| Step | Hyp | Ref
| Expression |
| 1 | | 1stctop 23451 |
. 2
⊢ (𝐽 ∈ 1stω
→ 𝐽 ∈
Top) |
| 2 | | difss 4136 |
. . . . . . . . . 10
⊢ (∪ 𝐽
∖ 𝑥) ⊆ ∪ 𝐽 |
| 3 | | eqid 2737 |
. . . . . . . . . . 11
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 4 | 3 | 1stcelcls 23469 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ 1stω
∧ (∪ 𝐽 ∖ 𝑥) ⊆ ∪ 𝐽) → (𝑦 ∈ ((cls‘𝐽)‘(∪ 𝐽 ∖ 𝑥)) ↔ ∃𝑓(𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦))) |
| 5 | 2, 4 | mpan2 691 |
. . . . . . . . 9
⊢ (𝐽 ∈ 1stω
→ (𝑦 ∈
((cls‘𝐽)‘(∪ 𝐽
∖ 𝑥)) ↔
∃𝑓(𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦))) |
| 6 | 5 | adantr 480 |
. . . . . . . 8
⊢ ((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
→ (𝑦 ∈
((cls‘𝐽)‘(∪ 𝐽
∖ 𝑥)) ↔
∃𝑓(𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦))) |
| 7 | 1 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
→ 𝐽 ∈
Top) |
| 8 | 7 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → 𝐽 ∈ Top) |
| 9 | | toptopon2 22924 |
. . . . . . . . . . . . 13
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 10 | 8, 9 | sylib 218 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 11 | | simprr 773 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → 𝑓(⇝𝑡‘𝐽)𝑦) |
| 12 | | lmcl 23305 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽)
∧ 𝑓(⇝𝑡‘𝐽)𝑦) → 𝑦 ∈ ∪ 𝐽) |
| 13 | 10, 11, 12 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → 𝑦 ∈ ∪ 𝐽) |
| 14 | | nnuz 12921 |
. . . . . . . . . . . . 13
⊢ ℕ =
(ℤ≥‘1) |
| 15 | | vex 3484 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑓 ∈ V |
| 16 | 15 | rnex 7932 |
. . . . . . . . . . . . . . . 16
⊢ ran 𝑓 ∈ V |
| 17 | | vsnex 5434 |
. . . . . . . . . . . . . . . 16
⊢ {𝑦} ∈ V |
| 18 | 16, 17 | unex 7764 |
. . . . . . . . . . . . . . 15
⊢ (ran
𝑓 ∪ {𝑦}) ∈ V |
| 19 | | resttop 23168 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 ∈ Top ∧ (ran 𝑓 ∪ {𝑦}) ∈ V) → (𝐽 ↾t (ran 𝑓 ∪ {𝑦})) ∈ Top) |
| 20 | 8, 18, 19 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → (𝐽 ↾t (ran 𝑓 ∪ {𝑦})) ∈ Top) |
| 21 | | toptopon2 22924 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ↾t (ran 𝑓 ∪ {𝑦})) ∈ Top ↔ (𝐽 ↾t (ran 𝑓 ∪ {𝑦})) ∈ (TopOn‘∪ (𝐽
↾t (ran 𝑓
∪ {𝑦})))) |
| 22 | 20, 21 | sylib 218 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → (𝐽 ↾t (ran 𝑓 ∪ {𝑦})) ∈ (TopOn‘∪ (𝐽
↾t (ran 𝑓
∪ {𝑦})))) |
| 23 | | 1zzd 12648 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → 1 ∈ ℤ) |
| 24 | | eqid 2737 |
. . . . . . . . . . . . . . 15
⊢ (𝐽 ↾t (ran 𝑓 ∪ {𝑦})) = (𝐽 ↾t (ran 𝑓 ∪ {𝑦})) |
| 25 | 18 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → (ran 𝑓 ∪ {𝑦}) ∈ V) |
