Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3dim1 Structured version   Visualization version   GIF version

Theorem 3dim1 39432
Description: Construct a 3-dimensional volume (height-4 element) on top of a given atom 𝑃. (Contributed by NM, 25-Jul-2012.)
Hypotheses
Ref Expression
3dim0.j = (join‘𝐾)
3dim0.l = (le‘𝐾)
3dim0.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
3dim1 ((𝐾 ∈ HL ∧ 𝑃𝐴) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
Distinct variable groups:   𝑟,𝑞,𝑠,𝐴   ,𝑟,𝑠,𝑞   ,𝑞,𝑟,𝑠   𝑃,𝑞,𝑟,𝑠
Allowed substitution hints:   𝐾(𝑠,𝑟,𝑞)

Proof of Theorem 3dim1
Dummy variables 𝑢 𝑡 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3dim0.j . . . 4 = (join‘𝐾)
2 3dim0.l . . . 4 = (le‘𝐾)
3 3dim0.a . . . 4 𝐴 = (Atoms‘𝐾)
41, 2, 33dim0 39422 . . 3 (𝐾 ∈ HL → ∃𝑡𝐴𝑢𝐴𝑣𝐴𝑤𝐴 (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣)))
54adantr 480 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴) → ∃𝑡𝐴𝑢𝐴𝑣𝐴𝑤𝐴 (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣)))
6 simpl2 1193 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ 𝑃 = 𝑡) → (𝑢𝐴𝑣𝐴𝑤𝐴))
71, 2, 33dimlem1 39423 . . . . . . . . . . . 12 (((𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣)) ∧ 𝑃 = 𝑡) → (𝑃𝑢 ∧ ¬ 𝑣 (𝑃 𝑢) ∧ ¬ 𝑤 ((𝑃 𝑢) 𝑣)))
873ad2antl3 1188 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ 𝑃 = 𝑡) → (𝑃𝑢 ∧ ¬ 𝑣 (𝑃 𝑢) ∧ ¬ 𝑤 ((𝑃 𝑢) 𝑣)))
91, 2, 33dim1lem5 39431 . . . . . . . . . . 11 (((𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑃𝑢 ∧ ¬ 𝑣 (𝑃 𝑢) ∧ ¬ 𝑤 ((𝑃 𝑢) 𝑣))) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
106, 8, 9syl2anc 584 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ 𝑃 = 𝑡) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
11 simp13 1206 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → 𝑡𝐴)
12 simp22 1208 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → 𝑣𝐴)
13 simp23 1209 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → 𝑤𝐴)
1411, 12, 133jca 1128 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → (𝑡𝐴𝑣𝐴𝑤𝐴))
1514ad2antrr 726 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ 𝑃𝑡) ∧ 𝑃 (𝑡 𝑢)) → (𝑡𝐴𝑣𝐴𝑤𝐴))
16 simpll1 1213 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ 𝑃𝑡) ∧ 𝑃 (𝑡 𝑢)) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴))
17 simp21 1207 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → 𝑢𝐴)
18 simp32 1211 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → ¬ 𝑣 (𝑡 𝑢))
19 simp33 1212 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → ¬ 𝑤 ((𝑡 𝑢) 𝑣))
2017, 18, 193jca 1128 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → (𝑢𝐴 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣)))
2120ad2antrr 726 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ 𝑃𝑡) ∧ 𝑃 (𝑡 𝑢)) → (𝑢𝐴 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣)))
22 simplr 768 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ 𝑃𝑡) ∧ 𝑃 (𝑡 𝑢)) → 𝑃𝑡)
23 simpr 484 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ 𝑃𝑡) ∧ 𝑃 (𝑡 𝑢)) → 𝑃 (𝑡 𝑢))
241, 2, 33dimlem2 39424 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣)) ∧ (𝑃𝑡𝑃 (𝑡 𝑢))) → (𝑃𝑡 ∧ ¬ 𝑣 (𝑃 𝑡) ∧ ¬ 𝑤 ((𝑃 𝑡) 𝑣)))
2516, 21, 22, 23, 24syl112anc 1376 . . . . . . . . . . . 12 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ 𝑃𝑡) ∧ 𝑃 (𝑡 𝑢)) → (𝑃𝑡 ∧ ¬ 𝑣 (𝑃 𝑡) ∧ ¬ 𝑤 ((𝑃 𝑡) 𝑣)))
261, 2, 33dim1lem5 39431 . . . . . . . . . . . 12 (((𝑡𝐴𝑣𝐴𝑤𝐴) ∧ (𝑃𝑡 ∧ ¬ 𝑣 (𝑃 𝑡) ∧ ¬ 𝑤 ((𝑃 𝑡) 𝑣))) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
