Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2arwcatlem1 Structured version   Visualization version   GIF version

Theorem 2arwcatlem1 49333
Description: Lemma for 2arwcat 49338. (Contributed by Zhi Wang, 5-Nov-2025.)
Hypothesis
Ref Expression
2arwcatlem1.x (𝑋𝐻𝑋) = { 0 , 1 }
Assertion
Ref Expression
2arwcatlem1 ((((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 ))) ↔ ((𝑥 ∈ {𝑋} ∧ 𝑦 ∈ {𝑋}) ∧ (𝑧 ∈ {𝑋} ∧ 𝑤 ∈ {𝑋}) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))))

Proof of Theorem 2arwcatlem1
StepHypRef Expression
1 df-3an 1088 . 2 (((𝑥 ∈ {𝑋} ∧ 𝑦 ∈ {𝑋}) ∧ (𝑧 ∈ {𝑋} ∧ 𝑤 ∈ {𝑋}) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) ↔ (((𝑥 ∈ {𝑋} ∧ 𝑦 ∈ {𝑋}) ∧ (𝑧 ∈ {𝑋} ∧ 𝑤 ∈ {𝑋})) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))))
2 velsn 4615 . . . . 5 (𝑥 ∈ {𝑋} ↔ 𝑥 = 𝑋)
3 velsn 4615 . . . . 5 (𝑦 ∈ {𝑋} ↔ 𝑦 = 𝑋)
42, 3anbi12i 628 . . . 4 ((𝑥 ∈ {𝑋} ∧ 𝑦 ∈ {𝑋}) ↔ (𝑥 = 𝑋𝑦 = 𝑋))
5 velsn 4615 . . . . 5 (𝑧 ∈ {𝑋} ↔ 𝑧 = 𝑋)
6 velsn 4615 . . . . 5 (𝑤 ∈ {𝑋} ↔ 𝑤 = 𝑋)
75, 6anbi12i 628 . . . 4 ((𝑧 ∈ {𝑋} ∧ 𝑤 ∈ {𝑋}) ↔ (𝑧 = 𝑋𝑤 = 𝑋))
84, 7anbi12i 628 . . 3 (((𝑥 ∈ {𝑋} ∧ 𝑦 ∈ {𝑋}) ∧ (𝑧 ∈ {𝑋} ∧ 𝑤 ∈ {𝑋})) ↔ ((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)))
98anbi1i 624 . 2 ((((𝑥 ∈ {𝑋} ∧ 𝑦 ∈ {𝑋}) ∧ (𝑧 ∈ {𝑋} ∧ 𝑤 ∈ {𝑋})) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) ↔ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))))
10 simpll 766 . . . . . . . 8 (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) → 𝑥 = 𝑋)
11 simplr 768 . . . . . . . 8 (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) → 𝑦 = 𝑋)
1210, 11oveq12d 7418 . . . . . . 7 (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) → (𝑥𝐻𝑦) = (𝑋𝐻𝑋))
13 2arwcatlem1.x . . . . . . 7 (𝑋𝐻𝑋) = { 0 , 1 }
1412, 13eqtrdi 2785 . . . . . 6 (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) → (𝑥𝐻𝑦) = { 0 , 1 })
1514eleq2d 2819 . . . . 5 (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) → (𝑓 ∈ (𝑥𝐻𝑦) ↔ 𝑓 ∈ { 0 , 1 }))
16 simprl 770 . . . . . . . 8 (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) → 𝑧 = 𝑋)
1711, 16oveq12d 7418 . . . . . . 7 (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) → (𝑦𝐻𝑧) = (𝑋𝐻𝑋))
1817, 13eqtrdi 2785 . . . . . 6 (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) → (𝑦𝐻𝑧) = { 0 , 1 })
1918eleq2d 2819 . . . . 5 (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) → (𝑔 ∈ (𝑦𝐻𝑧) ↔ 𝑔 ∈ { 0 , 1 }))
20 simprr 772 . . . . . . . 8 (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) → 𝑤 = 𝑋)
2116, 20oveq12d 7418 . . . . . . 7 (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) → (𝑧𝐻𝑤) = (𝑋𝐻𝑋))
2221, 13eqtrdi 2785 . . . . . 6 (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) → (𝑧𝐻𝑤) = { 0 , 1 })
2322eleq2d 2819 . . . . 5 (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) → (𝑘 ∈ (𝑧𝐻𝑤) ↔ 𝑘 ∈ { 0 , 1 }))
2415, 19, 233anbi123d 1437 . . . 4 (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)) ↔ (𝑓 ∈ { 0 , 1 } ∧ 𝑔 ∈ { 0 , 1 } ∧ 𝑘 ∈ { 0 , 1 })))
25 vex 3461 . . . . . 6 𝑓 ∈ V
2625elpr 4624 . . . . 5 (𝑓 ∈ { 0 , 1 } ↔ (𝑓 = 0𝑓 = 1 ))
27 vex 3461 . . . . . 6 𝑔 ∈ V
2827elpr 4624 . . . . 5 (𝑔 ∈ { 0 , 1 } ↔ (𝑔 = 0𝑔 = 1 ))
29 vex 3461 . . . . . 6 𝑘 ∈ V
3029elpr 4624 . . . . 5 (𝑘 ∈ { 0 , 1 } ↔ (𝑘 = 0𝑘 = 1 ))
3126, 28, 303anbi123i 1155 . . . 4 ((𝑓 ∈ { 0 , 1 } ∧ 𝑔 ∈ { 0 , 1 } ∧ 𝑘 ∈ { 0 , 1 }) ↔ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))
3224, 31bitrdi 287 . . 3 (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)) ↔ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 ))))
3332pm5.32i 574 . 2 ((((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) ↔ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 ))))
341, 9, 333bitrri 298 1 ((((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 ))) ↔ ((𝑥 ∈ {𝑋} ∧ 𝑦 ∈ {𝑋}) ∧ (𝑧 ∈ {𝑋} ∧ 𝑤 ∈ {𝑋}) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 847  w3a 1086   = wceq 1539  wcel 2107  {csn 4599  {cpr 4601  (class class class)co 7400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-br 5118  df-iota 6481  df-fv 6536  df-ov 7403
This theorem is referenced by:  2arwcat  49338
  Copyright terms: Public domain W3C validator