Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3dim0 Structured version   Visualization version   GIF version

Theorem 3dim0 37398
Description: There exists a 3-dimensional (height-4) element i.e. a volume. (Contributed by NM, 25-Jul-2012.)
Hypotheses
Ref Expression
3dim0.j = (join‘𝐾)
3dim0.l = (le‘𝐾)
3dim0.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
3dim0 (𝐾 ∈ HL → ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)))
Distinct variable groups:   𝑞,𝑝,𝑟,𝑠,𝐴   ,𝑟,𝑠   𝐾,𝑝,𝑞,𝑟,𝑠
Allowed substitution hints:   (𝑞,𝑝)   (𝑠,𝑟,𝑞,𝑝)

Proof of Theorem 3dim0
StepHypRef Expression
1 3dim0.j . . 3 = (join‘𝐾)
2 eqid 2738 . . 3 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
3 3dim0.a . . 3 𝐴 = (Atoms‘𝐾)
41, 2, 3athgt 37397 . 2 (𝐾 ∈ HL → ∃𝑝𝐴𝑞𝐴 (𝑝( ⋖ ‘𝐾)(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠))))
5 df-3an 1087 . . . . . . . . . 10 ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)))
6 simpll1 1210 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → 𝐾 ∈ HL)
7 eqid 2738 . . . . . . . . . . . . . . 15 (Base‘𝐾) = (Base‘𝐾)
87, 1, 3hlatjcl 37308 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) → (𝑝 𝑞) ∈ (Base‘𝐾))
98ad2antrr 722 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → (𝑝 𝑞) ∈ (Base‘𝐾))
10 simplr 765 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → 𝑟𝐴)
11 3dim0.l . . . . . . . . . . . . . 14 = (le‘𝐾)
127, 11, 1, 2, 3cvr1 37351 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑝 𝑞) ∈ (Base‘𝐾) ∧ 𝑟𝐴) → (¬ 𝑟 (𝑝 𝑞) ↔ (𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟)))
136, 9, 10, 12syl3anc 1369 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → (¬ 𝑟 (𝑝 𝑞) ↔ (𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟)))
1413anbi2d 628 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ↔ (𝑝𝑞 ∧ (𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟))))
156hllatd 37305 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → 𝐾 ∈ Lat)
167, 3atbase 37230 . . . . . . . . . . . . . 14 (𝑟𝐴𝑟 ∈ (Base‘𝐾))
1716ad2antlr 723 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → 𝑟 ∈ (Base‘𝐾))
187, 1latjcl 18072 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑝 𝑞) ∈ (Base‘𝐾) ∧ 𝑟 ∈ (Base‘𝐾)) → ((𝑝 𝑞) 𝑟) ∈ (Base‘𝐾))
1915, 9, 17, 18syl3anc 1369 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → ((𝑝 𝑞) 𝑟) ∈ (Base‘𝐾))
20 simpr 484 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → 𝑠𝐴)
217, 11, 1, 2, 3cvr1 37351 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ ((𝑝 𝑞) 𝑟) ∈ (Base‘𝐾) ∧ 𝑠𝐴) → (¬ 𝑠 ((𝑝 𝑞) 𝑟) ↔ ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)))
226, 19, 20, 21syl3anc 1369 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → (¬ 𝑠 ((𝑝 𝑞) 𝑟) ↔ ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)))
2314, 22anbi12d 630 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → (((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞)) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ ((𝑝𝑞 ∧ (𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟)) ∧ ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠))))
245, 23syl5bb 282 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) ∧ 𝑠𝐴) → ((𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ ((𝑝𝑞 ∧ (𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟)) ∧ ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠))))
2524rexbidva 3224 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) → (∃𝑠𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ ∃𝑠𝐴 ((𝑝𝑞 ∧ (𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟)) ∧ ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠))))
26 r19.42v 3276 . . . . . . . . 9 (∃𝑠𝐴 ((𝑝𝑞 ∧ (𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟)) ∧ ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)) ↔ ((𝑝𝑞 ∧ (𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟)) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)))
27 anass 468 . . . . . . . . 9 (((𝑝𝑞 ∧ (𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟)) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)) ↔ (𝑝𝑞 ∧ ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠))))
2826, 27bitri 274 . . . . . . . 8 (∃𝑠𝐴 ((𝑝𝑞 ∧ (𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟)) ∧ ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)) ↔ (𝑝𝑞 ∧ ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠))))
2925, 28bitrdi 286 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) ∧ 𝑟𝐴) → (∃𝑠𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ (𝑝𝑞 ∧ ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)))))
3029rexbidva 3224 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) → (∃𝑟𝐴𝑠𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ ∃𝑟𝐴 (𝑝𝑞 ∧ ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)))))
31 r19.42v 3276 . . . . . 6 (∃𝑟𝐴 (𝑝𝑞 ∧ ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠))) ↔ (𝑝𝑞 ∧ ∃𝑟𝐴 ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠))))
3230, 31bitrdi 286 . . . . 5 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) → (∃𝑟𝐴𝑠𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ (𝑝𝑞 ∧ ∃𝑟𝐴 ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)))))
331, 2, 3atcvr1 37358 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) → (𝑝𝑞𝑝( ⋖ ‘𝐾)(𝑝 𝑞)))
3433anbi1d 629 . . . . 5 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) → ((𝑝𝑞 ∧ ∃𝑟𝐴 ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠))) ↔ (𝑝( ⋖ ‘𝐾)(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)))))
3532, 34bitrd 278 . . . 4 ((𝐾 ∈ HL ∧ 𝑝𝐴𝑞𝐴) → (∃𝑟𝐴𝑠𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ (𝑝( ⋖ ‘𝐾)(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)))))
36353expb 1118 . . 3 ((𝐾 ∈ HL ∧ (𝑝𝐴𝑞𝐴)) → (∃𝑟𝐴𝑠𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ (𝑝( ⋖ ‘𝐾)(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)))))
37362rexbidva 3227 . 2 (𝐾 ∈ HL → (∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)) ↔ ∃𝑝𝐴𝑞𝐴 (𝑝( ⋖ ‘𝐾)(𝑝 𝑞) ∧ ∃𝑟𝐴 ((𝑝 𝑞)( ⋖ ‘𝐾)((𝑝 𝑞) 𝑟) ∧ ∃𝑠𝐴 ((𝑝 𝑞) 𝑟)( ⋖ ‘𝐾)(((𝑝 𝑞) 𝑟) 𝑠)))))
384, 37mpbird 256 1 (𝐾 ∈ HL → ∃𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 (𝑝𝑞 ∧ ¬ 𝑟 (𝑝 𝑞) ∧ ¬ 𝑠 ((𝑝 𝑞) 𝑟)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  joincjn 17944  Latclat 18064  ccvr 37203  Atomscatm 37204  HLchlt 37291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-p1 18059  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292
This theorem is referenced by:  3dim1  37408
  Copyright terms: Public domain W3C validator