![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > epel | Structured version Visualization version GIF version |
Description: The membership relation and the membership predicate agree when the "containing" class is a setvar. Definition 1.6 of [Schloeder] p. 1. (Contributed by NM, 13-Aug-1995.) Replace the first setvar variable with a class variable. (Revised by BJ, 13-Sep-2022.) |
Ref | Expression |
---|---|
epel | ⊢ (𝐴 E 𝑥 ↔ 𝐴 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3492 | . 2 ⊢ 𝑥 ∈ V | |
2 | 1 | epeli 5601 | 1 ⊢ (𝐴 E 𝑥 ↔ 𝐴 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2108 class class class wbr 5166 E cep 5598 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-eprel 5599 |
This theorem is referenced by: epse 5682 dfepfr 5684 epfrc 5685 wecmpep 5692 wetrep 5693 dmep 5948 rnep 5951 epweon 7810 epweonALT 7811 smoiso 8418 smoiso2 8425 ordunifi 9354 ordiso2 9584 ordtypelem8 9594 oismo 9609 wofib 9614 dford2 9689 noinfep 9729 oemapso 9751 wemapwe 9766 alephiso 10167 cflim2 10332 fin23lem27 10397 om2uzisoi 14005 om2noseqiso 28326 bnj219 34709 nummin 35067 efrunt 35675 dftr6 35713 dffr5 35716 elpotr 35745 dfon2lem9 35755 dfon2 35756 brsset 35853 dfon3 35856 brbigcup 35862 brapply 35902 brcup 35903 brcap 35904 dfint3 35916 dfssr2 38455 onsupuni 43190 onsupmaxb 43200 |
Copyright terms: Public domain | W3C validator |