| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > epeli | Structured version Visualization version GIF version | ||
| Description: The membership relation and the membership predicate agree when the "containing" class is a set. Inference associated with epelg 5542. (Contributed by Scott Fenton, 11-Apr-2012.) |
| Ref | Expression |
|---|---|
| epeli.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| epeli | ⊢ (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epeli.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | epelg 5542 | . 2 ⊢ (𝐵 ∈ V → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 Vcvv 3450 class class class wbr 5110 E cep 5540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-eprel 5541 |
| This theorem is referenced by: epel 5544 0sn0ep 5545 smoiso 8334 smoiso2 8341 ecid 8756 ordiso2 9475 cantnflt 9632 cantnfp1lem3 9640 oemapso 9642 cantnflem1b 9646 cantnflem1 9649 cantnf 9653 wemapwe 9657 cnfcomlem 9659 cnfcom 9660 cnfcom3lem 9663 leweon 9971 r0weon 9972 alephiso 10058 fin23lem27 10288 fpwwe2lem8 10598 onsiso 28176 ex-eprel 30369 cardpred 35087 satefvfmla0 35412 satefvfmla1 35419 dftr6 35745 coep 35746 coepr 35747 brsset 35884 brtxpsd 35889 brcart 35927 dfrecs2 35945 dfrdg4 35946 cnambfre 37669 wepwsolem 43038 dnwech 43044 rankrelp 44957 |
| Copyright terms: Public domain | W3C validator |