MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stckgen Structured version   Visualization version   GIF version

Theorem 1stckgen 22405
Description: A first-countable space is compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
1stckgen (𝐽 ∈ 1stω → 𝐽 ∈ ran 𝑘Gen)

Proof of Theorem 1stckgen
Dummy variables 𝑘 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1stctop 22294 . 2 (𝐽 ∈ 1stω → 𝐽 ∈ Top)
2 difss 4032 . . . . . . . . . 10 ( 𝐽𝑥) ⊆ 𝐽
3 eqid 2736 . . . . . . . . . . 11 𝐽 = 𝐽
431stcelcls 22312 . . . . . . . . . 10 ((𝐽 ∈ 1stω ∧ ( 𝐽𝑥) ⊆ 𝐽) → (𝑦 ∈ ((cls‘𝐽)‘( 𝐽𝑥)) ↔ ∃𝑓(𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)))
52, 4mpan2 691 . . . . . . . . 9 (𝐽 ∈ 1stω → (𝑦 ∈ ((cls‘𝐽)‘( 𝐽𝑥)) ↔ ∃𝑓(𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)))
65adantr 484 . . . . . . . 8 ((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → (𝑦 ∈ ((cls‘𝐽)‘( 𝐽𝑥)) ↔ ∃𝑓(𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)))
71adantr 484 . . . . . . . . . . . . . 14 ((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → 𝐽 ∈ Top)
87adantr 484 . . . . . . . . . . . . 13 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝐽 ∈ Top)
9 toptopon2 21769 . . . . . . . . . . . . 13 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
108, 9sylib 221 . . . . . . . . . . . 12 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝐽 ∈ (TopOn‘ 𝐽))
11 simprr 773 . . . . . . . . . . . 12 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑓(⇝𝑡𝐽)𝑦)
12 lmcl 22148 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝑓(⇝𝑡𝐽)𝑦) → 𝑦 𝐽)
1310, 11, 12syl2anc 587 . . . . . . . . . . 11 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑦 𝐽)
14 nnuz 12442 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
15 vex 3402 . . . . . . . . . . . . . . . . 17 𝑓 ∈ V
1615rnex 7668 . . . . . . . . . . . . . . . 16 ran 𝑓 ∈ V
17 snex 5309 . . . . . . . . . . . . . . . 16 {𝑦} ∈ V
1816, 17unex 7509 . . . . . . . . . . . . . . 15 (ran 𝑓 ∪ {𝑦}) ∈ V
19 resttop 22011 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ (ran 𝑓 ∪ {𝑦}) ∈ V) → (𝐽t (ran 𝑓 ∪ {𝑦})) ∈ Top)
208, 18, 19sylancl 589 . . . . . . . . . . . . . 14 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → (𝐽t (ran 𝑓 ∪ {𝑦})) ∈ Top)
21 toptopon2 21769 . . . . . . . . . . . . . 14 ((𝐽t (ran 𝑓 ∪ {𝑦})) ∈ Top ↔ (𝐽t (ran 𝑓 ∪ {𝑦})) ∈ (TopOn‘ (𝐽t (ran 𝑓 ∪ {𝑦}))))
2220, 21sylib 221 . . . . . . . . . . . . 13 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → (𝐽t (ran 𝑓 ∪ {𝑦})) ∈ (TopOn‘ (𝐽t (ran 𝑓 ∪ {𝑦}))))
23 1zzd 12173 . . . . . . . . . . . . 13 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 1 ∈ ℤ)
24 eqid 2736 . . . . . . . . . . . . . . 15 (𝐽t (ran 𝑓 ∪ {𝑦})) = (𝐽t (ran 𝑓 ∪ {𝑦}))
2518a1i 11 . . . . . . . . . . . . . . 15 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → (ran 𝑓 ∪ {𝑦}) ∈ V)
26 ssun2 4073 . . . . . . . . . . . . . . . . 17 {𝑦} ⊆ (ran 𝑓 ∪ {𝑦})
27 vex 3402 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
2827snss 4685 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (ran 𝑓 ∪ {𝑦}) ↔ {𝑦} ⊆ (ran 𝑓 ∪ {𝑦}))
2926, 28mpbir 234 . . . . . . . . . . . . . . . 16 𝑦 ∈ (ran 𝑓 ∪ {𝑦})
3029a1i 11 . . . . . . . . . . . . . . 15 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑦 ∈ (ran 𝑓 ∪ {𝑦}))
31 ffn 6523 . . . . . . . . . . . . . . . . . 18 (𝑓:ℕ⟶( 𝐽𝑥) → 𝑓 Fn ℕ)
3231ad2antrl 728 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑓 Fn ℕ)
33 dffn3 6536 . . . . . . . . . . . . . . . . 17 (𝑓 Fn ℕ ↔ 𝑓:ℕ⟶ran 𝑓)
3432, 33sylib 221 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑓:ℕ⟶ran 𝑓)
35 ssun1 4072 . . . . . . . . . . . . . . . 16 ran 𝑓 ⊆ (ran 𝑓 ∪ {𝑦})
