Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > epeli | Structured version Visualization version GIF version |
Description: The membership relation and the membership predicate agree when the "containing" class is a set. Inference associated with epelg 5496. (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
epeli.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
epeli | ⊢ (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epeli.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | epelg 5496 | . 2 ⊢ (𝐵 ∈ V → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2106 Vcvv 3432 class class class wbr 5074 E cep 5494 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-eprel 5495 |
This theorem is referenced by: epel 5498 0sn0ep 5499 smoiso 8193 smoiso2 8200 ecid 8571 ordiso2 9274 cantnflt 9430 cantnfp1lem3 9438 oemapso 9440 cantnflem1b 9444 cantnflem1 9447 cantnf 9451 wemapwe 9455 cnfcomlem 9457 cnfcom 9458 cnfcom3lem 9461 leweon 9767 r0weon 9768 alephiso 9854 fin23lem27 10084 fpwwe2lem8 10394 ex-eprel 28797 cardpred 33062 satefvfmla0 33380 satefvfmla1 33387 dftr6 33718 coep 33719 coepr 33720 brsset 34191 brtxpsd 34196 brcart 34234 dfrecs2 34252 dfrdg4 34253 cnambfre 35825 wepwsolem 40867 dnwech 40873 |
Copyright terms: Public domain | W3C validator |