| Metamath
Proof Explorer Theorem List (p. 101 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | domtri2 10001 | Trichotomy of dominance for numerable sets (does not use AC). (Contributed by Mario Carneiro, 29-Apr-2015.) |
| ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) | ||
| Theorem | nnsdomel 10002 | Strict dominance and elementhood are the same for finite ordinals. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ 𝐴 ≺ 𝐵)) | ||
| Theorem | cardval2 10003* | An alternate version of the value of the cardinal number of a set. Compare cardval 10558. This theorem could be used to give a simpler definition of card in place of df-card 9951. It apparently does not occur in the literature. (Contributed by NM, 7-Nov-2003.) |
| ⊢ (𝐴 ∈ dom card → (card‘𝐴) = {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴}) | ||
| Theorem | isinffi 10004* | An infinite set contains subsets equinumerous to every finite set. Extension of isinf 9266 from finite ordinals to all finite sets. (Contributed by Stefan O'Rear, 8-Oct-2014.) |
| ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ∃𝑓 𝑓:𝐵–1-1→𝐴) | ||
| Theorem | fidomtri 10005 | Trichotomy of dominance without AC when one set is finite. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 27-Apr-2015.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) | ||
| Theorem | fidomtri2 10006 | Trichotomy of dominance without AC when one set is finite. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 7-May-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin) → (𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴)) | ||
| Theorem | harsdom 10007 | The Hartogs number of a well-orderable set strictly dominates the set. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ (𝐴 ∈ dom card → 𝐴 ≺ (har‘𝐴)) | ||
| Theorem | onsdom 10008* | Any well-orderable set is strictly dominated by an ordinal number. (Contributed by Jeff Hankins, 22-Oct-2009.) (Proof shortened by Mario Carneiro, 15-May-2015.) |
| ⊢ (𝐴 ∈ dom card → ∃𝑥 ∈ On 𝐴 ≺ 𝑥) | ||
| Theorem | harval2 10009* | An alternate expression for the Hartogs number of a well-orderable set. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ (𝐴 ∈ dom card → (har‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) | ||
| Theorem | harsucnn 10010 | The next cardinal after a finite ordinal is the successor ordinal. (Contributed by RP, 5-Nov-2023.) |
| ⊢ (𝐴 ∈ ω → (har‘𝐴) = suc 𝐴) | ||
| Theorem | cardmin2 10011* | The smallest ordinal that strictly dominates a set is a cardinal, if it exists. (Contributed by Mario Carneiro, 2-Feb-2013.) |
| ⊢ (∃𝑥 ∈ On 𝐴 ≺ 𝑥 ↔ (card‘∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) = ∩ {𝑥 ∈ On ∣ 𝐴 ≺ 𝑥}) | ||
| Theorem | pm54.43lem 10012* | In Theorem *54.43 of [WhiteheadRussell] p. 360, the number 1 is defined as the collection of all sets with cardinality 1 (i.e. all singletons; see card1 9980), so that their 𝐴 ∈ 1 means, in our notation, 𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1o}. Here we show that this is equivalent to 𝐴 ≈ 1o so that we can use the latter more convenient notation in pm54.43 10013. (Contributed by NM, 4-Nov-2013.) |
| ⊢ (𝐴 ≈ 1o ↔ 𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1o}) | ||
| Theorem | pm54.43 10013 |
Theorem *54.43 of [WhiteheadRussell]
p. 360. "From this proposition it
will follow, when arithmetical addition has been defined, that
1+1=2."
See http://en.wikipedia.org/wiki/Principia_Mathematica#Quotations.
This theorem states that two sets of cardinality 1 are disjoint iff
their union has cardinality 2.
