MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iundom2g Structured version   Visualization version   GIF version

Theorem iundom2g 10530
Description: An upper bound for the cardinality of a disjoint indexed union, with explicit choice principles. 𝐵 depends on 𝑥 and should be thought of as 𝐵(𝑥). (Contributed by Mario Carneiro, 1-Sep-2015.)
Hypotheses
Ref Expression
iunfo.1 𝑇 = 𝑥𝐴 ({𝑥} × 𝐵)
iundomg.2 (𝜑 𝑥𝐴 (𝐶m 𝐵) ∈ AC 𝐴)
iundomg.3 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
Assertion
Ref Expression
iundom2g (𝜑𝑇 ≼ (𝐴 × 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑇(𝑥)

Proof of Theorem iundom2g
Dummy variables 𝑓 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iundomg.2 . . 3 (𝜑 𝑥𝐴 (𝐶m 𝐵) ∈ AC 𝐴)
2 iundomg.3 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
3 brdomi 8949 . . . . . . . . 9 (𝐵𝐶 → ∃𝑔 𝑔:𝐵1-1𝐶)
43adantl 481 . . . . . . . 8 ((𝑥𝐴𝐵𝐶) → ∃𝑔 𝑔:𝐵1-1𝐶)
5 f1f 6777 . . . . . . . . . . . 12 (𝑔:𝐵1-1𝐶𝑔:𝐵𝐶)
6 reldom 8940 . . . . . . . . . . . . . . 15 Rel ≼
76brrelex2i 5723 . . . . . . . . . . . . . 14 (𝐵𝐶𝐶 ∈ V)
86brrelex1i 5722 . . . . . . . . . . . . . 14 (𝐵𝐶𝐵 ∈ V)
97, 8elmapd 8829 . . . . . . . . . . . . 13 (𝐵𝐶 → (𝑔 ∈ (𝐶m 𝐵) ↔ 𝑔:𝐵𝐶))
109adantl 481 . . . . . . . . . . . 12 ((𝑥𝐴𝐵𝐶) → (𝑔 ∈ (𝐶m 𝐵) ↔ 𝑔:𝐵𝐶))
115, 10imbitrrid 245 . . . . . . . . . . 11 ((𝑥𝐴𝐵𝐶) → (𝑔:𝐵1-1𝐶𝑔 ∈ (𝐶m 𝐵)))
12 ssiun2 5040 . . . . . . . . . . . . 13 (𝑥𝐴 → (𝐶m 𝐵) ⊆ 𝑥𝐴 (𝐶m 𝐵))
1312adantr 480 . . . . . . . . . . . 12 ((𝑥𝐴𝐵𝐶) → (𝐶m 𝐵) ⊆ 𝑥𝐴 (𝐶m 𝐵))
1413sseld 3973 . . . . . . . . . . 11 ((𝑥𝐴𝐵𝐶) → (𝑔 ∈ (𝐶m 𝐵) → 𝑔 𝑥𝐴 (𝐶m 𝐵)))
