MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fodomacn Structured version   Visualization version   GIF version

Theorem fodomacn 10125
Description: A version of fodom 10592 that doesn't require the Axiom of Choice ax-ac 10528. If 𝐴 has choice sequences of length 𝐵, then any surjection from 𝐴 to 𝐵 can be inverted to an injection the other way. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
fodomacn (𝐴AC 𝐵 → (𝐹:𝐴onto𝐵𝐵𝐴))

Proof of Theorem fodomacn
Dummy variables 𝑥 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 foelrn 7141 . . . . 5 ((𝐹:𝐴onto𝐵𝑥𝐵) → ∃𝑦𝐴 𝑥 = (𝐹𝑦))
21ralrimiva 3152 . . . 4 (𝐹:𝐴onto𝐵 → ∀𝑥𝐵𝑦𝐴 𝑥 = (𝐹𝑦))
3 fveq2 6920 . . . . . 6 (𝑦 = (𝑓𝑥) → (𝐹𝑦) = (𝐹‘(𝑓𝑥)))
43eqeq2d 2751 . . . . 5 (𝑦 = (𝑓𝑥) → (𝑥 = (𝐹𝑦) ↔ 𝑥 = (𝐹‘(𝑓𝑥))))
54acni3 10116 . . . 4 ((𝐴AC 𝐵 ∧ ∀𝑥𝐵𝑦𝐴 𝑥 = (𝐹𝑦)) → ∃𝑓(𝑓:𝐵𝐴 ∧ ∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥))))
62, 5sylan2 592 . . 3 ((𝐴AC 𝐵𝐹:𝐴onto𝐵) → ∃𝑓(𝑓:𝐵𝐴 ∧ ∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥))))
7 simpll 766 . . . . 5 (((𝐴AC 𝐵𝐹:𝐴onto𝐵) ∧ (𝑓:𝐵𝐴 ∧ ∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)))) → 𝐴AC 𝐵)
8 acnrcl 10111 . . . . 5 (𝐴AC 𝐵𝐵 ∈ V)
97, 8syl 17 . . . 4 (((𝐴AC 𝐵𝐹:𝐴onto𝐵) ∧ (𝑓:𝐵𝐴 ∧ ∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)))) → 𝐵 ∈ V)
10 simprl 770 . . . . 5 (((𝐴AC 𝐵𝐹:𝐴onto𝐵) ∧ (𝑓:𝐵𝐴 ∧ ∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)))) → 𝑓:𝐵𝐴)
11 fveq2 6920 . . . . . . 7 ((𝑓𝑦) = (𝑓𝑧) → (𝐹‘(𝑓𝑦)) = (𝐹‘(𝑓𝑧)))
12 simprr 772 . . . . . . . 8 (((𝐴AC 𝐵𝐹:𝐴onto𝐵) ∧ (𝑓:𝐵𝐴 ∧ ∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)))) → ∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)))
13 id 22 . . . . . . . . . . . 12 (𝑥 = 𝑦𝑥 = 𝑦)
14 2fveq3 6925 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝐹‘(𝑓𝑥)) = (𝐹‘(𝑓𝑦)))
1513, 14eqeq12d 2756 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥 = (𝐹‘(𝑓𝑥)) ↔ 𝑦 = (𝐹‘(𝑓𝑦))))
1615rspccva 3634 . . . . . . . . . 10 ((∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)) ∧ 𝑦𝐵) → 𝑦 = (𝐹‘(𝑓𝑦)))
17 id 22 . . . . . . . . . . . 12 (𝑥 = 𝑧𝑥 = 𝑧)
18 2fveq3 6925 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝐹‘(𝑓𝑥)) = (𝐹‘(𝑓𝑧)))
1917, 18eqeq12d 2756 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑥 = (𝐹‘(𝑓𝑥)) ↔ 𝑧 = (𝐹‘(𝑓𝑧))))
2019rspccva 3634 . . . . . . . . . 10 ((∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)) ∧ 𝑧𝐵) → 𝑧 = (𝐹‘(𝑓𝑧)))
2116, 20eqeqan12d 2754 . . . . . . . . 9 (((∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)) ∧ 𝑦𝐵) ∧ (∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)) ∧ 𝑧𝐵)) → (𝑦 = 𝑧 ↔ (𝐹‘(𝑓𝑦)) = (𝐹‘(𝑓𝑧))))
2221anandis 677 . . . . . . . 8 ((∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)) ∧ (𝑦𝐵𝑧𝐵)) → (𝑦 = 𝑧 ↔ (𝐹‘(𝑓𝑦)) = (𝐹‘(𝑓𝑧))))
2312, 22sylan 579 . . . . . . 7 ((((𝐴AC 𝐵𝐹:𝐴onto𝐵) ∧ (𝑓:𝐵𝐴 ∧ ∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)))) ∧ (𝑦𝐵𝑧𝐵)) → (𝑦 = 𝑧 ↔ (𝐹‘(𝑓𝑦)) = (𝐹‘(𝑓𝑧))))
2411, 23imbitrrid 246 . . . . . 6 ((((𝐴AC 𝐵𝐹:𝐴onto𝐵) ∧ (𝑓:𝐵𝐴 ∧ ∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)))) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑓𝑦) = (𝑓𝑧) → 𝑦 = 𝑧))
2524ralrimivva 3208 . . . . 5 (((𝐴AC 𝐵𝐹:𝐴onto𝐵) ∧ (𝑓:𝐵𝐴 ∧ ∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)))) → ∀𝑦𝐵𝑧𝐵 ((𝑓𝑦) = (𝑓𝑧) → 𝑦 = 𝑧))
26 dff13 7292 . . . . 5 (𝑓:𝐵1-1𝐴 ↔ (𝑓:𝐵𝐴 ∧ ∀𝑦𝐵𝑧𝐵 ((𝑓𝑦) = (𝑓𝑧) → 𝑦 = 𝑧)))
2710, 25, 26sylanbrc 582 . . . 4 (((𝐴AC 𝐵𝐹:𝐴onto𝐵) ∧ (𝑓:𝐵𝐴 ∧ ∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)))) → 𝑓:𝐵1-1𝐴)
28 f1dom2g 9029 . . . 4 ((𝐵 ∈ V ∧ 𝐴AC 𝐵𝑓:𝐵1-1𝐴) → 𝐵𝐴)
299, 7, 27, 28syl3anc 1371 . . 3 (((𝐴AC 𝐵𝐹:𝐴onto𝐵) ∧ (𝑓:𝐵𝐴 ∧ ∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)))) → 𝐵𝐴)
306, 29exlimddv 1934 . 2 ((𝐴AC 𝐵𝐹:𝐴onto𝐵) → 𝐵𝐴)
3130ex 412 1 (𝐴AC 𝐵 → (𝐹:𝐴onto𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wral 3067  wrex 3076  Vcvv 3488   class class class wbr 5166  wf 6569  1-1wf1 6570  ontowfo 6571  cfv 6573  cdom 9001  AC wacn 10007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-dom 9005  df-acn 10011
This theorem is referenced by:  fodomnum  10126  iundomg  10610
  Copyright terms: Public domain W3C validator