| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > epel | Structured version Visualization version GIF version | ||
| Description: The membership relation and the membership predicate agree when the "containing" class is a setvar. Definition 1.6 of [Schloeder] p. 1. (Contributed by NM, 13-Aug-1995.) Replace the first setvar variable with a class variable. (Revised by BJ, 13-Sep-2022.) |
| Ref | Expression |
|---|---|
| epel | ⊢ (𝐴 E 𝑥 ↔ 𝐴 ∈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3463 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | 1 | epeli 5555 | 1 ⊢ (𝐴 E 𝑥 ↔ 𝐴 ∈ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2108 class class class wbr 5119 E cep 5552 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-eprel 5553 |
| This theorem is referenced by: epse 5636 dfepfr 5638 epfrc 5639 wecmpep 5646 wetrep 5647 dmep 5903 rnep 5906 epweon 7769 epweonALT 7770 smoiso 8376 smoiso2 8383 ordunifi 9298 ordiso2 9529 ordtypelem8 9539 oismo 9554 wofib 9559 dford2 9634 noinfep 9674 oemapso 9696 wemapwe 9711 alephiso 10112 cflim2 10277 fin23lem27 10342 om2uzisoi 13972 om2noseqiso 28248 bnj219 34764 nummin 35122 efrunt 35730 dftr6 35768 dffr5 35771 elpotr 35799 dfon2lem9 35809 dfon2 35810 brsset 35907 dfon3 35910 brbigcup 35916 brapply 35956 brcup 35957 brcap 35958 dfint3 35970 dfssr2 38517 onsupuni 43253 onsupmaxb 43263 rankrelp 44985 sswfaxreg 45012 brpermmodel 45028 |
| Copyright terms: Public domain | W3C validator |