Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3dim0 Structured version   Visualization version   GIF version

Theorem 3dim0 36753
Description: There exists a 3-dimensional (height-4) element i.e. a volume. (Contributed by NM, 25-Jul-2012.)
Hypotheses
Ref Expression
3dim0.j = (join‘𝐾)
3dim0.l = (le‘𝐾)
3dim0.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
3dim0 (𝐾 ∈ HL → ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)))
Distinct variable groups:   𝑞,𝑝,𝑟,𝑠,𝐴   ,𝑟,𝑠   𝐾,𝑝,𝑞,𝑟,𝑠
Allowed substitution hints:   (𝑞,𝑝)   (𝑠,𝑟,𝑞,𝑝)

Proof of Theorem 3dim0
StepHypRef Expression
1 3dim0.j . . 3 = (join‘𝐾)
2 eqid 2798 . . 3 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
3 3dim0.a . . 3 𝐴 = (Atoms‘𝐾)
41, 2, 3athgt 36752 . 2 (𝐾 ∈ HL → ∃𝑝𝐴𝑞𝐴 (𝑝( ⋖ ‘𝐾)(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠))))
5 df-3an 1086 . . . . . . . . . 10 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)))
6 simpll1 1209 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → 𝐾 ∈ HL)
7 eqid 2798 . . . . . . . . . . . . . . 15 (Base‘𝐾) = (Base‘𝐾)
87, 1, 3hlatjcl 36663 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) → (𝑝 𝑞) ∈ (Base‘𝐾))
98ad2antrr 725 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → (𝑝 𝑞) ∈ (Base‘𝐾))
10 simplr 768 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → 𝑟𝐴)
11 3dim0.l . . . . . . . . . . . . . 14 = (le‘𝐾)
127, 11, 1, 2, 3cvr1 36706 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑝 𝑞) ∈ (Base‘𝐾) ∧ 𝑟𝐴) → (¬ 𝑟 (𝑝 𝑞) ↔ (𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟)))
136, 9, 10, 12syl3anc 1368 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → (¬ 𝑟 (𝑝 𝑞) ↔ (𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟)))
1413anbi2d 631 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ↔ (𝑝𝑞 ∧ (𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟))))
156hllatd 36660 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → 𝐾 ∈ Lat)
167, 3atbase 36585 . . . . . . . . . . . . . 14 (𝑟𝐴𝑟 ∈ (Base‘𝐾))
1716ad2antlr 726 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → 𝑟 ∈ (Base‘𝐾))
187, 1latjcl 17653 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑝 𝑞) ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾)) → ((𝑝 𝑞) 𝑟) ∈ (Base‘𝐾))
1915, 9, 17, 18syl3anc 1368 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → ((𝑝 𝑞) 𝑟) ∈ (Base‘𝐾))
20 simpr 488 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → 𝑠𝐴)
217, 11, 1, 2, 3cvr1 36706 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ ((𝑝 𝑞) 𝑟) ∈ (Base‘𝐾) ∧ 𝑠𝐴) → (¬ 𝑠 ((𝑝 𝑞) 𝑟) ↔ ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)))
226, 19, 20, 21syl3anc 1368 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → (¬ 𝑠 ((𝑝 𝑞) 𝑟) ↔ ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)))
2314, 22anbi12d 633 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → (((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ ((𝑝𝑞 ∧ (𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟)) ∧ ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠))))
245, 23syl5bb 286 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ ((𝑝𝑞 ∧ (𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟)) ∧ ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠))))
2524rexbidva 3255 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) → (∃𝑠𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ ∃𝑠𝐴 ((𝑝𝑞 ∧ (𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟)) ∧ ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠))))
26 r19.42v 3303 . . . . . . . . 9 (∃𝑠𝐴 ((𝑝𝑞 ∧ (𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟)) ∧ ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)) ↔ ((𝑝𝑞 ∧ (𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟)) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)))
27 anass 472 . . . . . . . . 9 (((𝑝𝑞 ∧ (𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟)) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)) ↔ (𝑝𝑞 ∧ ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠))))
2826, 27bitri 278 . . . . . . . 8 (∃𝑠𝐴 ((𝑝𝑞 ∧ (𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟)) ∧ ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)) ↔ (𝑝𝑞 ∧ ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠))))
2925, 28syl6bb 290 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) → (∃𝑠𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ (𝑝𝑞 ∧ ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)))))
3029rexbidva 3255 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) → (∃𝑟𝐴𝑠𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ ∃𝑟𝐴 (𝑝𝑞 ∧ ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)))))
31 r19.42v 3303 . . . . . 6 (∃𝑟𝐴 (𝑝𝑞 ∧ ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠))) ↔ (𝑝𝑞 ∧ ∃𝑟𝐴 ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠))))
3230, 31syl6bb 290 . . . . 5 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) → (∃𝑟𝐴𝑠𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ (𝑝𝑞 ∧ ∃𝑟𝐴 ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)))))
331, 2, 3atcvr1 36713 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) → (𝑝𝑞𝑝( ⋖ ‘𝐾)(𝑝 𝑞)))
3433anbi1d 632 . . . . 5 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) → ((𝑝𝑞 ∧ ∃𝑟𝐴 ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠))) ↔ (𝑝( ⋖ ‘𝐾)(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)))))
3532, 34bitrd 282 . . . 4 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) → (∃𝑟𝐴𝑠𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ (𝑝( ⋖ ‘𝐾)(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)))))
36353expb 1117 . . 3 ((𝐾 ∈ HL ∧ (𝑝𝐴𝑞𝐴)) → (∃𝑟𝐴𝑠𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ (𝑝( ⋖ ‘𝐾)(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)))))
37362rexbidva 3258 . 2 (𝐾 ∈ HL → (∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ ∃𝑝𝐴𝑞𝐴 (𝑝( ⋖ ‘𝐾)(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)))))
384, 37mpbird 260 1 (𝐾 ∈ HL → ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wrex 3107   class class class wbr 5030  cfv 6324  (class class class)co 7135  Basecbs 16475  lecple 16564  joincjn 17546  Latclat 17647  ccvr 36558  Atomscatm 36559  HLchlt 36646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-oposet 36472  df-ol 36474  df-oml 36475  df-covers 36562  df-ats 36563  df-atl 36594  df-cvlat 36618  df-hlat 36647
This theorem is referenced by:  3dim1  36763
  Copyright terms: Public domain W3C validator