| Step | Hyp | Ref
| Expression |
| 1 | | iundomg.2 |
. . 3
⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 (𝐶 ↑m 𝐵) ∈ AC 𝐴) |
| 2 | | iundomg.3 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ≼ 𝐶) |
| 3 | | brdomi 8999 |
. . . . . . . . 9
⊢ (𝐵 ≼ 𝐶 → ∃𝑔 𝑔:𝐵–1-1→𝐶) |
| 4 | 3 | adantl 481 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ≼ 𝐶) → ∃𝑔 𝑔:𝐵–1-1→𝐶) |
| 5 | | f1f 6804 |
. . . . . . . . . . . 12
⊢ (𝑔:𝐵–1-1→𝐶 → 𝑔:𝐵⟶𝐶) |
| 6 | | reldom 8991 |
. . . . . . . . . . . . . . 15
⊢ Rel
≼ |
| 7 | 6 | brrelex2i 5742 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ≼ 𝐶 → 𝐶 ∈ V) |
| 8 | 6 | brrelex1i 5741 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ≼ 𝐶 → 𝐵 ∈ V) |
| 9 | 7, 8 | elmapd 8880 |
. . . . . . . . . . . . 13
⊢ (𝐵 ≼ 𝐶 → (𝑔 ∈ (𝐶 ↑m 𝐵) ↔ 𝑔:𝐵⟶𝐶)) |
| 10 | 9 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ≼ 𝐶) → (𝑔 ∈ (𝐶 ↑m 𝐵) ↔ 𝑔:𝐵⟶𝐶)) |
| 11 | 5, 10 | imbitrrid 246 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ≼ 𝐶) → (𝑔:𝐵–1-1→𝐶 → 𝑔 ∈ (𝐶 ↑m 𝐵))) |
| 12 | | ssiun2 5047 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝐴 → (𝐶 ↑m 𝐵) ⊆ ∪ 𝑥 ∈ 𝐴 (𝐶 ↑m 𝐵)) |
| 13 | 12 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ≼ 𝐶) → (𝐶 ↑m 𝐵) ⊆ ∪ 𝑥 ∈ 𝐴 (𝐶 ↑m 𝐵)) |
| 14 | 13 | sseld 3982 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ≼ 𝐶) → (𝑔 ∈ (𝐶 ↑m 𝐵) → 𝑔 ∈ ∪
𝑥 ∈ 𝐴 (𝐶 ↑m 𝐵))) |
| 15 | 11, 14 | syld 47 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ≼ 𝐶) → (𝑔:𝐵–1-1→𝐶 → 𝑔 ∈ ∪
𝑥 ∈ 𝐴 (𝐶 ↑m 𝐵))) |
| 16 | 15 | ancrd 551 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ≼ 𝐶) → (𝑔:𝐵–1-1→𝐶 → (𝑔 ∈ ∪
𝑥 ∈ 𝐴 (𝐶 ↑m 𝐵) ∧ 𝑔:𝐵–1-1→𝐶))) |
| 17 | 16 | eximdv 1917 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ≼ 𝐶) → (∃𝑔 𝑔:𝐵–1-1→𝐶 → ∃𝑔(𝑔 ∈ ∪
𝑥 ∈ 𝐴 (𝐶 ↑m 𝐵) ∧ 𝑔:𝐵–1-1→𝐶))) |
| 18 | 4, 17 | mpd 15 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ≼ 𝐶) → ∃𝑔(𝑔 ∈ ∪
𝑥 ∈ 𝐴 (𝐶 ↑m 𝐵) ∧ 𝑔:𝐵–1-1→𝐶)) |
| 19 | | df-rex 3071 |
. . . . . . 7
⊢
(∃𝑔 ∈
∪ 𝑥 ∈ 𝐴 (𝐶 ↑m 𝐵)𝑔:𝐵–1-1→𝐶 ↔ ∃𝑔(𝑔 ∈ ∪
𝑥 ∈ 𝐴 (𝐶 ↑m 𝐵) ∧ 𝑔:𝐵–1-1→𝐶)) |
| 20 | 18, 19 | sylibr 234 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ≼ 𝐶) → ∃𝑔 ∈ ∪
𝑥 ∈ 𝐴 (𝐶 ↑m 𝐵)𝑔:𝐵–1-1→𝐶) |
| 21 | 20 | ralimiaa 3082 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 𝐵 ≼ 𝐶 → ∀𝑥 ∈ 𝐴 ∃𝑔 ∈ ∪
𝑥 ∈ 𝐴 (𝐶 ↑m 𝐵)𝑔:𝐵–1-1→𝐶) |
| 22 | 2, 21 | syl 17 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑔 ∈ ∪
𝑥 ∈ 𝐴 (𝐶 ↑m 𝐵)𝑔:𝐵–1-1→𝐶) |
| 23 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑦∃𝑔 ∈ ∪ 𝑥 ∈ 𝐴 (𝐶 ↑m 𝐵)𝑔:𝐵–1-1→𝐶 |
| 24 | | nfiu1 5027 |
. . . . . 6
⊢
Ⅎ𝑥∪ 𝑥 ∈ 𝐴 (𝐶 ↑m 𝐵) |
