Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 3dimlem1 | Structured version Visualization version GIF version |
Description: Lemma for 3dim1 37408. (Contributed by NM, 25-Jul-2012.) |
Ref | Expression |
---|---|
3dim0.j | ⊢ ∨ = (join‘𝐾) |
3dim0.l | ⊢ ≤ = (le‘𝐾) |
3dim0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
3dimlem1 | ⊢ (((𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆)) ∧ 𝑃 = 𝑄) → (𝑃 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑅) ∧ ¬ 𝑇 ≤ ((𝑃 ∨ 𝑅) ∨ 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1 3005 | . . 3 ⊢ (𝑃 = 𝑄 → (𝑃 ≠ 𝑅 ↔ 𝑄 ≠ 𝑅)) | |
2 | oveq1 7262 | . . . . 5 ⊢ (𝑃 = 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) | |
3 | 2 | breq2d 5082 | . . . 4 ⊢ (𝑃 = 𝑄 → (𝑆 ≤ (𝑃 ∨ 𝑅) ↔ 𝑆 ≤ (𝑄 ∨ 𝑅))) |
4 | 3 | notbid 317 | . . 3 ⊢ (𝑃 = 𝑄 → (¬ 𝑆 ≤ (𝑃 ∨ 𝑅) ↔ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅))) |
5 | 2 | oveq1d 7270 | . . . . 5 ⊢ (𝑃 = 𝑄 → ((𝑃 ∨ 𝑅) ∨ 𝑆) = ((𝑄 ∨ 𝑅) ∨ 𝑆)) |
6 | 5 | breq2d 5082 | . . . 4 ⊢ (𝑃 = 𝑄 → (𝑇 ≤ ((𝑃 ∨ 𝑅) ∨ 𝑆) ↔ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) |
7 | 6 | notbid 317 | . . 3 ⊢ (𝑃 = 𝑄 → (¬ 𝑇 ≤ ((𝑃 ∨ 𝑅) ∨ 𝑆) ↔ ¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) |
8 | 1, 4, 7 | 3anbi123d 1434 | . 2 ⊢ (𝑃 = 𝑄 → ((𝑃 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑅) ∧ ¬ 𝑇 ≤ ((𝑃 ∨ 𝑅) ∨ 𝑆)) ↔ (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆)))) |
9 | 8 | biimparc 479 | 1 ⊢ (((𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆)) ∧ 𝑃 = 𝑄) → (𝑃 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑅) ∧ ¬ 𝑇 ≤ ((𝑃 ∨ 𝑅) ∨ 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ≠ wne 2942 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 lecple 16895 joincjn 17944 Atomscatm 37204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 |
This theorem is referenced by: 3dim1 37408 |
Copyright terms: Public domain | W3C validator |