∅ ∈ 𝑥) → (𝑦𝑥 ↦ (𝑀𝑦)) = (𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦)))
7768, 70, 763eqtrd 2781 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ∅ ∈ 𝑥) → (𝑀𝑥) = (𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦)))
7877fveq2d 6851 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ∅ ∈ 𝑥) → (Σ^‘(𝑀𝑥)) = (Σ^‘(𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦))))
79 nfv 1918 . . . . . . . . . . . . . . . . 17 𝑦((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥)
80 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) → 𝑥 ∈ 𝒫 dom 𝑀)
81 p0ex 5344 . . . . . . . . . . . . . . . . . 18 {∅} ∈ V
8281a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) → {∅} ∈ V)
83 disjsn 4677 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ 𝑥)
8483biimpri 227 . . . . . . . . . . . . . . . . . 18 (¬ ∅ ∈ 𝑥 → (𝑥 ∩ {∅}) = ∅)
8584adantl 483 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) → (𝑥 ∩ {∅}) = ∅)
861ad2antrr 725 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑦𝑥) → 𝑀:𝑆⟶(0[,]+∞))
8751sselda 3949 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑦𝑥) → 𝑦𝑆)
8886, 87ffvelcdmd 7041 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑦𝑥) → (𝑀𝑦) ∈ (0[,]+∞))
8988adantlr 714 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) ∧ 𝑦𝑥) → (𝑀𝑦) ∈ (0[,]+∞))
90 elsni 4608 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ {∅} → 𝑦 = ∅)
9190fveq2d 6851 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ {∅} → (𝑀𝑦) = (𝑀‘∅))
9291adantl 483 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ {∅}) → (𝑀𝑦) = (𝑀‘∅))
931, 53ffvelcdmd 7041 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑀‘∅) ∈ (0[,]+∞))
9493adantr 482 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦 ∈ {∅}) → (𝑀‘∅) ∈ (0[,]+∞))
9592, 94eqeltrd 2838 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ {∅}) → (𝑀𝑦) ∈ (0[,]+∞))
9695ad4ant14 751 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) ∧ 𝑦 ∈ {∅}) → (𝑀𝑦) ∈ (0[,]+∞))
9779, 80, 82, 85, 89, 96sge0splitmpt 44726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) → (Σ^‘(𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦))) = ((Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) +𝑒^‘(𝑦 ∈ {∅} ↦ (𝑀𝑦)))))
98 fveq2 6847 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = ∅ → (𝑀𝑦) = (𝑀‘∅))
9998adantl 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 = ∅) → (𝑀𝑦) = (𝑀‘∅))
1008adantr 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 = ∅) → (𝑀‘∅) = 0)
10199, 100eqtrd 2777 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 = ∅) → (𝑀𝑦) = 0)
10290, 101sylan2 594 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ {∅}) → (𝑀𝑦) = 0)
103102mpteq2dva 5210 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑦 ∈ {∅} ↦ (𝑀𝑦)) = (𝑦 ∈ {∅} ↦ 0))
104103fveq2d 6851 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (Σ^‘(𝑦 ∈ {∅} ↦ (𝑀𝑦))) = (Σ^‘(𝑦 ∈ {∅} ↦ 0)))
105 nfv 1918 . . . . . . . . . . . . . . . . . . . 20 𝑦𝜑
10681a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → {∅} ∈ V)
107105, 106sge0z 44690 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (Σ^‘(𝑦 ∈ {∅} ↦ 0)) = 0)
108104, 107eqtrd 2777 . . . . . . . . . . . . . . . . . 18 (𝜑 → (Σ^‘(𝑦 ∈ {∅} ↦ (𝑀𝑦))) = 0)
109108oveq2d 7378 . . . . . . . . . . . . . . . . 17 (𝜑 → ((Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) +𝑒^‘(𝑦 ∈ {∅} ↦ (𝑀𝑦)))) = ((Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) +𝑒 0))
110109ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) → ((Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) +𝑒^‘(𝑦 ∈ {∅} ↦ (𝑀𝑦)))) = ((Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) +𝑒 0))
111 simpr 486 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → 𝑥 ∈ 𝒫 dom 𝑀)
11267, 69eqtrd 2777 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (𝑀𝑥) = (𝑦𝑥 ↦ (𝑀𝑦)))
1131adantr 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → 𝑀:𝑆⟶(0[,]+∞))
114113, 51fssresd 6714 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (𝑀𝑥):𝑥⟶(0[,]+∞))
115112, 114feq1dd 43458 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (𝑦𝑥 ↦ (𝑀𝑦)):𝑥⟶(0[,]+∞))
116111, 115sge0xrcl 44700 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) ∈ ℝ*)
117116xaddid1d 13169 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → ((Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) +𝑒 0) = (Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))))
118112fveq2d 6851 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (Σ^‘(𝑀𝑥)) = (Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))))
119118eqcomd 2743 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) = (Σ^‘(𝑀𝑥)))
120117, 119eqtrd 2777 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → ((Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) +𝑒 0) = (Σ^‘(𝑀𝑥)))
121120adantr 482 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) → ((Σ^‘(𝑦𝑥 ↦ (𝑀𝑦))) +𝑒 0) = (Σ^‘(𝑀𝑥)))
