MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stckgen Structured version   Visualization version   GIF version

Theorem 1stckgen 22705
Description: A first-countable space is compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
1stckgen (𝐽 ∈ 1stω → 𝐽 ∈ ran 𝑘Gen)

Proof of Theorem 1stckgen
Dummy variables 𝑘 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1stctop 22594 . 2 (𝐽 ∈ 1stω → 𝐽 ∈ Top)
2 difss 4066 . . . . . . . . . 10 ( 𝐽𝑥) ⊆ 𝐽
3 eqid 2738 . . . . . . . . . . 11 𝐽 = 𝐽
431stcelcls 22612 . . . . . . . . . 10 ((𝐽 ∈ 1stω ∧ ( 𝐽𝑥) ⊆ 𝐽) → (𝑦 ∈ ((cls‘𝐽)‘( 𝐽𝑥)) ↔ ∃𝑓(𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)))
52, 4mpan2 688 . . . . . . . . 9 (𝐽 ∈ 1stω → (𝑦 ∈ ((cls‘𝐽)‘( 𝐽𝑥)) ↔ ∃𝑓(𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)))
65adantr 481 . . . . . . . 8 ((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → (𝑦 ∈ ((cls‘𝐽)‘( 𝐽𝑥)) ↔ ∃𝑓(𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)))
71adantr 481 . . . . . . . . . . . . . 14 ((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → 𝐽 ∈ Top)
87adantr 481 . . . . . . . . . . . . 13 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝐽 ∈ Top)
9 toptopon2 22067 . . . . . . . . . . . . 13 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
108, 9sylib 217 . . . . . . . . . . . 12 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝐽 ∈ (TopOn‘ 𝐽))
11 simprr 770 . . . . . . . . . . . 12 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑓(⇝𝑡𝐽)𝑦)
12 lmcl 22448 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝑓(⇝𝑡𝐽)𝑦) → 𝑦 𝐽)
1310, 11, 12syl2anc 584 . . . . . . . . . . 11 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑦 𝐽)
14 nnuz 12621 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
15 vex 3436 . . . . . . . . . . . . . . . . 17 𝑓 ∈ V
1615rnex 7759 . . . . . . . . . . . . . . . 16 ran 𝑓 ∈ V
17 snex 5354 . . . . . . . . . . . . . . . 16 {𝑦} ∈ V
1816, 17unex 7596 . . . . . . . . . . . . . . 15 (ran 𝑓 ∪ {𝑦}) ∈ V
19 resttop 22311 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ (ran 𝑓 ∪ {𝑦}) ∈ V) → (𝐽t (ran 𝑓 ∪ {𝑦})) ∈ Top)
208, 18, 19sylancl 586 . . . . . . . . . . . . . 14 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → (𝐽t (ran 𝑓 ∪ {𝑦})) ∈ Top)
21 toptopon2 22067 . . . . . . . . . . . . . 14 ((𝐽t (ran 𝑓 ∪ {𝑦})) ∈ Top ↔ (𝐽t (ran 𝑓 ∪ {𝑦})) ∈ (TopOn‘ (𝐽t (ran 𝑓 ∪ {𝑦}))))
2220, 21sylib 217 . . . . . . . . . . . . 13 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → (𝐽t (ran 𝑓 ∪ {𝑦})) ∈ (TopOn‘ (𝐽t (ran 𝑓 ∪ {𝑦}))))
23 1zzd 12351 . . . . . . . . . . . . 13 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 1 ∈ ℤ)
24 eqid 2738 . . . . . . . . . . . . . . 15 (𝐽t (ran 𝑓 ∪ {𝑦})) = (𝐽t (ran 𝑓 ∪ {𝑦}))
2518a1i 11 . . . . . . . . . . . . . . 15 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → (ran 𝑓 ∪ {𝑦}) ∈ V)
26 ssun2 4107 . . . . . . . . . . . . . . . . 17 {𝑦} ⊆ (ran 𝑓 ∪ {𝑦})
27 vex 3436 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
2827snss 4719 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (ran 𝑓 ∪ {𝑦}) ↔ {𝑦} ⊆ (ran 𝑓 ∪ {𝑦}))
2926, 28mpbir 230 . . . . . . . . . . . . . . . 16 𝑦 ∈ (ran 𝑓 ∪ {𝑦})
3029a1i 11 . . . . . . . . . . . . . . 15 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑦 ∈ (ran 𝑓 ∪ {𝑦}))
31 ffn 6600 . . . . . . . . . . . . . . . . . 18 (𝑓:ℕ⟶( 𝐽𝑥) → 𝑓 Fn ℕ)
3231ad2antrl 725 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑓 Fn ℕ)
33 dffn3 6613 . . . . . . . . . . . . . . . . 17 (𝑓 Fn ℕ ↔ 𝑓:ℕ⟶ran 𝑓)
3432, 33sylib 217 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑓:ℕ⟶ran 𝑓)
35 ssun1 4106 . . . . . . . . . . . . . . . 16 ran 𝑓 ⊆ (ran 𝑓 ∪ {𝑦})
36 fss 6617 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ⟶ran 𝑓 ∧ ran 𝑓 ⊆ (ran 𝑓 ∪ {𝑦})) → 𝑓:ℕ⟶(ran 𝑓 ∪ {𝑦}))
3734, 35, 36sylancl 586 . . . . . . . . . . . . . . 15 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑓:ℕ⟶(ran 𝑓 ∪ {𝑦}))
3824, 14, 25, 8, 30, 23, 37lmss 22449 . . . . . . . . . . . . . 14 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → (𝑓(⇝𝑡𝐽)𝑦𝑓(⇝𝑡‘(𝐽t (ran 𝑓 ∪ {𝑦})))𝑦))
3911, 38mpbid 231 . . . . . . . . . . . . 13 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑓(⇝𝑡‘(𝐽t (ran 𝑓 ∪ {𝑦})))𝑦)
4037ffvelrnda 6961 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ (ran 𝑓 ∪ {𝑦}))
41 simprl 768 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑓:ℕ⟶( 𝐽𝑥))
4241ffvelrnda 6961 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ ( 𝐽𝑥))
4342eldifbd 3900 . . . . . . . . . . . . . 14 ((((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) ∧ 𝑘 ∈ ℕ) → ¬ (𝑓𝑘) ∈ 𝑥)
4440, 43eldifd 3898 . . . . . . . . . . . . 13 ((((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ ((ran 𝑓 ∪ {𝑦}) ∖ 𝑥))
45 difin 4195 . . . . . . . . . . . . . . 15 ((ran 𝑓 ∪ {𝑦}) ∖ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥)) = ((ran 𝑓 ∪ {𝑦}) ∖ 𝑥)
46 frn 6607 . . . . . . . . . . . . . . . . . . . 20 (𝑓:ℕ⟶( 𝐽𝑥) → ran 𝑓 ⊆ ( 𝐽𝑥))
4746ad2antrl 725 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → ran 𝑓 ⊆ ( 𝐽𝑥))
4847difss2d 4069 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → ran 𝑓 𝐽)
4913snssd 4742 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → {𝑦} ⊆ 𝐽)
5048, 49unssd 4120 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → (ran 𝑓 ∪ {𝑦}) ⊆ 𝐽)
513restuni 22313 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ (ran 𝑓 ∪ {𝑦}) ⊆ 𝐽) → (ran 𝑓 ∪ {𝑦}) = (𝐽t (ran 𝑓 ∪ {𝑦})))
528, 50, 51syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → (ran 𝑓 ∪ {𝑦}) = (𝐽t (ran 𝑓 ∪ {𝑦})))
5352difeq1d 4056 . . . . . . . . . . . . . . 15 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → ((ran 𝑓 ∪ {𝑦}) ∖ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥)) = ( (𝐽t (ran 𝑓 ∪ {𝑦})) ∖ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥)))
5445, 53eqtr3id 2792 . . . . . . . . . . . . . 14 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → ((ran 𝑓 ∪ {𝑦}) ∖ 𝑥) = ( (𝐽t (ran 𝑓 ∪ {𝑦})) ∖ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥)))
55 incom 4135 . . . . . . . . . . . . . . . 16 ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥) = (𝑥 ∩ (ran 𝑓 ∪ {𝑦}))
56 simplr 766 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑥 ∈ (𝑘Gen‘𝐽))
57 fss 6617 . . . . . . . . . . . . . . . . . . 19 ((𝑓:ℕ⟶( 𝐽𝑥) ∧ ( 𝐽𝑥) ⊆ 𝐽) → 𝑓:ℕ⟶ 𝐽)
5841, 2, 57sylancl 586 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑓:ℕ⟶ 𝐽)
5910, 58, 111stckgenlem 22704 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → (𝐽t (ran 𝑓 ∪ {𝑦})) ∈ Comp)
60 kgeni 22688 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t (ran 𝑓 ∪ {𝑦})) ∈ Comp) → (𝑥 ∩ (ran 𝑓 ∪ {𝑦})) ∈ (𝐽t (ran 𝑓 ∪ {𝑦})))
6156, 59, 60syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → (𝑥 ∩ (ran 𝑓 ∪ {𝑦})) ∈ (𝐽t (ran 𝑓 ∪ {𝑦})))
6255, 61eqeltrid 2843 . . . . . . . . . . . . . . 15 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥) ∈ (𝐽t (ran 𝑓 ∪ {𝑦})))
63 eqid 2738 . . . . . . . . . . . . . . . 16 (𝐽t (ran 𝑓 ∪ {𝑦})) = (𝐽t (ran 𝑓 ∪ {𝑦}))
6463opncld 22184 . . . . . . . . . . . . . . 15 (((𝐽t (ran 𝑓 ∪ {𝑦})) ∈ Top ∧ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥) ∈ (𝐽t (ran 𝑓 ∪ {𝑦}))) → ( (𝐽t (ran 𝑓 ∪ {𝑦})) ∖ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥)) ∈ (Clsd‘(𝐽t (ran 𝑓 ∪ {𝑦}))))
6520, 62, 64syl2anc 584 . . . . . . . . . . . . . 14 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → ( (𝐽t (ran 𝑓 ∪ {𝑦})) ∖ ((ran 𝑓 ∪ {𝑦}) ∩ 𝑥)) ∈ (Clsd‘(𝐽t (ran 𝑓 ∪ {𝑦}))))
6654, 65eqeltrd 2839 . . . . . . . . . . . . 13 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → ((ran 𝑓 ∪ {𝑦}) ∖ 𝑥) ∈ (Clsd‘(𝐽t (ran 𝑓 ∪ {𝑦}))))
6714, 22, 23, 39, 44, 66lmcld 22454 . . . . . . . . . . . 12 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑦 ∈ ((ran 𝑓 ∪ {𝑦}) ∖ 𝑥))
6867eldifbd 3900 . . . . . . . . . . 11 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → ¬ 𝑦𝑥)
6913, 68eldifd 3898 . . . . . . . . . 10 (((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ (𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦)) → 𝑦 ∈ ( 𝐽𝑥))
7069ex 413 . . . . . . . . 9 ((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → ((𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦) → 𝑦 ∈ ( 𝐽𝑥)))
7170exlimdv 1936 . . . . . . . 8 ((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → (∃𝑓(𝑓:ℕ⟶( 𝐽𝑥) ∧ 𝑓(⇝𝑡𝐽)𝑦) → 𝑦 ∈ ( 𝐽𝑥)))
726, 71sylbid 239 . . . . . . 7 ((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → (𝑦 ∈ ((cls‘𝐽)‘( 𝐽𝑥)) → 𝑦 ∈ ( 𝐽𝑥)))
7372ssrdv 3927 . . . . . 6 ((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → ((cls‘𝐽)‘( 𝐽𝑥)) ⊆ ( 𝐽𝑥))
743iscld4 22216 . . . . . . 7 ((𝐽 ∈ Top ∧ ( 𝐽𝑥) ⊆ 𝐽) → (( 𝐽𝑥) ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘( 𝐽𝑥)) ⊆ ( 𝐽𝑥)))
757, 2, 74sylancl 586 . . . . . 6 ((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → (( 𝐽𝑥) ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘( 𝐽𝑥)) ⊆ ( 𝐽𝑥)))
7673, 75mpbird 256 . . . . 5 ((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → ( 𝐽𝑥) ∈ (Clsd‘𝐽))
77 elssuni 4871 . . . . . . . 8 (𝑥 ∈ (𝑘Gen‘𝐽) → 𝑥 (𝑘Gen‘𝐽))
7877adantl 482 . . . . . . 7 ((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → 𝑥 (𝑘Gen‘𝐽))
793kgenuni 22690 . . . . . . . 8 (𝐽 ∈ Top → 𝐽 = (𝑘Gen‘𝐽))
807, 79syl 17 . . . . . . 7 ((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → 𝐽 = (𝑘Gen‘𝐽))
8178, 80sseqtrrd 3962 . . . . . 6 ((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → 𝑥 𝐽)
823isopn2 22183 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑥 𝐽) → (𝑥𝐽 ↔ ( 𝐽𝑥) ∈ (Clsd‘𝐽)))
837, 81, 82syl2anc 584 . . . . 5 ((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → (𝑥𝐽 ↔ ( 𝐽𝑥) ∈ (Clsd‘𝐽)))
8476, 83mpbird 256 . . . 4 ((𝐽 ∈ 1stω ∧ 𝑥 ∈ (𝑘Gen‘𝐽)) → 𝑥𝐽)
8584ex 413 . . 3 (𝐽 ∈ 1stω → (𝑥 ∈ (𝑘Gen‘𝐽) → 𝑥𝐽))
8685ssrdv 3927 . 2 (𝐽 ∈ 1stω → (𝑘Gen‘𝐽) ⊆ 𝐽)
87 iskgen2 22699 . 2 (𝐽 ∈ ran 𝑘Gen ↔ (𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽))
881, 86, 87sylanbrc 583 1 (𝐽 ∈ 1stω → 𝐽 ∈ ran 𝑘Gen)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  Vcvv 3432  cdif 3884  cun 3885  cin 3886  wss 3887  {csn 4561   cuni 4839   class class class wbr 5074  ran crn 5590   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  1c1 10872  cn 11973  t crest 17131  Topctop 22042  TopOnctopon 22059  Clsdccld 22167  clsccl 22169  𝑡clm 22377  Compccmp 22537  1stωc1stc 22588  𝑘Genckgen 22684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cc 10191  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-rest 17133  df-topgen 17154  df-top 22043  df-topon 22060  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-lm 22380  df-cmp 22538  df-1stc 22590  df-kgen 22685
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator