| Metamath
Proof Explorer Theorem List (p. 101 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30853) |
(30854-32376) |
(32377-49784) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | acnrcl 10001 | Reverse closure for the choice set predicate. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝑋 ∈ AC 𝐴 → 𝐴 ∈ V) | ||
| Theorem | acneq 10002 | Equality theorem for the choice set function. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝐴 = 𝐶 → AC 𝐴 = AC 𝐶) | ||
| Theorem | isacn 10003* | The property of being a choice set of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑋 ∈ AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥))) | ||
| Theorem | acni 10004* | The property of being a choice set of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ ((𝑋 ∈ AC 𝐴 ∧ 𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅})) → ∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝐹‘𝑥)) | ||
| Theorem | acni2 10005* | The property of being a choice set of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ ((𝑋 ∈ AC 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅)) → ∃𝑔(𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ 𝐵)) | ||
| Theorem | acni3 10006* | The property of being a choice set of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝑦 = (𝑔‘𝑥) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝑋 ∈ AC 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑋 𝜑) → ∃𝑔(𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 𝜓)) | ||
| Theorem | acnlem 10007* | Construct a mapping satisfying the consequent of isacn 10003. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (𝑓‘𝑥)) → ∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥)) | ||
| Theorem | numacn 10008 | A well-orderable set has choice sequences of every length. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝑋 ∈ dom card → 𝑋 ∈ AC 𝐴)) | ||
| Theorem | finacn 10009 | Every set has finite choice sequences. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝐴 ∈ Fin → AC 𝐴 = V) | ||
| Theorem | acndom 10010 | A set with long choice sequences also has shorter choice sequences, where "shorter" here means the new index set is dominated by the old index set. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝐴 ≼ 𝐵 → (𝑋 ∈ AC 𝐵 → 𝑋 ∈ AC 𝐴)) | ||
| Theorem | acnnum 10011 | A set 𝑋 which has choice sequences on it of length 𝒫 𝑋 is well-orderable (and hence has choice sequences of every length). (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝑋 ∈ AC 𝒫 𝑋 ↔ 𝑋 ∈ dom card) | ||
| Theorem | acnen 10012 | The class of choice sets of length 𝐴 is a cardinal invariant. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝐴 ≈ 𝐵 → AC 𝐴 = AC 𝐵) | ||
| Theorem | acndom2 10013 | A set smaller than one with choice sequences of length 𝐴 also has choice sequences of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝑋 ≼ 𝑌 → (𝑌 ∈ AC 𝐴 → 𝑋 ∈ AC 𝐴)) | ||
| Theorem | acnen2 10014 | The class of sets with choice sequences of length 𝐴 is a cardinal invariant. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝑋 ≈ 𝑌 → (𝑋 ∈ AC 𝐴 ↔ 𝑌 ∈ AC 𝐴)) | ||
| Theorem | fodomacn 10015 | A version of fodom 10482 that doesn't require the Axiom of Choice ax-ac 10418. If 𝐴 has choice sequences of length 𝐵, then any surjection from 𝐴 to 𝐵 can be inverted to an injection the other way. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝐴 ∈ AC 𝐵 → (𝐹:𝐴–onto→𝐵 → 𝐵 ≼ 𝐴)) | ||