Whitehead and Russell define 1 as the collection of all sets with cardinality 1 (i.e. all singletons; see card1 9980), so that their 𝐴 ∈ 1 means, in our notation, 𝐴 ∈ {𝑥 ∣ (card‘𝑥) = 1o} which is the same as 𝐴 ≈ 1o by pm54.43lem 10012. We do not have several of their earlier lemmas available (which would otherwise be unused by our different approach to arithmetic), so our proof is longer. (It is also longer because we must show every detail.) Theorem dju1p1e2 10186 shows the derivation of 1+1=2 for cardinal numbers from this theorem. (Contributed by NM, 4-Apr-2007.) |
| ⊢ ((𝐴 ≈ 1o ∧ 𝐵 ≈ 1o) → ((𝐴 ∩ 𝐵) = ∅ ↔ (𝐴 ∪ 𝐵) ≈ 2o)) | ||
| Theorem | enpr2 10014 | An unordered pair with distinct elements is equinumerous to ordinal two. This is a closed-form version of enpr2d 9061. (Contributed by FL, 17-Aug-2008.) Avoid ax-pow 5335, ax-un 7727. (Revised by BTernaryTau, 30-Dec-2024.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) | ||
| Theorem | pr2nelemOLD 10015 | Obsolete version of enpr2 10014 as of 30-Dec-2024. (Contributed by FL, 17-Aug-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) | ||
| Theorem | pr2ne 10016 | If an unordered pair has two elements, then they are different. (Contributed by FL, 14-Feb-2010.) Avoid ax-pow 5335, ax-un 7727. (Revised by BTernaryTau, 30-Dec-2024.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ({𝐴, 𝐵} ≈ 2o ↔ 𝐴 ≠ 𝐵)) | ||
| Theorem | pr2neOLD 10017 | Obsolete version of pr2ne 10016 as of 30-Dec-2024. (Contributed by FL, 14-Feb-2010.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ({𝐴, 𝐵} ≈ 2o ↔ 𝐴 ≠ 𝐵)) | ||
| Theorem | prdom2 10018 | An unordered pair has at most two elements. (Contributed by FL, 22-Feb-2011.) |
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴, 𝐵} ≼ 2o) | ||
| Theorem | en2eqpr 10019 | Building a set with two elements. (Contributed by FL, 11-Aug-2008.) (Revised by Mario Carneiro, 10-Sep-2015.) |
| ⊢ ((𝐶 ≈ 2o ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (𝐴 ≠ 𝐵 → 𝐶 = {𝐴, 𝐵})) | ||
| Theorem | en2eleq 10020 | Express a set of pair cardinality as the unordered pair of a given element and the other element. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → 𝑃 = {𝑋, ∪ (𝑃 ∖ {𝑋})}) | ||
| Theorem | en2other2 10021 | Taking the other element twice in a pair gets back to the original element. (Contributed by Stefan O'Rear, 22-Aug-2015.) |
| ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑃 ≈ 2o) → ∪ (𝑃 ∖ {∪ (𝑃 ∖ {𝑋})}) = 𝑋) | ||
| Theorem | dif1card 10022 | The cardinality of a nonempty finite set is one greater than the cardinality of the set with one element removed. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 2-Feb-2013.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴) → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋}))) | ||
| Theorem | leweon 10023* | Lexicographical order is a well-ordering of On × On. Proposition 7.56(1) of [TakeutiZaring] p. 54. Note that unlike r0weon 10024, this order is not set-like, as the preimage of 〈1o, ∅〉 is the proper class ({∅} × On). (Contributed by Mario Carneiro, 9-Mar-2013.) |
| ⊢ 𝐿 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st ‘𝑥) ∈ (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) ∈ (2nd ‘𝑦))))} ⇒ ⊢ 𝐿 We (On × On) | ||
| Theorem | r0weon 10024* | A set-like well-ordering of the class of ordinal pairs. Proposition 7.58(1) of [TakeutiZaring] p. 54. (Contributed by Mario Carneiro, 7-Mar-2013.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| ⊢ 𝐿 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st ‘𝑥) ∈ (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) ∈ (2nd ‘𝑦))))} & ⊢ 𝑅 = {〈𝑧, 𝑤〉 ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st ‘𝑧) ∪ (2nd ‘𝑧)) ∈ ((1st ‘𝑤) ∪ (2nd ‘𝑤)) ∨ (((1st ‘𝑧) ∪ (2nd ‘𝑧)) = ((1st ‘𝑤) ∪ (2nd ‘𝑤)) ∧ 𝑧𝐿𝑤)))} ⇒ ⊢ (𝑅 We (On × On) ∧ 𝑅 Se (On × On)) | ||
