![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > epel | Structured version Visualization version GIF version |
Description: The membership relation and the membership predicate agree when the "containing" class is a setvar. Definition 1.6 of [Schloeder] p. 1. (Contributed by NM, 13-Aug-1995.) Replace the first setvar variable with a class variable. (Revised by BJ, 13-Sep-2022.) |
Ref | Expression |
---|---|
epel | ⊢ (𝐴 E 𝑥 ↔ 𝐴 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3478 | . 2 ⊢ 𝑥 ∈ V | |
2 | 1 | epeli 5581 | 1 ⊢ (𝐴 E 𝑥 ↔ 𝐴 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2106 class class class wbr 5147 E cep 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-eprel 5579 |
This theorem is referenced by: epse 5658 dfepfr 5660 epfrc 5661 wecmpep 5667 wetrep 5668 dmep 5921 rnep 5924 epweon 7758 epweonALT 7759 smoiso 8358 smoiso2 8365 ordunifi 9289 ordiso2 9506 ordtypelem8 9516 oismo 9531 wofib 9536 dford2 9611 noinfep 9651 oemapso 9673 wemapwe 9688 alephiso 10089 cflim2 10254 fin23lem27 10319 om2uzisoi 13915 bnj219 33732 nummin 34082 efrunt 34670 dftr6 34709 dffr5 34712 elpotr 34741 dfon2lem9 34751 dfon2 34752 brsset 34849 dfon3 34852 brbigcup 34858 brapply 34898 brcup 34899 brcap 34900 dfint3 34912 dfssr2 37357 onsupuni 41963 onsupmaxb 41973 |
Copyright terms: Public domain | W3C validator |