| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > epel | Structured version Visualization version GIF version | ||
| Description: The membership relation and the membership predicate agree when the "containing" class is a setvar. Definition 1.6 of [Schloeder] p. 1. (Contributed by NM, 13-Aug-1995.) Replace the first setvar variable with a class variable. (Revised by BJ, 13-Sep-2022.) |
| Ref | Expression |
|---|---|
| epel | ⊢ (𝐴 E 𝑥 ↔ 𝐴 ∈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | 1 | epeli 5513 | 1 ⊢ (𝐴 E 𝑥 ↔ 𝐴 ∈ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2111 class class class wbr 5086 E cep 5510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-eprel 5511 |
| This theorem is referenced by: epse 5593 dfepfr 5595 epfrc 5596 wecmpep 5603 wetrep 5604 dmep 5858 rnep 5862 epweon 7703 epweonALT 7704 smoiso 8277 smoiso2 8284 ordunifi 9169 ordiso2 9396 ordtypelem8 9406 oismo 9421 wofib 9426 dford2 9505 noinfep 9545 oemapso 9567 wemapwe 9582 alephiso 9984 cflim2 10149 fin23lem27 10214 om2uzisoi 13856 om2noseqiso 28227 bnj219 34737 nummin 35096 efrunt 35749 dftr6 35787 dffr5 35790 elpotr 35815 dfon2lem9 35825 dfon2 35826 brsset 35923 dfon3 35926 brbigcup 35932 brapply 35972 brcup 35973 brcap 35974 dfint3 35986 dfssr2 38536 onsupuni 43262 onsupmaxb 43272 rankrelp 44993 sswfaxreg 45020 brpermmodel 45036 |
| Copyright terms: Public domain | W3C validator |