Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3dimlem1 Structured version   Visualization version   GIF version

Theorem 3dimlem1 38842
Description: Lemma for 3dim1 38851. (Contributed by NM, 25-Jul-2012.)
Hypotheses
Ref Expression
3dim0.j ∨ = (joinβ€˜πΎ)
3dim0.l ≀ = (leβ€˜πΎ)
3dim0.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
3dimlem1 (((𝑄 β‰  𝑅 ∧ Β¬ 𝑆 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆)) ∧ 𝑃 = 𝑄) β†’ (𝑃 β‰  𝑅 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑅) ∧ Β¬ 𝑇 ≀ ((𝑃 ∨ 𝑅) ∨ 𝑆)))

Proof of Theorem 3dimlem1
StepHypRef Expression
1 neeq1 2997 . . 3 (𝑃 = 𝑄 β†’ (𝑃 β‰  𝑅 ↔ 𝑄 β‰  𝑅))
2 oveq1 7412 . . . . 5 (𝑃 = 𝑄 β†’ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))
32breq2d 5153 . . . 4 (𝑃 = 𝑄 β†’ (𝑆 ≀ (𝑃 ∨ 𝑅) ↔ 𝑆 ≀ (𝑄 ∨ 𝑅)))
43notbid 318 . . 3 (𝑃 = 𝑄 β†’ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑅) ↔ Β¬ 𝑆 ≀ (𝑄 ∨ 𝑅)))
52oveq1d 7420 . . . . 5 (𝑃 = 𝑄 β†’ ((𝑃 ∨ 𝑅) ∨ 𝑆) = ((𝑄 ∨ 𝑅) ∨ 𝑆))
65breq2d 5153 . . . 4 (𝑃 = 𝑄 β†’ (𝑇 ≀ ((𝑃 ∨ 𝑅) ∨ 𝑆) ↔ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆)))
76notbid 318 . . 3 (𝑃 = 𝑄 β†’ (Β¬ 𝑇 ≀ ((𝑃 ∨ 𝑅) ∨ 𝑆) ↔ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆)))
81, 4, 73anbi123d 1432 . 2 (𝑃 = 𝑄 β†’ ((𝑃 β‰  𝑅 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑅) ∧ Β¬ 𝑇 ≀ ((𝑃 ∨ 𝑅) ∨ 𝑆)) ↔ (𝑄 β‰  𝑅 ∧ Β¬ 𝑆 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))))
98biimparc 479 1 (((𝑄 β‰  𝑅 ∧ Β¬ 𝑆 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆)) ∧ 𝑃 = 𝑄) β†’ (𝑃 β‰  𝑅 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑅) ∧ Β¬ 𝑇 ≀ ((𝑃 ∨ 𝑅) ∨ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   β‰  wne 2934   class class class wbr 5141  β€˜cfv 6537  (class class class)co 7405  lecple 17213  joincjn 18276  Atomscatm 38646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ne 2935  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-iota 6489  df-fv 6545  df-ov 7408
This theorem is referenced by:  3dim1  38851
  Copyright terms: Public domain W3C validator