| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > epeli | Structured version Visualization version GIF version | ||
| Description: The membership relation and the membership predicate agree when the "containing" class is a set. Inference associated with epelg 5517. (Contributed by Scott Fenton, 11-Apr-2012.) |
| Ref | Expression |
|---|---|
| epeli.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| epeli | ⊢ (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epeli.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | epelg 5517 | . 2 ⊢ (𝐵 ∈ V → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2111 Vcvv 3436 class class class wbr 5091 E cep 5515 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-eprel 5516 |
| This theorem is referenced by: epel 5519 0sn0ep 5520 smoiso 8282 smoiso2 8289 ecid 8704 ordiso2 9401 cantnflt 9562 cantnfp1lem3 9570 oemapso 9572 cantnflem1b 9576 cantnflem1 9579 cantnf 9583 wemapwe 9587 cnfcomlem 9589 cnfcom 9590 cnfcom3lem 9593 leweon 9899 r0weon 9900 alephiso 9986 fin23lem27 10216 fpwwe2lem8 10526 onsiso 28203 ex-eprel 30408 cardpred 35098 satefvfmla0 35450 satefvfmla1 35457 dftr6 35783 coep 35784 coepr 35785 brsset 35922 brtxpsd 35927 brcart 35965 dfrecs2 35983 dfrdg4 35984 cnambfre 37707 wepwsolem 43074 dnwech 43080 rankrelp 44992 |
| Copyright terms: Public domain | W3C validator |