Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3dim1 Structured version   Visualization version   GIF version

Theorem 3dim1 39469
Description: Construct a 3-dimensional volume (height-4 element) on top of a given atom 𝑃. (Contributed by NM, 25-Jul-2012.)
Hypotheses
Ref Expression
3dim0.j = (join‘𝐾)
3dim0.l = (le‘𝐾)
3dim0.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
3dim1 ((𝐾 ∈ HL ∧ 𝑃𝐴) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
Distinct variable groups:   𝑟,𝑞,𝑠,𝐴   ,𝑟,𝑠,𝑞   ,𝑞,𝑟,𝑠   𝑃,𝑞,𝑟,𝑠
Allowed substitution hints:   𝐾(𝑠,𝑟,𝑞)

Proof of Theorem 3dim1
Dummy variables 𝑢 𝑡 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3dim0.j . . . 4 = (join‘𝐾)
2 3dim0.l . . . 4 = (le‘𝐾)
3 3dim0.a . . . 4 𝐴 = (Atoms‘𝐾)
41, 2, 33dim0 39459 . . 3 (𝐾 ∈ HL → ∃𝑡𝐴𝑢𝐴𝑣𝐴𝑤𝐴 (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣)))
54adantr 480 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴) → ∃𝑡𝐴𝑢𝐴𝑣𝐴𝑤𝐴 (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣)))
6 simpl2 1193 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ 𝑃 = 𝑡) → (𝑢𝐴𝑣𝐴𝑤𝐴))
71, 2, 33dimlem1 39460 . . . . . . . . . . . 12 (((𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣)) ∧ 𝑃 = 𝑡) → (𝑃𝑢 ∧ ¬ 𝑣 (𝑃 𝑢) ∧ ¬ 𝑤 ((𝑃 𝑢) 𝑣)))
873ad2antl3 1188 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ 𝑃 = 𝑡) → (𝑃𝑢 ∧ ¬ 𝑣 (𝑃 𝑢) ∧ ¬ 𝑤 ((𝑃 𝑢) 𝑣)))
91, 2, 33dim1lem5 39468 . . . . . . . . . . 11 (((𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑃𝑢 ∧ ¬ 𝑣 (𝑃 𝑢) ∧ ¬ 𝑤 ((𝑃 𝑢) 𝑣))) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
106, 8, 9syl2anc 584 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ 𝑃 = 𝑡) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
11 simp13 1206 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → 𝑡𝐴)
12 simp22 1208 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → 𝑣𝐴)
13 simp23 1209 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → 𝑤𝐴)
1411, 12, 133jca 1129 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → (𝑡𝐴𝑣𝐴𝑤𝐴))
1514ad2antrr 726 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ 𝑃𝑡) ∧ 𝑃 (𝑡 𝑢)) → (𝑡𝐴𝑣𝐴𝑤𝐴))
16 simpll1 1213 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ 𝑃𝑡) ∧ 𝑃 (𝑡 𝑢)) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴))
17 simp21 1207 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → 𝑢𝐴)
18 simp32 1211 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → ¬ 𝑣 (𝑡 𝑢))
19 simp33 1212 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → ¬ 𝑤 ((𝑡 𝑢) 𝑣))
2017, 18, 193jca 1129 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → (𝑢𝐴 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣)))
2120ad2antrr 726 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ 𝑃𝑡) ∧ 𝑃 (𝑡 𝑢)) → (𝑢𝐴 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣)))
22 simplr 769 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ 𝑃𝑡) ∧ 𝑃 (𝑡 𝑢)) → 𝑃𝑡)
23 simpr 484 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ 𝑃𝑡) ∧ 𝑃 (𝑡 𝑢)) → 𝑃 (𝑡 𝑢))
241, 2, 33dimlem2 39461 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣)) ∧ (𝑃𝑡𝑃 (𝑡 𝑢))) → (𝑃𝑡 ∧ ¬ 𝑣 (𝑃 𝑡) ∧ ¬ 𝑤 ((𝑃 𝑡) 𝑣)))
2516, 21, 22, 23, 24syl112anc 1376 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ 𝑃𝑡) ∧ 𝑃 (𝑡 𝑢)) → (𝑃𝑡 ∧ ¬ 𝑣 (𝑃 𝑡) ∧ ¬ 𝑤 ((𝑃 𝑡) 𝑣)))
261, 2, 33dim1lem5 39468 . . . . . . . . . . . 12 (((𝑡𝐴𝑣𝐴𝑤𝐴) ∧ (𝑃𝑡 ∧ ¬ 𝑣 (𝑃 𝑡) ∧ ¬ 𝑤 ((𝑃 𝑡) 𝑣))) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
2715, 25, 26syl2anc 584 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ 𝑃𝑡) ∧ 𝑃 (𝑡 𝑢)) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
2811, 17, 133jca 1129 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → (𝑡𝐴𝑢𝐴𝑤𝐴))
2928ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) ∧ 𝑃 ((𝑡 𝑢) 𝑣)) → (𝑡𝐴𝑢𝐴𝑤𝐴))
30 simp1 1137 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴))
3117, 12jca 511 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → (𝑢𝐴𝑣𝐴))
32 simp31 1210 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → 𝑡𝑢)
3332, 19jca 511 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → (𝑡𝑢 ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣)))
3430, 31, 333jca 1129 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → ((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))))
3534ad2antrr 726 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) ∧ 𝑃 ((𝑡 𝑢) 𝑣)) → ((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))))
36 simplrl 777 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) ∧ 𝑃 ((𝑡 𝑢) 𝑣)) → 𝑃𝑡)
37 simplrr 778 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) ∧ 𝑃 ((𝑡 𝑢) 𝑣)) → ¬ 𝑃 (𝑡 𝑢))
38 simpr 484 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) ∧ 𝑃 ((𝑡 𝑢) 𝑣)) → 𝑃 ((𝑡 𝑢) 𝑣))
391, 2, 33dimlem3 39463 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢) ∧ 𝑃 ((𝑡 𝑢) 𝑣))) → (𝑃𝑡 ∧ ¬ 𝑢 (𝑃 𝑡) ∧ ¬ 𝑤 ((𝑃 𝑡) 𝑢)))