| Theorem | fodomnum 10016 | A version of fodom 10482 that doesn't require the Axiom of Choice ax-ac 10418. (Contributed by Mario Carneiro, 28-Feb-2013.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐴 ∈ dom card → (𝐹:𝐴–onto→𝐵 → 𝐵 ≼ 𝐴)) | ||
| Theorem | fonum 10017 | A surjection maps numerable sets to numerable sets. (Contributed by Mario Carneiro, 30-Apr-2015.) |
| ⊢ ((𝐴 ∈ dom card ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ∈ dom card) | ||
| Theorem | numwdom 10018 | A surjection maps numerable sets to numerable sets. (Contributed by Mario Carneiro, 27-Aug-2015.) |
| ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ≼* 𝐴) → 𝐵 ∈ dom card) | ||
| Theorem | fodomfi2 10019 | Onto functions define dominance when a finite number of choices need to be made. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ≼ 𝐴) | ||
| Theorem | wdomfil 10020 | Weak dominance agrees with normal for finite left sets. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
| ⊢ (𝑋 ∈ Fin → (𝑋 ≼* 𝑌 ↔ 𝑋 ≼ 𝑌)) | ||
| Theorem | infpwfien 10021 | Any infinite well-orderable set is equinumerous to its set of finite subsets. (Contributed by Mario Carneiro, 18-May-2015.) |
| ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝒫 𝐴 ∩ Fin) ≈ 𝐴) | ||
| Theorem | inffien 10022 | The set of finite intersections of an infinite well-orderable set is equinumerous to the set itself. (Contributed by Mario Carneiro, 18-May-2015.) |
| ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (fi‘𝐴) ≈ 𝐴) | ||
| Theorem | wdomnumr 10023 | Weak dominance agrees with normal for numerable right sets. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
| ⊢ (𝐵 ∈ dom card → (𝐴 ≼* 𝐵 ↔ 𝐴 ≼ 𝐵)) | ||
| Theorem | alephfnon 10024 | The aleph function is a function on the class of ordinal numbers. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| ⊢ ℵ Fn On | ||
| Theorem | aleph0 10025 | The first infinite cardinal number, discovered by Georg Cantor in 1873, has the same size as the set of natural numbers ω (and under our particular definition is also equal to it). In the literature, the argument of the aleph function is often written as a subscript, and the first aleph is written ℵ0. Exercise 3 of [TakeutiZaring] p. 91. Also Definition 12(i) of [Suppes] p. 228. From Moshé Machover, Set Theory, Logic, and Their Limitations, p. 95: "Aleph ... the first letter in the Hebrew alphabet ... is also the first letter of the Hebrew word ... (einsoph, meaning infinity), which is a cabbalistic appellation of the deity. The notation is due to Cantor, who was deeply interested in mysticism." (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| ⊢ (ℵ‘∅) = ω | ||
| Theorem | alephlim 10026* | Value of the aleph function at a limit ordinal. Definition 12(iii) of [Suppes] p. 91. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) → (ℵ‘𝐴) = ∪ 𝑥 ∈ 𝐴 (ℵ‘𝑥)) | ||
| Theorem | alephsuc 10027 | Value of the aleph function at a successor ordinal. Definition 12(ii) of [Suppes] p. 91. Here we express the successor aleph in terms of the Hartogs function df-har 9516, which gives the smallest ordinal that strictly dominates its argument (or the supremum of all ordinals that are dominated by the argument). (Contributed by Mario Carneiro, 13-Sep-2013.) (Revised by Mario Carneiro, 15-May-2015.) |
| ⊢ (𝐴 ∈ On → (ℵ‘suc 𝐴) = (har‘(ℵ‘𝐴))) | ||
| Theorem | alephon 10028 | An aleph is an ordinal number. (Contributed by NM, 10-Nov-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| ⊢ (ℵ‘𝐴) ∈ On | ||