2715, 25, 26syl2anc 584 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ 𝑃𝑡) ∧ 𝑃 (𝑡 𝑢)) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
2811, 17, 133jca 1128 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → (𝑡𝐴𝑢𝐴𝑤𝐴))
2928ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) ∧ 𝑃 ((𝑡 𝑢) 𝑣)) → (𝑡𝐴𝑢𝐴𝑤𝐴))
30 simp1 1136 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴))
3117, 12jca 511 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → (𝑢𝐴𝑣𝐴))
32 simp31 1210 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → 𝑡𝑢)
3332, 19jca 511 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → (𝑡𝑢 ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣)))
3430, 31, 333jca 1128 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → ((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))))
3534ad2antrr 726 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) ∧ 𝑃 ((𝑡 𝑢) 𝑣)) → ((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))))
36 simplrl 776 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) ∧ 𝑃 ((𝑡 𝑢) 𝑣)) → 𝑃𝑡)
37 simplrr 777 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) ∧ 𝑃 ((𝑡 𝑢) 𝑣)) → ¬ 𝑃 (𝑡 𝑢))
38 simpr 484 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) ∧ 𝑃 ((𝑡 𝑢) 𝑣)) → 𝑃 ((𝑡 𝑢) 𝑣))
391, 2, 33dimlem3 39426 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢) ∧ 𝑃 ((𝑡 𝑢) 𝑣))) → (𝑃𝑡 ∧ ¬ 𝑢 (𝑃 𝑡) ∧ ¬ 𝑤 ((𝑃 𝑡) 𝑢)))
4035, 36, 37, 38, 39syl13anc 1374 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) ∧ 𝑃 ((𝑡 𝑢) 𝑣)) → (𝑃𝑡 ∧ ¬ 𝑢 (𝑃 𝑡) ∧ ¬ 𝑤 ((𝑃 𝑡) 𝑢)))
411, 2, 33dim1lem5 39431 . . . . . . . . . . . . . 14 (((𝑡𝐴𝑢𝐴𝑤𝐴) ∧ (𝑃𝑡 ∧ ¬ 𝑢 (𝑃 𝑡) ∧ ¬ 𝑤 ((𝑃 𝑡) 𝑢))) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
4229, 40, 41syl2anc 584 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) ∧ 𝑃 ((𝑡 𝑢) 𝑣)) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
4311, 17, 123jca 1128 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → (𝑡𝐴𝑢𝐴𝑣𝐴))
4443ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) ∧ ¬ 𝑃 ((𝑡 𝑢) 𝑣)) → (𝑡𝐴𝑢𝐴𝑣𝐴))
45 simpl1 1192 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴))
46 simpl21 1252 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) → 𝑢𝐴)
47 simpl22 1253 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) → 𝑣𝐴)
4846, 47jca 511 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) → (𝑢𝐴𝑣𝐴))
49 simpl31 1255 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) → 𝑡𝑢)
50 simpl32 1256 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) → ¬ 𝑣 (𝑡 𝑢))
5149, 50jca 511 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) → (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢)))
5245, 48, 513jca 1128 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) → ((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢))))
5352adantr 480 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) ∧ ¬ 𝑃 ((𝑡 𝑢) 𝑣)) → ((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢))))
54 simplr 768 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) ∧ ¬ 𝑃 ((𝑡 𝑢) 𝑣)) → (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢)))
55 simpr 484 . . . . . . . . . . . . . . 15 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) ∧ ¬ 𝑃 ((𝑡 𝑢) 𝑣)) → ¬ 𝑃 ((𝑡 𝑢) 𝑣))
561, 2, 33dimlem4 39429 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢)) ∧ ¬ 𝑃 ((𝑡 𝑢) 𝑣)) → (𝑃𝑡 ∧ ¬ 𝑢 (𝑃 𝑡) ∧ ¬ 𝑣 ((𝑃 𝑡) 𝑢)))
