Step | Hyp | Ref
| Expression |
1 | | 1stctop 22594 |
. 2
⊢ (𝐽 ∈ 1stω
→ 𝐽 ∈
Top) |
2 | | difss 4066 |
. . . . . . . . . 10
⊢ (∪ 𝐽
∖ 𝑥) ⊆ ∪ 𝐽 |
3 | | eqid 2738 |
. . . . . . . . . . 11
⊢ ∪ 𝐽 =
∪ 𝐽 |
4 | 3 | 1stcelcls 22612 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ 1stω
∧ (∪ 𝐽 ∖ 𝑥) ⊆ ∪ 𝐽) → (𝑦 ∈ ((cls‘𝐽)‘(∪ 𝐽 ∖ 𝑥)) ↔ ∃𝑓(𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦))) |
5 | 2, 4 | mpan2 688 |
. . . . . . . . 9
⊢ (𝐽 ∈ 1stω
→ (𝑦 ∈
((cls‘𝐽)‘(∪ 𝐽
∖ 𝑥)) ↔
∃𝑓(𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦))) |
6 | 5 | adantr 481 |
. . . . . . . 8
⊢ ((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
→ (𝑦 ∈
((cls‘𝐽)‘(∪ 𝐽
∖ 𝑥)) ↔
∃𝑓(𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦))) |
7 | 1 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
→ 𝐽 ∈
Top) |
8 | 7 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → 𝐽 ∈ Top) |
9 | | toptopon2 22067 |
. . . . . . . . . . . . 13
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
10 | 8, 9 | sylib 217 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
11 | | simprr 770 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → 𝑓(⇝𝑡‘𝐽)𝑦) |
12 | | lmcl 22448 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽)
∧ 𝑓(⇝𝑡‘𝐽)𝑦) → 𝑦 ∈ ∪ 𝐽) |
13 | 10, 11, 12 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → 𝑦 ∈ ∪ 𝐽) |
14 | | nnuz 12621 |
. . . . . . . . . . . . 13
⊢ ℕ =
(ℤ≥‘1) |
15 | | vex 3436 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑓 ∈ V |
16 | 15 | rnex 7759 |
. . . . . . . . . . . . . . . 16
⊢ ran 𝑓 ∈ V |
17 | | snex 5354 |
. . . . . . . . . . . . . . . 16
⊢ {𝑦} ∈ V |
18 | 16, 17 | unex 7596 |
. . . . . . . . . . . . . . 15
⊢ (ran
𝑓 ∪ {𝑦}) ∈ V |
19 | | resttop 22311 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 ∈ Top ∧ (ran 𝑓 ∪ {𝑦}) ∈ V) → (𝐽 ↾t (ran 𝑓 ∪ {𝑦})) ∈ Top) |
20 | 8, 18, 19 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → (𝐽 ↾t (ran 𝑓 ∪ {𝑦})) ∈ Top) |
21 | | toptopon2 22067 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ↾t (ran 𝑓 ∪ {𝑦})) ∈ Top ↔ (𝐽 ↾t (ran 𝑓 ∪ {𝑦})) ∈ (TopOn‘∪ (𝐽
↾t (ran 𝑓
∪ {𝑦})))) |
22 | 20, 21 | sylib 217 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → (𝐽 ↾t (ran 𝑓 ∪ {𝑦})) ∈ (TopOn‘∪ (𝐽
↾t (ran 𝑓
∪ {𝑦})))) |
23 | | 1zzd 12351 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → 1 ∈ ℤ) |
24 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ (𝐽 ↾t (ran 𝑓 ∪ {𝑦})) = (𝐽 ↾t (ran 𝑓 ∪ {𝑦})) |
25 | 18 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → (ran 𝑓 ∪ {𝑦}) ∈ V) |