| Theorem | alephcard 10029 | Every aleph is a cardinal number. Theorem 65 of [Suppes] p. 229. (Contributed by NM, 25-Oct-2003.) (Revised by Mario Carneiro, 2-Feb-2013.) |
| ⊢ (card‘(ℵ‘𝐴)) = (ℵ‘𝐴) | ||
| Theorem | alephnbtwn 10030 | No cardinal can be sandwiched between an aleph and its successor aleph. Theorem 67 of [Suppes] p. 229. (Contributed by NM, 10-Nov-2003.) (Revised by Mario Carneiro, 15-May-2015.) |
| ⊢ ((card‘𝐵) = 𝐵 → ¬ ((ℵ‘𝐴) ∈ 𝐵 ∧ 𝐵 ∈ (ℵ‘suc 𝐴))) | ||
| Theorem | alephnbtwn2 10031 | No set has equinumerosity between an aleph and its successor aleph. (Contributed by NM, 3-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.) |
| ⊢ ¬ ((ℵ‘𝐴) ≺ 𝐵 ∧ 𝐵 ≺ (ℵ‘suc 𝐴)) | ||
| Theorem | alephordilem1 10032 | Lemma for alephordi 10033. (Contributed by NM, 23-Oct-2009.) (Revised by Mario Carneiro, 15-May-2015.) |
| ⊢ (𝐴 ∈ On → (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)) | ||
| Theorem | alephordi 10033 | Strict ordering property of the aleph function. (Contributed by Mario Carneiro, 2-Feb-2013.) |
| ⊢ (𝐵 ∈ On → (𝐴 ∈ 𝐵 → (ℵ‘𝐴) ≺ (ℵ‘𝐵))) | ||
| Theorem | alephord 10034 | Ordering property of the aleph function. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 9-Feb-2013.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 ↔ (ℵ‘𝐴) ≺ (ℵ‘𝐵))) | ||
| Theorem | alephord2 10035 | Ordering property of the aleph function. Theorem 8A(a) of [Enderton] p. 213 and its converse. (Contributed by NM, 3-Nov-2003.) (Revised by Mario Carneiro, 9-Feb-2013.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 ↔ (ℵ‘𝐴) ∈ (ℵ‘𝐵))) | ||
| Theorem | alephord2i 10036 | Ordering property of the aleph function. Theorem 66 of [Suppes] p. 229. (Contributed by NM, 25-Oct-2003.) |
| ⊢ (𝐵 ∈ On → (𝐴 ∈ 𝐵 → (ℵ‘𝐴) ∈ (ℵ‘𝐵))) | ||
| Theorem | alephord3 10037 | Ordering property of the aleph function. (Contributed by NM, 11-Nov-2003.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (ℵ‘𝐴) ⊆ (ℵ‘𝐵))) | ||
| Theorem | alephsucdom 10038 | A set dominated by an aleph is strictly dominated by its successor aleph and vice-versa. (Contributed by NM, 3-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.) |
| ⊢ (𝐵 ∈ On → (𝐴 ≼ (ℵ‘𝐵) ↔ 𝐴 ≺ (ℵ‘suc 𝐵))) | ||
| Theorem | alephsuc2 10039* | An alternate representation of a successor aleph. The aleph function is the function obtained from the hartogs 9503 function by transfinite recursion, starting from ω. Using this theorem we could define the aleph function with {𝑧 ∈ On ∣ 𝑧 ≼ 𝑥} in place of ∩ {𝑧 ∈ On ∣ 𝑥 ≺ 𝑧} in df-aleph 9899. (Contributed by NM, 3-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.) |
| ⊢ (𝐴 ∈ On → (ℵ‘suc 𝐴) = {𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)}) | ||
| Theorem | alephdom 10040 | Relationship between inclusion of ordinal numbers and dominance of infinite initial ordinals. (Contributed by Jeff Hankins, 23-Oct-2009.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (ℵ‘𝐴) ≼ (ℵ‘𝐵))) | ||
| Theorem | alephgeom 10041 | Every aleph is greater than or equal to the set of natural numbers. (Contributed by NM, 11-Nov-2003.) |
| ⊢ (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴)) | ||
| Theorem | alephislim 10042 | Every aleph is a limit ordinal. (Contributed by NM, 11-Nov-2003.) |
| ⊢ (𝐴 ∈ On ↔ Lim (ℵ‘𝐴)) | ||
| Theorem | aleph11 10043 | The aleph function is one-to-one. (Contributed by NM, 3-Aug-2004.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ℵ‘𝐴) = (ℵ‘𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | alephf1 10044 | The aleph function is a one-to-one mapping from the ordinals to the infinite cardinals. See also alephf1ALT 10062. (Contributed by Mario Carneiro, 2-Feb-2013.) |
