Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3dim0 Structured version   Visualization version   GIF version

Theorem 3dim0 37920
Description: There exists a 3-dimensional (height-4) element i.e. a volume. (Contributed by NM, 25-Jul-2012.)
Hypotheses
Ref Expression
3dim0.j = (join‘𝐾)
3dim0.l = (le‘𝐾)
3dim0.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
3dim0 (𝐾 ∈ HL → ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)))
Distinct variable groups:   𝑞,𝑝,𝑟,𝑠,𝐴   ,𝑟,𝑠   𝐾,𝑝,𝑞,𝑟,𝑠
Allowed substitution hints:   (𝑞,𝑝)   (𝑠,𝑟,𝑞,𝑝)

Proof of Theorem 3dim0
StepHypRef Expression
1 3dim0.j . . 3 = (join‘𝐾)
2 eqid 2736 . . 3 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
3 3dim0.a . . 3 𝐴 = (Atoms‘𝐾)
41, 2, 3athgt 37919 . 2 (𝐾 ∈ HL → ∃𝑝𝐴𝑞𝐴 (𝑝( ⋖ ‘𝐾)(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠))))
5 df-3an 1089 . . . . . . . . . 10 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)))
6 simpll1 1212 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → 𝐾 ∈ HL)
7 eqid 2736 . . . . . . . . . . . . . . 15 (Base‘𝐾) = (Base‘𝐾)
87, 1, 3hlatjcl 37829 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) → (𝑝 𝑞) ∈ (Base‘𝐾))
98ad2antrr 724 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → (𝑝 𝑞) ∈ (Base‘𝐾))
10 simplr 767 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → 𝑟𝐴)
11 3dim0.l . . . . . . . . . . . . . 14 = (le‘𝐾)
127, 11, 1, 2, 3cvr1 37873 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑝 𝑞) ∈ (Base‘𝐾) ∧ 𝑟𝐴) → (¬ 𝑟 (𝑝 𝑞) ↔ (𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟)))
136, 9, 10, 12syl3anc 1371 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → (¬ 𝑟 (𝑝 𝑞) ↔ (𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟)))
1413anbi2d 629 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ↔ (𝑝𝑞 ∧ (𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟))))
156hllatd 37826 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → 𝐾 ∈ Lat)
167, 3atbase 37751 . . . . . . . . . . . . . 14 (𝑟𝐴𝑟 ∈ (Base‘𝐾))
1716ad2antlr 725 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → 𝑟 ∈ (Base‘𝐾))
187, 1latjcl 18328 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑝 𝑞) ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾)) → ((𝑝 𝑞) 𝑟) ∈ (Base‘𝐾))
1915, 9, 17, 18syl3anc 1371 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → ((𝑝 𝑞) 𝑟) ∈ (Base‘𝐾))
20 simpr 485 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → 𝑠𝐴)
217, 11, 1, 2, 3cvr1 37873 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ ((𝑝 𝑞) 𝑟) ∈ (Base‘𝐾) ∧ 𝑠𝐴) → (¬ 𝑠 ((𝑝 𝑞) 𝑟) ↔ ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)))
226, 19, 20, 21syl3anc 1371 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → (¬ 𝑠 ((𝑝 𝑞) 𝑟) ↔ ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)))
2314, 22anbi12d 631 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → (((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ ((𝑝𝑞 ∧ (𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟)) ∧ ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠))))
245, 23bitrid 282 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ ((𝑝𝑞 ∧ (𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟)) ∧ ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠))))
2524rexbidva 3173 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) → (∃𝑠𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ ∃𝑠𝐴 ((𝑝𝑞 ∧ (𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟)) ∧ ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠))))
26 r19.42v 3187 . . . . . . . . 9 (∃𝑠𝐴 ((𝑝𝑞 ∧ (𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟)) ∧ ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)) ↔ ((𝑝𝑞 ∧ (𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟)) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)))
27 anass 469 . . . . . . . . 9 (((𝑝𝑞 ∧ (𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟)) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)) ↔ (𝑝𝑞 ∧ ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠))))
2826, 27bitri 274 . . . . . . . 8 (∃𝑠𝐴 ((𝑝𝑞 ∧ (𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟)) ∧ ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)) ↔ (𝑝𝑞 ∧ ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠))))
2925, 28bitrdi 286 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) → (∃𝑠𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ (𝑝𝑞 ∧ ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)))))
3029rexbidva 3173 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) → (∃𝑟𝐴𝑠𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ ∃𝑟𝐴 (𝑝𝑞 ∧ ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)))))
31 r19.42v 3187 . . . . . 6 (∃𝑟𝐴 (𝑝𝑞 ∧ ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠))) ↔ (𝑝𝑞 ∧ ∃𝑟𝐴 ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠))))
3230, 31bitrdi 286 . . . . 5 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) → (∃𝑟𝐴𝑠𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ (𝑝𝑞 ∧ ∃𝑟𝐴 ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)))))
331, 2, 3atcvr1 37880 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) → (𝑝𝑞𝑝( ⋖ ‘𝐾)(𝑝 𝑞)))
3433anbi1d 630 . . . . 5 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) → ((𝑝𝑞 ∧ ∃𝑟𝐴 ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠))) ↔ (𝑝( ⋖ ‘𝐾)(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)))))
3532, 34bitrd 278 . . . 4 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) → (∃𝑟𝐴𝑠𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ (𝑝( ⋖ ‘𝐾)(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)))))
36353expb 1120 . . 3 ((𝐾 ∈ HL ∧ (𝑝𝐴𝑞𝐴)) → (∃𝑟𝐴𝑠𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ (𝑝( ⋖ ‘𝐾)(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)))))
37362rexbidva 3211 . 2 (𝐾 ∈ HL → (∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ ∃𝑝𝐴𝑞𝐴 (𝑝( ⋖ ‘𝐾)(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)))))
384, 37mpbird 256 1 (𝐾 ∈ HL → ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wrex 3073   class class class wbr 5105  cfv 6496  (class class class)co 7357  Basecbs 17083  lecple 17140  joincjn 18200  Latclat 18320  ccvr 37724  Atomscatm 37725  HLchlt 37812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-proset 18184  df-poset 18202  df-plt 18219  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-p0 18314  df-p1 18315  df-lat 18321  df-clat 18388  df-oposet 37638  df-ol 37640  df-oml 37641  df-covers 37728  df-ats 37729  df-atl 37760  df-cvlat 37784  df-hlat 37813
This theorem is referenced by:  3dim1  37930
  Copyright terms: Public domain W3C validator