36 fss 6540 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ⟶ran 𝑓 ∧ ran 𝑓 ⊆ (ran 𝑓 ∪ {𝑦})) → 𝑓:ℕ⟶(ran 𝑓 ∪ {𝑦}))
3734, 35, 36sylancl 589 . . . . . . . . . . . . . . 15 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑓:ℕ⟶(ran 𝑓 ∪ {𝑦}))
3824, 14, 25, 8, 30, 23, 37lmss 22149 . . . . . . . . . . . . . 14 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → (𝑓(⇝𝑡𝐽)𝑦𝑓(⇝𝑡‘(𝐽t (ran 𝑓 ∪ {𝑦})))𝑦))
3911, 38mpbid 235 . . . . . . . . . . . . 13 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑓(⇝𝑡‘(𝐽t (ran 𝑓 ∪ {𝑦})))𝑦)
4037ffvelrnda 6882 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ (ran 𝑓 ∪ {𝑦}))
41 simprl 771 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑓:ℕ⟶( 𝐽𝑥))
4241ffvelrnda 6882 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ ( 𝐽𝑥))
4342eldifbd 3866 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) ∧ 𝑘 ∈ ℕ) → ¬ (𝑓𝑘) ∈ 𝑥)
4440, 43eldifd 3864 . . . . . . . . . . . . 13 ((((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ ((ran 𝑓 ∪ {𝑦}) ∖ 𝑥))
45 difin 4162 . . . . . . . . . . . . . . 15 ((ran 𝑓 ∪ {𝑦}) ∖ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥)) = ((ran 𝑓 ∪ {𝑦}) ∖ 𝑥)
46 frn 6530 . . . . . . . . . . . . . . . . . . . 20 (𝑓:ℕ⟶( 𝐽𝑥) → ran 𝑓 ⊆ ( 𝐽𝑥))
4746ad2antrl 728 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → ran 𝑓 ⊆ ( 𝐽𝑥))
4847difss2d 4035 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → ran 𝑓 𝐽)
4913snssd 4708 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → {𝑦} ⊆ 𝐽)
5048, 49unssd 4086 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → (ran 𝑓 ∪ {𝑦}) ⊆ 𝐽)
513restuni 22013 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ (ran 𝑓 ∪ {𝑦}) ⊆ 𝐽) → (ran 𝑓 ∪ {𝑦}) = (𝐽t (ran 𝑓 ∪ {𝑦})))
528, 50, 51syl2anc 587 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → (ran 𝑓 ∪ {𝑦}) = (𝐽t (ran 𝑓 ∪ {𝑦})))
5352difeq1d 4022 . . . . . . . . . . . . . . 15 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → ((ran 𝑓 ∪ {𝑦}) ∖ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥)) = ( (𝐽t (ran 𝑓 ∪ {𝑦})) ∖ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥)))
5445, 53eqtr3id 2785 . . . . . . . . . . . . . 14 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → ((ran 𝑓 ∪ {𝑦}) ∖ 𝑥) = ( (𝐽t (ran 𝑓 ∪ {𝑦})) ∖ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥)))
55 incom 4101 . . . . . . . . . . . . . . . 16 ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥) = (𝑥 ∩ (ran 𝑓 ∪ {𝑦}))
56 simplr 769 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑥 ∈ (𝑘Gen‘𝐽))
57 fss 6540 . . . . . . . . . . . . . . . . . . 19 ((𝑓:ℕ⟶( 𝐽𝑥) ∧ ( 𝐽𝑥) ⊆ 𝐽) → 𝑓:ℕ⟶ 𝐽)
5841, 2, 57sylancl 589 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑓:ℕ⟶ 𝐽)
5910, 58, 111stckgenlem 22404 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → (𝐽t (ran 𝑓 ∪ {𝑦})) ∈ Comp)
60 kgeni 22388 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t (ran 𝑓 ∪ {𝑦})) ∈ Comp) → (𝑥 ∩ (ran 𝑓 ∪ {𝑦})) ∈ (𝐽t (ran 𝑓 ∪ {𝑦})))
6156, 59, 60syl2anc 587 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → (𝑥 ∩ (ran 𝑓 ∪ {𝑦})) ∈ (𝐽t (ran 𝑓 ∪ {𝑦})))
6255, 61eqeltrid 2835 . . . . . . . . . . . . . . 15 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥) ∈ (𝐽t (ran 𝑓 ∪ {𝑦})))
63 eqid 2736 . . . . . . . . . . . . . . . 16 (𝐽t (ran 𝑓 ∪ {𝑦})) = (𝐽t (ran 𝑓 ∪ {𝑦}))
6463opncld 21884 . . . . . . . . . . . . . . 15 (((𝐽t (ran 𝑓 ∪ {𝑦})) ∈ Top ∧ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥) ∈ (𝐽t (ran 𝑓 ∪ {𝑦}))) → ( (𝐽t (ran 𝑓 ∪ {𝑦})) ∖ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥)) ∈ (Clsd‘(𝐽t (ran 𝑓 ∪ {𝑦}))))