| 25 | | nfcv 2905 |
. . . . . . 7
⊢
Ⅎ𝑥𝑔 |
| 26 | | nfcsb1v 3923 |
. . . . . . 7
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 |
| 27 | | nfcv 2905 |
. . . . . . 7
⊢
Ⅎ𝑥𝐶 |
| 28 | 25, 26, 27 | nff1 6802 |
. . . . . 6
⊢
Ⅎ𝑥 𝑔:⦋𝑦 / 𝑥⦌𝐵–1-1→𝐶 |
| 29 | 24, 28 | nfrexw 3313 |
. . . . 5
⊢
Ⅎ𝑥∃𝑔 ∈ ∪ 𝑥 ∈ 𝐴 (𝐶 ↑m 𝐵)𝑔:⦋𝑦 / 𝑥⦌𝐵–1-1→𝐶 |
| 30 | | csbeq1a 3913 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) |
| 31 | | f1eq2 6800 |
. . . . . . 7
⊢ (𝐵 = ⦋𝑦 / 𝑥⦌𝐵 → (𝑔:𝐵–1-1→𝐶 ↔ 𝑔:⦋𝑦 / 𝑥⦌𝐵–1-1→𝐶)) |
| 32 | 30, 31 | syl 17 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑔:𝐵–1-1→𝐶 ↔ 𝑔:⦋𝑦 / 𝑥⦌𝐵–1-1→𝐶)) |
| 33 | 32 | rexbidv 3179 |
. . . . 5
⊢ (𝑥 = 𝑦 → (∃𝑔 ∈ ∪
𝑥 ∈ 𝐴 (𝐶 ↑m 𝐵)𝑔:𝐵–1-1→𝐶 ↔ ∃𝑔 ∈ ∪
𝑥 ∈ 𝐴 (𝐶 ↑m 𝐵)𝑔:⦋𝑦 / 𝑥⦌𝐵–1-1→𝐶)) |
| 34 | 23, 29, 33 | cbvralw 3306 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 ∃𝑔 ∈ ∪
𝑥 ∈ 𝐴 (𝐶 ↑m 𝐵)𝑔:𝐵–1-1→𝐶 ↔ ∀𝑦 ∈ 𝐴 ∃𝑔 ∈ ∪
𝑥 ∈ 𝐴 (𝐶 ↑m 𝐵)𝑔:⦋𝑦 / 𝑥⦌𝐵–1-1→𝐶) |
| 35 | 22, 34 | sylib 218 |
. . 3
⊢ (𝜑 → ∀𝑦 ∈ 𝐴 ∃𝑔 ∈ ∪
𝑥 ∈ 𝐴 (𝐶 ↑m 𝐵)𝑔:⦋𝑦 / 𝑥⦌𝐵–1-1→𝐶) |
| 36 | | f1eq1 6799 |
. . . 4
⊢ (𝑔 = (𝑓‘𝑦) → (𝑔:⦋𝑦 / 𝑥⦌𝐵–1-1→𝐶 ↔ (𝑓‘𝑦):⦋𝑦 / 𝑥⦌𝐵–1-1→𝐶)) |
| 37 | 36 | acni3 10087 |
. . 3
⊢
((∪ 𝑥 ∈ 𝐴 (𝐶 ↑m 𝐵) ∈ AC 𝐴 ∧ ∀𝑦 ∈ 𝐴 ∃𝑔 ∈ ∪
𝑥 ∈ 𝐴 (𝐶 ↑m 𝐵)𝑔:⦋𝑦 / 𝑥⦌𝐵–1-1→𝐶) → ∃𝑓(𝑓:𝐴⟶∪
𝑥 ∈ 𝐴 (𝐶 ↑m 𝐵) ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦):⦋𝑦 / 𝑥⦌𝐵–1-1→𝐶)) |
| 38 | 1, 35, 37 | syl2anc 584 |
. 2
⊢ (𝜑 → ∃𝑓(𝑓:𝐴⟶∪
𝑥 ∈ 𝐴 (𝐶 ↑m 𝐵) ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦):⦋𝑦 / 𝑥⦌𝐵–1-1→𝐶)) |
| 39 | | nfv 1914 |
. . . . . 6
⊢
Ⅎ𝑦(𝑓‘𝑥):𝐵–1-1→𝐶 |
| 40 | | nfcv 2905 |
. . . . . . 7
⊢
Ⅎ𝑥(𝑓‘𝑦) |
| 41 | 40, 26, 27 | nff1 6802 |
. . . . . 6
⊢
Ⅎ𝑥(𝑓‘𝑦):⦋𝑦 / 𝑥⦌𝐵–1-1→𝐶 |
| 42 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑓‘𝑥) = (𝑓‘𝑦)) |
| 43 | | f1eq1 6799 |
. . . . . . . 8
⊢ ((𝑓‘𝑥) = (𝑓‘𝑦) → ((𝑓‘𝑥):𝐵–1-1→𝐶 ↔ (𝑓‘𝑦):𝐵–1-1→𝐶)) |
| 44 | 42, 43 | syl 17 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝑓‘𝑥):𝐵–1-1→𝐶 ↔ (𝑓‘𝑦):𝐵–1-1→𝐶)) |
| 45 | | f1eq2 6800 |
. . . . . . . 8
⊢ (𝐵 = ⦋𝑦 / 𝑥⦌𝐵 → ((𝑓‘𝑦):𝐵–1-1→𝐶 ↔ (𝑓‘𝑦):⦋𝑦 / 𝑥⦌𝐵–1-1→𝐶)) |
| 46 | 30, 45 | syl 17 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝑓‘𝑦):𝐵–1-1→𝐶 ↔ (𝑓‘𝑦):⦋𝑦 / 𝑥⦌𝐵–1-1→𝐶)) |
| 47 | 44, 46 | bitrd 279 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((𝑓‘𝑥):𝐵–1-1→𝐶 ↔ (𝑓‘𝑦):⦋𝑦 / 𝑥⦌𝐵–1-1→𝐶)) |
| 48 | 39, 41, 47 | cbvralw 3306 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 (𝑓‘𝑥):𝐵–1-1→𝐶 ↔ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦):⦋𝑦 / 𝑥⦌𝐵–1-1→𝐶) |
| 49 | | df-ne 2941 |
. . . . . . . 8
⊢ (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅) |
| 50 | | acnrcl 10082 |
. . . . . . . . . 10
⊢ (∪ 𝑥 ∈ 𝐴 (𝐶 ↑m 𝐵) ∈ AC 𝐴 → 𝐴 ∈ V) |
| 51 | 1, 50 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ V) |
| 52 | | r19.2z 4495 |
. . . . . . . . . . . 12
⊢ ((𝐴 ≠ ∅ ∧
∀𝑥 ∈ 𝐴 𝐵 ≼ 𝐶) → ∃𝑥 ∈ 𝐴 𝐵 ≼ 𝐶) |
| 53 | 7 | rexlimivw 3151 |
. . . . . . . . . . . 12
⊢
(∃𝑥 ∈
𝐴 𝐵 ≼ 𝐶 → 𝐶 ∈ V) |
| 54 | 52, 53 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝐴 ≠ ∅ ∧
∀𝑥 ∈ 𝐴 𝐵 ≼ 𝐶) → 𝐶 ∈ V) |
| 55 | 54 | expcom 413 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
𝐴 𝐵 ≼ 𝐶 → (𝐴 ≠ ∅ → 𝐶 ∈ V)) |
| 56 | 2, 55 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 ≠ ∅ → 𝐶 ∈ V)) |
| 57 | | xpexg 7770 |
. . . . . . . . 9
⊢ ((𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴 × 𝐶) ∈ V) |
| 58 | 51, 56, 57 | syl6an 684 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 ≠ ∅ → (𝐴 × 𝐶) ∈ V)) |
| 59 | 49, 58 | biimtrrid 243 |
. . . . . . 7
⊢ (𝜑 → (¬ 𝐴 = ∅ → (𝐴 × 𝐶) ∈ V)) |
| 60 | | xpeq1 5699 |
. . . . . . . 8
⊢ (𝐴 = ∅ → (𝐴 × 𝐶) = (∅ × 𝐶)) |
| 61 | | 0xp 5784 |
. . . . . . . . 9
⊢ (∅
× 𝐶) =
∅ |
| 62 | | 0ex 5307 |
. . . . . . . . 9
⊢ ∅
∈ V |
| 63 | 61, 62 | eqeltri 2837 |
. . . . . . . 8
⊢ (∅
× 𝐶) ∈
V |
| 64 | 60, 63 | eqeltrdi 2849 |
. . . . . . 7
⊢ (𝐴 = ∅ → (𝐴 × 𝐶) ∈ V) |
| 65 | 59, 64 | pm2.61d2 181 |
. . . . . 6
⊢ (𝜑 → (𝐴 × 𝐶) ∈ V) |
| 66 | | iunfo.1 |
. . . . . . . . . 10
⊢ 𝑇 = ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) |
| 67 | 66 | eleq2i 2833 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝑇 ↔ 𝑦 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) |
| 68 | | eliun 4995 |
. . . . . . . . 9
⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ ({𝑥} × 𝐵)) |
| 69 | 67, 68 | bitri 275 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝑇 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ ({𝑥} × 𝐵)) |
| 70 | | r19.29 3114 |
. . . . . . . . . 10
⊢
((∀𝑥 ∈
𝐴 (𝑓‘𝑥):𝐵–1-1→𝐶 ∧ ∃𝑥 ∈ 𝐴 𝑦 ∈ ({𝑥} × 𝐵)) → ∃𝑥 ∈ 𝐴 ((𝑓‘𝑥):𝐵–1-1→𝐶 ∧ 𝑦 ∈ ({𝑥} × 𝐵))) |
| 71 | | xp1st 8046 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ({𝑥} × 𝐵) → (1st ‘𝑦) ∈ {𝑥}) |
| 72 | 71 | ad2antll 729 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝐴 ∧ ((𝑓‘𝑥):𝐵–1-1→𝐶 ∧ 𝑦 ∈ ({𝑥} × 𝐵))) → (1st ‘𝑦) ∈ {𝑥}) |
| 73 | | elsni 4643 |
. . . . . . . . . . . . . 14
⊢
((1st ‘𝑦) ∈ {𝑥} → (1st ‘𝑦) = 𝑥) |
| 74 | 72, 73 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐴 ∧ ((𝑓‘𝑥):𝐵–1-1→𝐶 ∧ 𝑦 ∈ ({𝑥} × 𝐵))) → (1st ‘𝑦) = 𝑥) |
| 75 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐴 ∧ ((𝑓‘𝑥):𝐵–1-1→𝐶 ∧ 𝑦 ∈ ({𝑥} × 𝐵))) → 𝑥 ∈ 𝐴) |
