![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > epeli | Structured version Visualization version GIF version |
Description: The membership relation and the membership predicate agree when the "containing" class is a set. Inference associated with epelg 5590. (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
epeli.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
epeli | ⊢ (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epeli.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | epelg 5590 | . 2 ⊢ (𝐵 ∈ V → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2106 Vcvv 3478 class class class wbr 5148 E cep 5588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-eprel 5589 |
This theorem is referenced by: epel 5592 0sn0ep 5593 smoiso 8401 smoiso2 8408 ecid 8821 ordiso2 9553 cantnflt 9710 cantnfp1lem3 9718 oemapso 9720 cantnflem1b 9724 cantnflem1 9727 cantnf 9731 wemapwe 9735 cnfcomlem 9737 cnfcom 9738 cnfcom3lem 9741 leweon 10049 r0weon 10050 alephiso 10136 fin23lem27 10366 fpwwe2lem8 10676 ex-eprel 30462 cardpred 35083 satefvfmla0 35403 satefvfmla1 35410 dftr6 35731 coep 35732 coepr 35733 brsset 35871 brtxpsd 35876 brcart 35914 dfrecs2 35932 dfrdg4 35933 cnambfre 37655 wepwsolem 43031 dnwech 43037 |
Copyright terms: Public domain | W3C validator |