| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > epel | Structured version Visualization version GIF version | ||
| Description: The membership relation and the membership predicate agree when the "containing" class is a setvar. Definition 1.6 of [Schloeder] p. 1. (Contributed by NM, 13-Aug-1995.) Replace the first setvar variable with a class variable. (Revised by BJ, 13-Sep-2022.) |
| Ref | Expression |
|---|---|
| epel | ⊢ (𝐴 E 𝑥 ↔ 𝐴 ∈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3441 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | 1 | epeli 5523 | 1 ⊢ (𝐴 E 𝑥 ↔ 𝐴 ∈ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2113 class class class wbr 5095 E cep 5520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-eprel 5521 |
| This theorem is referenced by: epse 5603 dfepfr 5605 epfrc 5606 wecmpep 5613 wetrep 5614 dmep 5869 rnep 5873 epweon 7717 epweonALT 7718 smoiso 8291 smoiso2 8298 ordunifi 9185 ordiso2 9412 ordtypelem8 9422 oismo 9437 wofib 9442 dford2 9521 noinfep 9561 oemapso 9583 wemapwe 9598 alephiso 10000 cflim2 10165 fin23lem27 10230 om2uzisoi 13868 om2noseqiso 28252 bnj219 34817 nummin 35176 efrunt 35829 dftr6 35867 dffr5 35870 elpotr 35895 dfon2lem9 35905 dfon2 35906 brsset 36003 dfon3 36006 brbigcup 36012 brapply 36052 brcup 36053 brcap 36054 dfint3 36068 dfssr2 38664 onsupuni 43386 onsupmaxb 43396 rankrelp 45117 sswfaxreg 45144 brpermmodel 45160 |
| Copyright terms: Public domain | W3C validator |