| ⊢ ℵ:On–1-1→On | ||
| Theorem | alephsdom 10045 | If an ordinal is smaller than an initial ordinal, it is strictly dominated by it. (Contributed by Jeff Hankins, 24-Oct-2009.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ (ℵ‘𝐵) ↔ 𝐴 ≺ (ℵ‘𝐵))) | ||
| Theorem | alephdom2 10046 | A dominated initial ordinal is included. (Contributed by Jeff Hankins, 24-Oct-2009.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ℵ‘𝐴) ⊆ 𝐵 ↔ (ℵ‘𝐴) ≼ 𝐵)) | ||
| Theorem | alephle 10047 | The argument of the aleph function is less than or equal to its value. Exercise 2 of [TakeutiZaring] p. 91. (Later, in alephfp2 10068, we will that equality can sometimes hold.) (Contributed by NM, 9-Nov-2003.) (Proof shortened by Mario Carneiro, 22-Feb-2013.) |
| ⊢ (𝐴 ∈ On → 𝐴 ⊆ (ℵ‘𝐴)) | ||
| Theorem | cardaleph 10048* | Given any transfinite cardinal number 𝐴, there is exactly one aleph that is equal to it. Here we compute that aleph explicitly. (Contributed by NM, 9-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.) |
| ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) → 𝐴 = (ℵ‘∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (ℵ‘𝑥)})) | ||
| Theorem | cardalephex 10049* | Every transfinite cardinal is an aleph and vice-versa. Theorem 8A(b) of [Enderton] p. 213 and its converse. (Contributed by NM, 5-Nov-2003.) |
| ⊢ (ω ⊆ 𝐴 → ((card‘𝐴) = 𝐴 ↔ ∃𝑥 ∈ On 𝐴 = (ℵ‘𝑥))) | ||
| Theorem | infenaleph 10050* | An infinite numerable set is equinumerous to an infinite initial ordinal. (Contributed by Jeff Hankins, 23-Oct-2009.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ∃𝑥 ∈ ran ℵ𝑥 ≈ 𝐴) | ||
| Theorem | isinfcard 10051 | Two ways to express the property of being a transfinite cardinal. (Contributed by NM, 9-Nov-2003.) |
| ⊢ ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ↔ 𝐴 ∈ ran ℵ) | ||
| Theorem | iscard3 10052 | Two ways to express the property of being a cardinal number. (Contributed by NM, 9-Nov-2003.) |
| ⊢ ((card‘𝐴) = 𝐴 ↔ 𝐴 ∈ (ω ∪ ran ℵ)) | ||
| Theorem | cardnum 10053 | Two ways to express the class of all cardinal numbers, which consists of the finite ordinals in ω plus the transfinite alephs. (Contributed by NM, 10-Sep-2004.) |
| ⊢ {𝑥 ∣ (card‘𝑥) = 𝑥} = (ω ∪ ran ℵ) | ||
| Theorem | alephinit 10054* | An infinite initial ordinal is characterized by the property of being initial - that is, it is a subset of any dominating ordinal. (Contributed by Jeff Hankins, 29-Oct-2009.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
| ⊢ ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 ∈ ran ℵ ↔ ∀𝑥 ∈ On (𝐴 ≼ 𝑥 → 𝐴 ⊆ 𝑥))) | ||
| Theorem | carduniima 10055 | The union of the image of a mapping to cardinals is a cardinal. Proposition 11.16 of [TakeutiZaring] p. 104. (Contributed by NM, 4-Nov-2004.) |
| ⊢ (𝐴 ∈ 𝐵 → (𝐹:𝐴⟶(ω ∪ ran ℵ) → ∪ (𝐹 “ 𝐴) ∈ (ω ∪ ran ℵ))) | ||
| Theorem | cardinfima 10056* | If a mapping to cardinals has an infinite value, then the union of its image is an infinite cardinal. Corollary 11.17 of [TakeutiZaring] p. 104. (Contributed by NM, 4-Nov-2004.) |
| ⊢ (𝐴 ∈ 𝐵 → ((𝐹:𝐴⟶(ω ∪ ran ℵ) ∧ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ ran ℵ) → ∪ (𝐹 “ 𝐴) ∈ ran ℵ)) | ||
| Theorem | alephiso 10057 | Aleph is an order isomorphism of the class of ordinal numbers onto the class of infinite cardinals. Definition 10.27 of [TakeutiZaring] p. 90. (Contributed by NM, 3-Aug-2004.) |
| ⊢ ℵ Isom E , E (On, {𝑥 ∣ (ω ⊆ 𝑥 ∧ (card‘𝑥) = 𝑥)}) | ||