| 76 | 74, 75 | eqeltrd 2841 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐴 ∧ ((𝑓‘𝑥):𝐵–1-1→𝐶 ∧ 𝑦 ∈ ({𝑥} × 𝐵))) → (1st ‘𝑦) ∈ 𝐴) |
| 77 | 74 | fveq2d 6910 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝐴 ∧ ((𝑓‘𝑥):𝐵–1-1→𝐶 ∧ 𝑦 ∈ ({𝑥} × 𝐵))) → (𝑓‘(1st ‘𝑦)) = (𝑓‘𝑥)) |
| 78 | 77 | fveq1d 6908 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐴 ∧ ((𝑓‘𝑥):𝐵–1-1→𝐶 ∧ 𝑦 ∈ ({𝑥} × 𝐵))) → ((𝑓‘(1st ‘𝑦))‘(2nd
‘𝑦)) = ((𝑓‘𝑥)‘(2nd ‘𝑦))) |
| 79 | | f1f 6804 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓‘𝑥):𝐵–1-1→𝐶 → (𝑓‘𝑥):𝐵⟶𝐶) |
| 80 | 79 | ad2antrl 728 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝐴 ∧ ((𝑓‘𝑥):𝐵–1-1→𝐶 ∧ 𝑦 ∈ ({𝑥} × 𝐵))) → (𝑓‘𝑥):𝐵⟶𝐶) |
| 81 | | xp2nd 8047 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ({𝑥} × 𝐵) → (2nd ‘𝑦) ∈ 𝐵) |
| 82 | 81 | ad2antll 729 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝐴 ∧ ((𝑓‘𝑥):𝐵–1-1→𝐶 ∧ 𝑦 ∈ ({𝑥} × 𝐵))) → (2nd ‘𝑦) ∈ 𝐵) |
| 83 | 80, 82 | ffvelcdmd 7105 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐴 ∧ ((𝑓‘𝑥):𝐵–1-1→𝐶 ∧ 𝑦 ∈ ({𝑥} × 𝐵))) → ((𝑓‘𝑥)‘(2nd ‘𝑦)) ∈ 𝐶) |
| 84 | 78, 83 | eqeltrd 2841 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐴 ∧ ((𝑓‘𝑥):𝐵–1-1→𝐶 ∧ 𝑦 ∈ ({𝑥} × 𝐵))) → ((𝑓‘(1st ‘𝑦))‘(2nd
‘𝑦)) ∈ 𝐶) |
| 85 | 76, 84 | opelxpd 5724 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐴 ∧ ((𝑓‘𝑥):𝐵–1-1→𝐶 ∧ 𝑦 ∈ ({𝑥} × 𝐵))) → 〈(1st
‘𝑦), ((𝑓‘(1st
‘𝑦))‘(2nd ‘𝑦))〉 ∈ (𝐴 × 𝐶)) |
| 86 | 85 | rexlimiva 3147 |
. . . . . . . . . 10
⊢
(∃𝑥 ∈
𝐴 ((𝑓‘𝑥):𝐵–1-1→𝐶 ∧ 𝑦 ∈ ({𝑥} × 𝐵)) → 〈(1st ‘𝑦), ((𝑓‘(1st ‘𝑦))‘(2nd
‘𝑦))〉 ∈
(𝐴 × 𝐶)) |
| 87 | 70, 86 | syl 17 |
. . . . . . . . 9
⊢
((∀𝑥 ∈
𝐴 (𝑓‘𝑥):𝐵–1-1→𝐶 ∧ ∃𝑥 ∈ 𝐴 𝑦 ∈ ({𝑥} × 𝐵)) → 〈(1st ‘𝑦), ((𝑓‘(1st ‘𝑦))‘(2nd
‘𝑦))〉 ∈
(𝐴 × 𝐶)) |
| 88 | 87 | ex 412 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 (𝑓‘𝑥):𝐵–1-1→𝐶 → (∃𝑥 ∈ 𝐴 𝑦 ∈ ({𝑥} × 𝐵) → 〈(1st ‘𝑦), ((𝑓‘(1st ‘𝑦))‘(2nd
‘𝑦))〉 ∈
(𝐴 × 𝐶))) |
| 89 | 69, 88 | biimtrid 242 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 (𝑓‘𝑥):𝐵–1-1→𝐶 → (𝑦 ∈ 𝑇 → 〈(1st ‘𝑦), ((𝑓‘(1st ‘𝑦))‘(2nd
‘𝑦))〉 ∈
(𝐴 × 𝐶))) |
| 90 | | fvex 6919 |
. . . . . . . . . 10
⊢
(1st ‘𝑦) ∈ V |
| 91 | | fvex 6919 |
. . . . . . . . . 10
⊢ ((𝑓‘(1st
‘𝑦))‘(2nd ‘𝑦)) ∈ V |
| 92 | 90, 91 | opth 5481 |
. . . . . . . . 9
⊢
(〈(1st ‘𝑦), ((𝑓‘(1st ‘𝑦))‘(2nd
‘𝑦))〉 =
〈(1st ‘𝑧), ((𝑓‘(1st ‘𝑧))‘(2nd
‘𝑧))〉 ↔
((1st ‘𝑦)
= (1st ‘𝑧)
∧ ((𝑓‘(1st ‘𝑦))‘(2nd
‘𝑦)) = ((𝑓‘(1st
‘𝑧))‘(2nd ‘𝑧)))) |
| 93 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢
(((∀𝑥 ∈
𝐴 (𝑓‘𝑥):𝐵–1-1→𝐶 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) ∧ (1st ‘𝑦) = (1st ‘𝑧)) → (1st
