![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > epel | Structured version Visualization version GIF version |
Description: The membership relation and the membership predicate agree when the "containing" class is a setvar. Definition 1.6 of [Schloeder] p. 1. (Contributed by NM, 13-Aug-1995.) Replace the first setvar variable with a class variable. (Revised by BJ, 13-Sep-2022.) |
Ref | Expression |
---|---|
epel | ⊢ (𝐴 E 𝑥 ↔ 𝐴 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3479 | . 2 ⊢ 𝑥 ∈ V | |
2 | 1 | epeli 5583 | 1 ⊢ (𝐴 E 𝑥 ↔ 𝐴 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2107 class class class wbr 5149 E cep 5580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-eprel 5581 |
This theorem is referenced by: epse 5660 dfepfr 5662 epfrc 5663 wecmpep 5669 wetrep 5670 dmep 5924 rnep 5927 epweon 7762 epweonALT 7763 smoiso 8362 smoiso2 8369 ordunifi 9293 ordiso2 9510 ordtypelem8 9520 oismo 9535 wofib 9540 dford2 9615 noinfep 9655 oemapso 9677 wemapwe 9692 alephiso 10093 cflim2 10258 fin23lem27 10323 om2uzisoi 13919 bnj219 33744 nummin 34094 efrunt 34682 dftr6 34721 dffr5 34724 elpotr 34753 dfon2lem9 34763 dfon2 34764 brsset 34861 dfon3 34864 brbigcup 34870 brapply 34910 brcup 34911 brcap 34912 dfint3 34924 dfssr2 37369 onsupuni 41978 onsupmaxb 41988 |
Copyright terms: Public domain | W3C validator |