12297, 110, 1213eqtrrd 2782 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ ¬ ∅ ∈ 𝑥) → (Σ^‘(𝑀𝑥)) = (Σ^‘(𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦))))
12378, 122pm2.61dan 812 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → (Σ^‘(𝑀𝑥)) = (Σ^‘(𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦))))
124123ad2antrr 725 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (Σ^‘(𝑀𝑥)) = (Σ^‘(𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦))))
125 nfv 1918 . . . . . . . . . . . . . 14 𝑦(((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛))
126 nfv 1918 . . . . . . . . . . . . . . 15 𝑛((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅}))
127 nfdisj1 5089 . . . . . . . . . . . . . . 15 𝑛Disj 𝑛 ∈ ℕ (𝑒𝑛)
128126, 127nfan 1903 . . . . . . . . . . . . . 14 𝑛(((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛))
129 fveq2 6847 . . . . . . . . . . . . . 14 (𝑦 = (𝑒𝑛) → (𝑀𝑦) = (𝑀‘(𝑒𝑛)))
130 nnex 12166 . . . . . . . . . . . . . . 15 ℕ ∈ V
131130a1i 11 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → ℕ ∈ V)
132 simplr 768 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → 𝑒:ℕ–onto→(𝑥 ∪ {∅}))
133 eqidd 2738 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) ∧ 𝑛 ∈ ℕ) → (𝑒𝑛) = (𝑒𝑛))
1341ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑦 ∈ (𝑥 ∪ {∅})) → 𝑀:𝑆⟶(0[,]+∞))
13557sselda 3949 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑦 ∈ (𝑥 ∪ {∅})) → 𝑦𝑆)
136134, 135ffvelcdmd 7041 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑦 ∈ (𝑥 ∪ {∅})) → (𝑀𝑦) ∈ (0[,]+∞))
137136ad4ant14 751 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) ∧ 𝑦 ∈ (𝑥 ∪ {∅})) → (𝑀𝑦) ∈ (0[,]+∞))
13845, 101sylan 581 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) ∧ 𝑦 = ∅) → (𝑀𝑦) = 0)
139125, 128, 129, 131, 132, 61, 133, 137, 138sge0fodjrn 44732 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (Σ^‘(𝑦 ∈ (𝑥 ∪ {∅}) ↦ (𝑀𝑦))) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒𝑛)))))
140124, 139eqtr2d 2778 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒𝑛)))) = (Σ^‘(𝑀𝑥)))
141140adantllr 718 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒𝑛)))) = (Σ^‘(𝑀𝑥)))
14244, 64, 1413eqtrd 2781 . . . . . . . . . 10 (((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) ∧ 𝑒:ℕ–onto→(𝑥 ∪ {∅})) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))
14339, 40, 41, 142syl21anc 837 . . . . . . . . 9 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) ∧ (𝑒:ℕ–onto→(𝑥 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛))) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))
144143ex 414 . . . . . . . 8 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) → ((𝑒:ℕ–onto→(𝑥 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥))))
145144exlimdv 1937 . . . . . . 7 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ Disj 𝑦𝑥 𝑦) → (∃𝑒(𝑒:ℕ–onto→(𝑥 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑒𝑛)) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥))))
14629, 38, 145sylc 65 . . . . . 6 ((((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ ¬ 𝑥 = ∅) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))
14726, 146pm2.61dan 812 . . . . 5 (((𝜑𝑥 ∈ 𝒫 dom 𝑀) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))
148147ex 414 . . . 4 ((𝜑𝑥 ∈ 𝒫 dom 𝑀) → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥))))
149148ralrimiva 3144 . . 3 (𝜑 → ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥))))
1507, 8, 149jca31 516 . 2 (𝜑 → (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))))
151 ismea 44766 . 2 (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑀 𝑥) = (Σ^‘(𝑀𝑥)))))
152150, 151sylibr 233 1 (𝜑𝑀 ∈ Meas)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  w3a 1088   = wceq 1542  wex 1782  wcel 2107  wne 2944  wral 3065  Vcvv 3448  cun 3913  cin 3914  wss 3915  c0 4287  𝒫 cpw 4565  {csn 4591   cuni 4870   ciun 4959  Disj wdisj 5075   class class class wbr 5110  cmpt 5193  dom cdm 5638  cres 5640  wf 6497  ontowfo 6499  cfv 6501  (class class class)co 7362  ωcom 7807  cdom 8888  0cc0 11058  +∞cpnf 11193  cn 12160   +𝑒 cxad 13038  [,]cicc 13274  SAlgcsalg 44623  Σ^csumge0 44677  Meascmea 44764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9584  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-disj 5076  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-sup 9385  df-oi 9453  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-3 12224  df-n0 12421  df-z 12507  df-uz 12771  df-rp 12923  df-xadd 13041  df-ico 13277  df-icc 13278  df-fz 13432  df-fzo 13575  df-seq 13914  df-exp 13975  df-hash 14238  df-cj 14991  df-re 14992  df-im 14993  df-sqrt 15127  df-abs 15128  df-clim 15377  df-sum 15578  df-salg 44624  df-sumge0 44678  df-mea 44765
This theorem is referenced by:  volmea  44789  caratheodory  44843
  Copyright terms: Public domain W3C validator