![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > epeli | Structured version Visualization version GIF version |
Description: The membership relation and the membership predicate agree when the "containing" class is a set. Inference associated with epelg 5256. (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
epeli.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
epeli | ⊢ (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epeli.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | epelg 5256 | . 2 ⊢ (𝐵 ∈ V → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∈ wcel 2166 Vcvv 3414 class class class wbr 4873 E cep 5254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pr 5127 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-br 4874 df-opab 4936 df-eprel 5255 |
This theorem is referenced by: epel 5258 0sn0ep 5259 epini 5736 smoiso 7725 smoiso2 7732 ecid 8077 ordiso2 8689 cantnflt 8846 cantnfp1lem3 8854 oemapso 8856 cantnflem1b 8860 cantnflem1 8863 cantnf 8867 wemapwe 8871 cnfcomlem 8873 cnfcom 8874 cnfcom3lem 8877 leweon 9147 r0weon 9148 alephiso 9234 fin23lem27 9465 fpwwe2lem9 9775 ex-eprel 27848 dftr6 32182 coep 32183 coepr 32184 brsset 32535 brtxpsd 32540 brcart 32578 dfrecs2 32596 dfrdg4 32597 cnambfre 34001 wepwsolem 38455 dnwech 38461 |
Copyright terms: Public domain | W3C validator |