| 26 | | ssun2 4179 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑦} ⊆ (ran 𝑓 ∪ {𝑦}) |
| 27 | | vex 3484 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑦 ∈ V |
| 28 | 27 | snss 4785 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (ran 𝑓 ∪ {𝑦}) ↔ {𝑦} ⊆ (ran 𝑓 ∪ {𝑦})) |
| 29 | 26, 28 | mpbir 231 |
. . . . . . . . . . . . . . . 16
⊢ 𝑦 ∈ (ran 𝑓 ∪ {𝑦}) |
| 30 | 29 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → 𝑦 ∈ (ran 𝑓 ∪ {𝑦})) |
| 31 | | ffn 6736 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓:ℕ⟶(∪ 𝐽
∖ 𝑥) → 𝑓 Fn ℕ) |
| 32 | 31 | ad2antrl 728 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → 𝑓 Fn ℕ) |
| 33 | | dffn3 6748 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 Fn ℕ ↔ 𝑓:ℕ⟶ran 𝑓) |
| 34 | 32, 33 | sylib 218 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → 𝑓:ℕ⟶ran 𝑓) |
| 35 | | ssun1 4178 |
. . . . . . . . . . . . . . . 16
⊢ ran 𝑓 ⊆ (ran 𝑓 ∪ {𝑦}) |
| 36 | | fss 6752 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:ℕ⟶ran 𝑓 ∧ ran 𝑓 ⊆ (ran 𝑓 ∪ {𝑦})) → 𝑓:ℕ⟶(ran 𝑓 ∪ {𝑦})) |
| 37 | 34, 35, 36 | sylancl 586 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → 𝑓:ℕ⟶(ran 𝑓 ∪ {𝑦})) |
| 38 | 24, 14, 25, 8, 30, 23, 37 | lmss 23306 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → (𝑓(⇝𝑡‘𝐽)𝑦 ↔ 𝑓(⇝𝑡‘(𝐽 ↾t (ran 𝑓 ∪ {𝑦})))𝑦)) |
| 39 | 11, 38 | mpbid 232 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → 𝑓(⇝𝑡‘(𝐽 ↾t (ran 𝑓 ∪ {𝑦})))𝑦) |
| 40 | 37 | ffvelcdmda 7104 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) ∧ 𝑘 ∈ ℕ) → (𝑓‘𝑘) ∈ (ran 𝑓 ∪ {𝑦})) |
| 41 | | simprl 771 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → 𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥)) |
| 42 | 41 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) ∧ 𝑘 ∈ ℕ) → (𝑓‘𝑘) ∈ (∪ 𝐽 ∖ 𝑥)) |
| 43 | 42 | eldifbd 3964 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) ∧ 𝑘 ∈ ℕ) → ¬ (𝑓‘𝑘) ∈ 𝑥) |
| 44 | 40, 43 | eldifd 3962 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) ∧ 𝑘 ∈ ℕ) → (𝑓‘𝑘) ∈ ((ran 𝑓 ∪ {𝑦}) ∖ 𝑥)) |
| 45 | | difin 4272 |
. . . . . . . . . . . . . . 15
⊢ ((ran
𝑓 ∪ {𝑦}) ∖ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥)) = ((ran 𝑓 ∪ {𝑦}) ∖ 𝑥) |
| 46 | | frn 6743 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓:ℕ⟶(∪ 𝐽
∖ 𝑥) → ran 𝑓 ⊆ (∪ 𝐽
∖ 𝑥)) |
| 47 | 46 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → ran 𝑓 ⊆ (∪ 𝐽 ∖ 𝑥)) |
| 48 | 47 | difss2d 4139 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → ran 𝑓 ⊆ ∪ 𝐽) |
| 49 | 13 | snssd 4809 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → {𝑦} ⊆ ∪ 𝐽) |
| 50 | 48, 49 | unssd 4192 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → (ran 𝑓 ∪ {𝑦}) ⊆ ∪ 𝐽) |
| 51 | 3 | restuni 23170 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐽 ∈ Top ∧ (ran 𝑓 ∪ {𝑦}) ⊆ ∪ 𝐽) → (ran 𝑓 ∪ {𝑦}) = ∪ (𝐽 ↾t (ran 𝑓 ∪ {𝑦}))) |
| 52 | 8, 50, 51 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → (ran 𝑓 ∪ {𝑦}) = ∪ (𝐽 ↾t (ran 𝑓 ∪ {𝑦}))) |
| 53 | 52 | difeq1d 4125 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → ((ran 𝑓 ∪ {𝑦}) ∖ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥)) = (∪ (𝐽 ↾t (ran 𝑓 ∪ {𝑦})) ∖ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥))) |
| 54 | 45, 53 | eqtr3id 2791 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → ((ran 𝑓 ∪ {𝑦}) ∖ 𝑥) = (∪ (𝐽 ↾t (ran 𝑓 ∪ {𝑦})) ∖ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥))) |
| 55 | | incom 4209 |
. . . . . . . . . . . . . . . 16
⊢ ((ran
𝑓 ∪ {𝑦}) ∩ 𝑥) = (𝑥 ∩ (ran 𝑓 ∪ {𝑦})) |
| 56 | | simplr 769 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → 𝑥 ∈ (𝑘Gen‘𝐽)) |
| 57 | | fss 6752 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:ℕ⟶(∪ 𝐽
∖ 𝑥) ∧ (∪ 𝐽
∖ 𝑥) ⊆ ∪ 𝐽)
→ 𝑓:ℕ⟶∪
𝐽) |
| 58 | 41, 2, 57 | sylancl 586 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → 𝑓:ℕ⟶∪
𝐽) |
| 59 | 10, 58, 11 | 1stckgenlem 23561 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → (𝐽 ↾t (ran 𝑓 ∪ {𝑦})) ∈ Comp) |
| 60 | | kgeni 23545 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈
(𝑘Gen‘𝐽)
∧ (𝐽
↾t (ran 𝑓
∪ {𝑦})) ∈ Comp)
→ (𝑥 ∩ (ran 𝑓 ∪ {𝑦})) ∈ (𝐽 ↾t (ran 𝑓 ∪ {𝑦}))) |
| 61 | 56, 59, 60 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → (𝑥 ∩ (ran 𝑓 ∪ {𝑦})) ∈ (𝐽 ↾t (ran 𝑓 ∪ {𝑦}))) |
| 62 | 55, 61 | eqeltrid 2845 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥) ∈ (𝐽 ↾t (ran 𝑓 ∪ {𝑦}))) |
| 63 | | eqid 2737 |
. . . . . . . . . . . . . . . 16
⊢ ∪ (𝐽
↾t (ran 𝑓
∪ {𝑦})) = ∪ (𝐽
↾t (ran 𝑓
∪ {𝑦})) |
| 64 | 63 | opncld 23041 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 ↾t (ran 𝑓 ∪ {𝑦})) ∈ Top ∧ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥) ∈ (𝐽 ↾t (ran 𝑓 ∪ {𝑦}))) → (∪
(𝐽 ↾t (ran
𝑓 ∪ {𝑦})) ∖ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥)) ∈ (Clsd‘(𝐽 ↾t (ran 𝑓 ∪ {𝑦})))) |
| 65 | 20, 62, 64 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → (∪
(𝐽 ↾t (ran
𝑓 ∪ {𝑦})) ∖ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥)) ∈ (Clsd‘(𝐽 ↾t (ran 𝑓 ∪ {𝑦})))) |
| 66 | 54, 65 | eqeltrd 2841 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → ((ran 𝑓 ∪ {𝑦}) ∖ 𝑥) ∈ (Clsd‘(𝐽 ↾t (ran 𝑓 ∪ {𝑦})))) |
| 67 | 14, 22, 23, 39, 44, 66 | lmcld 23311 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → 𝑦 ∈ ((ran 𝑓 ∪ {𝑦}) ∖ 𝑥)) |
| 68 | 67 | eldifbd 3964 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → ¬ 𝑦 ∈ 𝑥) |
| 69 | 13, 68 | eldifd 3962 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
∧ (𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦)) → 𝑦 ∈ (∪ 𝐽 ∖ 𝑥)) |
| 70 | 69 | ex 412 |
. . . . . . . . 9
⊢ ((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
→ ((𝑓:ℕ⟶(∪
𝐽 ∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦) → 𝑦 ∈ (∪ 𝐽 ∖ 𝑥))) |
| 71 | 70 | exlimdv 1933 |
. . . . . . . 8
⊢ ((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
→ (∃𝑓(𝑓:ℕ⟶(∪ 𝐽
∖ 𝑥) ∧ 𝑓(⇝𝑡‘𝐽)𝑦) → 𝑦 ∈ (∪ 𝐽 ∖ 𝑥))) |
| 72 | 6, 71 | sylbid 240 |
. . . . . . 7
⊢ ((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
→ (𝑦 ∈
((cls‘𝐽)‘(∪ 𝐽
∖ 𝑥)) → 𝑦 ∈ (∪ 𝐽
∖ 𝑥))) |
| 73 | 72 | ssrdv 3989 |
. . . . . 6
⊢ ((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
→ ((cls‘𝐽)‘(∪ 𝐽 ∖ 𝑥)) ⊆ (∪
𝐽 ∖ 𝑥)) |
| 74 | 3 | iscld4 23073 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ (∪ 𝐽
∖ 𝑥) ⊆ ∪ 𝐽)
→ ((∪ 𝐽 ∖ 𝑥) ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘(∪ 𝐽 ∖ 𝑥)) ⊆ (∪
𝐽 ∖ 𝑥))) |
| 75 | 7, 2, 74 | sylancl 586 |
. . . . . 6
⊢ ((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
→ ((∪ 𝐽 ∖ 𝑥) ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘(∪ 𝐽 ∖ 𝑥)) ⊆ (∪
𝐽 ∖ 𝑥))) |
| 76 | 73, 75 | mpbird 257 |
. . . . 5
⊢ ((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
→ (∪ 𝐽 ∖ 𝑥) ∈ (Clsd‘𝐽)) |
| 77 | | elssuni 4937 |
. . . . . . . 8
⊢ (𝑥 ∈
(𝑘Gen‘𝐽)
→ 𝑥 ⊆ ∪ (𝑘Gen‘𝐽)) |
| 78 | 77 | adantl 481 |
. . . . . . 7
⊢ ((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
→ 𝑥 ⊆ ∪ (𝑘Gen‘𝐽)) |
| 79 | 3 | kgenuni 23547 |
. . . . . . . 8
⊢ (𝐽 ∈ Top → ∪ 𝐽 =
∪ (𝑘Gen‘𝐽)) |
| 80 | 7, 79 | syl 17 |
. . . . . . 7
⊢ ((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
→ ∪ 𝐽 = ∪
(𝑘Gen‘𝐽)) |
| 81 | 78, 80 | sseqtrrd 4021 |
. . . . . 6
⊢ ((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
→ 𝑥 ⊆ ∪ 𝐽) |
| 82 | 3 | isopn2 23040 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ ∪ 𝐽)
→ (𝑥 ∈ 𝐽 ↔ (∪ 𝐽
∖ 𝑥) ∈
(Clsd‘𝐽))) |
| 83 | 7, 81, 82 | syl2anc 584 |
. . . . 5
⊢ ((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
→ (𝑥 ∈ 𝐽 ↔ (∪ 𝐽
∖ 𝑥) ∈
(Clsd‘𝐽))) |
| 84 | 76, 83 | mpbird 257 |
. . . 4
⊢ ((𝐽 ∈ 1stω
∧ 𝑥 ∈
(𝑘Gen‘𝐽))
→ 𝑥 ∈ 𝐽) |
| 85 | 84 | ex 412 |
. . 3
⊢ (𝐽 ∈ 1stω
→ (𝑥 ∈
(𝑘Gen‘𝐽)
→ 𝑥 ∈ 𝐽)) |
| 86 | 85 | ssrdv 3989 |
. 2
⊢ (𝐽 ∈ 1stω
→ (𝑘Gen‘𝐽) ⊆ 𝐽) |
| 87 | | iskgen2 23556 |
. 2
⊢ (𝐽 ∈ ran 𝑘Gen ↔
(𝐽 ∈ Top ∧
(𝑘Gen‘𝐽)
⊆ 𝐽)) |
| 88 | 1, 86, 87 | sylanbrc 583 |
1
⊢ (𝐽 ∈ 1stω
→ 𝐽 ∈ ran
𝑘Gen) |