![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > epeli | Structured version Visualization version GIF version |
Description: The membership relation and the membership predicate agree when the "containing" class is a set. Inference associated with epelg 5600. (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
epeli.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
epeli | ⊢ (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epeli.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | epelg 5600 | . 2 ⊢ (𝐵 ∈ V → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2108 Vcvv 3488 class class class wbr 5166 E cep 5598 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-eprel 5599 |
This theorem is referenced by: epel 5602 0sn0ep 5603 smoiso 8418 smoiso2 8425 ecid 8840 ordiso2 9584 cantnflt 9741 cantnfp1lem3 9749 oemapso 9751 cantnflem1b 9755 cantnflem1 9758 cantnf 9762 wemapwe 9766 cnfcomlem 9768 cnfcom 9769 cnfcom3lem 9772 leweon 10080 r0weon 10081 alephiso 10167 fin23lem27 10397 fpwwe2lem8 10707 ex-eprel 30465 cardpred 35066 satefvfmla0 35386 satefvfmla1 35393 dftr6 35713 coep 35714 coepr 35715 brsset 35853 brtxpsd 35858 brcart 35896 dfrecs2 35914 dfrdg4 35915 cnambfre 37628 wepwsolem 42999 dnwech 43005 |
Copyright terms: Public domain | W3C validator |