| Theorem | infxpenlem 10025* | Lemma for infxpen 10026. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| ⊢ 𝐿 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On)) ∧ ((1st ‘𝑥) ∈ (1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd ‘𝑥) ∈ (2nd ‘𝑦))))} & ⊢ 𝑅 = {〈𝑧, 𝑤〉 ∣ ((𝑧 ∈ (On × On) ∧ 𝑤 ∈ (On × On)) ∧ (((1st ‘𝑧) ∪ (2nd ‘𝑧)) ∈ ((1st ‘𝑤) ∪ (2nd ‘𝑤)) ∨ (((1st ‘𝑧) ∪ (2nd ‘𝑧)) = ((1st ‘𝑤) ∪ (2nd ‘𝑤)) ∧ 𝑧𝐿𝑤)))} & ⊢ 𝑄 = (𝑅 ∩ ((𝑎 × 𝑎) × (𝑎 × 𝑎))) & ⊢ (𝜑 ↔ ((𝑎 ∈ On ∧ ∀𝑚 ∈ 𝑎 (ω ⊆ 𝑚 → (𝑚 × 𝑚) ≈ 𝑚)) ∧ (ω ⊆ 𝑎 ∧ ∀𝑚 ∈ 𝑎 𝑚 ≺ 𝑎))) & ⊢ 𝑀 = ((1st ‘𝑤) ∪ (2nd ‘𝑤)) & ⊢ 𝐽 = OrdIso(𝑄, (𝑎 × 𝑎)) ⇒ ⊢ ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴) | ||
| Theorem | infxpen 10026 | Every infinite ordinal is equinumerous to its Cartesian square. Proposition 10.39 of [TakeutiZaring] p. 94, whose proof we follow closely. The key idea is to show that the relation 𝑅 is a well-ordering of (On × On) with the additional property that 𝑅-initial segments of (𝑥 × 𝑥) (where 𝑥 is a limit ordinal) are of cardinality at most 𝑥. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| ⊢ ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴) | ||
| Theorem | xpomen 10027 | The Cartesian product of omega (the set of ordinal natural numbers) with itself is equinumerous to omega. Exercise 1 of [Enderton] p. 133. (Contributed by NM, 23-Jul-2004.) (Revised by Mario Carneiro, 9-Mar-2013.) |
| ⊢ (ω × ω) ≈ ω | ||
| Theorem | xpct 10028 | The cartesian product of two countable sets is countable. (Contributed by Thierry Arnoux, 24-Sep-2017.) |
| ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 × 𝐵) ≼ ω) | ||
| Theorem | infxpidm2 10029 | Every infinite well-orderable set is equinumerous to its Cartesian square. This theorem provides the basis for infinite cardinal arithmetic. Proposition 10.40 of [TakeutiZaring] p. 95. See also infxpidm 10574. (Contributed by Mario Carneiro, 9-Mar-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴) | ||
| Theorem | infxpenc 10030* | A canonical version of infxpen 10026, by a completely different approach (although it uses infxpen 10026 via xpomen 10027). Using Cantor's normal form, we can show that 𝐴 ↑o 𝐵 respects equinumerosity (oef1o 9710), so that all the steps of (ω↑𝑊) · (ω↑𝑊) ≈ ω↑(2𝑊) ≈ (ω↑2)↑𝑊 ≈ ω↑𝑊 can be verified using bijections to do the ordinal commutations. (The assumption on 𝑁 can be satisfied using cnfcom3c 9718.) (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 7-Jul-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → ω ⊆ 𝐴) & ⊢ (𝜑 → 𝑊 ∈ (On ∖ 1o)) & ⊢ (𝜑 → 𝐹:(ω ↑o 2o)–1-1-onto→ω) & ⊢ (𝜑 → (𝐹‘∅) = ∅) & ⊢ (𝜑 → 𝑁:𝐴–1-1-onto→(ω ↑o 𝑊)) & ⊢ 𝐾 = (𝑦 ∈ {𝑥 ∈ ((ω ↑o 2o) ↑m 𝑊) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦 ∘ ◡( I ↾ 𝑊)))) & ⊢ 𝐻 = (((ω CNF 𝑊) ∘ 𝐾) ∘ ◡((ω ↑o 2o) CNF 𝑊)) & ⊢ 𝐿 = (𝑦 ∈ {𝑥 ∈ (ω ↑m (𝑊 ·o 2o)) ∣ 𝑥 finSupp ∅} ↦ (( I ↾ ω) ∘ (𝑦 ∘ ◡(𝑌 ∘ ◡𝑋)))) & ⊢ 𝑋 = (𝑧 ∈ 2o, 𝑤 ∈ 𝑊 ↦ ((𝑊 ·o 𝑧) +o 𝑤)) & ⊢ 𝑌 = (𝑧 ∈ 2o, 𝑤 ∈ 𝑊 ↦ ((2o ·o 𝑤) +o 𝑧)) & ⊢ 𝐽 = (((ω CNF (2o ·o 𝑊)) ∘ 𝐿) ∘ ◡(ω CNF (𝑊 ·o 2o))) & ⊢ 𝑍 = (𝑥 ∈ (ω ↑o 𝑊), 𝑦 ∈ (ω ↑o 𝑊) ↦ (((ω ↑o 𝑊) ·o 𝑥) +o 𝑦)) & ⊢ 𝑇 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ 〈(𝑁‘𝑥), (𝑁‘𝑦)〉) & ⊢ 𝐺 = (◡𝑁 ∘ (((𝐻 ∘ 𝐽) ∘ 𝑍) ∘ 𝑇)) ⇒ ⊢ (𝜑 → 𝐺:(𝐴 × 𝐴)–1-1-onto→𝐴) | ||
| Theorem | infxpenc2lem1 10031* | Lemma for infxpenc2 10034. (Contributed by Mario Carneiro, 30-May-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → ∀𝑏 ∈ 𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑛‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑤))) & ⊢ 𝑊 = (◡(𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘ran (𝑛‘𝑏)) ⇒ ⊢ ((𝜑 ∧ (𝑏 ∈ 𝐴 ∧ ω ⊆ 𝑏)) → (𝑊 ∈ (On ∖ 1o) ∧ (𝑛‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑊))) | ||