‘𝑦) = (1st
‘𝑧)) |
| 94 | 93 | fveq2d 6910 |
. . . . . . . . . . . . . 14
⊢
(((∀𝑥 ∈
𝐴 (𝑓‘𝑥):𝐵–1-1→𝐶 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) ∧ (1st ‘𝑦) = (1st ‘𝑧)) → (𝑓‘(1st ‘𝑦)) = (𝑓‘(1st ‘𝑧))) |
| 95 | 94 | fveq1d 6908 |
. . . . . . . . . . . . 13
⊢
(((∀𝑥 ∈
𝐴 (𝑓‘𝑥):𝐵–1-1→𝐶 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) ∧ (1st ‘𝑦) = (1st ‘𝑧)) → ((𝑓‘(1st ‘𝑦))‘(2nd
‘𝑧)) = ((𝑓‘(1st
‘𝑧))‘(2nd ‘𝑧))) |
| 96 | 95 | eqeq2d 2748 |
. . . . . . . . . . . 12
⊢
(((∀𝑥 ∈
𝐴 (𝑓‘𝑥):𝐵–1-1→𝐶 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) ∧ (1st ‘𝑦) = (1st ‘𝑧)) → (((𝑓‘(1st ‘𝑦))‘(2nd
‘𝑦)) = ((𝑓‘(1st
‘𝑦))‘(2nd ‘𝑧)) ↔ ((𝑓‘(1st ‘𝑦))‘(2nd
‘𝑦)) = ((𝑓‘(1st
‘𝑧))‘(2nd ‘𝑧)))) |
| 97 | | djussxp 5856 |
. . . . . . . . . . . . . . . . . 18
⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V) |
| 98 | 66, 97 | eqsstri 4030 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑇 ⊆ (𝐴 × V) |
| 99 | | simprl 771 |
. . . . . . . . . . . . . . . . 17
⊢
((∀𝑥 ∈
𝐴 (𝑓‘𝑥):𝐵–1-1→𝐶 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → 𝑦 ∈ 𝑇) |
| 100 | 98, 99 | sselid 3981 |
. . . . . . . . . . . . . . . 16
⊢
((∀𝑥 ∈
𝐴 (𝑓‘𝑥):𝐵–1-1→𝐶 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → 𝑦 ∈ (𝐴 × V)) |
| 101 | 100 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢
(((∀𝑥 ∈
𝐴 (𝑓‘𝑥):𝐵–1-1→𝐶 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) ∧ (1st ‘𝑦) = (1st ‘𝑧)) → 𝑦 ∈ (𝐴 × V)) |
| 102 | | xp1st 8046 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (𝐴 × V) → (1st
‘𝑦) ∈ 𝐴) |
| 103 | 101, 102 | syl 17 |
. . . . . . . . . . . . . 14
⊢
(((∀𝑥 ∈
𝐴 (𝑓‘𝑥):𝐵–1-1→𝐶 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) ∧ (1st ‘𝑦) = (1st ‘𝑧)) → (1st
‘𝑦) ∈ 𝐴) |
| 104 | | simpll 767 |
. . . . . . . . . . . . . 14
⊢
(((∀𝑥 ∈
𝐴 (𝑓‘𝑥):𝐵–1-1→𝐶 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) ∧ (1st ‘𝑦) = (1st ‘𝑧)) → ∀𝑥 ∈ 𝐴 (𝑓‘𝑥):𝐵–1-1→𝐶) |
| 105 | | nfcv 2905 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥(𝑓‘(1st ‘𝑦)) |
| 106 | | nfcsb1v 3923 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥⦋(1st ‘𝑦) / 𝑥⦌𝐵 |
| 107 | 105, 106,
27 | nff1 6802 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥(𝑓‘(1st
‘𝑦)):⦋(1st
‘𝑦) / 𝑥⦌𝐵–1-1→𝐶 |
| 108 | | fveq2 6906 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (1st ‘𝑦) → (𝑓‘𝑥) = (𝑓‘(1st ‘𝑦))) |
| 109 | | f1eq1 6799 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓‘𝑥) = (𝑓‘(1st ‘𝑦)) → ((𝑓‘𝑥):𝐵–1-1→𝐶 ↔ (𝑓‘(1st ‘𝑦)):𝐵–1-1→𝐶)) |
