| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > epel | Structured version Visualization version GIF version | ||
| Description: The membership relation and the membership predicate agree when the "containing" class is a setvar. Definition 1.6 of [Schloeder] p. 1. (Contributed by NM, 13-Aug-1995.) Replace the first setvar variable with a class variable. (Revised by BJ, 13-Sep-2022.) |
| Ref | Expression |
|---|---|
| epel | ⊢ (𝐴 E 𝑥 ↔ 𝐴 ∈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3451 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | 1 | epeli 5540 | 1 ⊢ (𝐴 E 𝑥 ↔ 𝐴 ∈ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 class class class wbr 5107 E cep 5537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-eprel 5538 |
| This theorem is referenced by: epse 5620 dfepfr 5622 epfrc 5623 wecmpep 5630 wetrep 5631 dmep 5887 rnep 5890 epweon 7751 epweonALT 7752 smoiso 8331 smoiso2 8338 ordunifi 9237 ordiso2 9468 ordtypelem8 9478 oismo 9493 wofib 9498 dford2 9573 noinfep 9613 oemapso 9635 wemapwe 9650 alephiso 10051 cflim2 10216 fin23lem27 10281 om2uzisoi 13919 om2noseqiso 28196 bnj219 34723 nummin 35081 efrunt 35700 dftr6 35738 dffr5 35741 elpotr 35769 dfon2lem9 35779 dfon2 35780 brsset 35877 dfon3 35880 brbigcup 35886 brapply 35926 brcup 35927 brcap 35928 dfint3 35940 dfssr2 38490 onsupuni 43218 onsupmaxb 43228 rankrelp 44950 sswfaxreg 44977 brpermmodel 44993 |
| Copyright terms: Public domain | W3C validator |