![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 3dimlem1 | Structured version Visualization version GIF version |
Description: Lemma for 3dim1 35488. (Contributed by NM, 25-Jul-2012.) |
Ref | Expression |
---|---|
3dim0.j | ⊢ ∨ = (join‘𝐾) |
3dim0.l | ⊢ ≤ = (le‘𝐾) |
3dim0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
3dimlem1 | ⊢ (((𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆)) ∧ 𝑃 = 𝑄) → (𝑃 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑅) ∧ ¬ 𝑇 ≤ ((𝑃 ∨ 𝑅) ∨ 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1 3033 | . . 3 ⊢ (𝑃 = 𝑄 → (𝑃 ≠ 𝑅 ↔ 𝑄 ≠ 𝑅)) | |
2 | oveq1 6885 | . . . . 5 ⊢ (𝑃 = 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) | |
3 | 2 | breq2d 4855 | . . . 4 ⊢ (𝑃 = 𝑄 → (𝑆 ≤ (𝑃 ∨ 𝑅) ↔ 𝑆 ≤ (𝑄 ∨ 𝑅))) |
4 | 3 | notbid 310 | . . 3 ⊢ (𝑃 = 𝑄 → (¬ 𝑆 ≤ (𝑃 ∨ 𝑅) ↔ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅))) |
5 | 2 | oveq1d 6893 | . . . . 5 ⊢ (𝑃 = 𝑄 → ((𝑃 ∨ 𝑅) ∨ 𝑆) = ((𝑄 ∨ 𝑅) ∨ 𝑆)) |
6 | 5 | breq2d 4855 | . . . 4 ⊢ (𝑃 = 𝑄 → (𝑇 ≤ ((𝑃 ∨ 𝑅) ∨ 𝑆) ↔ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) |
7 | 6 | notbid 310 | . . 3 ⊢ (𝑃 = 𝑄 → (¬ 𝑇 ≤ ((𝑃 ∨ 𝑅) ∨ 𝑆) ↔ ¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) |
8 | 1, 4, 7 | 3anbi123d 1561 | . 2 ⊢ (𝑃 = 𝑄 → ((𝑃 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑅) ∧ ¬ 𝑇 ≤ ((𝑃 ∨ 𝑅) ∨ 𝑆)) ↔ (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆)))) |
9 | 8 | biimparc 472 | 1 ⊢ (((𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆)) ∧ 𝑃 = 𝑄) → (𝑃 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑅) ∧ ¬ 𝑇 ≤ ((𝑃 ∨ 𝑅) ∨ 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ≠ wne 2971 class class class wbr 4843 ‘cfv 6101 (class class class)co 6878 lecple 16274 joincjn 17259 Atomscatm 35284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-rex 3095 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-iota 6064 df-fv 6109 df-ov 6881 |
This theorem is referenced by: 3dim1 35488 |
Copyright terms: Public domain | W3C validator |