5753, 54, 55, 56syl3anc 1373 . . . . . . . . . . . . . 14 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) ∧ ¬ 𝑃 ((𝑡 𝑢) 𝑣)) → (𝑃𝑡 ∧ ¬ 𝑢 (𝑃 𝑡) ∧ ¬ 𝑣 ((𝑃 𝑡) 𝑢)))
581, 2, 33dim1lem5 39431 . . . . . . . . . . . . . 14 (((𝑡𝐴𝑢𝐴𝑣𝐴) ∧ (𝑃𝑡 ∧ ¬ 𝑢 (𝑃 𝑡) ∧ ¬ 𝑣 ((𝑃 𝑡) 𝑢))) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
5944, 57, 58syl2anc 584 . . . . . . . . . . . . 13 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) ∧ ¬ 𝑃 ((𝑡 𝑢) 𝑣)) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
6042, 59pm2.61dan 812 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ (𝑃𝑡 ∧ ¬ 𝑃 (𝑡 𝑢))) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
6160anassrs 467 . . . . . . . . . . 11 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ 𝑃𝑡) ∧ ¬ 𝑃 (𝑡 𝑢)) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
6227, 61pm2.61dan 812 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) ∧ 𝑃𝑡) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
6310, 62pm2.61dane 3019 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴) ∧ (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣))) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
64633exp 1119 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) → ((𝑢𝐴𝑣𝐴𝑤𝐴) → ((𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣)) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))))
65643expd 1354 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑡𝐴) → (𝑢𝐴 → (𝑣𝐴 → (𝑤𝐴 → ((𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣)) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))))))
66653exp 1119 . . . . . 6 (𝐾 ∈ HL → (𝑃𝐴 → (𝑡𝐴 → (𝑢𝐴 → (𝑣𝐴 → (𝑤𝐴 → ((𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣)) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))))))))
6766imp43 427 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑡𝐴𝑢𝐴)) → (𝑣𝐴 → (𝑤𝐴 → ((𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣)) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟))))))
6867impd 410 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑡𝐴𝑢𝐴)) → ((𝑣𝐴𝑤𝐴) → ((𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣)) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))))
6968rexlimdvv 3197 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ (𝑡𝐴𝑢𝐴)) → (∃𝑣𝐴𝑤𝐴 (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣)) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟))))
7069rexlimdvva 3198 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (∃𝑡𝐴𝑢𝐴𝑣𝐴𝑤𝐴 (𝑡𝑢 ∧ ¬ 𝑣 (𝑡 𝑢) ∧ ¬ 𝑤 ((𝑡 𝑢) 𝑣)) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟))))
715, 70mpd 15 1 ((𝐾 ∈ HL ∧ 𝑃𝐴) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟 (𝑃 𝑞) ∧ ¬ 𝑠 ((𝑃 𝑞) 𝑟)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wrex 3060   class class class wbr 5119  cfv 6530  (class class class)co 7403  lecple 17276  joincjn 18321  Atomscatm 39227  HLchlt 39314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-proset 18304  df-poset 18323  df-plt 18338  df-lub 18354  df-glb 18355  df-join 18356  df-meet 18357  df-p0 18433  df-p1 18434  df-lat 18440  df-clat 18507  df-oposet 39140  df-ol 39142  df-oml 39143  df-covers 39230  df-ats 39231  df-atl 39262  df-cvlat 39286  df-hlat 39315
This theorem is referenced by:  3dim2  39433  2dim  39435
  Copyright terms: Public domain W3C validator