| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > epeli | Structured version Visualization version GIF version | ||
| Description: The membership relation and the membership predicate agree when the "containing" class is a set. Inference associated with epelg 5524. (Contributed by Scott Fenton, 11-Apr-2012.) |
| Ref | Expression |
|---|---|
| epeli.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| epeli | ⊢ (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epeli.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | epelg 5524 | . 2 ⊢ (𝐵 ∈ V → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 Vcvv 3438 class class class wbr 5095 E cep 5522 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-eprel 5523 |
| This theorem is referenced by: epel 5526 0sn0ep 5527 smoiso 8292 smoiso2 8299 ecid 8714 ordiso2 9426 cantnflt 9587 cantnfp1lem3 9595 oemapso 9597 cantnflem1b 9601 cantnflem1 9604 cantnf 9608 wemapwe 9612 cnfcomlem 9614 cnfcom 9615 cnfcom3lem 9618 leweon 9924 r0weon 9925 alephiso 10011 fin23lem27 10241 fpwwe2lem8 10551 onsiso 28192 ex-eprel 30395 cardpred 35056 satefvfmla0 35390 satefvfmla1 35397 dftr6 35723 coep 35724 coepr 35725 brsset 35862 brtxpsd 35867 brcart 35905 dfrecs2 35923 dfrdg4 35924 cnambfre 37647 wepwsolem 43015 dnwech 43021 rankrelp 44934 |
| Copyright terms: Public domain | W3C validator |