1511, 14syld 47 . . . . . . . . . 10 ((𝑥𝐴𝐵𝐶) → (𝑔:𝐵1-1𝐶𝑔 𝑥𝐴 (𝐶m 𝐵)))
1615ancrd 551 . . . . . . . . 9 ((𝑥𝐴𝐵𝐶) → (𝑔:𝐵1-1𝐶 → (𝑔 𝑥𝐴 (𝐶m 𝐵) ∧ 𝑔:𝐵1-1𝐶)))
1716eximdv 1912 . . . . . . . 8 ((𝑥𝐴𝐵𝐶) → (∃𝑔 𝑔:𝐵1-1𝐶 → ∃𝑔(𝑔 𝑥𝐴 (𝐶m 𝐵) ∧ 𝑔:𝐵1-1𝐶)))
184, 17mpd 15 . . . . . . 7 ((𝑥𝐴𝐵𝐶) → ∃𝑔(𝑔 𝑥𝐴 (𝐶m 𝐵) ∧ 𝑔:𝐵1-1𝐶))
19 df-rex 3063 . . . . . . 7 (∃𝑔 𝑥𝐴 (𝐶m 𝐵)𝑔:𝐵1-1𝐶 ↔ ∃𝑔(𝑔 𝑥𝐴 (𝐶m 𝐵) ∧ 𝑔:𝐵1-1𝐶))
2018, 19sylibr 233 . . . . . 6 ((𝑥𝐴𝐵𝐶) → ∃𝑔 𝑥𝐴 (𝐶m 𝐵)𝑔:𝐵1-1𝐶)
2120ralimiaa 3074 . . . . 5 (∀𝑥𝐴 𝐵𝐶 → ∀𝑥𝐴𝑔 𝑥𝐴 (𝐶m 𝐵)𝑔:𝐵1-1𝐶)
222, 21syl 17 . . . 4 (𝜑 → ∀𝑥𝐴𝑔 𝑥𝐴 (𝐶m 𝐵)𝑔:𝐵1-1𝐶)
23 nfv 1909 . . . . 5 𝑦𝑔 𝑥𝐴 (𝐶m 𝐵)𝑔:𝐵1-1𝐶
24 nfiu1 5021 . . . . . 6 𝑥 𝑥𝐴 (𝐶m 𝐵)
25 nfcv 2895 . . . . . . 7 𝑥𝑔
26 nfcsb1v 3910 . . . . . . 7 𝑥𝑦 / 𝑥𝐵
27 nfcv 2895 . . . . . . 7 𝑥𝐶
2825, 26, 27nff1 6775 . . . . . 6 𝑥 𝑔:𝑦 / 𝑥𝐵1-1𝐶
2924, 28nfrexw 3302 . . . . 5 𝑥𝑔 𝑥𝐴 (𝐶m 𝐵)𝑔:𝑦 / 𝑥𝐵1-1𝐶
30 csbeq1a 3899 . . . . . . 7 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
31 f1eq2 6773 . . . . . . 7 (𝐵 = 𝑦 / 𝑥𝐵 → (𝑔:𝐵1-1𝐶𝑔:𝑦 / 𝑥𝐵1-1𝐶))
3230, 31syl 17 . . . . . 6 (𝑥 = 𝑦 → (𝑔:𝐵1-1𝐶𝑔:𝑦 / 𝑥𝐵1-1𝐶))
3332rexbidv 3170 . . . . 5 (𝑥 = 𝑦 → (∃𝑔 𝑥𝐴 (𝐶m 𝐵)𝑔:𝐵1-1𝐶 ↔ ∃𝑔 𝑥𝐴 (𝐶m 𝐵)𝑔:𝑦 / 𝑥𝐵1-1𝐶))
3423, 29, 33cbvralw 3295 . . . 4 (∀𝑥𝐴𝑔 𝑥𝐴 (𝐶m 𝐵)𝑔:𝐵1-1𝐶 ↔ ∀𝑦𝐴𝑔 𝑥𝐴 (𝐶m 𝐵)𝑔:𝑦 / 𝑥𝐵1-1𝐶)
3522, 34sylib 217 . . 3 (𝜑 → ∀𝑦𝐴𝑔 𝑥𝐴 (𝐶m 𝐵)𝑔:𝑦 / 𝑥𝐵1-1𝐶)
36 f1eq1 6772 . . . 4 (𝑔 = (𝑓𝑦) → (𝑔:𝑦 / 𝑥𝐵1-1𝐶 ↔ (𝑓𝑦):𝑦 / 𝑥𝐵1-1𝐶))
3736acni3 10037 . . 3 (( 𝑥𝐴 (𝐶m 𝐵) ∈ AC 𝐴 ∧ ∀𝑦𝐴𝑔 𝑥𝐴 (𝐶m 𝐵)𝑔:𝑦 / 𝑥𝐵1-1𝐶) → ∃𝑓(𝑓:𝐴 𝑥𝐴 (𝐶m 𝐵) ∧ ∀𝑦𝐴 (𝑓𝑦):𝑦 / 𝑥𝐵1-1𝐶))
381, 35, 37syl2anc 583 . 2 (𝜑 → ∃𝑓(𝑓:𝐴 𝑥𝐴 (𝐶m 𝐵) ∧ ∀𝑦𝐴 (𝑓𝑦):𝑦 / 𝑥𝐵1-1𝐶))
39 nfv 1909 . . . . . 6 𝑦(𝑓𝑥):𝐵1-1𝐶