| Theorem | infxpenc2lem2 10032* | Lemma for infxpenc2 10034. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 7-Jul-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → ∀𝑏 ∈ 𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑛‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑤))) & ⊢ 𝑊 = (◡(𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘ran (𝑛‘𝑏)) & ⊢ (𝜑 → 𝐹:(ω ↑o 2o)–1-1-onto→ω) & ⊢ (𝜑 → (𝐹‘∅) = ∅) & ⊢ 𝐾 = (𝑦 ∈ {𝑥 ∈ ((ω ↑o 2o) ↑m 𝑊) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦 ∘ ◡( I ↾ 𝑊)))) & ⊢ 𝐻 = (((ω CNF 𝑊) ∘ 𝐾) ∘ ◡((ω ↑o 2o) CNF 𝑊)) & ⊢ 𝐿 = (𝑦 ∈ {𝑥 ∈ (ω ↑m (𝑊 ·o 2o)) ∣ 𝑥 finSupp ∅} ↦ (( I ↾ ω) ∘ (𝑦 ∘ ◡(𝑌 ∘ ◡𝑋)))) & ⊢ 𝑋 = (𝑧 ∈ 2o, 𝑤 ∈ 𝑊 ↦ ((𝑊 ·o 𝑧) +o 𝑤)) & ⊢ 𝑌 = (𝑧 ∈ 2o, 𝑤 ∈ 𝑊 ↦ ((2o ·o 𝑤) +o 𝑧)) & ⊢ 𝐽 = (((ω CNF (2o ·o 𝑊)) ∘ 𝐿) ∘ ◡(ω CNF (𝑊 ·o 2o))) & ⊢ 𝑍 = (𝑥 ∈ (ω ↑o 𝑊), 𝑦 ∈ (ω ↑o 𝑊) ↦ (((ω ↑o 𝑊) ·o 𝑥) +o 𝑦)) & ⊢ 𝑇 = (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ 〈((𝑛‘𝑏)‘𝑥), ((𝑛‘𝑏)‘𝑦)〉) & ⊢ 𝐺 = (◡(𝑛‘𝑏) ∘ (((𝐻 ∘ 𝐽) ∘ 𝑍) ∘ 𝑇)) ⇒ ⊢ (𝜑 → ∃𝑔∀𝑏 ∈ 𝐴 (ω ⊆ 𝑏 → (𝑔‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏)) | ||
| Theorem | infxpenc2lem3 10033* | Lemma for infxpenc2 10034. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 7-Jul-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → ∀𝑏 ∈ 𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑛‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑤))) & ⊢ 𝑊 = (◡(𝑥 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑥))‘ran (𝑛‘𝑏)) & ⊢ (𝜑 → 𝐹:(ω ↑o 2o)–1-1-onto→ω) & ⊢ (𝜑 → (𝐹‘∅) = ∅) ⇒ ⊢ (𝜑 → ∃𝑔∀𝑏 ∈ 𝐴 (ω ⊆ 𝑏 → (𝑔‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏)) | ||
| Theorem | infxpenc2 10034* | Existence form of infxpenc 10030. A "uniform" or "canonical" version of infxpen 10026, asserting the existence of a single function 𝑔 that simultaneously demonstrates product idempotence of all ordinals below a given bound. (Contributed by Mario Carneiro, 30-May-2015.) |
| ⊢ (𝐴 ∈ On → ∃𝑔∀𝑏 ∈ 𝐴 (ω ⊆ 𝑏 → (𝑔‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏)) | ||
| Theorem | iunmapdisj 10035* | The union ∪ 𝑛 ∈ 𝐶(𝐴 ↑m 𝑛) is a disjoint union. (Contributed by Mario Carneiro, 17-May-2015.) (Revised by NM, 16-Jun-2017.) |
| ⊢ ∃*𝑛 ∈ 𝐶 𝐵 ∈ (𝐴 ↑m 𝑛) | ||
| Theorem | fseqenlem1 10036* | Lemma for fseqen 10039. (Contributed by Mario Carneiro, 17-May-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → 𝐹:(𝐴 × 𝐴)–1-1-onto→𝐴) & ⊢ 𝐺 = seqω((𝑛 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝐴 ↑m suc 𝑛) ↦ ((𝑓‘(𝑥 ↾ 𝑛))𝐹(𝑥‘𝑛)))), {〈∅, 𝐵〉}) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ ω) → (𝐺‘𝐶):(𝐴 ↑m 𝐶)–1-1→𝐴) | ||
| Theorem | fseqenlem2 10037* | Lemma for fseqen 10039. (Contributed by Mario Carneiro, 17-May-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → 𝐹:(𝐴 × 𝐴)–1-1-onto→𝐴) & ⊢ 𝐺 = seqω((𝑛 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝐴 ↑m suc 𝑛) ↦ ((𝑓‘(𝑥 ↾ 𝑛))𝐹(𝑥‘𝑛)))), {〈∅, 𝐵〉}) & ⊢ 𝐾 = (𝑦 ∈ ∪ 𝑘 ∈ ω (𝐴 ↑m 𝑘) ↦ 〈dom 𝑦, ((𝐺‘dom 𝑦)‘𝑦)〉) ⇒ ⊢ (𝜑 → 𝐾:∪ 𝑘 ∈ ω (𝐴 ↑m 𝑘)–1-1→(ω × 𝐴)) | ||
| Theorem | fseqdom 10038* | One half of fseqen 10039. (Contributed by Mario Carneiro, 18-Nov-2014.) |
| ⊢ (𝐴 ∈ 𝑉 → (ω × 𝐴) ≼ ∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) | ||
| Theorem | fseqen 10039* | A set that is equinumerous to its Cartesian product is equinumerous to the set of finite sequences on it. (This can be proven more easily using some choice but this proof avoids it.) (Contributed by Mario Carneiro, 18-Nov-2014.) |
| ⊢ (((𝐴 × 𝐴) ≈ 𝐴 ∧ 𝐴 ≠ ∅) → ∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛) ≈ (ω × 𝐴)) | ||
