Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > epeli | Structured version Visualization version GIF version |
Description: The membership relation and the membership predicate agree when the "containing" class is a set. Inference associated with epelg 5487. (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
epeli.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
epeli | ⊢ (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epeli.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | epelg 5487 | . 2 ⊢ (𝐵 ∈ V → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 E cep 5485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-eprel 5486 |
This theorem is referenced by: epel 5489 0sn0ep 5490 smoiso 8164 smoiso2 8171 ecid 8529 ordiso2 9204 cantnflt 9360 cantnfp1lem3 9368 oemapso 9370 cantnflem1b 9374 cantnflem1 9377 cantnf 9381 wemapwe 9385 cnfcomlem 9387 cnfcom 9388 cnfcom3lem 9391 leweon 9698 r0weon 9699 alephiso 9785 fin23lem27 10015 fpwwe2lem8 10325 ex-eprel 28698 cardpred 32962 satefvfmla0 33280 satefvfmla1 33287 dftr6 33624 coep 33625 coepr 33626 brsset 34118 brtxpsd 34123 brcart 34161 dfrecs2 34179 dfrdg4 34180 cnambfre 35752 wepwsolem 40783 dnwech 40789 |
Copyright terms: Public domain | W3C validator |