MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fodomacn Structured version   Visualization version   GIF version

Theorem fodomacn 10009
Description: A version of fodom 10476 that doesn't require the Axiom of Choice ax-ac 10412. If 𝐴 has choice sequences of length 𝐵, then any surjection from 𝐴 to 𝐵 can be inverted to an injection the other way. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
fodomacn (𝐴AC 𝐵 → (𝐹:𝐴onto𝐵𝐵𝐴))

Proof of Theorem fodomacn
Dummy variables 𝑥 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 foelrn 7079 . . . . 5 ((𝐹:𝐴onto𝐵𝑥𝐵) → ∃𝑦𝐴 𝑥 = (𝐹𝑦))
21ralrimiva 3125 . . . 4 (𝐹:𝐴onto𝐵 → ∀𝑥𝐵𝑦𝐴 𝑥 = (𝐹𝑦))
3 fveq2 6858 . . . . . 6 (𝑦 = (𝑓𝑥) → (𝐹𝑦) = (𝐹‘(𝑓𝑥)))
43eqeq2d 2740 . . . . 5 (𝑦 = (𝑓𝑥) → (𝑥 = (𝐹𝑦) ↔ 𝑥 = (𝐹‘(𝑓𝑥))))
54acni3 10000 . . . 4 ((𝐴AC 𝐵 ∧ ∀𝑥𝐵𝑦𝐴 𝑥 = (𝐹𝑦)) → ∃𝑓(𝑓:𝐵𝐴 ∧ ∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥))))
62, 5sylan2 593 . . 3 ((𝐴AC 𝐵𝐹:𝐴onto𝐵) → ∃𝑓(𝑓:𝐵𝐴 ∧ ∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥))))
7 simpll 766 . . . . 5 (((𝐴AC 𝐵𝐹:𝐴onto𝐵) ∧ (𝑓:𝐵𝐴 ∧ ∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)))) → 𝐴AC 𝐵)
8 acnrcl 9995 . . . . 5 (𝐴AC 𝐵𝐵 ∈ V)
97, 8syl 17 . . . 4 (((𝐴AC 𝐵𝐹:𝐴onto𝐵) ∧ (𝑓:𝐵𝐴 ∧ ∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)))) → 𝐵 ∈ V)
10 simprl 770 . . . . 5 (((𝐴AC 𝐵𝐹:𝐴onto𝐵) ∧ (𝑓:𝐵𝐴 ∧ ∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)))) → 𝑓:𝐵𝐴)
11 fveq2 6858 . . . . . . 7 ((𝑓𝑦) = (𝑓𝑧) → (𝐹‘(𝑓𝑦)) = (𝐹‘(𝑓𝑧)))
12 simprr 772 . . . . . . . 8 (((𝐴AC 𝐵𝐹:𝐴onto𝐵) ∧ (𝑓:𝐵𝐴 ∧ ∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)))) → ∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)))
13 id 22 . . . . . . . . . . . 12 (𝑥 = 𝑦𝑥 = 𝑦)
14 2fveq3 6863 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝐹‘(𝑓𝑥)) = (𝐹‘(𝑓𝑦)))
1513, 14eqeq12d 2745 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥 = (𝐹‘(𝑓𝑥)) ↔ 𝑦 = (𝐹‘(𝑓𝑦))))
1615rspccva 3587 . . . . . . . . . 10 ((∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)) ∧ 𝑦𝐵) → 𝑦 = (𝐹‘(𝑓𝑦)))
17 id 22 . . . . . . . . . . . 12 (𝑥 = 𝑧𝑥 = 𝑧)
18 2fveq3 6863 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝐹‘(𝑓𝑥)) = (𝐹‘(𝑓𝑧)))
1917, 18eqeq12d 2745 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑥 = (𝐹‘(𝑓𝑥)) ↔ 𝑧 = (𝐹‘(𝑓𝑧))))
2019rspccva 3587 . . . . . . . . . 10 ((∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)) ∧ 𝑧𝐵) → 𝑧 = (𝐹‘(𝑓𝑧)))
2116, 20eqeqan12d 2743 . . . . . . . . 9 (((∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)) ∧ 𝑦𝐵) ∧ (∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)) ∧ 𝑧𝐵)) → (𝑦 = 𝑧 ↔ (𝐹‘(𝑓𝑦)) = (𝐹‘(𝑓𝑧))))
2221anandis 678 . . . . . . . 8 ((∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)) ∧ (𝑦𝐵𝑧𝐵)) → (𝑦 = 𝑧 ↔ (𝐹‘(𝑓𝑦)) = (𝐹‘(𝑓𝑧))))
2312, 22sylan 580 . . . . . . 7 ((((𝐴AC 𝐵𝐹:𝐴onto𝐵) ∧ (𝑓:𝐵𝐴 ∧ ∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)))) ∧ (𝑦𝐵𝑧𝐵)) → (𝑦 = 𝑧 ↔ (𝐹‘(𝑓𝑦)) = (𝐹‘(𝑓𝑧))))
2411, 23imbitrrid 246 . . . . . 6 ((((𝐴AC 𝐵𝐹:𝐴onto𝐵) ∧ (𝑓:𝐵𝐴 ∧ ∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)))) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑓𝑦) = (𝑓𝑧) → 𝑦 = 𝑧))
2524ralrimivva 3180 . . . . 5 (((𝐴AC 𝐵𝐹:𝐴onto𝐵) ∧ (𝑓:𝐵𝐴 ∧ ∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)))) → ∀𝑦𝐵𝑧𝐵 ((𝑓𝑦) = (𝑓𝑧) → 𝑦 = 𝑧))
26 dff13 7229 . . . . 5 (𝑓:𝐵1-1𝐴 ↔ (𝑓:𝐵𝐴 ∧ ∀𝑦𝐵𝑧𝐵 ((𝑓𝑦) = (𝑓𝑧) → 𝑦 = 𝑧)))
2710, 25, 26sylanbrc 583 . . . 4 (((𝐴AC 𝐵𝐹:𝐴onto𝐵) ∧ (𝑓:𝐵𝐴 ∧ ∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)))) → 𝑓:𝐵1-1𝐴)
28 f1dom2g 8941 . . . 4 ((𝐵 ∈ V ∧ 𝐴AC 𝐵𝑓:𝐵1-1𝐴) → 𝐵𝐴)
299, 7, 27, 28syl3anc 1373 . . 3 (((𝐴AC 𝐵𝐹:𝐴onto𝐵) ∧ (𝑓:𝐵𝐴 ∧ ∀𝑥𝐵 𝑥 = (𝐹‘(𝑓𝑥)))) → 𝐵𝐴)
306, 29exlimddv 1935 . 2 ((𝐴AC 𝐵𝐹:𝐴onto𝐵) → 𝐵𝐴)
3130ex 412 1 (𝐴AC 𝐵 → (𝐹:𝐴onto𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  Vcvv 3447   class class class wbr 5107  wf 6507  1-1wf1 6508  ontowfo 6509  cfv 6511  cdom 8916  AC wacn 9891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-dom 8920  df-acn 9895
This theorem is referenced by:  fodomnum  10010  iundomg  10494
  Copyright terms: Public domain W3C validator