Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3dim0 Structured version   Visualization version   GIF version

Theorem 3dim0 37480
Description: There exists a 3-dimensional (height-4) element i.e. a volume. (Contributed by NM, 25-Jul-2012.)
Hypotheses
Ref Expression
3dim0.j = (join‘𝐾)
3dim0.l = (le‘𝐾)
3dim0.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
3dim0 (𝐾 ∈ HL → ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)))
Distinct variable groups:   𝑞,𝑝,𝑟,𝑠,𝐴   ,𝑟,𝑠   𝐾,𝑝,𝑞,𝑟,𝑠
Allowed substitution hints:   (𝑞,𝑝)   (𝑠,𝑟,𝑞,𝑝)

Proof of Theorem 3dim0
StepHypRef Expression
1 3dim0.j . . 3 = (join‘𝐾)
2 eqid 2740 . . 3 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
3 3dim0.a . . 3 𝐴 = (Atoms‘𝐾)
41, 2, 3athgt 37479 . 2 (𝐾 ∈ HL → ∃𝑝𝐴𝑞𝐴 (𝑝( ⋖ ‘𝐾)(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠))))
5 df-3an 1088 . . . . . . . . . 10 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)))
6 simpll1 1211 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → 𝐾 ∈ HL)
7 eqid 2740 . . . . . . . . . . . . . . 15 (Base‘𝐾) = (Base‘𝐾)
87, 1, 3hlatjcl 37390 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) → (𝑝 𝑞) ∈ (Base‘𝐾))
98ad2antrr 723 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → (𝑝 𝑞) ∈ (Base‘𝐾))
10 simplr 766 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → 𝑟𝐴)
11 3dim0.l . . . . . . . . . . . . . 14 = (le‘𝐾)
127, 11, 1, 2, 3cvr1 37433 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑝 𝑞) ∈ (Base‘𝐾) ∧ 𝑟𝐴) → (¬ 𝑟 (𝑝 𝑞) ↔ (𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟)))
136, 9, 10, 12syl3anc 1370 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → (¬ 𝑟 (𝑝 𝑞) ↔ (𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟)))
1413anbi2d 629 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ↔ (𝑝𝑞 ∧ (𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟))))
156hllatd 37387 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → 𝐾 ∈ Lat)
167, 3atbase 37312 . . . . . . . . . . . . . 14 (𝑟𝐴𝑟 ∈ (Base‘𝐾))
1716ad2antlr 724 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → 𝑟 ∈ (Base‘𝐾))
187, 1latjcl 18168 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑝 𝑞) ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾)) → ((𝑝 𝑞) 𝑟) ∈ (Base‘𝐾))
1915, 9, 17, 18syl3anc 1370 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → ((𝑝 𝑞) 𝑟) ∈ (Base‘𝐾))
20 simpr 485 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → 𝑠𝐴)
217, 11, 1, 2, 3cvr1 37433 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ ((𝑝 𝑞) 𝑟) ∈ (Base‘𝐾) ∧ 𝑠𝐴) → (¬ 𝑠 ((𝑝 𝑞) 𝑟) ↔ ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)))
226, 19, 20, 21syl3anc 1370 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → (¬ 𝑠 ((𝑝 𝑞) 𝑟) ↔ ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)))
2314, 22anbi12d 631 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → (((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ ((𝑝𝑞 ∧ (𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟)) ∧ ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠))))
245, 23syl5bb 283 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ ((𝑝𝑞 ∧ (𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟)) ∧ ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠))))
2524rexbidva 3227 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) → (∃𝑠𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ ∃𝑠𝐴 ((𝑝𝑞 ∧ (𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟)) ∧ ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠))))
26 r19.42v 3279 . . . . . . . . 9 (∃𝑠𝐴 ((𝑝𝑞 ∧ (𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟)) ∧ ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)) ↔ ((𝑝𝑞 ∧ (𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟)) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)))
27 anass 469 . . . . . . . . 9 (((𝑝𝑞 ∧ (𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟)) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)) ↔ (𝑝𝑞 ∧ ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠))))
2826, 27bitri 274 . . . . . . . 8 (∃𝑠𝐴 ((𝑝𝑞 ∧ (𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟)) ∧ ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)) ↔ (𝑝𝑞 ∧ ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠))))
2925, 28bitrdi 287 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) → (∃𝑠𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ (𝑝𝑞 ∧ ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)))))
3029rexbidva 3227 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) → (∃𝑟𝐴𝑠𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ ∃𝑟𝐴 (𝑝𝑞 ∧ ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)))))
31 r19.42v 3279 . . . . . 6 (∃𝑟𝐴 (𝑝𝑞 ∧ ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠))) ↔ (𝑝𝑞 ∧ ∃𝑟𝐴 ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠))))
3230, 31bitrdi 287 . . . . 5 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) → (∃𝑟𝐴𝑠𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ (𝑝𝑞 ∧ ∃𝑟𝐴 ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)))))
331, 2, 3atcvr1 37440 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) → (𝑝𝑞𝑝( ⋖ ‘𝐾)(𝑝 𝑞)))
3433anbi1d 630 . . . . 5 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) → ((𝑝𝑞 ∧ ∃𝑟𝐴 ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠))) ↔ (𝑝( ⋖ ‘𝐾)(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)))))
3532, 34bitrd 278 . . . 4 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) → (∃𝑟𝐴𝑠𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ (𝑝( ⋖ ‘𝐾)(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)))))
36353expb 1119 . . 3 ((𝐾 ∈ HL ∧ (𝑝𝐴𝑞𝐴)) → (∃𝑟𝐴𝑠𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ (𝑝( ⋖ ‘𝐾)(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)))))
37362rexbidva 3230 . 2 (𝐾 ∈ HL → (∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ ∃𝑝𝐴𝑞𝐴 (𝑝( ⋖ ‘𝐾)(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)))))
384, 37mpbird 256 1 (𝐾 ∈ HL → ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  wne 2945  wrex 3067   class class class wbr 5079  cfv 6432  (class class class)co 7272  Basecbs 16923  lecple 16980  joincjn 18040  Latclat 18160  ccvr 37285  Atomscatm 37286  HLchlt 37373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7229  df-ov 7275  df-oprab 7276  df-proset 18024  df-poset 18042  df-plt 18059  df-lub 18075  df-glb 18076  df-join 18077  df-meet 18078  df-p0 18154  df-p1 18155  df-lat 18161  df-clat 18228  df-oposet 37199  df-ol 37201  df-oml 37202  df-covers 37289  df-ats 37290  df-atl 37321  df-cvlat 37345  df-hlat 37374
This theorem is referenced by:  3dim1  37490
  Copyright terms: Public domain W3C validator