| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > epel | Structured version Visualization version GIF version | ||
| Description: The membership relation and the membership predicate agree when the "containing" class is a setvar. Definition 1.6 of [Schloeder] p. 1. (Contributed by NM, 13-Aug-1995.) Replace the first setvar variable with a class variable. (Revised by BJ, 13-Sep-2022.) |
| Ref | Expression |
|---|---|
| epel | ⊢ (𝐴 E 𝑥 ↔ 𝐴 ∈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | 1 | epeli 5521 | 1 ⊢ (𝐴 E 𝑥 ↔ 𝐴 ∈ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 class class class wbr 5092 E cep 5518 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-eprel 5519 |
| This theorem is referenced by: epse 5601 dfepfr 5603 epfrc 5604 wecmpep 5611 wetrep 5612 dmep 5866 rnep 5869 epweon 7711 epweonALT 7712 smoiso 8285 smoiso2 8292 ordunifi 9179 ordiso2 9407 ordtypelem8 9417 oismo 9432 wofib 9437 dford2 9516 noinfep 9556 oemapso 9578 wemapwe 9593 alephiso 9992 cflim2 10157 fin23lem27 10222 om2uzisoi 13861 om2noseqiso 28201 bnj219 34700 nummin 35058 efrunt 35686 dftr6 35724 dffr5 35727 elpotr 35755 dfon2lem9 35765 dfon2 35766 brsset 35863 dfon3 35866 brbigcup 35872 brapply 35912 brcup 35913 brcap 35914 dfint3 35926 dfssr2 38476 onsupuni 43202 onsupmaxb 43212 rankrelp 44934 sswfaxreg 44961 brpermmodel 44977 |
| Copyright terms: Public domain | W3C validator |