Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > epel | Structured version Visualization version GIF version |
Description: The membership relation and the membership predicate agree when the "containing" class is a setvar. (Contributed by NM, 13-Aug-1995.) Replace the first setvar variable with a class variable. (Revised by BJ, 13-Sep-2022.) |
Ref | Expression |
---|---|
epel | ⊢ (𝐴 E 𝑥 ↔ 𝐴 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3426 | . 2 ⊢ 𝑥 ∈ V | |
2 | 1 | epeli 5488 | 1 ⊢ (𝐴 E 𝑥 ↔ 𝐴 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2108 class class class wbr 5070 E cep 5485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-eprel 5486 |
This theorem is referenced by: epse 5563 dfepfr 5565 epfrc 5566 wecmpep 5572 wetrep 5573 dmep 5821 domepOLD 5822 rnep 5825 epweon 7603 smoiso 8164 smoiso2 8171 ordunifi 8994 ordiso2 9204 ordtypelem8 9214 oismo 9229 wofib 9234 dford2 9308 noinfep 9348 oemapso 9370 wemapwe 9385 alephiso 9785 cflim2 9950 fin23lem27 10015 om2uzisoi 13602 bnj219 32612 nummin 32963 efrunt 33554 dftr6 33624 dffr5 33627 elpotr 33663 dfon2lem9 33673 dfon2 33674 brsset 34118 dfon3 34121 brbigcup 34127 brapply 34167 brcup 34168 brcap 34169 dfint3 34181 dfssr2 36544 |
Copyright terms: Public domain | W3C validator |