| 110 | 108, 109 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (1st ‘𝑦) → ((𝑓‘𝑥):𝐵–1-1→𝐶 ↔ (𝑓‘(1st ‘𝑦)):𝐵–1-1→𝐶)) |
| 111 | | csbeq1a 3913 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (1st ‘𝑦) → 𝐵 = ⦋(1st
‘𝑦) / 𝑥⦌𝐵) |
| 112 | | f1eq2 6800 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 =
⦋(1st ‘𝑦) / 𝑥⦌𝐵 → ((𝑓‘(1st ‘𝑦)):𝐵–1-1→𝐶 ↔ (𝑓‘(1st ‘𝑦)):⦋(1st
‘𝑦) / 𝑥⦌𝐵–1-1→𝐶)) |
| 113 | 111, 112 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (1st ‘𝑦) → ((𝑓‘(1st ‘𝑦)):𝐵–1-1→𝐶 ↔ (𝑓‘(1st ‘𝑦)):⦋(1st
‘𝑦) / 𝑥⦌𝐵–1-1→𝐶)) |
| 114 | 110, 113 | bitrd 279 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (1st ‘𝑦) → ((𝑓‘𝑥):𝐵–1-1→𝐶 ↔ (𝑓‘(1st ‘𝑦)):⦋(1st
‘𝑦) / 𝑥⦌𝐵–1-1→𝐶)) |
| 115 | 107, 114 | rspc 3610 |
. . . . . . . . . . . . . 14
⊢
((1st ‘𝑦) ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝑓‘𝑥):𝐵–1-1→𝐶 → (𝑓‘(1st ‘𝑦)):⦋(1st
‘𝑦) / 𝑥⦌𝐵–1-1→𝐶)) |
| 116 | 103, 104,
115 | sylc 65 |
. . . . . . . . . . . . 13
⊢
(((∀𝑥 ∈
𝐴 (𝑓‘𝑥):𝐵–1-1→𝐶 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) ∧ (1st ‘𝑦) = (1st ‘𝑧)) → (𝑓‘(1st ‘𝑦)):⦋(1st
‘𝑦) / 𝑥⦌𝐵–1-1→𝐶) |
| 117 | 106 | nfel2 2924 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑥(2nd ‘𝑦) ∈ ⦋(1st
‘𝑦) / 𝑥⦌𝐵 |
| 118 | 74 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑥 ∈ 𝐴 ∧ ((𝑓‘𝑥):𝐵–1-1→𝐶 ∧ 𝑦 ∈ ({𝑥} × 𝐵))) → 𝑥 = (1st ‘𝑦)) |
| 119 | 118, 111 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑥 ∈ 𝐴 ∧ ((𝑓‘𝑥):𝐵–1-1→𝐶 ∧ 𝑦 ∈ ({𝑥} × 𝐵))) → 𝐵 = ⦋(1st
‘𝑦) / 𝑥⦌𝐵) |
| 120 | 82, 119 | eleqtrd 2843 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 ∈ 𝐴 ∧ ((𝑓‘𝑥):𝐵–1-1→𝐶 ∧ 𝑦 ∈ ({𝑥} × 𝐵))) → (2nd ‘𝑦) ∈
⦋(1st ‘𝑦) / 𝑥⦌𝐵) |
| 121 | 120 | ex 412 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ 𝐴 → (((𝑓‘𝑥):𝐵–1-1→𝐶 ∧ 𝑦 ∈ ({𝑥} × 𝐵)) → (2nd ‘𝑦) ∈
⦋(1st ‘𝑦) / 𝑥⦌𝐵)) |
| 122 | 117, 121 | rexlimi 3259 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑥 ∈
𝐴 ((𝑓‘𝑥):𝐵–1-1→𝐶 ∧ 𝑦 ∈ ({𝑥} × 𝐵)) → (2nd ‘𝑦) ∈
⦋(1st ‘𝑦) / 𝑥⦌𝐵) |
| 123 | 70, 122 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢
((∀𝑥 ∈
𝐴 (𝑓‘𝑥):𝐵–1-1→𝐶 ∧ ∃𝑥 ∈ 𝐴 𝑦 ∈ ({𝑥} × 𝐵)) → (2nd ‘𝑦) ∈
⦋(1st ‘𝑦) / 𝑥⦌𝐵) |
| 124 | 123 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑥 ∈
𝐴 (𝑓‘𝑥):𝐵–1-1→𝐶 → (∃𝑥 ∈ 𝐴 𝑦 ∈ ({𝑥} × 𝐵) → (2nd ‘𝑦) ∈
⦋(1st ‘𝑦) / 𝑥⦌𝐵)) |
| 125 | 69, 124 | biimtrid 242 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑥 ∈
𝐴 (𝑓‘𝑥):𝐵–1-1→𝐶 → (𝑦 ∈ 𝑇 → (2nd ‘𝑦) ∈
⦋(1st ‘𝑦) / 𝑥⦌𝐵)) |
| 126 | 125 | imp 406 |
. . . . . . . . . . . . . . 15
⊢
((∀𝑥 ∈
𝐴 (𝑓‘𝑥):𝐵–1-1→𝐶 ∧ 𝑦 ∈ 𝑇) → (2nd ‘𝑦) ∈
⦋(1st ‘𝑦) / 𝑥⦌𝐵) |
| 127 | 126 | adantrr 717 |
. . . . . . . . . . . . . 14