| Theorem | infpwfidom 10040 | The collection of finite subsets of a set dominates the set. (We use the weaker sethood assumption (𝒫 𝐴 ∩ Fin) ∈ V because this theorem also implies that 𝐴 is a set if 𝒫 𝐴 ∩ Fin is.) (Contributed by Mario Carneiro, 17-May-2015.) |
| ⊢ ((𝒫 𝐴 ∩ Fin) ∈ V → 𝐴 ≼ (𝒫 𝐴 ∩ Fin)) | ||
| Theorem | dfac8alem 10041* | Lemma for dfac8a 10042. If the power set of a set has a choice function, then the set is numerable. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 5-Jan-2013.) |
| ⊢ 𝐹 = recs(𝐺) & ⊢ 𝐺 = (𝑓 ∈ V ↦ (𝑔‘(𝐴 ∖ ran 𝑓))) ⇒ ⊢ (𝐴 ∈ 𝐶 → (∃𝑔∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) → 𝐴 ∈ dom card)) | ||
| Theorem | dfac8a 10042* | Numeration theorem: every set with a choice function on its power set is numerable. With AC, this reduces to the statement that every set is numerable. Similar to Theorem 10.3 of [TakeutiZaring] p. 84. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 5-Jan-2013.) |
| ⊢ (𝐴 ∈ 𝐵 → (∃ℎ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (ℎ‘𝑦) ∈ 𝑦) → 𝐴 ∈ dom card)) | ||
| Theorem | dfac8b 10043* | The well-ordering theorem: every numerable set is well-orderable. (Contributed by Mario Carneiro, 5-Jan-2013.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ (𝐴 ∈ dom card → ∃𝑥 𝑥 We 𝐴) | ||
| Theorem | dfac8clem 10044* | Lemma for dfac8c 10045. (Contributed by Mario Carneiro, 10-Jan-2013.) |
| ⊢ 𝐹 = (𝑠 ∈ (𝐴 ∖ {∅}) ↦ (℩𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ¬ 𝑏𝑟𝑎)) ⇒ ⊢ (𝐴 ∈ 𝐵 → (∃𝑟 𝑟 We ∪ 𝐴 → ∃𝑓∀𝑧 ∈ 𝐴 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) | ||
| Theorem | dfac8c 10045* | If the union of a set is well-orderable, then the set has a choice function. (Contributed by Mario Carneiro, 5-Jan-2013.) |
| ⊢ (𝐴 ∈ 𝐵 → (∃𝑟 𝑟 We ∪ 𝐴 → ∃𝑓∀𝑧 ∈ 𝐴 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) | ||
| Theorem | ac10ct 10046* | A proof of the well-ordering theorem weth 10507, an Axiom of Choice equivalent, restricted to sets dominated by some ordinal (in particular finite sets and countable sets), proven in ZF without AC. (Contributed by Mario Carneiro, 5-Jan-2013.) |
| ⊢ (∃𝑦 ∈ On 𝐴 ≼ 𝑦 → ∃𝑥 𝑥 We 𝐴) | ||
| Theorem | ween 10047* | A set is numerable iff it can be well-ordered. (Contributed by Mario Carneiro, 5-Jan-2013.) |
| ⊢ (𝐴 ∈ dom card ↔ ∃𝑟 𝑟 We 𝐴) | ||
| Theorem | ac5num 10048* | A version of ac5b 10490 with the choice as a hypothesis. (Contributed by Mario Carneiro, 27-Aug-2015.) |
| ⊢ ((∪ 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) → ∃𝑓(𝑓:𝐴⟶∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) | ||
| Theorem | ondomen 10049 | If a set is dominated by an ordinal, then it is numerable. (Contributed by Mario Carneiro, 5-Jan-2013.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ dom card) | ||
| Theorem | numdom 10050 | A set dominated by a numerable set is numerable. (Contributed by Mario Carneiro, 28-Apr-2015.) |
| ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ dom card) | ||
| Theorem | ssnum 10051 | A subset of a numerable set is numerable. (Contributed by Mario Carneiro, 28-Apr-2015.) |
| ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ dom card) | ||
| Theorem | onssnum 10052 | All subsets of the ordinals are numerable. (Contributed by Mario Carneiro, 12-Feb-2013.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ On) → 𝐴 ∈ dom card) | ||
| Theorem | indcardi 10053* | Indirect strong induction on the cardinality of a finite or numerable set. (Contributed by Stefan O'Rear, 24-Aug-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ dom card) & ⊢ ((𝜑 ∧ 𝑅 ≼ 𝑇 ∧ ∀𝑦(𝑆 ≺ 𝑅 → 𝜒)) → 𝜓) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = 𝑦 → 𝑅 = 𝑆) & ⊢ (𝑥 = 𝐴 → 𝑅 = 𝑇) ⇒ ⊢ (𝜑 → 𝜃) | ||
| Theorem | acnrcl 10054 | Reverse closure for the choice set predicate. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝑋 ∈ AC 𝐴 → 𝐴 ∈ V) | ||