| Theorem | alephprc 10058 | The class of all transfinite cardinal numbers (the range of the aleph function) is a proper class. Proposition 10.26 of [TakeutiZaring] p. 90. (Contributed by NM, 11-Nov-2003.) |
| ⊢ ¬ ran ℵ ∈ V | ||
| Theorem | alephsson 10059 | The class of transfinite cardinals (the range of the aleph function) is a subclass of the class of ordinal numbers. (Contributed by NM, 11-Nov-2003.) |
| ⊢ ran ℵ ⊆ On | ||
| Theorem | unialeph 10060 | The union of the class of transfinite cardinals (the range of the aleph function) is the class of ordinal numbers. (Contributed by NM, 11-Nov-2003.) |
| ⊢ ∪ ran ℵ = On | ||
| Theorem | alephsmo 10061 | The aleph function is strictly monotone. (Contributed by Mario Carneiro, 15-Mar-2013.) |
| ⊢ Smo ℵ | ||
| Theorem | alephf1ALT 10062 | Alternate proof of alephf1 10044. (Contributed by Mario Carneiro, 15-Mar-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ℵ:On–1-1→On | ||
| Theorem | alephfplem1 10063 | Lemma for alephfp 10067. (Contributed by NM, 6-Nov-2004.) |
| ⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) ⇒ ⊢ (𝐻‘∅) ∈ ran ℵ | ||
| Theorem | alephfplem2 10064* | Lemma for alephfp 10067. (Contributed by NM, 6-Nov-2004.) |
| ⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) ⇒ ⊢ (𝑤 ∈ ω → (𝐻‘suc 𝑤) = (ℵ‘(𝐻‘𝑤))) | ||
| Theorem | alephfplem3 10065* | Lemma for alephfp 10067. (Contributed by NM, 6-Nov-2004.) |
| ⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) ⇒ ⊢ (𝑣 ∈ ω → (𝐻‘𝑣) ∈ ran ℵ) | ||
| Theorem | alephfplem4 10066 | Lemma for alephfp 10067. (Contributed by NM, 5-Nov-2004.) |
| ⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) ⇒ ⊢ ∪ (𝐻 “ ω) ∈ ran ℵ | ||
| Theorem | alephfp 10067 | The aleph function has a fixed point. Similar to Proposition 11.18 of [TakeutiZaring] p. 104, except that we construct an actual example of a fixed point rather than just showing its existence. See alephfp2 10068 for an abbreviated version just showing existence. (Contributed by NM, 6-Nov-2004.) (Proof shortened by Mario Carneiro, 15-May-2015.) |
| ⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) ⇒ ⊢ (ℵ‘∪ (𝐻 “ ω)) = ∪ (𝐻 “ ω) | ||
| Theorem | alephfp2 10068 | The aleph function has at least one fixed point. Proposition 11.18 of [TakeutiZaring] p. 104. See alephfp 10067 for an actual example of a fixed point. Compare the inequality alephle 10047 that holds in general. Note that if 𝑥 is a fixed point, then ℵ‘ℵ‘ℵ‘... ℵ‘𝑥 = 𝑥. (Contributed by NM, 6-Nov-2004.) (Revised by Mario Carneiro, 15-May-2015.) |
| ⊢ ∃𝑥 ∈ On (ℵ‘𝑥) = 𝑥 | ||
| Theorem | alephval3 10069* | An alternate way to express the value of the aleph function: it is the least infinite cardinal different from all values at smaller arguments. Definition of aleph in [Enderton] p. 212 and definition of aleph in [BellMachover] p. 490 . (Contributed by NM, 16-Nov-2003.) |
| ⊢ (𝐴 ∈ On → (ℵ‘𝐴) = ∩ {𝑥 ∣ ((card‘𝑥) = 𝑥 ∧ ω ⊆ 𝑥 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 = (ℵ‘𝑦))}) | ||
| Theorem | alephsucpw2 10070 | The power set of an aleph is not strictly dominated by the successor aleph. (The Generalized Continuum Hypothesis says they are equinumerous, see gch3 10635 or gchaleph2 10631.) The transposed form alephsucpw 10529 cannot be proven without the AC, and is in fact equivalent to it. (Contributed by Mario Carneiro, 2-Feb-2013.) |
| ⊢ ¬ 𝒫 (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴) | ||
| Theorem | mappwen 10071 | Power rule for cardinal arithmetic. Theorem 11.21 of [TakeutiZaring] p. 106. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 27-Apr-2015.) |
