Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 3dimlem1 | Structured version Visualization version GIF version |
Description: Lemma for 3dim1 37460. (Contributed by NM, 25-Jul-2012.) |
Ref | Expression |
---|---|
3dim0.j | ⊢ ∨ = (join‘𝐾) |
3dim0.l | ⊢ ≤ = (le‘𝐾) |
3dim0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
3dimlem1 | ⊢ (((𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆)) ∧ 𝑃 = 𝑄) → (𝑃 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑅) ∧ ¬ 𝑇 ≤ ((𝑃 ∨ 𝑅) ∨ 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1 3007 | . . 3 ⊢ (𝑃 = 𝑄 → (𝑃 ≠ 𝑅 ↔ 𝑄 ≠ 𝑅)) | |
2 | oveq1 7275 | . . . . 5 ⊢ (𝑃 = 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) | |
3 | 2 | breq2d 5090 | . . . 4 ⊢ (𝑃 = 𝑄 → (𝑆 ≤ (𝑃 ∨ 𝑅) ↔ 𝑆 ≤ (𝑄 ∨ 𝑅))) |
4 | 3 | notbid 317 | . . 3 ⊢ (𝑃 = 𝑄 → (¬ 𝑆 ≤ (𝑃 ∨ 𝑅) ↔ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅))) |
5 | 2 | oveq1d 7283 | . . . . 5 ⊢ (𝑃 = 𝑄 → ((𝑃 ∨ 𝑅) ∨ 𝑆) = ((𝑄 ∨ 𝑅) ∨ 𝑆)) |
6 | 5 | breq2d 5090 | . . . 4 ⊢ (𝑃 = 𝑄 → (𝑇 ≤ ((𝑃 ∨ 𝑅) ∨ 𝑆) ↔ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) |
7 | 6 | notbid 317 | . . 3 ⊢ (𝑃 = 𝑄 → (¬ 𝑇 ≤ ((𝑃 ∨ 𝑅) ∨ 𝑆) ↔ ¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) |
8 | 1, 4, 7 | 3anbi123d 1434 | . 2 ⊢ (𝑃 = 𝑄 → ((𝑃 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑅) ∧ ¬ 𝑇 ≤ ((𝑃 ∨ 𝑅) ∨ 𝑆)) ↔ (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆)))) |
9 | 8 | biimparc 479 | 1 ⊢ (((𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆)) ∧ 𝑃 = 𝑄) → (𝑃 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑅) ∧ ¬ 𝑇 ≤ ((𝑃 ∨ 𝑅) ∨ 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ≠ wne 2944 class class class wbr 5078 ‘cfv 6430 (class class class)co 7268 lecple 16950 joincjn 18010 Atomscatm 37256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-iota 6388 df-fv 6438 df-ov 7271 |
This theorem is referenced by: 3dim1 37460 |
Copyright terms: Public domain | W3C validator |