| Theorem | acneq 10055 | Equality theorem for the choice set function. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝐴 = 𝐶 → AC 𝐴 = AC 𝐶) | ||
| Theorem | isacn 10056* | The property of being a choice set of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑋 ∈ AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥))) | ||
| Theorem | acni 10057* | The property of being a choice set of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ ((𝑋 ∈ AC 𝐴 ∧ 𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅})) → ∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝐹‘𝑥)) | ||
| Theorem | acni2 10058* | The property of being a choice set of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ ((𝑋 ∈ AC 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐵 ⊆ 𝑋 ∧ 𝐵 ≠ ∅)) → ∃𝑔(𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ 𝐵)) | ||
| Theorem | acni3 10059* | The property of being a choice set of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝑦 = (𝑔‘𝑥) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝑋 ∈ AC 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑋 𝜑) → ∃𝑔(𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 𝜓)) | ||
| Theorem | acnlem 10060* | Construct a mapping satisfying the consequent of isacn 10056. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ (𝑓‘𝑥)) → ∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥)) | ||
| Theorem | numacn 10061 | A well-orderable set has choice sequences of every length. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝑋 ∈ dom card → 𝑋 ∈ AC 𝐴)) | ||
| Theorem | finacn 10062 | Every set has finite choice sequences. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝐴 ∈ Fin → AC 𝐴 = V) | ||
| Theorem | acndom 10063 | A set with long choice sequences also has shorter choice sequences, where "shorter" here means the new index set is dominated by the old index set. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝐴 ≼ 𝐵 → (𝑋 ∈ AC 𝐵 → 𝑋 ∈ AC 𝐴)) | ||
| Theorem | acnnum 10064 | A set 𝑋 which has choice sequences on it of length 𝒫 𝑋 is well-orderable (and hence has choice sequences of every length). (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝑋 ∈ AC 𝒫 𝑋 ↔ 𝑋 ∈ dom card) | ||
| Theorem | acnen 10065 | The class of choice sets of length 𝐴 is a cardinal invariant. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝐴 ≈ 𝐵 → AC 𝐴 = AC 𝐵) | ||
| Theorem | acndom2 10066 | A set smaller than one with choice sequences of length 𝐴 also has choice sequences of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝑋 ≼ 𝑌 → (𝑌 ∈ AC 𝐴 → 𝑋 ∈ AC 𝐴)) | ||
| Theorem | acnen2 10067 | The class of sets with choice sequences of length 𝐴 is a cardinal invariant. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝑋 ≈ 𝑌 → (𝑋 ∈ AC 𝐴 ↔ 𝑌 ∈ AC 𝐴)) | ||
| Theorem | fodomacn 10068 | A version of fodom 10535 that doesn't require the Axiom of Choice ax-ac 10471. If 𝐴 has choice sequences of length 𝐵, then any surjection from 𝐴 to 𝐵 can be inverted to an injection the other way. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝐴 ∈ AC 𝐵 → (𝐹:𝐴–onto→𝐵 → 𝐵 ≼ 𝐴)) | ||
| Theorem | fodomnum 10069 | A version of fodom 10535 that doesn't require the Axiom of Choice ax-ac 10471. (Contributed by Mario Carneiro, 28-Feb-2013.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (𝐴 ∈ dom card → (𝐹:𝐴–onto→𝐵 → 𝐵 ≼ 𝐴)) | ||
| Theorem | fonum 10070 | A surjection maps numerable sets to numerable sets. (Contributed by Mario Carneiro, 30-Apr-2015.) |
| ⊢ ((𝐴 ∈ dom card ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ∈ dom card) | ||
