| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > epeli | Structured version Visualization version GIF version | ||
| Description: The membership relation and the membership predicate agree when the "containing" class is a set. Inference associated with epelg 5539. (Contributed by Scott Fenton, 11-Apr-2012.) |
| Ref | Expression |
|---|---|
| epeli.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| epeli | ⊢ (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epeli.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | epelg 5539 | . 2 ⊢ (𝐵 ∈ V → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 Vcvv 3447 class class class wbr 5107 E cep 5537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-eprel 5538 |
| This theorem is referenced by: epel 5541 0sn0ep 5542 smoiso 8331 smoiso2 8338 ecid 8753 ordiso2 9468 cantnflt 9625 cantnfp1lem3 9633 oemapso 9635 cantnflem1b 9639 cantnflem1 9642 cantnf 9646 wemapwe 9650 cnfcomlem 9652 cnfcom 9653 cnfcom3lem 9656 leweon 9964 r0weon 9965 alephiso 10051 fin23lem27 10281 fpwwe2lem8 10591 onsiso 28169 ex-eprel 30362 cardpred 35080 satefvfmla0 35405 satefvfmla1 35412 dftr6 35738 coep 35739 coepr 35740 brsset 35877 brtxpsd 35882 brcart 35920 dfrecs2 35938 dfrdg4 35939 cnambfre 37662 wepwsolem 43031 dnwech 43037 rankrelp 44950 |
| Copyright terms: Public domain | W3C validator |