| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > epeli | Structured version Visualization version GIF version | ||
| Description: The membership relation and the membership predicate agree when the "containing" class is a set. Inference associated with epelg 5520. (Contributed by Scott Fenton, 11-Apr-2012.) |
| Ref | Expression |
|---|---|
| epeli.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| epeli | ⊢ (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epeli.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | epelg 5520 | . 2 ⊢ (𝐵 ∈ V → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2113 Vcvv 3437 class class class wbr 5093 E cep 5518 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-eprel 5519 |
| This theorem is referenced by: epel 5522 0sn0ep 5523 smoiso 8288 smoiso2 8295 ecid 8710 ordiso2 9408 cantnflt 9569 cantnfp1lem3 9577 oemapso 9579 cantnflem1b 9583 cantnflem1 9586 cantnf 9590 wemapwe 9594 cnfcomlem 9596 cnfcom 9597 cnfcom3lem 9600 leweon 9909 r0weon 9910 alephiso 9996 fin23lem27 10226 fpwwe2lem8 10536 onsiso 28206 ex-eprel 30415 cardpred 35124 satefvfmla0 35483 satefvfmla1 35490 dftr6 35816 coep 35817 coepr 35818 brsset 35952 brtxpsd 35957 brcart 35995 dfrecs2 36015 dfrdg4 36016 cnambfre 37728 wepwsolem 43159 dnwech 43165 rankrelp 45077 |
| Copyright terms: Public domain | W3C validator |