| Theorem | numwdom 10071 | A surjection maps numerable sets to numerable sets. (Contributed by Mario Carneiro, 27-Aug-2015.) |
| ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ≼* 𝐴) → 𝐵 ∈ dom card) | ||
| Theorem | fodomfi2 10072 | Onto functions define dominance when a finite number of choices need to be made. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ≼ 𝐴) | ||
| Theorem | wdomfil 10073 | Weak dominance agrees with normal for finite left sets. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
| ⊢ (𝑋 ∈ Fin → (𝑋 ≼* 𝑌 ↔ 𝑋 ≼ 𝑌)) | ||
| Theorem | infpwfien 10074 | Any infinite well-orderable set is equinumerous to its set of finite subsets. (Contributed by Mario Carneiro, 18-May-2015.) |
| ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝒫 𝐴 ∩ Fin) ≈ 𝐴) | ||
| Theorem | inffien 10075 | The set of finite intersections of an infinite well-orderable set is equinumerous to the set itself. (Contributed by Mario Carneiro, 18-May-2015.) |
| ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (fi‘𝐴) ≈ 𝐴) | ||
| Theorem | wdomnumr 10076 | Weak dominance agrees with normal for numerable right sets. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
| ⊢ (𝐵 ∈ dom card → (𝐴 ≼* 𝐵 ↔ 𝐴 ≼ 𝐵)) | ||
| Theorem | alephfnon 10077 | The aleph function is a function on the class of ordinal numbers. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| ⊢ ℵ Fn On | ||
| Theorem | aleph0 10078 | The first infinite cardinal number, discovered by Georg Cantor in 1873, has the same size as the set of natural numbers ω (and under our particular definition is also equal to it). In the literature, the argument of the aleph function is often written as a subscript, and the first aleph is written ℵ0. Exercise 3 of [TakeutiZaring] p. 91. Also Definition 12(i) of [Suppes] p. 228. From Moshé Machover, Set Theory, Logic, and Their Limitations, p. 95: "Aleph ... the first letter in the Hebrew alphabet ... is also the first letter of the Hebrew word ... (einsoph, meaning infinity), which is a cabbalistic appellation of the deity. The notation is due to Cantor, who was deeply interested in mysticism." (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| ⊢ (ℵ‘∅) = ω | ||
| Theorem | alephlim 10079* | Value of the aleph function at a limit ordinal. Definition 12(iii) of [Suppes] p. 91. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) → (ℵ‘𝐴) = ∪ 𝑥 ∈ 𝐴 (ℵ‘𝑥)) | ||
| Theorem | alephsuc 10080 | Value of the aleph function at a successor ordinal. Definition 12(ii) of [Suppes] p. 91. Here we express the successor aleph in terms of the Hartogs function df-har 9569, which gives the smallest ordinal that strictly dominates its argument (or the supremum of all ordinals that are dominated by the argument). (Contributed by Mario Carneiro, 13-Sep-2013.) (Revised by Mario Carneiro, 15-May-2015.) |
| ⊢ (𝐴 ∈ On → (ℵ‘suc 𝐴) = (har‘(ℵ‘𝐴))) | ||
| Theorem | alephon 10081 | An aleph is an ordinal number. (Contributed by NM, 10-Nov-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| ⊢ (ℵ‘𝐴) ∈ On | ||
| Theorem | alephcard 10082 | Every aleph is a cardinal number. Theorem 65 of [Suppes] p. 229. (Contributed by NM, 25-Oct-2003.) (Revised by Mario Carneiro, 2-Feb-2013.) |
| ⊢ (card‘(ℵ‘𝐴)) = (ℵ‘𝐴) | ||
| Theorem | alephnbtwn 10083 | No cardinal can be sandwiched between an aleph and its successor aleph. Theorem 67 of [Suppes] p. 229. (Contributed by NM, 10-Nov-2003.) (Revised by Mario Carneiro, 15-May-2015.) |
| ⊢ ((card‘𝐵) = 𝐵 → ¬ ((ℵ‘𝐴) ∈ 𝐵 ∧ 𝐵 ∈ (ℵ‘suc 𝐴))) | ||
| Theorem | alephnbtwn2 10084 | No set has equinumerosity between an aleph and its successor aleph. (Contributed by NM, 3-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.) |
| ⊢ ¬ ((ℵ‘𝐴) ≺ 𝐵 ∧ 𝐵 ≺ (ℵ‘suc 𝐴)) | ||