40 nfcv 2895 . . . . . . 7 𝑥(𝑓𝑦)
4140, 26, 27nff1 6775 . . . . . 6 𝑥(𝑓𝑦):𝑦 / 𝑥𝐵1-1𝐶
42 fveq2 6881 . . . . . . . 8 (𝑥 = 𝑦 → (𝑓𝑥) = (𝑓𝑦))
43 f1eq1 6772 . . . . . . . 8 ((𝑓𝑥) = (𝑓𝑦) → ((𝑓𝑥):𝐵1-1𝐶 ↔ (𝑓𝑦):𝐵1-1𝐶))
4442, 43syl 17 . . . . . . 7 (𝑥 = 𝑦 → ((𝑓𝑥):𝐵1-1𝐶 ↔ (𝑓𝑦):𝐵1-1𝐶))
45 f1eq2 6773 . . . . . . . 8 (𝐵 = 𝑦 / 𝑥𝐵 → ((𝑓𝑦):𝐵1-1𝐶 ↔ (𝑓𝑦):𝑦 / 𝑥𝐵1-1𝐶))
4630, 45syl 17 . . . . . . 7 (𝑥 = 𝑦 → ((𝑓𝑦):𝐵1-1𝐶 ↔ (𝑓𝑦):𝑦 / 𝑥𝐵1-1𝐶))
4744, 46bitrd 279 . . . . . 6 (𝑥 = 𝑦 → ((𝑓𝑥):𝐵1-1𝐶 ↔ (𝑓𝑦):𝑦 / 𝑥𝐵1-1𝐶))
4839, 41, 47cbvralw 3295 . . . . 5 (∀𝑥𝐴 (𝑓𝑥):𝐵1-1𝐶 ↔ ∀𝑦𝐴 (𝑓𝑦):𝑦 / 𝑥𝐵1-1𝐶)
49 df-ne 2933 . . . . . . . 8 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
50 acnrcl 10032 . . . . . . . . . 10 ( 𝑥𝐴 (𝐶m 𝐵) ∈ AC 𝐴𝐴 ∈ V)
511, 50syl 17 . . . . . . . . 9 (𝜑𝐴 ∈ V)
52 r19.2z 4486 . . . . . . . . . . . 12 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐶) → ∃𝑥𝐴 𝐵𝐶)
537rexlimivw 3143 . . . . . . . . . . . 12 (∃𝑥𝐴 𝐵𝐶𝐶 ∈ V)
5452, 53syl 17 . . . . . . . . . . 11 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐶) → 𝐶 ∈ V)
5554expcom 413 . . . . . . . . . 10 (∀𝑥𝐴 𝐵𝐶 → (𝐴 ≠ ∅ → 𝐶 ∈ V))
562, 55syl 17 . . . . . . . . 9 (𝜑 → (𝐴 ≠ ∅ → 𝐶 ∈ V))
57 xpexg 7730 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴 × 𝐶) ∈ V)
5851, 56, 57syl6an 681 . . . . . . . 8 (𝜑 → (𝐴 ≠ ∅ → (𝐴 × 𝐶) ∈ V))
5949, 58biimtrrid 242 . . . . . . 7 (𝜑 → (¬ 𝐴 = ∅ → (𝐴 × 𝐶) ∈ V))
60 xpeq1 5680 . . . . . . . 8 (𝐴 = ∅ → (𝐴 × 𝐶) = (∅ × 𝐶))
61 0xp 5764 . . . . . . . . 9 (∅ × 𝐶) = ∅
62 0ex 5297 . . . . . . . . 9 ∅ ∈ V
6361, 62eqeltri 2821 . . . . . . . 8 (∅ × 𝐶) ∈ V
