| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > epel | Structured version Visualization version GIF version | ||
| Description: The membership relation and the membership predicate agree when the "containing" class is a setvar. Definition 1.6 of [Schloeder] p. 1. (Contributed by NM, 13-Aug-1995.) Replace the first setvar variable with a class variable. (Revised by BJ, 13-Sep-2022.) |
| Ref | Expression |
|---|---|
| epel | ⊢ (𝐴 E 𝑥 ↔ 𝐴 ∈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3448 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | 1 | epeli 5533 | 1 ⊢ (𝐴 E 𝑥 ↔ 𝐴 ∈ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 class class class wbr 5102 E cep 5530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-eprel 5531 |
| This theorem is referenced by: epse 5613 dfepfr 5615 epfrc 5616 wecmpep 5623 wetrep 5624 dmep 5877 rnep 5880 epweon 7731 epweonALT 7732 smoiso 8308 smoiso2 8315 ordunifi 9213 ordiso2 9444 ordtypelem8 9454 oismo 9469 wofib 9474 dford2 9549 noinfep 9589 oemapso 9611 wemapwe 9626 alephiso 10027 cflim2 10192 fin23lem27 10257 om2uzisoi 13895 om2noseqiso 28172 bnj219 34696 nummin 35054 efrunt 35673 dftr6 35711 dffr5 35714 elpotr 35742 dfon2lem9 35752 dfon2 35753 brsset 35850 dfon3 35853 brbigcup 35859 brapply 35899 brcup 35900 brcap 35901 dfint3 35913 dfssr2 38463 onsupuni 43191 onsupmaxb 43201 rankrelp 44923 sswfaxreg 44950 brpermmodel 44966 |
| Copyright terms: Public domain | W3C validator |