Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3dimlem2 Structured version   Visualization version   GIF version

Theorem 3dimlem2 38843
Description: Lemma for 3dim1 38851. (Contributed by NM, 25-Jul-2012.)
Hypotheses
Ref Expression
3dim0.j ∨ = (joinβ€˜πΎ)
3dim0.l ≀ = (leβ€˜πΎ)
3dim0.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
3dimlem2 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆)) ∧ (𝑃 β‰  𝑄 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) β†’ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑆)))

Proof of Theorem 3dimlem2
StepHypRef Expression
1 simp3l 1198 . 2 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆)) ∧ (𝑃 β‰  𝑄 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) β†’ 𝑃 β‰  𝑄)
2 simp22 1204 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆)) ∧ (𝑃 β‰  𝑄 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) β†’ Β¬ 𝑆 ≀ (𝑄 ∨ 𝑅))
3 3dim0.j . . . . . . 7 ∨ = (joinβ€˜πΎ)
4 3dim0.a . . . . . . 7 𝐴 = (Atomsβ€˜πΎ)
53, 4hlatjcom 38751 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃))
653ad2ant1 1130 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆)) ∧ (𝑃 β‰  𝑄 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) β†’ (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃))
7 simp3r 1199 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆)) ∧ (𝑃 β‰  𝑄 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) β†’ 𝑃 ≀ (𝑄 ∨ 𝑅))
8 simp11 1200 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆)) ∧ (𝑃 β‰  𝑄 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) β†’ 𝐾 ∈ HL)
9 simp12 1201 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆)) ∧ (𝑃 β‰  𝑄 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) β†’ 𝑃 ∈ 𝐴)
10 simp21 1203 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆)) ∧ (𝑃 β‰  𝑄 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) β†’ 𝑅 ∈ 𝐴)
11 simp13 1202 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆)) ∧ (𝑃 β‰  𝑄 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) β†’ 𝑄 ∈ 𝐴)
12 3dim0.l . . . . . . . 8 ≀ = (leβ€˜πΎ)
1312, 3, 4hlatexchb1 38777 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) β†’ (𝑃 ≀ (𝑄 ∨ 𝑅) ↔ (𝑄 ∨ 𝑃) = (𝑄 ∨ 𝑅)))
148, 9, 10, 11, 1, 13syl131anc 1380 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆)) ∧ (𝑃 β‰  𝑄 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) β†’ (𝑃 ≀ (𝑄 ∨ 𝑅) ↔ (𝑄 ∨ 𝑃) = (𝑄 ∨ 𝑅)))
157, 14mpbid 231 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆)) ∧ (𝑃 β‰  𝑄 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) β†’ (𝑄 ∨ 𝑃) = (𝑄 ∨ 𝑅))
166, 15eqtrd 2766 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆)) ∧ (𝑃 β‰  𝑄 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) β†’ (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑅))
1716breq2d 5153 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆)) ∧ (𝑃 β‰  𝑄 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) β†’ (𝑆 ≀ (𝑃 ∨ 𝑄) ↔ 𝑆 ≀ (𝑄 ∨ 𝑅)))
182, 17mtbird 325 . 2 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆)) ∧ (𝑃 β‰  𝑄 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) β†’ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))
19 simp23 1205 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆)) ∧ (𝑃 β‰  𝑄 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) β†’ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))
2016oveq1d 7420 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆)) ∧ (𝑃 β‰  𝑄 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑆) = ((𝑄 ∨ 𝑅) ∨ 𝑆))
2120breq2d 5153 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆)) ∧ (𝑃 β‰  𝑄 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) β†’ (𝑇 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑆) ↔ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆)))
2219, 21mtbird 325 . 2 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆)) ∧ (𝑃 β‰  𝑄 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) β†’ Β¬ 𝑇 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑆))
231, 18, 223jca 1125 1 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆)) ∧ (𝑃 β‰  𝑄 ∧ 𝑃 ≀ (𝑄 ∨ 𝑅))) β†’ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2934   class class class wbr 5141  β€˜cfv 6537  (class class class)co 7405  lecple 17213  joincjn 18276  Atomscatm 38646  HLchlt 38733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-proset 18260  df-poset 18278  df-plt 18295  df-lub 18311  df-glb 18312  df-join 18313  df-meet 18314  df-p0 18390  df-lat 18397  df-covers 38649  df-ats 38650  df-atl 38681  df-cvlat 38705  df-hlat 38734
This theorem is referenced by:  3dim1  38851  3dim2  38852
  Copyright terms: Public domain W3C validator