⊢
((∀𝑥 ∈
𝐴 (𝑓‘𝑥):𝐵–1-1→𝐶 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → (2nd ‘𝑦) ∈
⦋(1st ‘𝑦) / 𝑥⦌𝐵) |
| 128 | 127 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((∀𝑥 ∈
𝐴 (𝑓‘𝑥):𝐵–1-1→𝐶 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) ∧ (1st ‘𝑦) = (1st ‘𝑧)) → (2nd
‘𝑦) ∈
⦋(1st ‘𝑦) / 𝑥⦌𝐵) |
| 129 | 125 | ralrimiv 3145 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑥 ∈
𝐴 (𝑓‘𝑥):𝐵–1-1→𝐶 → ∀𝑦 ∈ 𝑇 (2nd ‘𝑦) ∈ ⦋(1st
‘𝑦) / 𝑥⦌𝐵) |
| 130 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑧 → (2nd ‘𝑦) = (2nd ‘𝑧)) |
| 131 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑧 → (1st ‘𝑦) = (1st ‘𝑧)) |
| 132 | 131 | csbeq1d 3903 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑧 → ⦋(1st
‘𝑦) / 𝑥⦌𝐵 = ⦋(1st
‘𝑧) / 𝑥⦌𝐵) |
| 133 | 130, 132 | eleq12d 2835 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑧 → ((2nd ‘𝑦) ∈
⦋(1st ‘𝑦) / 𝑥⦌𝐵 ↔ (2nd ‘𝑧) ∈
⦋(1st ‘𝑧) / 𝑥⦌𝐵)) |
| 134 | 133 | rspccva 3621 |
. . . . . . . . . . . . . . . . 17
⊢
((∀𝑦 ∈
𝑇 (2nd
‘𝑦) ∈
⦋(1st ‘𝑦) / 𝑥⦌𝐵 ∧ 𝑧 ∈ 𝑇) → (2nd ‘𝑧) ∈
⦋(1st ‘𝑧) / 𝑥⦌𝐵) |
| 135 | 129, 134 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢
((∀𝑥 ∈
𝐴 (𝑓‘𝑥):𝐵–1-1→𝐶 ∧ 𝑧 ∈ 𝑇) → (2nd ‘𝑧) ∈
⦋(1st ‘𝑧) / 𝑥⦌𝐵) |
| 136 | 135 | adantrl 716 |
. . . . . . . . . . . . . . 15
⊢
((∀𝑥 ∈
𝐴 (𝑓‘𝑥):𝐵–1-1→𝐶 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → (2nd ‘𝑧) ∈
⦋(1st ‘𝑧) / 𝑥⦌𝐵) |
| 137 | 136 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
(((∀𝑥 ∈
𝐴 (𝑓‘𝑥):𝐵–1-1→𝐶 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) ∧ (1st ‘𝑦) = (1st ‘𝑧)) → (2nd
‘𝑧) ∈
⦋(1st ‘𝑧) / 𝑥⦌𝐵) |
| 138 | 93 | csbeq1d 3903 |
. . . . . . . . . . . . . 14
⊢
(((∀𝑥 ∈
𝐴 (𝑓‘𝑥):𝐵–1-1→𝐶 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) ∧ (1st ‘𝑦) = (1st ‘𝑧)) →
⦋(1st ‘𝑦) / 𝑥⦌𝐵 = ⦋(1st
‘𝑧) / 𝑥⦌𝐵) |
| 139 | 137, 138 | eleqtrrd 2844 |
. . . . . . . . . . . . 13
⊢
(((∀𝑥 ∈
𝐴 (𝑓‘𝑥):𝐵–1-1→𝐶 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) ∧ (1st ‘𝑦) = (1st ‘𝑧)) → (2nd
‘𝑧) ∈
⦋(1st ‘𝑦) / 𝑥⦌𝐵) |
| 140 | | f1fveq 7282 |
. . . . . . . . . . . . 13
⊢ (((𝑓‘(1st
‘𝑦)):⦋(1st
‘𝑦) / 𝑥⦌𝐵–1-1→𝐶 ∧ ((2nd ‘𝑦) ∈
⦋(1st ‘𝑦) / 𝑥⦌𝐵 ∧ (2nd ‘𝑧) ∈
⦋(1st ‘𝑦) / 𝑥⦌𝐵)) → (((𝑓‘(1st ‘𝑦))‘(2nd
‘𝑦)) = ((𝑓‘(1st
‘𝑦))‘(2nd ‘𝑧)) ↔ (2nd
‘𝑦) = (2nd
‘𝑧))) |
| 141 | 116, 128,
139, 140 | syl12anc 837 |
. . . . . . . . . . . 12
⊢
(((∀𝑥 ∈
𝐴 (𝑓‘𝑥):𝐵–1-1→𝐶 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) ∧ (1st ‘𝑦) = (1st ‘𝑧)) → (((𝑓‘(1st ‘𝑦))‘(2nd
‘𝑦)) = ((𝑓‘(1st
‘𝑦))‘(2nd ‘𝑧)) ↔ (2nd
‘𝑦) = (2nd
‘𝑧))) |
| 142 | 96, 141 | bitr3d 281 |