6520, 62, 64syl2anc 587 . . . . . . . . . . . . . 14 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → ( (𝐽t (ran 𝑓 ∪ {𝑦})) ∖ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥)) ∈ (Clsd‘(𝐽t (ran 𝑓 ∪ {𝑦}))))
6654, 65eqeltrd 2831 . . . . . . . . . . . . 13 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → ((ran 𝑓 ∪ {𝑦}) ∖ 𝑥) ∈ (Clsd‘(𝐽t (ran 𝑓 ∪ {𝑦}))))
6714, 22, 23, 39, 44, 66lmcld 22154 . . . . . . . . . . . 12 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑦 ∈ ((ran 𝑓 ∪ {𝑦}) ∖ 𝑥))
6867eldifbd 3866 . . . . . . . . . . 11 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → ¬ 𝑦𝑥)
6913, 68eldifd 3864 . . . . . . . . . 10 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑦 ∈ ( 𝐽𝑥))
7069ex 416 . . . . . . . . 9 ((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → ((𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦) → 𝑦 ∈ ( 𝐽𝑥)))
7170exlimdv 1941 . . . . . . . 8 ((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → (∃𝑓(𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦) → 𝑦 ∈ ( 𝐽𝑥)))
726, 71sylbid 243 . . . . . . 7 ((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → (𝑦 ∈ ((cls‘𝐽)‘( 𝐽𝑥)) → 𝑦 ∈ ( 𝐽𝑥)))
7372ssrdv 3893 . . . . . 6 ((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → ((cls‘𝐽)‘( 𝐽𝑥)) ⊆ ( 𝐽𝑥))
743iscld4 21916 . . . . . . 7 ((𝐽 ∈ Top ∧ ( 𝐽𝑥) ⊆ 𝐽) → (( 𝐽𝑥) ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘( 𝐽𝑥)) ⊆ ( 𝐽𝑥)))
757, 2, 74sylancl 589 . . . . . 6 ((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → (( 𝐽𝑥) ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘( 𝐽𝑥)) ⊆ ( 𝐽𝑥)))
7673, 75mpbird 260 . . . . 5 ((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → ( 𝐽𝑥) ∈ (Clsd‘𝐽))
77 elssuni 4837 . . . . . . . 8 (𝑥 ∈ (𝑘Gen‘𝐽) → 𝑥 (𝑘Gen‘𝐽))
7877adantl 485 . . . . . . 7 ((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → 𝑥 (𝑘Gen‘𝐽))
793kgenuni 22390 . . . . . . . 8 (𝐽 ∈ Top → 𝐽 = (𝑘Gen‘𝐽))
807, 79syl 17 . . . . . . 7 ((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → 𝐽 = (𝑘Gen‘𝐽))
8178, 80sseqtrrd 3928 . . . . . 6 ((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → 𝑥 𝐽)
823isopn2 21883 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑥 𝐽) → (𝑥𝐽 ↔ ( 𝐽𝑥) ∈ (Clsd‘𝐽)))
837, 81, 82syl2anc 587 . . . . 5 ((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → (𝑥𝐽 ↔ ( 𝐽𝑥) ∈ (Clsd‘𝐽)))
8476, 83mpbird 260 . . . 4 ((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → 𝑥𝐽)
8584ex 416 . . 3 (𝐽 ∈ 1stω → (𝑥 ∈ (𝑘Gen‘𝐽) → 𝑥𝐽))
8685ssrdv 3893 . 2 (𝐽 ∈ 1stω → (𝑘Gen‘𝐽) ⊆ 𝐽)
87 iskgen2 22399 . 2 (𝐽 ∈ ran 𝑘Gen ↔ (𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽))
881, 86, 87sylanbrc 586 1 (𝐽 ∈ 1stω → 𝐽 ∈ ran 𝑘Gen)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wex 1787  wcel 2112  Vcvv 3398  cdif 3850  cun 3851  cin 3852  wss 3853  {csn 4527   cuni 4805   class class class wbr 5039  ran crn 5537   Fn wfn 6353  wf 6354  cfv 6358  (class class class)co 7191  1c1 10695  cn 11795  t crest 16879  Topctop 21744  TopOnctopon 21761  Clsdccld 21867  clsccl 21869  𝑡clm 22077  Compccmp 22237  1stωc1stc 22288  𝑘Genckgen 22384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234  ax-cc 10014  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-pm 8489  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-fi 9005  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-n0 12056  df-z 12142  df-uz 12404  df-fz 13061  df-rest 16881  df-topgen 16902  df-top 21745  df-topon 21762  df-bases 21797  df-cld 21870  df-ntr 21871  df-cls 21872  df-lm 22080  df-cmp 22238  df-1stc 22290  df-kgen 22385
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator