| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > epel | Structured version Visualization version GIF version | ||
| Description: The membership relation and the membership predicate agree when the "containing" class is a setvar. Definition 1.6 of [Schloeder] p. 1. (Contributed by NM, 13-Aug-1995.) Replace the first setvar variable with a class variable. (Revised by BJ, 13-Sep-2022.) |
| Ref | Expression |
|---|---|
| epel | ⊢ (𝐴 E 𝑥 ↔ 𝐴 ∈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3454 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | 1 | epeli 5543 | 1 ⊢ (𝐴 E 𝑥 ↔ 𝐴 ∈ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 class class class wbr 5110 E cep 5540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-eprel 5541 |
| This theorem is referenced by: epse 5623 dfepfr 5625 epfrc 5626 wecmpep 5633 wetrep 5634 dmep 5890 rnep 5893 epweon 7754 epweonALT 7755 smoiso 8334 smoiso2 8341 ordunifi 9244 ordiso2 9475 ordtypelem8 9485 oismo 9500 wofib 9505 dford2 9580 noinfep 9620 oemapso 9642 wemapwe 9657 alephiso 10058 cflim2 10223 fin23lem27 10288 om2uzisoi 13926 om2noseqiso 28203 bnj219 34730 nummin 35088 efrunt 35707 dftr6 35745 dffr5 35748 elpotr 35776 dfon2lem9 35786 dfon2 35787 brsset 35884 dfon3 35887 brbigcup 35893 brapply 35933 brcup 35934 brcap 35935 dfint3 35947 dfssr2 38497 onsupuni 43225 onsupmaxb 43235 rankrelp 44957 sswfaxreg 44984 brpermmodel 45000 |
| Copyright terms: Public domain | W3C validator |