26 | | ssun2 4107 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑦} ⊆ (ran 𝑓 ∪ {𝑦}) |
27 | | vex 3436 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑦 ∈ V |
28 | 27 | snss 4719 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (ran 𝑓 ∪ {𝑦}) ↔ {𝑦} ⊆ (ran 𝑓 ∪ {𝑦})) |
29 | 26, 28 | mpbir 230 |
. . . . . . . . . . . . . . . 16
⊢ 𝑦 ∈ (ran 𝑓 ∪ {𝑦}) |
30 | 29 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → 𝑦 ∈ (ran 𝑓 ∪ {𝑦})) |
31 | | ffn 6600 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓:ℕ⟶(∪ 𝐽
∖ 𝑥) → 𝑓 Fn ℕ) |
32 | 31 | ad2antrl 725 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → 𝑓 Fn ℕ) |
33 | | dffn3 6613 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 Fn ℕ ↔ 𝑓:ℕ⟶ran 𝑓) |
34 | 32, 33 | sylib 217 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → 𝑓:ℕ⟶ran 𝑓) |
35 | | ssun1 4106 |
. . . . . . . . . . . . . . . 16
⊢ ran 𝑓 ⊆ (ran 𝑓 ∪ {𝑦}) |
36 | | fss 6617 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:ℕ⟶ran 𝑓 ∧ ran 𝑓 ⊆ (ran 𝑓 ∪ {𝑦})) → 𝑓:ℕ⟶(ran 𝑓 ∪ {𝑦})) |
37 | 34, 35, 36 | sylancl 586 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → 𝑓:ℕ⟶(ran 𝑓 ∪ {𝑦})) |
38 | 24, 14, 25, 8, 30, 23, 37 | lmss 22449 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → (𝑓(⇝𝑡‘𝐽)𝑦 ↔ 𝑓(⇝𝑡‘(𝐽 ↾t (ran 𝑓 ∪ {𝑦})))𝑦)) |
39 | 11, 38 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → 𝑓(⇝𝑡‘(𝐽 ↾t (ran 𝑓 ∪ {𝑦})))𝑦) |
40 | 37 | ffvelrnda 6961 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) ∧ 𝑘 ∈ ℕ) → (𝑓‘𝑘) ∈ (ran 𝑓 ∪ {𝑦})) |
41 | | simprl 768 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → 𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥)) |
42 | 41 | ffvelrnda 6961 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) ∧ 𝑘 ∈ ℕ) → (𝑓‘𝑘) ∈ (∪ 𝐽 ∖ 𝑥)) |
43 | 42 | eldifbd 3900 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) ∧ 𝑘 ∈ ℕ) → ¬ (𝑓‘𝑘) ∈ 𝑥) |
44 | 40, 43 | eldifd 3898 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) ∧ 𝑘 ∈ ℕ) → (𝑓‘𝑘) ∈ ((ran 𝑓 ∪ {𝑦}) ∖ 𝑥)) |
45 | | difin 4195 |
. . . . . . . . . . . . . . 15
⊢ ((ran
𝑓 ∪ {𝑦}) ∖ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥)) = ((ran 𝑓 ∪ {𝑦}) ∖ 𝑥) |
46 | | frn 6607 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓:ℕ⟶(∪ 𝐽
∖ 𝑥) → ran 𝑓 ⊆ (∪ 𝐽
∖ 𝑥)) |
47 | 46 | ad2antrl 725 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → ran 𝑓 ⊆ (∪ 𝐽 ∖ 𝑥)) |
48 | 47 | difss2d 4069 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → ran 𝑓 ⊆ ∪ 𝐽) |
49 | 13 | snssd 4742 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → {𝑦} ⊆ ∪ 𝐽) |
50 | 48, 49 | unssd 4120 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → (ran 𝑓 ∪ {𝑦}) ⊆ ∪ 𝐽) |
51 | 3 | restuni 22313 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐽 ∈ Top ∧ (ran 𝑓 ∪ {𝑦}) ⊆ ∪ 𝐽) → (ran 𝑓 ∪ {𝑦}) = ∪ (𝐽 ↾t (ran 𝑓 ∪ {𝑦}))) |
52 | 8, 50, 51 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → (ran 𝑓 ∪ {𝑦}) = ∪ (𝐽 ↾t (ran 𝑓 ∪ {𝑦}))) |
53 | 52 | difeq1d 4056 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → ((ran 𝑓 ∪ {𝑦}) ∖ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥)) = (∪ (𝐽 ↾t (ran 𝑓 ∪ {𝑦})) ∖ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥))) |
54 | 45, 53 | eqtr3id 2792 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → ((ran 𝑓 ∪ {𝑦}) ∖ 𝑥) = (∪ (𝐽 ↾t (ran 𝑓 ∪ {𝑦})) ∖ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥))) |
55 | | incom 4135 |
. . . . . . . . . . . . . . . 16
⊢ ((ran
𝑓 ∪ {𝑦}) ∩ 𝑥) = (𝑥 ∩ (ran 𝑓 ∪ {𝑦})) |
56 | | simplr 766 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → 𝑥 ∈ (𝑘Gen‘𝐽)) |
57 | | fss 6617 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:ℕ⟶(∪ 𝐽
∖ 𝑥) ∧ (∪ 𝐽
∖ 𝑥) ⊆ ∪ 𝐽)
→ 𝑓:ℕ⟶∪
𝐽) |
58 | 41, 2, 57 | sylancl 586 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → 𝑓:ℕ⟶∪
𝐽) |
59 | 10, 58, 11 | 1stckgenlem 22704 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → (𝐽 ↾t (ran 𝑓 ∪ {𝑦})) ∈ Comp) |
60 | | kgeni 22688 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈
(𝑘Gen‘𝐽)
∧ (𝐽
↾t (ran 𝑓
∪ {𝑦})) ∈ Comp)
→ (𝑥 ∩ (ran 𝑓 ∪ {𝑦})) ∈ (𝐽 ↾t (ran 𝑓 ∪ {𝑦}))) |
61 | 56, 59, 60 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → (𝑥 ∩ (ran 𝑓 ∪ {𝑦})) ∈ (𝐽 ↾t (ran 𝑓 ∪ {𝑦}))) |
62 | 55, 61 | eqeltrid 2843 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥) ∈ (𝐽 ↾t (ran 𝑓 ∪ {𝑦}))) |
63 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢ ∪ (𝐽
↾t (ran 𝑓
∪ {𝑦})) = ∪ (𝐽
↾t (ran 𝑓
∪ {𝑦})) |
64 | 63 | opncld 22184 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 ↾t (ran 𝑓 ∪ {𝑦})) ∈ Top ∧ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥) ∈ (𝐽 ↾t (ran 𝑓 ∪ {𝑦}))) → (∪
(𝐽 ↾t (ran
𝑓 ∪ {𝑦})) ∖ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥)) ∈ (Clsd‘(𝐽 ↾t (ran 𝑓 ∪ {𝑦})))) |
65 | 20, 62, 64 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → (∪
(𝐽 ↾t (ran
𝑓 ∪ {𝑦})) ∖ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥)) ∈ (Clsd‘(𝐽 ↾t (ran 𝑓 ∪ {𝑦})))) |
66 | 54, 65 | eqeltrd 2839 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → ((ran 𝑓 ∪ {𝑦}) ∖ 𝑥) ∈ (Clsd‘(𝐽 ↾t (ran 𝑓 ∪ {𝑦})))) |
67 | 14, 22, 23, 39, 44, 66 | lmcld 22454 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → 𝑦 ∈ ((ran 𝑓 ∪ {𝑦}) ∖ 𝑥)) |
68 | 67 | eldifbd 3900 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → ¬ 𝑦 ∈ 𝑥) |
69 | 13, 68 | eldifd 3898 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → 𝑦 ∈ (∪ 𝐽 ∖ 𝑥)) |
70 | 69 | ex 413 |
. . . . . . . . 9
⊢ ((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
→ ((𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦) → 𝑦 ∈ (∪ 𝐽 ∖ 𝑥))) |
71 | 70 | exlimdv 1936 |
. . . . . . . 8
⊢ ((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
→ (∃𝑓(𝑓:ℕ⟶(∪ 𝐽
∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦) → 𝑦 ∈ (∪ 𝐽 ∖ 𝑥))) |
72 | 6, 71 | sylbid 239 |
. . . . . . 7
⊢ ((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
→ (𝑦 ∈
((cls‘𝐽)‘(∪ 𝐽
∖ 𝑥)) → 𝑦 ∈ (∪ 𝐽
∖ 𝑥))) |
73 | 72 | ssrdv 3927 |
. . . . . 6
⊢ ((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
→ ((cls‘𝐽)‘(∪ 𝐽 ∖ 𝑥)) ⊆ (∪
𝐽 ∖ 𝑥)) |
74 | 3 | iscld4 22216 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ (∪ 𝐽
∖ 𝑥) ⊆ ∪ 𝐽)
→ ((∪ 𝐽 ∖ 𝑥) ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘(∪ 𝐽 ∖ 𝑥)) ⊆ (∪
𝐽 ∖ 𝑥))) |
75 | 7, 2, 74 | sylancl 586 |
. . . . . 6
⊢ ((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
→ ((∪ 𝐽 ∖ 𝑥) ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘(∪ 𝐽 ∖ 𝑥)) ⊆ (∪
𝐽 ∖ 𝑥))) |
76 | 73, 75 | mpbird 256 |
. . . . 5
⊢ ((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
→ (∪ 𝐽 ∖ 𝑥) ∈ (Clsd‘𝐽)) |
77 | | elssuni 4871 |
. . . . . . . 8
⊢ (𝑥 ∈
(𝑘Gen‘𝐽)
→ 𝑥 ⊆ ∪ (𝑘Gen‘𝐽)) |
78 | 77 | adantl 482 |
. . . . . . 7
⊢ ((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
→ 𝑥 ⊆ ∪ (𝑘Gen‘𝐽)) |
79 | 3 | kgenuni 22690 |
. . . . . . . 8
⊢ (𝐽 ∈ Top → ∪ 𝐽 =
∪ (𝑘Gen‘𝐽)) |
80 | 7, 79 | syl 17 |
. . . . . . 7
⊢ ((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
→ ∪ 𝐽 = ∪
(𝑘Gen‘𝐽)) |
81 | 78, 80 | sseqtrrd 3962 |
. . . . . 6
⊢ ((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
→ 𝑥 ⊆ ∪ 𝐽) |
82 | 3 | isopn2 22183 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ ∪ 𝐽)
→ (𝑥 ∈ 𝐽 ↔ (∪ 𝐽
∖ 𝑥) ∈
(Clsd‘𝐽))) |
83 | 7, 81, 82 | syl2anc 584 |
. . . . 5
⊢ ((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
→ (𝑥 ∈ 𝐽 ↔ (∪ 𝐽
∖ 𝑥) ∈
(Clsd‘𝐽))) |
84 | 76, 83 | mpbird 256 |
. . . 4
⊢ ((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
→ 𝑥 ∈ 𝐽) |
85 | 84 | ex 413 |
. . 3
⊢ (𝐽 ∈ 1stω
→ (𝑥 ∈
(𝑘Gen‘𝐽)
→ 𝑥 ∈ 𝐽)) |
86 | 85 | ssrdv 3927 |
. 2
⊢ (𝐽 ∈ 1stω
→ (𝑘Gen‘𝐽) ⊆ 𝐽) |
87 | | iskgen2 22699 |
. 2
⊢ (𝐽 ∈ ran 𝑘Gen ↔
(𝐽 ∈ Top ∧
(𝑘Gen‘𝐽)
⊆ 𝐽)) |
88 | 1, 86, 87 | sylanbrc 583 |
1
⊢ (𝐽 ∈ 1stω
→ 𝐽 ∈ ran
𝑘Gen) |