| Theorem | alephordilem1 10085 | Lemma for alephordi 10086. (Contributed by NM, 23-Oct-2009.) (Revised by Mario Carneiro, 15-May-2015.) |
| ⊢ (𝐴 ∈ On → (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)) | ||
| Theorem | alephordi 10086 | Strict ordering property of the aleph function. (Contributed by Mario Carneiro, 2-Feb-2013.) |
| ⊢ (𝐵 ∈ On → (𝐴 ∈ 𝐵 → (ℵ‘𝐴) ≺ (ℵ‘𝐵))) | ||
| Theorem | alephord 10087 | Ordering property of the aleph function. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 9-Feb-2013.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 ↔ (ℵ‘𝐴) ≺ (ℵ‘𝐵))) | ||
| Theorem | alephord2 10088 | Ordering property of the aleph function. Theorem 8A(a) of [Enderton] p. 213 and its converse. (Contributed by NM, 3-Nov-2003.) (Revised by Mario Carneiro, 9-Feb-2013.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 ↔ (ℵ‘𝐴) ∈ (ℵ‘𝐵))) | ||
| Theorem | alephord2i 10089 | Ordering property of the aleph function. Theorem 66 of [Suppes] p. 229. (Contributed by NM, 25-Oct-2003.) |
| ⊢ (𝐵 ∈ On → (𝐴 ∈ 𝐵 → (ℵ‘𝐴) ∈ (ℵ‘𝐵))) | ||
| Theorem | alephord3 10090 | Ordering property of the aleph function. (Contributed by NM, 11-Nov-2003.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (ℵ‘𝐴) ⊆ (ℵ‘𝐵))) | ||
| Theorem | alephsucdom 10091 | A set dominated by an aleph is strictly dominated by its successor aleph and vice-versa. (Contributed by NM, 3-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.) |
| ⊢ (𝐵 ∈ On → (𝐴 ≼ (ℵ‘𝐵) ↔ 𝐴 ≺ (ℵ‘suc 𝐵))) | ||
| Theorem | alephsuc2 10092* | An alternate representation of a successor aleph. The aleph function is the function obtained from the hartogs 9556 function by transfinite recursion, starting from ω. Using this theorem we could define the aleph function with {𝑧 ∈ On ∣ 𝑧 ≼ 𝑥} in place of ∩ {𝑧 ∈ On ∣ 𝑥 ≺ 𝑧} in df-aleph 9952. (Contributed by NM, 3-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.) |
| ⊢ (𝐴 ∈ On → (ℵ‘suc 𝐴) = {𝑥 ∈ On ∣ 𝑥 ≼ (ℵ‘𝐴)}) | ||
| Theorem | alephdom 10093 | Relationship between inclusion of ordinal numbers and dominance of infinite initial ordinals. (Contributed by Jeff Hankins, 23-Oct-2009.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (ℵ‘𝐴) ≼ (ℵ‘𝐵))) | ||
| Theorem | alephgeom 10094 | Every aleph is greater than or equal to the set of natural numbers. (Contributed by NM, 11-Nov-2003.) |
| ⊢ (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴)) | ||
| Theorem | alephislim 10095 | Every aleph is a limit ordinal. (Contributed by NM, 11-Nov-2003.) |
| ⊢ (𝐴 ∈ On ↔ Lim (ℵ‘𝐴)) | ||
| Theorem | aleph11 10096 | The aleph function is one-to-one. (Contributed by NM, 3-Aug-2004.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ℵ‘𝐴) = (ℵ‘𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | alephf1 10097 | The aleph function is a one-to-one mapping from the ordinals to the infinite cardinals. See also alephf1ALT 10115. (Contributed by Mario Carneiro, 2-Feb-2013.) |
| ⊢ ℵ:On–1-1→On | ||
| Theorem | alephsdom 10098 | If an ordinal is smaller than an initial ordinal, it is strictly dominated by it. (Contributed by Jeff Hankins, 24-Oct-2009.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ (ℵ‘𝐵) ↔ 𝐴 ≺ (ℵ‘𝐵))) | ||
| Theorem | alephdom2 10099 | A dominated initial ordinal is included. (Contributed by Jeff Hankins, 24-Oct-2009.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ℵ‘𝐴) ⊆ 𝐵 ↔ (ℵ‘𝐴) ≼ 𝐵)) | ||
| Theorem | alephle 10100 | The argument of the aleph function is less than or equal to its value. Exercise 2 of [TakeutiZaring] p. 91. (Later, in alephfp2 10121, we will that equality can sometimes hold.) (Contributed by NM, 9-Nov-2003.) (Proof shortened by Mario Carneiro, 22-Feb-2013.) |
| ⊢ (𝐴 ∈ On → 𝐴 ⊆ (ℵ‘𝐴)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |