Proof of Theorem 2arwcatlem1
| Step | Hyp | Ref
| Expression |
| 1 | | df-3an 1088 |
. 2
⊢ (((𝑥 ∈ {𝑋} ∧ 𝑦 ∈ {𝑋}) ∧ (𝑧 ∈ {𝑋} ∧ 𝑤 ∈ {𝑋}) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) ↔ (((𝑥 ∈ {𝑋} ∧ 𝑦 ∈ {𝑋}) ∧ (𝑧 ∈ {𝑋} ∧ 𝑤 ∈ {𝑋})) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) |
| 2 | | velsn 4615 |
. . . . 5
⊢ (𝑥 ∈ {𝑋} ↔ 𝑥 = 𝑋) |
| 3 | | velsn 4615 |
. . . . 5
⊢ (𝑦 ∈ {𝑋} ↔ 𝑦 = 𝑋) |
| 4 | 2, 3 | anbi12i 628 |
. . . 4
⊢ ((𝑥 ∈ {𝑋} ∧ 𝑦 ∈ {𝑋}) ↔ (𝑥 = 𝑋 ∧ 𝑦 = 𝑋)) |
| 5 | | velsn 4615 |
. . . . 5
⊢ (𝑧 ∈ {𝑋} ↔ 𝑧 = 𝑋) |
| 6 | | velsn 4615 |
. . . . 5
⊢ (𝑤 ∈ {𝑋} ↔ 𝑤 = 𝑋) |
| 7 | 5, 6 | anbi12i 628 |
. . . 4
⊢ ((𝑧 ∈ {𝑋} ∧ 𝑤 ∈ {𝑋}) ↔ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) |
| 8 | 4, 7 | anbi12i 628 |
. . 3
⊢ (((𝑥 ∈ {𝑋} ∧ 𝑦 ∈ {𝑋}) ∧ (𝑧 ∈ {𝑋} ∧ 𝑤 ∈ {𝑋})) ↔ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋))) |
| 9 | 8 | anbi1i 624 |
. 2
⊢ ((((𝑥 ∈ {𝑋} ∧ 𝑦 ∈ {𝑋}) ∧ (𝑧 ∈ {𝑋} ∧ 𝑤 ∈ {𝑋})) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) ↔ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) |
| 10 | | simpll 766 |
. . . . . . . 8
⊢ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) → 𝑥 = 𝑋) |
| 11 | | simplr 768 |
. . . . . . . 8
⊢ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) → 𝑦 = 𝑋) |
| 12 | 10, 11 | oveq12d 7418 |
. . . . . . 7
⊢ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) → (𝑥𝐻𝑦) = (𝑋𝐻𝑋)) |
| 13 | | 2arwcatlem1.x |
. . . . . . 7
⊢ (𝑋𝐻𝑋) = { 0 , 1 } |
| 14 | 12, 13 | eqtrdi 2785 |
. . . . . 6
⊢ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) → (𝑥𝐻𝑦) = { 0 , 1 }) |
| 15 | 14 | eleq2d 2819 |
. . . . 5
⊢ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) → (𝑓 ∈ (𝑥𝐻𝑦) ↔ 𝑓 ∈ { 0 , 1 })) |
| 16 | | simprl 770 |
. . . . . . . 8
⊢ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) → 𝑧 = 𝑋) |
| 17 | 11, 16 | oveq12d 7418 |
. . . . . . 7
⊢ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) → (𝑦𝐻𝑧) = (𝑋𝐻𝑋)) |
| 18 | 17, 13 | eqtrdi 2785 |
. . . . . 6
⊢ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) → (𝑦𝐻𝑧) = { 0 , 1 }) |
| 19 | 18 | eleq2d 2819 |
. . . . 5
⊢ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) → (𝑔 ∈ (𝑦𝐻𝑧) ↔ 𝑔 ∈ { 0 , 1 })) |
| 20 | | simprr 772 |
. . . . . . . 8
⊢ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) → 𝑤 = 𝑋) |
| 21 | 16, 20 | oveq12d 7418 |
. . . . . . 7
⊢ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) → (𝑧𝐻𝑤) = (𝑋𝐻𝑋)) |
| 22 | 21, 13 | eqtrdi 2785 |
. . . . . 6
⊢ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) → (𝑧𝐻𝑤) = { 0 , 1 }) |
| 23 | 22 | eleq2d 2819 |
. . . . 5
⊢ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) → (𝑘 ∈ (𝑧𝐻𝑤) ↔ 𝑘 ∈ { 0 , 1 })) |
| 24 | 15, 19, 23 | 3anbi123d 1437 |
. . . 4
⊢ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)) ↔ (𝑓 ∈ { 0 , 1 } ∧ 𝑔 ∈ { 0 , 1 } ∧ 𝑘 ∈ { 0 , 1 }))) |
| 25 | | vex 3461 |
. . . . . 6
⊢ 𝑓 ∈ V |
| 26 | 25 | elpr 4624 |
. . . . 5
⊢ (𝑓 ∈ { 0 , 1 } ↔ (𝑓 = 0 ∨ 𝑓 = 1 )) |
| 27 | | vex 3461 |
. . . . . 6
⊢ 𝑔 ∈ V |
| 28 | 27 | elpr 4624 |
. . . . 5
⊢ (𝑔 ∈ { 0 , 1 } ↔ (𝑔 = 0 ∨ 𝑔 = 1 )) |
| 29 | | vex 3461 |
. . . . . 6
⊢ 𝑘 ∈ V |
| 30 | 29 | elpr 4624 |
. . . . 5
⊢ (𝑘 ∈ { 0 , 1 } ↔ (𝑘 = 0 ∨ 𝑘 = 1 )) |
| 31 | 26, 28, 30 | 3anbi123i 1155 |
. . . 4
⊢ ((𝑓 ∈ { 0 , 1 } ∧ 𝑔 ∈ { 0 , 1 } ∧ 𝑘 ∈ { 0 , 1 }) ↔ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 ))) |
| 32 | 24, 31 | bitrdi 287 |
. . 3
⊢ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) → ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)) ↔ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) |
| 33 | 32 | pm5.32i 574 |
. 2
⊢ ((((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) ↔ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) |
| 34 | 1, 9, 33 | 3bitrri 298 |
1
⊢ ((((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 ))) ↔ ((𝑥 ∈ {𝑋} ∧ 𝑦 ∈ {𝑋}) ∧ (𝑧 ∈ {𝑋} ∧ 𝑤 ∈ {𝑋}) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) |