Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3dimlem1 Structured version   Visualization version   GIF version

Theorem 3dimlem1 37399
Description: Lemma for 3dim1 37408. (Contributed by NM, 25-Jul-2012.)
Hypotheses
Ref Expression
3dim0.j = (join‘𝐾)
3dim0.l = (le‘𝐾)
3dim0.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
3dimlem1 (((𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅) ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆)) ∧ 𝑃 = 𝑄) → (𝑃𝑅 ∧ ¬ 𝑆 (𝑃 𝑅) ∧ ¬ 𝑇 ((𝑃 𝑅) 𝑆)))

Proof of Theorem 3dimlem1
StepHypRef Expression
1 neeq1 3005 . . 3 (𝑃 = 𝑄 → (𝑃𝑅𝑄𝑅))
2 oveq1 7262 . . . . 5 (𝑃 = 𝑄 → (𝑃 𝑅) = (𝑄 𝑅))
32breq2d 5082 . . . 4 (𝑃 = 𝑄 → (𝑆 (𝑃 𝑅) ↔ 𝑆 (𝑄 𝑅)))
43notbid 317 . . 3 (𝑃 = 𝑄 → (¬ 𝑆 (𝑃 𝑅) ↔ ¬ 𝑆 (𝑄 𝑅)))
52oveq1d 7270 . . . . 5 (𝑃 = 𝑄 → ((𝑃 𝑅) 𝑆) = ((𝑄 𝑅) 𝑆))
65breq2d 5082 . . . 4 (𝑃 = 𝑄 → (𝑇 ((𝑃 𝑅) 𝑆) ↔ 𝑇 ((𝑄 𝑅) 𝑆)))
76notbid 317 . . 3 (𝑃 = 𝑄 → (¬ 𝑇 ((𝑃 𝑅) 𝑆) ↔ ¬ 𝑇 ((𝑄 𝑅) 𝑆)))
81, 4, 73anbi123d 1434 . 2 (𝑃 = 𝑄 → ((𝑃𝑅 ∧ ¬ 𝑆 (𝑃 𝑅) ∧ ¬ 𝑇 ((𝑃 𝑅) 𝑆)) ↔ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅) ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆))))
98biimparc 479 1 (((𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅) ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆)) ∧ 𝑃 = 𝑄) → (𝑃𝑅 ∧ ¬ 𝑆 (𝑃 𝑅) ∧ ¬ 𝑇 ((𝑃 𝑅) 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  lecple 16895  joincjn 17944  Atomscatm 37204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258
This theorem is referenced by:  3dim1  37408
  Copyright terms: Public domain W3C validator