4035, 36, 37, 38, 39syl13anc 1374 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) ∧ 𝑃 ((𝑡 𝑢) 𝑣)) → (𝑃𝑡 ∧ ¬ 𝑢 (𝑃 𝑡) ∧ ¬ 𝑤 ((𝑃 𝑡) 𝑢)))
411, 2, 33dim1lem5 39468 . . . . . . . . . . . . . 14 (((𝑡𝐴𝑢𝐴𝑤𝐴) ∧ (𝑃𝑡 ∧ ¬ 𝑢 (𝑃 𝑡) ∧ ¬ 𝑤 ((𝑃 𝑡) 𝑢))) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
4229, 40, 41syl2anc 584 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) ∧ 𝑃 ((𝑡 𝑢) 𝑣)) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
4311, 17, 123jca 1129 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → (𝑡𝐴𝑢𝐴𝑣𝐴))
4443ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) ∧ ¬ 𝑃 ((𝑡 𝑢) 𝑣)) → (𝑡𝐴𝑢𝐴𝑣𝐴))
45 simpl1 1192 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴))
46 simpl21 1252 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) → 𝑢𝐴)
47 simpl22 1253 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) → 𝑣𝐴)
4846, 47jca 511 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) → (𝑢𝐴𝑣𝐴))
49 simpl31 1255 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) → 𝑡𝑢)
50 simpl32 1256 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) → ¬ 𝑣 (𝑡 𝑢))
5149, 50jca 511 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) → (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢)))
5245, 48, 513jca 1129 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) → ((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢))))
5352adantr 480 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) ∧ ¬ 𝑃 ((𝑡 𝑢) 𝑣)) → ((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢))))
54 simplr 769 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) ∧ ¬ 𝑃 ((𝑡 𝑢) 𝑣)) → (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢)))
55 simpr 484 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) ∧ ¬ 𝑃 ((𝑡 𝑢) 𝑣)) → ¬ 𝑃 ((𝑡 𝑢) 𝑣))
561, 2, 33dimlem4 39466 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢)) ∧ ¬ 𝑃 ((𝑡 𝑢) 𝑣)) → (𝑃𝑡 ∧ ¬ 𝑢 (𝑃 𝑡) ∧ ¬ 𝑣 ((𝑃 𝑡) 𝑢)))
5753, 54, 55, 56syl3anc 1373 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) ∧ ¬ 𝑃 ((𝑡 𝑢) 𝑣)) → (𝑃𝑡 ∧ ¬ 𝑢 (𝑃 𝑡) ∧ ¬ 𝑣 ((𝑃 𝑡) 𝑢)))
581, 2, 33dim1lem5 39468 . . . . . . . . . . . . . 14 (((𝑡𝐴𝑢𝐴𝑣𝐴) ∧ (𝑃𝑡 ∧ ¬ 𝑢 (𝑃 𝑡) ∧ ¬ 𝑣 ((𝑃 𝑡) 𝑢))) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
5944, 57, 58syl2anc 584 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) ∧ ¬ 𝑃 ((𝑡 𝑢) 𝑣)) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
6042, 59pm2.61dan 813 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
6160anassrs 467 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ 𝑃𝑡) ∧ ¬ 𝑃 (𝑡 𝑢)) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
6227, 61pm2.61dan 813 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ 𝑃𝑡) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
6310, 62pm2.61dane 3029 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
64633exp 1120 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) → ((𝑢𝐴𝑣𝐴𝑤𝐴) → ((𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣)) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))))
65643expd 1354 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) → (𝑢𝐴 → (𝑣𝐴 → (𝑤𝐴 → ((𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣)) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))))))
66653exp 1120 . . . . . 6 (𝐾 ∈ HL → (𝑃𝐴 → (𝑡𝐴 → (𝑢𝐴 → (𝑣𝐴 → (𝑤𝐴 → ((𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣)) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))))))))
6766imp43 427 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑡𝐴𝑢𝐴)) → (𝑣𝐴 → (𝑤𝐴 → ((𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣)) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟))))))
6867impd 410 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑡𝐴𝑢𝐴)) → ((𝑣𝐴𝑤𝐴) → ((𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣)) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))))
6968rexlimdvv 3212 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑡𝐴𝑢𝐴)) → (∃𝑣𝐴𝑤𝐴 (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣)) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟))))
7069rexlimdvva 3213 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (∃𝑡𝐴𝑢𝐴𝑣𝐴𝑤𝐴 (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣)) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟))))
715, 70mpd 15 1 ((𝐾 ∈ HL ∧ 𝑃𝐴) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wrex 3070   class class class wbr 5143  cfv 6561  (class class class)co 7431  lecple 17304  joincjn 18357  Atomscatm 39264  HLchlt 39351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-p1 18471  df-lat 18477  df-clat 18544  df-oposet 39177  df-ol 39179  df-oml 39180  df-covers 39267  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352
This theorem is referenced by:  3dim2  39470  2dim  39472
  Copyright terms: Public domain W3C validator