| ⊢ (((𝐵 ∈ dom card ∧ ω ≼ 𝐵) ∧ (2o ≼ 𝐴 ∧ 𝐴 ≼ 𝒫 𝐵)) → (𝐴 ↑m 𝐵) ≈ 𝒫 𝐵) | ||
| Theorem | finnisoeu 10072* | A finite totally ordered set has a unique order isomorphism to a finite ordinal. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Proof shortened by Mario Carneiro, 26-Jun-2015.) |
| ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) → ∃!𝑓 𝑓 Isom E , 𝑅 ((card‘𝐴), 𝐴)) | ||
| Theorem | iunfictbso 10073 | Countability of a countable union of finite sets with a strict (not globally well) order fulfilling the choice role. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ ((𝐴 ≼ ω ∧ 𝐴 ⊆ Fin ∧ 𝐵 Or ∪ 𝐴) → ∪ 𝐴 ≼ ω) | ||
| Syntax | wac 10074 | Wff for an abbreviation of the axiom of choice. |
| wff CHOICE | ||
| Definition | df-ac 10075* |
The expression CHOICE will be used as a
readable shorthand for any
form of the axiom of choice; all concrete forms are long, cryptic, have
dummy variables, or all three, making it useful to have a short name.
Similar to the Axiom of Choice (first form) of [Enderton] p. 49.
There is a slight problem with taking the exact form of ax-ac 10418 as our definition, because the equivalence to more standard forms (dfac2 10091) requires the Axiom of Regularity, which we often try to avoid. Thus, we take the first of the "textbook forms" as the definition and derive the form of ax-ac 10418 itself as dfac0 10093. (Contributed by Mario Carneiro, 22-Feb-2015.) |
| ⊢ (CHOICE ↔ ∀𝑥∃𝑓(𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥)) | ||
| Theorem | aceq1 10076* | Equivalence of two versions of the Axiom of Choice ax-ac 10418. The proof uses neither AC nor the Axiom of Regularity. The right-hand side expresses our AC with the fewest number of different variables. (Contributed by NM, 5-Apr-2004.) |
| ⊢ (∃𝑦∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑧 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢) ↔ ∃𝑦∀𝑧∀𝑤((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → ∃𝑥∀𝑧(∃𝑥((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) ∧ (𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)) ↔ 𝑧 = 𝑥))) | ||
| Theorem | aceq0 10077* | Equivalence of two versions of the Axiom of Choice. The proof uses neither AC nor the Axiom of Regularity. The right-hand side is our original ax-ac 10418. (Contributed by NM, 5-Apr-2004.) |
| ⊢ (∃𝑦∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑧 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢) ↔ ∃𝑦∀𝑧∀𝑤((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → ∃𝑣∀𝑢(∃𝑡((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡) ∧ (𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦)) ↔ 𝑢 = 𝑣))) | ||
| Theorem | aceq2 10078* | Equivalence of two versions of the Axiom of Choice. The proof uses neither AC nor the Axiom of Regularity. (Contributed by NM, 5-Apr-2004.) |
| ⊢ (∃𝑦∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑧 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢) ↔ ∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑤 ∈ 𝑧 ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) | ||
| Theorem | aceq3lem 10079* | Lemma for dfac3 10080. (Contributed by NM, 2-Apr-2004.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| ⊢ 𝐹 = (𝑤 ∈ dom 𝑦 ↦ (𝑓‘{𝑢 ∣ 𝑤𝑦𝑢})) ⇒ ⊢ (∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) → ∃𝑓(𝑓 ⊆ 𝑦 ∧ 𝑓 Fn dom 𝑦)) | ||
