![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > epel | Structured version Visualization version GIF version |
Description: The membership relation and the membership predicate agree when the "containing" class is a setvar. (Contributed by NM, 13-Aug-1995.) Replace the first setvar variable with a class variable. (Revised by BJ, 13-Sep-2022.) |
Ref | Expression |
---|---|
epel | ⊢ (𝐴 E 𝑥 ↔ 𝐴 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3412 | . 2 ⊢ 𝑥 ∈ V | |
2 | 1 | epeli 5313 | 1 ⊢ (𝐴 E 𝑥 ↔ 𝐴 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∈ wcel 2048 class class class wbr 4923 E cep 5309 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-sep 5054 ax-nul 5061 ax-pr 5180 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-rab 3091 df-v 3411 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-br 4924 df-opab 4986 df-eprel 5310 |
This theorem is referenced by: epse 5383 dfepfr 5385 epfrc 5386 wecmpep 5392 wetrep 5393 epweon 7307 smoiso 7796 smoiso2 7803 ordunifi 8555 ordiso2 8766 ordtypelem8 8776 oismo 8791 wofib 8796 dford2 8869 noinfep 8909 oemapso 8931 wemapwe 8946 alephiso 9310 cflim2 9475 fin23lem27 9540 om2uzisoi 13130 bnj219 31612 efrunt 32399 dftr6 32446 dffr5 32449 elpotr 32486 dfon2lem9 32496 dfon2 32497 domep 32498 brsset 32811 dfon3 32814 brbigcup 32820 brapply 32860 brcup 32861 brcap 32862 dfint3 32874 dfssr2 35132 |
Copyright terms: Public domain | W3C validator |