. . . . . . . . . . 11
⊢
(((∀𝑥 ∈
𝐴 (𝑓‘𝑥):𝐵–1-1→𝐶 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) ∧ (1st ‘𝑦) = (1st ‘𝑧)) → (((𝑓‘(1st ‘𝑦))‘(2nd
‘𝑦)) = ((𝑓‘(1st
‘𝑧))‘(2nd ‘𝑧)) ↔ (2nd
‘𝑦) = (2nd
‘𝑧))) |
| 143 | 142 | pm5.32da 579 |
. . . . . . . . . 10
⊢
((∀𝑥 ∈
𝐴 (𝑓‘𝑥):𝐵–1-1→𝐶 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → (((1st ‘𝑦) = (1st ‘𝑧) ∧ ((𝑓‘(1st ‘𝑦))‘(2nd
‘𝑦)) = ((𝑓‘(1st
‘𝑧))‘(2nd ‘𝑧))) ↔ ((1st
‘𝑦) = (1st
‘𝑧) ∧
(2nd ‘𝑦) =
(2nd ‘𝑧)))) |
| 144 | | simprr 773 |
. . . . . . . . . . . 12
⊢
((∀𝑥 ∈
𝐴 (𝑓‘𝑥):𝐵–1-1→𝐶 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → 𝑧 ∈ 𝑇) |
| 145 | 98, 144 | sselid 3981 |
. . . . . . . . . . 11
⊢
((∀𝑥 ∈
𝐴 (𝑓‘𝑥):𝐵–1-1→𝐶 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → 𝑧 ∈ (𝐴 × V)) |
| 146 | | xpopth 8055 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ (𝐴 × V) ∧ 𝑧 ∈ (𝐴 × V)) → (((1st
‘𝑦) = (1st
‘𝑧) ∧
(2nd ‘𝑦) =
(2nd ‘𝑧))
↔ 𝑦 = 𝑧)) |
| 147 | 100, 145,
146 | syl2anc 584 |
. . . . . . . . . 10
⊢
((∀𝑥 ∈
𝐴 (𝑓‘𝑥):𝐵–1-1→𝐶 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → (((1st ‘𝑦) = (1st ‘𝑧) ∧ (2nd
‘𝑦) = (2nd
‘𝑧)) ↔ 𝑦 = 𝑧)) |
| 148 | 143, 147 | bitrd 279 |
. . . . . . . . 9
⊢
((∀𝑥 ∈
𝐴 (𝑓‘𝑥):𝐵–1-1→𝐶 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → (((1st ‘𝑦) = (1st ‘𝑧) ∧ ((𝑓‘(1st ‘𝑦))‘(2nd
‘𝑦)) = ((𝑓‘(1st
‘𝑧))‘(2nd ‘𝑧))) ↔ 𝑦 = 𝑧)) |
| 149 | 92, 148 | bitrid 283 |
. . . . . . . 8
⊢
((∀𝑥 ∈
𝐴 (𝑓‘𝑥):𝐵–1-1→𝐶 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → (〈(1st
‘𝑦), ((𝑓‘(1st
‘𝑦))‘(2nd ‘𝑦))〉 = 〈(1st
‘𝑧), ((𝑓‘(1st
‘𝑧))‘(2nd ‘𝑧))〉 ↔ 𝑦 = 𝑧)) |
| 150 | 149 | ex 412 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 (𝑓‘𝑥):𝐵–1-1→𝐶 → ((𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) → (〈(1st ‘𝑦), ((𝑓‘(1st ‘𝑦))‘(2nd
‘𝑦))〉 =
〈(1st ‘𝑧), ((𝑓‘(1st ‘𝑧))‘(2nd
‘𝑧))〉 ↔
𝑦 = 𝑧))) |
| 151 | 89, 150 | dom2d 9033 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 (𝑓‘𝑥):𝐵–1-1→𝐶 → ((𝐴 × 𝐶) ∈ V → 𝑇 ≼ (𝐴 × 𝐶))) |
| 152 | 65, 151 | syl5com 31 |
. . . . 5
⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝑓‘𝑥):𝐵–1-1→𝐶 → 𝑇 ≼ (𝐴 × 𝐶))) |
| 153 | 48, 152 | biimtrrid 243 |
. . . 4
⊢ (𝜑 → (∀𝑦 ∈ 𝐴 (𝑓‘𝑦):⦋𝑦 / 𝑥⦌𝐵–1-1→𝐶 → 𝑇 ≼ (𝐴 × 𝐶))) |
| 154 | 153 | adantld 490 |
. . 3
⊢ (𝜑 → ((𝑓:𝐴⟶∪
𝑥 ∈ 𝐴 (𝐶 ↑m 𝐵) ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦):⦋𝑦 / 𝑥⦌𝐵–1-1→𝐶) → 𝑇 ≼ (𝐴 × 𝐶))) |
| 155 | 154 | exlimdv 1933 |
. 2
⊢ (𝜑 → (∃𝑓(𝑓:𝐴⟶∪
𝑥 ∈ 𝐴 (𝐶 ↑m 𝐵) ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦):⦋𝑦 / 𝑥⦌𝐵–1-1→𝐶) → 𝑇 ≼ (𝐴 × 𝐶))) |
| 156 | 38, 155 | mpd 15 |
1
⊢ (𝜑 → 𝑇 ≼ (𝐴 × 𝐶)) |