| Theorem | dfac3 10080* | Equivalence of two versions of the Axiom of Choice. The left-hand side is defined as the Axiom of Choice (first form) of [Enderton] p. 49. The right-hand side is the Axiom of Choice of [TakeutiZaring] p. 83. The proof does not depend on AC. (Contributed by NM, 24-Mar-2004.) (Revised by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ (CHOICE ↔ ∀𝑥∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) | ||
| Theorem | dfac4 10081* | Equivalence of two versions of the Axiom of Choice. The right-hand side is Axiom AC of [BellMachover] p. 488. The proof does not depend on AC. (Contributed by NM, 24-Mar-2004.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| ⊢ (CHOICE ↔ ∀𝑥∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) | ||
| Theorem | dfac5lem1 10082* | Lemma for dfac5 10088. (Contributed by NM, 12-Apr-2004.) |
| ⊢ (∃!𝑣 𝑣 ∈ (({𝑤} × 𝑤) ∩ 𝑦) ↔ ∃!𝑔(𝑔 ∈ 𝑤 ∧ 〈𝑤, 𝑔〉 ∈ 𝑦)) | ||
| Theorem | dfac5lem2 10083* | Lemma for dfac5 10088. (Contributed by NM, 12-Apr-2004.) |
| ⊢ 𝐴 = {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 ∈ ℎ 𝑢 = ({𝑡} × 𝑡))} ⇒ ⊢ (〈𝑤, 𝑔〉 ∈ ∪ 𝐴 ↔ (𝑤 ∈ ℎ ∧ 𝑔 ∈ 𝑤)) | ||
| Theorem | dfac5lem3 10084* | Lemma for dfac5 10088. (Contributed by NM, 12-Apr-2004.) |
| ⊢ 𝐴 = {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 ∈ ℎ 𝑢 = ({𝑡} × 𝑡))} ⇒ ⊢ (({𝑤} × 𝑤) ∈ 𝐴 ↔ (𝑤 ≠ ∅ ∧ 𝑤 ∈ ℎ)) | ||
| Theorem | dfac5lem4 10085* | Lemma for dfac5 10088. (Contributed by NM, 11-Apr-2004.) Avoid ax-11 2158. (Revised by BTernaryTau, 23-Jun-2025.) |
| ⊢ 𝐴 = {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 ∈ ℎ 𝑢 = ({𝑡} × 𝑡))} & ⊢ (𝜑 ↔ ∀𝑥((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) ⇒ ⊢ (𝜑 → ∃𝑦∀𝑧 ∈ 𝐴 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) | ||
| Theorem | dfac5lem5 10086* | Lemma for dfac5 10088. (Contributed by NM, 12-Apr-2004.) |
| ⊢ 𝐴 = {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 ∈ ℎ 𝑢 = ({𝑡} × 𝑡))} & ⊢ (𝜑 ↔ ∀𝑥((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) & ⊢ 𝐵 = (∪ 𝐴 ∩ 𝑦) ⇒ ⊢ (𝜑 → ∃𝑓∀𝑤 ∈ ℎ (𝑤 ≠ ∅ → (𝑓‘𝑤) ∈ 𝑤)) | ||
| Theorem | dfac5lem4OLD 10087* | Obsolete version of dfac5lem4 10085 as of 23-Jun-2025. (Contributed by NM, 11-Apr-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐴 = {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 ∈ ℎ 𝑢 = ({𝑡} × 𝑡))} & ⊢ 𝐵 = (∪ 𝐴 ∩ 𝑦) & ⊢ (𝜑 ↔ ∀𝑥((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) ⇒ ⊢ (𝜑 → ∃𝑦∀𝑧 ∈ 𝐴 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) | ||
| Theorem | dfac5 10088* | Equivalence of two versions of the Axiom of Choice. The right-hand side is Theorem 6M(4) of [Enderton] p. 151 and asserts that given a family of mutually disjoint nonempty sets, a set exists containing exactly one member from each set in the family. The proof does not depend on AC. (Contributed by NM, 11-Apr-2004.) (Revised by Mario Carneiro, 17-May-2015.) |
| ⊢ (CHOICE ↔ ∀𝑥((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) | ||
| Theorem | dfac2a 10089* | Our Axiom of Choice (in the form of ac3 10421) implies the Axiom of Choice (first form) of [Enderton] p. 49. The proof uses neither AC nor the Axiom of Regularity. See dfac2b 10090 for the converse (which does use the Axiom of Regularity). (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| ⊢ (∀𝑥∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑤 ∈ 𝑧 ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) → CHOICE) | ||
| Theorem | dfac2b 10090* | Axiom of Choice (first form) of [Enderton] p. 49 implies our Axiom of Choice (in the form of ac3 10421). The proof does not make use of AC. Note that the Axiom of Regularity is used by the proof. Specifically, elneq 9557 and preleq 9575 that are referenced in the proof each make use of Regularity for their derivations. (The reverse implication can be derived without using Regularity; see dfac2a 10089.) (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 26-Jun-2015.) (Revised by AV, 16-Jun-2022.) |
| ⊢ (CHOICE → ∀𝑥∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑤 ∈ 𝑧 ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) | ||
| Theorem | dfac2 10091* | Axiom of Choice (first form) of [Enderton] p. 49 corresponds to our Axiom of Choice (in the form of ac3 10421). The proof does not make use of AC, but the Axiom of Regularity is used (by applying dfac2b 10090). (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 26-Jun-2015.) (Revised by AV, 16-Jun-2022.) |
| ⊢ (CHOICE ↔ ∀𝑥∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑤 ∈ 𝑧 ∃𝑣 ∈ 𝑦 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣))) | ||
| Theorem | dfac7 10092* | Equivalence of the Axiom of Choice (first form) of [Enderton] p. 49 and our Axiom of Choice (in the form of ac2 10420). The proof does not depend on AC but does depend on the Axiom of Regularity. (Contributed by Mario Carneiro, 17-May-2015.) |
| ⊢ (CHOICE ↔ ∀𝑥∃𝑦∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑧 ∃!𝑣 ∈ 𝑧 ∃𝑢 ∈ 𝑦 (𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢)) | ||
| Theorem | dfac0 10093* | Equivalence of two versions of the Axiom of Choice. The proof uses the Axiom of Regularity. The right-hand side is our original ax-ac 10418. (Contributed by Mario Carneiro, 17-May-2015.) |
| ⊢ (CHOICE ↔ ∀𝑥∃𝑦∀𝑧∀𝑤((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → ∃𝑣∀𝑢(∃𝑡((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡) ∧ (𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦)) ↔ 𝑢 = 𝑣))) | ||
| Theorem | dfac1 10094* | Equivalence of two versions of the Axiom of Choice ax-ac 10418. The proof uses the Axiom of Regularity. The right-hand side expresses our AC with the fewest number of different variables. (Contributed by Mario Carneiro, 17-May-2015.) |
| ⊢ (CHOICE ↔ ∀𝑥∃𝑦∀𝑧∀𝑤((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → ∃𝑥∀𝑧(∃𝑥((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) ∧ (𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦)) ↔ 𝑧 = 𝑥))) | ||
| Theorem | dfac8 10095* | A proof of the equivalency of the well-ordering theorem weth 10454 and the axiom of choice ac7 10432. (Contributed by Mario Carneiro, 5-Jan-2013.) |
| ⊢ (CHOICE ↔ ∀𝑥∃𝑟 𝑟 We 𝑥) | ||
| Theorem | dfac9 10096* | Equivalence of the axiom of choice with a statement related to ac9 10442; definition AC3 of [Schechter] p. 139. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ (CHOICE ↔ ∀𝑓((Fun 𝑓 ∧ ∅ ∉ ran 𝑓) → X𝑥 ∈ dom 𝑓(𝑓‘𝑥) ≠ ∅)) | ||
| Theorem | dfac10 10097 | Axiom of Choice equivalent: the cardinality function measures every set. (Contributed by Mario Carneiro, 6-May-2015.) |
| ⊢ (CHOICE ↔ dom card = V) | ||
| Theorem | dfac10c 10098* | Axiom of Choice equivalent: every set is equinumerous to an ordinal. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
| ⊢ (CHOICE ↔ ∀𝑥∃𝑦 ∈ On 𝑦 ≈ 𝑥) | ||
| Theorem | dfac10b 10099 | Axiom of Choice equivalent: every set is equinumerous to an ordinal (quantifier-free short cryptic version alluded to in df-ac 10075). (Contributed by Stefan O'Rear, 17-Jan-2015.) |
| ⊢ (CHOICE ↔ ( ≈ “ On) = V) | ||
| Theorem | acacni 10100 | A choice equivalent: every set has choice sets of every length. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ ((CHOICE ∧ 𝐴 ∈ 𝑉) → AC 𝐴 = V) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |