MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stckgen Structured version   Visualization version   GIF version

Theorem 1stckgen 22905
Description: A first-countable space is compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
1stckgen (𝐽 ∈ 1stω → 𝐽 ∈ ran 𝑘Gen)

Proof of Theorem 1stckgen
Dummy variables 𝑘 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1stctop 22794 . 2 (𝐽 ∈ 1stω → 𝐽 ∈ Top)
2 difss 4091 . . . . . . . . . 10 ( 𝐽𝑥) ⊆ 𝐽
3 eqid 2736 . . . . . . . . . . 11 𝐽 = 𝐽
431stcelcls 22812 . . . . . . . . . 10 ((𝐽 ∈ 1stω ∧ ( 𝐽𝑥) ⊆ 𝐽) → (𝑦 ∈ ((cls‘𝐽)‘( 𝐽𝑥)) ↔ ∃𝑓(𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)))
52, 4mpan2 689 . . . . . . . . 9 (𝐽 ∈ 1stω → (𝑦 ∈ ((cls‘𝐽)‘( 𝐽𝑥)) ↔ ∃𝑓(𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)))
65adantr 481 . . . . . . . 8 ((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → (𝑦 ∈ ((cls‘𝐽)‘( 𝐽𝑥)) ↔ ∃𝑓(𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)))
71adantr 481 . . . . . . . . . . . . . 14 ((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → 𝐽 ∈ Top)
87adantr 481 . . . . . . . . . . . . 13 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝐽 ∈ Top)
9 toptopon2 22267 . . . . . . . . . . . . 13 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
108, 9sylib 217 . . . . . . . . . . . 12 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝐽 ∈ (TopOn‘ 𝐽))
11 simprr 771 . . . . . . . . . . . 12 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑓(⇝𝑡𝐽)𝑦)
12 lmcl 22648 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝑓(⇝𝑡𝐽)𝑦) → 𝑦 𝐽)
1310, 11, 12syl2anc 584 . . . . . . . . . . 11 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑦 𝐽)
14 nnuz 12806 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
15 vex 3449 . . . . . . . . . . . . . . . . 17 𝑓 ∈ V
1615rnex 7849 . . . . . . . . . . . . . . . 16 ran 𝑓 ∈ V
17 vsnex 5386 . . . . . . . . . . . . . . . 16 {𝑦} ∈ V
1816, 17unex 7680 . . . . . . . . . . . . . . 15 (ran 𝑓 ∪ {𝑦}) ∈ V
19 resttop 22511 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ (ran 𝑓 ∪ {𝑦}) ∈ V) → (𝐽t (ran 𝑓 ∪ {𝑦})) ∈ Top)
208, 18, 19sylancl 586 . . . . . . . . . . . . . 14 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → (𝐽t (ran 𝑓 ∪ {𝑦})) ∈ Top)
21 toptopon2 22267 . . . . . . . . . . . . . 14 ((𝐽t (ran 𝑓 ∪ {𝑦})) ∈ Top ↔ (𝐽t (ran 𝑓 ∪ {𝑦})) ∈ (TopOn‘ (𝐽t (ran 𝑓 ∪ {𝑦}))))
2220, 21sylib 217 . . . . . . . . . . . . 13 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → (𝐽t (ran 𝑓 ∪ {𝑦})) ∈ (TopOn‘ (𝐽t (ran 𝑓 ∪ {𝑦}))))
23 1zzd 12534 . . . . . . . . . . . . 13 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 1 ∈ ℤ)
24 eqid 2736 . . . . . . . . . . . . . . 15 (𝐽t (ran 𝑓 ∪ {𝑦})) = (𝐽t (ran 𝑓 ∪ {𝑦}))
2518a1i 11 . . . . . . . . . . . . . . 15 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → (ran 𝑓 ∪ {𝑦}) ∈ V)
26 ssun2 4133 . . . . . . . . . . . . . . . . 17 {𝑦} ⊆ (ran 𝑓 ∪ {𝑦})
27 vex 3449 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
2827snss 4746 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (ran 𝑓 ∪ {𝑦}) ↔ {𝑦} ⊆ (ran 𝑓 ∪ {𝑦}))
2926, 28mpbir 230 . . . . . . . . . . . . . . . 16 𝑦 ∈ (ran 𝑓 ∪ {𝑦})
3029a1i 11 . . . . . . . . . . . . . . 15 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑦 ∈ (ran 𝑓 ∪ {𝑦}))
31 ffn 6668 . . . . . . . . . . . . . . . . . 18 (𝑓:ℕ⟶( 𝐽𝑥) → 𝑓 Fn ℕ)
3231ad2antrl 726 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑓 Fn ℕ)
33 dffn3 6681 . . . . . . . . . . . . . . . . 17 (𝑓 Fn ℕ ↔ 𝑓:ℕ⟶ran 𝑓)
3432, 33sylib 217 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑓:ℕ⟶ran 𝑓)
35 ssun1 4132 . . . . . . . . . . . . . . . 16 ran 𝑓 ⊆ (ran 𝑓 ∪ {𝑦})
36 fss 6685 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ⟶ran 𝑓 ∧ ran 𝑓 ⊆ (ran 𝑓 ∪ {𝑦})) → 𝑓:ℕ⟶(ran 𝑓 ∪ {𝑦}))
3734, 35, 36sylancl 586 . . . . . . . . . . . . . . 15 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑓:ℕ⟶(ran 𝑓 ∪ {𝑦}))
3824, 14, 25, 8, 30, 23, 37lmss 22649 . . . . . . . . . . . . . 14 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → (𝑓(⇝𝑡𝐽)𝑦𝑓(⇝𝑡‘(𝐽t (ran 𝑓 ∪ {𝑦})))𝑦))
3911, 38mpbid 231 . . . . . . . . . . . . 13 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑓(⇝𝑡‘(𝐽t (ran 𝑓 ∪ {𝑦})))𝑦)
4037ffvelcdmda 7035 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ (ran 𝑓 ∪ {𝑦}))
41 simprl 769 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑓:ℕ⟶( 𝐽𝑥))
4241ffvelcdmda 7035 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ ( 𝐽𝑥))
4342eldifbd 3923 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) ∧ 𝑘 ∈ ℕ) → ¬ (𝑓𝑘) ∈ 𝑥)
4440, 43eldifd 3921 . . . . . . . . . . . . 13 ((((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ ((ran 𝑓 ∪ {𝑦}) ∖ 𝑥))
45 difin 4221 . . . . . . . . . . . . . . 15 ((ran 𝑓 ∪ {𝑦}) ∖ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥)) = ((ran 𝑓 ∪ {𝑦}) ∖ 𝑥)
46 frn 6675 . . . . . . . . . . . . . . . . . . . 20 (𝑓:ℕ⟶( 𝐽𝑥) → ran 𝑓 ⊆ ( 𝐽𝑥))
4746ad2antrl 726 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → ran 𝑓 ⊆ ( 𝐽𝑥))
4847difss2d 4094 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → ran 𝑓 𝐽)
4913snssd 4769 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → {𝑦} ⊆ 𝐽)
5048, 49unssd 4146 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → (ran 𝑓 ∪ {𝑦}) ⊆ 𝐽)
513restuni 22513 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ (ran 𝑓 ∪ {𝑦}) ⊆ 𝐽) → (ran 𝑓 ∪ {𝑦}) = (𝐽t (ran 𝑓 ∪ {𝑦})))
528, 50, 51syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → (ran 𝑓 ∪ {𝑦}) = (𝐽t (ran 𝑓 ∪ {𝑦})))
5352difeq1d 4081 . . . . . . . . . . . . . . 15 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → ((ran 𝑓 ∪ {𝑦}) ∖ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥)) = ( (𝐽t (ran 𝑓 ∪ {𝑦})) ∖ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥)))
5445, 53eqtr3id 2790 . . . . . . . . . . . . . 14 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → ((ran 𝑓 ∪ {𝑦}) ∖ 𝑥) = ( (𝐽t (ran 𝑓 ∪ {𝑦})) ∖ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥)))
55 incom 4161 . . . . . . . . . . . . . . . 16 ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥) = (𝑥 ∩ (ran 𝑓 ∪ {𝑦}))
56 simplr 767 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑥 ∈ (𝑘Gen‘𝐽))
57 fss 6685 . . . . . . . . . . . . . . . . . . 19 ((𝑓:ℕ⟶( 𝐽𝑥) ∧ ( 𝐽𝑥) ⊆ 𝐽) → 𝑓:ℕ⟶ 𝐽)
5841, 2, 57sylancl 586 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑓:ℕ⟶ 𝐽)
5910, 58, 111stckgenlem 22904 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → (𝐽t (ran 𝑓 ∪ {𝑦})) ∈ Comp)
60 kgeni 22888 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t (ran 𝑓 ∪ {𝑦})) ∈ Comp) → (𝑥 ∩ (ran 𝑓 ∪ {𝑦})) ∈ (𝐽t (ran 𝑓 ∪ {𝑦})))
6156, 59, 60syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → (𝑥 ∩ (ran 𝑓 ∪ {𝑦})) ∈ (𝐽t (ran 𝑓 ∪ {𝑦})))
6255, 61eqeltrid 2842 . . . . . . . . . . . . . . 15 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥) ∈ (𝐽t (ran 𝑓 ∪ {𝑦})))
63 eqid 2736 . . . . . . . . . . . . . . . 16 (𝐽t (ran 𝑓 ∪ {𝑦})) = (𝐽t (ran 𝑓 ∪ {𝑦}))
6463opncld 22384 . . . . . . . . . . . . . . 15 (((𝐽t (ran 𝑓 ∪ {𝑦})) ∈ Top ∧ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥) ∈ (𝐽t (ran 𝑓 ∪ {𝑦}))) → ( (𝐽t (ran 𝑓 ∪ {𝑦})) ∖ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥)) ∈ (Clsd‘(𝐽t (ran 𝑓 ∪ {𝑦}))))
6520, 62, 64syl2anc 584 . . . . . . . . . . . . . 14 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → ( (𝐽t (ran 𝑓 ∪ {𝑦})) ∖ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥)) ∈ (Clsd‘(𝐽t (ran 𝑓 ∪ {𝑦}))))
6654, 65eqeltrd 2838 . . . . . . . . . . . . 13 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → ((ran 𝑓 ∪ {𝑦}) ∖ 𝑥) ∈ (Clsd‘(𝐽t (ran 𝑓 ∪ {𝑦}))))
6714, 22, 23, 39, 44, 66lmcld 22654 . . . . . . . . . . . 12 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑦 ∈ ((ran 𝑓 ∪ {𝑦}) ∖ 𝑥))
6867eldifbd 3923 . . . . . . . . . . 11 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → ¬ 𝑦𝑥)
6913, 68eldifd 3921 . . . . . . . . . 10 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑦 ∈ ( 𝐽𝑥))
7069ex 413 . . . . . . . . 9 ((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → ((𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦) → 𝑦 ∈ ( 𝐽𝑥)))
7170exlimdv 1936 . . . . . . . 8 ((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → (∃𝑓(𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦) → 𝑦 ∈ ( 𝐽𝑥)))
726, 71sylbid 239 . . . . . . 7 ((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → (𝑦 ∈ ((cls‘𝐽)‘( 𝐽𝑥)) → 𝑦 ∈ ( 𝐽𝑥)))
7372ssrdv 3950 . . . . . 6 ((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → ((cls‘𝐽)‘( 𝐽𝑥)) ⊆ ( 𝐽𝑥))
743iscld4 22416 . . . . . . 7 ((𝐽 ∈ Top ∧ ( 𝐽𝑥) ⊆ 𝐽) → (( 𝐽𝑥) ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘( 𝐽𝑥)) ⊆ ( 𝐽𝑥)))
757, 2, 74sylancl 586 . . . . . 6 ((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → (( 𝐽𝑥) ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘( 𝐽𝑥)) ⊆ ( 𝐽𝑥)))
7673, 75mpbird 256 . . . . 5 ((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → ( 𝐽𝑥) ∈ (Clsd‘𝐽))
77 elssuni 4898 . . . . . . . 8 (𝑥 ∈ (𝑘Gen‘𝐽) → 𝑥 (𝑘Gen‘𝐽))
7877adantl 482 . . . . . . 7 ((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → 𝑥 (𝑘Gen‘𝐽))
793kgenuni 22890 . . . . . . . 8 (𝐽 ∈ Top → 𝐽 = (𝑘Gen‘𝐽))
807, 79syl 17 . . . . . . 7 ((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → 𝐽 = (𝑘Gen‘𝐽))
8178, 80sseqtrrd 3985 . . . . . 6 ((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → 𝑥 𝐽)
823isopn2 22383 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑥 𝐽) → (𝑥𝐽 ↔ ( 𝐽𝑥) ∈ (Clsd‘𝐽)))
837, 81, 82syl2anc 584 . . . . 5 ((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → (𝑥𝐽 ↔ ( 𝐽𝑥) ∈ (Clsd‘𝐽)))
8476, 83mpbird 256 . . . 4 ((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → 𝑥𝐽)
8584ex 413 . . 3 (𝐽 ∈ 1stω → (𝑥 ∈ (𝑘Gen‘𝐽) → 𝑥𝐽))
8685ssrdv 3950 . 2 (𝐽 ∈ 1stω → (𝑘Gen‘𝐽) ⊆ 𝐽)
87 iskgen2 22899 . 2 (𝐽 ∈ ran 𝑘Gen ↔ (𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽))
881, 86, 87sylanbrc 583 1 (𝐽 ∈ 1stω → 𝐽 ∈ ran 𝑘Gen)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  Vcvv 3445  cdif 3907  cun 3908  cin 3909  wss 3910  {csn 4586   cuni 4865   class class class wbr 5105  ran crn 5634   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  1c1 11052  cn 12153  t crest 17302  Topctop 22242  TopOnctopon 22259  Clsdccld 22367  clsccl 22369  𝑡clm 22577  Compccmp 22737  1stωc1stc 22788  𝑘Genckgen 22884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cc 10371  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fi 9347  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-rest 17304  df-topgen 17325  df-top 22243  df-topon 22260  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-lm 22580  df-cmp 22738  df-1stc 22790  df-kgen 22885
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator