![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > epel | Structured version Visualization version GIF version |
Description: The membership relation and the membership predicate agree when the "containing" class is a setvar. Definition 1.6 of [Schloeder] p. 1. (Contributed by NM, 13-Aug-1995.) Replace the first setvar variable with a class variable. (Revised by BJ, 13-Sep-2022.) |
Ref | Expression |
---|---|
epel | ⊢ (𝐴 E 𝑥 ↔ 𝐴 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3481 | . 2 ⊢ 𝑥 ∈ V | |
2 | 1 | epeli 5590 | 1 ⊢ (𝐴 E 𝑥 ↔ 𝐴 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2105 class class class wbr 5147 E cep 5587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-eprel 5588 |
This theorem is referenced by: epse 5670 dfepfr 5672 epfrc 5673 wecmpep 5680 wetrep 5681 dmep 5936 rnep 5939 epweon 7793 epweonALT 7794 smoiso 8400 smoiso2 8407 ordunifi 9323 ordiso2 9552 ordtypelem8 9562 oismo 9577 wofib 9582 dford2 9657 noinfep 9697 oemapso 9719 wemapwe 9734 alephiso 10135 cflim2 10300 fin23lem27 10365 om2uzisoi 13991 om2noseqiso 28322 bnj219 34725 nummin 35083 efrunt 35692 dftr6 35730 dffr5 35733 elpotr 35762 dfon2lem9 35772 dfon2 35773 brsset 35870 dfon3 35873 brbigcup 35879 brapply 35919 brcup 35920 brcap 35921 dfint3 35933 dfssr2 38480 onsupuni 43217 onsupmaxb 43227 |
Copyright terms: Public domain | W3C validator |