Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > epel | Structured version Visualization version GIF version |
Description: The membership relation and the membership predicate agree when the "containing" class is a setvar. (Contributed by NM, 13-Aug-1995.) Replace the first setvar variable with a class variable. (Revised by BJ, 13-Sep-2022.) |
Ref | Expression |
---|---|
epel | ⊢ (𝐴 E 𝑥 ↔ 𝐴 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3437 | . 2 ⊢ 𝑥 ∈ V | |
2 | 1 | epeli 5498 | 1 ⊢ (𝐴 E 𝑥 ↔ 𝐴 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2107 class class class wbr 5075 E cep 5495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pr 5353 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-br 5076 df-opab 5138 df-eprel 5496 |
This theorem is referenced by: epse 5573 dfepfr 5575 epfrc 5576 wecmpep 5582 wetrep 5583 dmep 5835 domepOLD 5836 rnep 5839 epweon 7634 epweonOLD 7635 smoiso 8202 smoiso2 8209 ordunifi 9073 ordiso2 9283 ordtypelem8 9293 oismo 9308 wofib 9313 dford2 9387 noinfep 9427 oemapso 9449 wemapwe 9464 alephiso 9863 cflim2 10028 fin23lem27 10093 om2uzisoi 13683 bnj219 32721 nummin 33072 efrunt 33663 dftr6 33727 dffr5 33730 elpotr 33766 dfon2lem9 33776 dfon2 33777 brsset 34200 dfon3 34203 brbigcup 34209 brapply 34249 brcup 34250 brcap 34251 dfint3 34263 dfssr2 36624 |
Copyright terms: Public domain | W3C validator |