| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > epeli | Structured version Visualization version GIF version | ||
| Description: The membership relation and the membership predicate agree when the "containing" class is a set. Inference associated with epelg 5554. (Contributed by Scott Fenton, 11-Apr-2012.) |
| Ref | Expression |
|---|---|
| epeli.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| epeli | ⊢ (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epeli.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | epelg 5554 | . 2 ⊢ (𝐵 ∈ V → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2108 Vcvv 3459 class class class wbr 5119 E cep 5552 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-eprel 5553 |
| This theorem is referenced by: epel 5556 0sn0ep 5557 smoiso 8376 smoiso2 8383 ecid 8796 ordiso2 9529 cantnflt 9686 cantnfp1lem3 9694 oemapso 9696 cantnflem1b 9700 cantnflem1 9703 cantnf 9707 wemapwe 9711 cnfcomlem 9713 cnfcom 9714 cnfcom3lem 9717 leweon 10025 r0weon 10026 alephiso 10112 fin23lem27 10342 fpwwe2lem8 10652 onsiso 28221 ex-eprel 30414 cardpred 35121 satefvfmla0 35440 satefvfmla1 35447 dftr6 35768 coep 35769 coepr 35770 brsset 35907 brtxpsd 35912 brcart 35950 dfrecs2 35968 dfrdg4 35969 cnambfre 37692 wepwsolem 43066 dnwech 43072 rankrelp 44985 |
| Copyright terms: Public domain | W3C validator |