Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 3dimlem1 | Structured version Visualization version GIF version |
Description: Lemma for 3dim1 37481. (Contributed by NM, 25-Jul-2012.) |
Ref | Expression |
---|---|
3dim0.j | ⊢ ∨ = (join‘𝐾) |
3dim0.l | ⊢ ≤ = (le‘𝐾) |
3dim0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
3dimlem1 | ⊢ (((𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆)) ∧ 𝑃 = 𝑄) → (𝑃 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑅) ∧ ¬ 𝑇 ≤ ((𝑃 ∨ 𝑅) ∨ 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1 3006 | . . 3 ⊢ (𝑃 = 𝑄 → (𝑃 ≠ 𝑅 ↔ 𝑄 ≠ 𝑅)) | |
2 | oveq1 7282 | . . . . 5 ⊢ (𝑃 = 𝑄 → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) | |
3 | 2 | breq2d 5086 | . . . 4 ⊢ (𝑃 = 𝑄 → (𝑆 ≤ (𝑃 ∨ 𝑅) ↔ 𝑆 ≤ (𝑄 ∨ 𝑅))) |
4 | 3 | notbid 318 | . . 3 ⊢ (𝑃 = 𝑄 → (¬ 𝑆 ≤ (𝑃 ∨ 𝑅) ↔ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅))) |
5 | 2 | oveq1d 7290 | . . . . 5 ⊢ (𝑃 = 𝑄 → ((𝑃 ∨ 𝑅) ∨ 𝑆) = ((𝑄 ∨ 𝑅) ∨ 𝑆)) |
6 | 5 | breq2d 5086 | . . . 4 ⊢ (𝑃 = 𝑄 → (𝑇 ≤ ((𝑃 ∨ 𝑅) ∨ 𝑆) ↔ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) |
7 | 6 | notbid 318 | . . 3 ⊢ (𝑃 = 𝑄 → (¬ 𝑇 ≤ ((𝑃 ∨ 𝑅) ∨ 𝑆) ↔ ¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆))) |
8 | 1, 4, 7 | 3anbi123d 1435 | . 2 ⊢ (𝑃 = 𝑄 → ((𝑃 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑅) ∧ ¬ 𝑇 ≤ ((𝑃 ∨ 𝑅) ∨ 𝑆)) ↔ (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆)))) |
9 | 8 | biimparc 480 | 1 ⊢ (((𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑇 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑆)) ∧ 𝑃 = 𝑄) → (𝑃 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑅) ∧ ¬ 𝑇 ≤ ((𝑃 ∨ 𝑅) ∨ 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ≠ wne 2943 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 lecple 16969 joincjn 18029 Atomscatm 37277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 |
This theorem is referenced by: 3dim1 37481 |
Copyright terms: Public domain | W3C validator |