6460, 63eqeltrdi 2833 . . . . . . 7 (𝐴 = ∅ → (𝐴 × 𝐶) ∈ V)
6559, 64pm2.61d2 181 . . . . . 6 (𝜑 → (𝐴 × 𝐶) ∈ V)
66 iunfo.1 . . . . . . . . . 10 𝑇 = 𝑥𝐴 ({𝑥} × 𝐵)
6766eleq2i 2817 . . . . . . . . 9 (𝑦𝑇𝑦 𝑥𝐴 ({𝑥} × 𝐵))
68 eliun 4991 . . . . . . . . 9 (𝑦 𝑥𝐴 ({𝑥} × 𝐵) ↔ ∃𝑥𝐴 𝑦 ∈ ({𝑥} × 𝐵))
6967, 68bitri 275 . . . . . . . 8 (𝑦𝑇 ↔ ∃𝑥𝐴 𝑦 ∈ ({𝑥} × 𝐵))
70 r19.29 3106 . . . . . . . . . 10 ((∀𝑥𝐴 (𝑓𝑥):𝐵1-1𝐶 ∧ ∃𝑥𝐴 𝑦 ∈ ({𝑥} × 𝐵)) → ∃𝑥𝐴 ((𝑓𝑥):𝐵1-1𝐶𝑦 ∈ ({𝑥} × 𝐵)))
71 xp1st 8000 . . . . . . . . . . . . . . 15 (𝑦 ∈ ({𝑥} × 𝐵) → (1st𝑦) ∈ {𝑥})
7271ad2antll 726 . . . . . . . . . . . . . 14 ((𝑥𝐴 ∧ ((𝑓𝑥):𝐵1-1𝐶𝑦 ∈ ({𝑥} × 𝐵))) → (1st𝑦) ∈ {𝑥})
73 elsni 4637 . . . . . . . . . . . . . 14 ((1st𝑦) ∈ {𝑥} → (1st𝑦) = 𝑥)
7472, 73syl 17 . . . . . . . . . . . . 13 ((𝑥𝐴 ∧ ((𝑓𝑥):𝐵1-1𝐶𝑦 ∈ ({𝑥} × 𝐵))) → (1st𝑦) = 𝑥)
75 simpl 482 . . . . . . . . . . . . 13 ((𝑥𝐴 ∧ ((𝑓𝑥):𝐵1-1𝐶𝑦 ∈ ({𝑥} × 𝐵))) → 𝑥𝐴)
7674, 75eqeltrd 2825 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ ((𝑓𝑥):𝐵1-1𝐶𝑦 ∈ ({𝑥} × 𝐵))) → (1st𝑦) ∈ 𝐴)
7774fveq2d 6885 . . . . . . . . . . . . . 14 ((𝑥𝐴 ∧ ((𝑓𝑥):𝐵1-1𝐶𝑦 ∈ ({𝑥} × 𝐵))) → (𝑓‘(1st𝑦)) = (𝑓𝑥))
7877fveq1d 6883 . . . . . . . . . . . . 13 ((𝑥𝐴 ∧ ((𝑓𝑥):𝐵1-1𝐶𝑦 ∈ ({𝑥} × 𝐵))) → ((𝑓‘(1st𝑦))‘(2nd𝑦)) = ((𝑓𝑥)‘(2nd𝑦)))
79 f1f 6777 . . . . . . . . . . . . . . 15 ((𝑓𝑥):𝐵1-1𝐶 → (𝑓𝑥):𝐵𝐶)
8079ad2antrl 725 . . . . . . . . . . . . . 14 ((𝑥𝐴 ∧ ((𝑓𝑥):𝐵1-1𝐶𝑦 ∈ ({𝑥} × 𝐵))) → (𝑓𝑥):𝐵𝐶)
81 xp2nd 8001 . . . . . . . . . . . . . . 15 (𝑦 ∈ ({𝑥} × 𝐵) → (2nd𝑦) ∈ 𝐵)
8281ad2antll 726 . . . . . . . . . . . . . 14 ((𝑥𝐴 ∧ ((𝑓𝑥):𝐵1-1𝐶𝑦 ∈ ({𝑥} × 𝐵))) → (2nd𝑦) ∈ 𝐵)
8380, 82ffvelcdmd 7077 . . . . . . . . . . . . 13 ((𝑥𝐴 ∧ ((𝑓𝑥):𝐵1-1𝐶𝑦 ∈ ({𝑥} × 𝐵))) → ((𝑓𝑥)‘(2nd𝑦)) ∈ 𝐶)
8478, 83eqeltrd 2825 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ ((𝑓𝑥):𝐵1-1𝐶𝑦 ∈ ({𝑥} × 𝐵))) → ((𝑓‘(1st𝑦))‘(2nd𝑦)) ∈ 𝐶)
8576, 84opelxpd 5705 . . . . . . . . . . 11 ((𝑥𝐴 ∧ ((𝑓𝑥):𝐵1-1𝐶𝑦 ∈ ({𝑥} × 𝐵))) → ⟨(1st𝑦), ((𝑓‘(1st𝑦))‘(2nd𝑦))⟩ ∈ (𝐴 × 𝐶))
8685rexlimiva 3139 . . . . . . . . . 10 (∃𝑥𝐴 ((𝑓𝑥):𝐵1-1𝐶𝑦 ∈ ({𝑥} × 𝐵)) → ⟨(1st𝑦), ((𝑓‘(1st𝑦))‘(2nd𝑦))⟩ ∈ (𝐴 × 𝐶))
8770, 86syl 17 . . . . . . . . 9 ((∀𝑥𝐴 (𝑓𝑥):𝐵1-1𝐶 ∧ ∃𝑥𝐴 𝑦 ∈ ({𝑥} × 𝐵)) → ⟨(1st𝑦), ((𝑓‘(1st𝑦))‘(2nd𝑦))⟩ ∈ (𝐴 × 𝐶))
8887ex 412 . . . . . . . 8 (∀𝑥𝐴 (𝑓𝑥):𝐵1-1𝐶 → (∃𝑥𝐴 𝑦 ∈ ({𝑥} × 𝐵) → ⟨(1st𝑦), ((𝑓‘(1st𝑦))‘(2nd𝑦))⟩ ∈ (𝐴 × 𝐶)))
8969, 88biimtrid 241 . . . . . . 7 (∀𝑥𝐴 (𝑓𝑥):𝐵1-1𝐶 → (𝑦𝑇 → ⟨(1st𝑦), ((𝑓‘(1st𝑦))‘(2nd𝑦))⟩ ∈ (𝐴 × 𝐶)))
90 fvex 6894 . . . . . . . . . 10 (1st𝑦) ∈ V
91 fvex 6894 . . . . . . . . . 10 ((𝑓‘(1st𝑦))‘(2nd𝑦)) ∈ V
9290, 91opth 5466 . . . . . . . . 9 (⟨(1st𝑦), ((𝑓‘(1st𝑦))‘(2nd𝑦))⟩ = ⟨(1st𝑧), ((𝑓‘(1st𝑧))‘(2nd𝑧))⟩ ↔ ((1st𝑦) = (1st𝑧) ∧ ((𝑓‘(1st𝑦))‘(2nd𝑦)) = ((𝑓‘(1st𝑧))‘(2nd𝑧))))
93 simpr 484 . . . . . . . . . . . . . . 15 (((∀𝑥𝐴 (𝑓𝑥):𝐵1-1𝐶 ∧ (𝑦𝑇𝑧𝑇)) ∧ (1st𝑦) = (1st𝑧)) → (1st𝑦) = (1st𝑧))
9493fveq2d 6885 . . . . . . . . . . . . . 14 (((∀𝑥𝐴 (𝑓𝑥):𝐵1-1𝐶 ∧ (𝑦𝑇𝑧𝑇)) ∧ (1st𝑦) = (1st𝑧)) → (𝑓‘(1st𝑦)) = (𝑓‘(1st𝑧)))
9594fveq1d 6883 . . . . . . . . . . . . 13 (((∀𝑥𝐴 (𝑓𝑥):𝐵1-1𝐶 ∧ (𝑦𝑇𝑧𝑇)) ∧ (1st𝑦) = (1st𝑧)) → ((𝑓‘(1st𝑦))‘(2nd𝑧)) = ((𝑓‘(1st𝑧))‘(2nd𝑧)))
9695eqeq2d 2735 . . . . . . . . . . . 12 (((∀𝑥𝐴 (𝑓𝑥):𝐵1-1𝐶 ∧ (𝑦𝑇𝑧𝑇)) ∧ (1st𝑦) = (1st𝑧)) → (((𝑓‘(1st𝑦))‘(2nd𝑦)) = ((𝑓‘(1st𝑦))‘(2nd𝑧)) ↔ ((𝑓‘(1st𝑦))‘(2nd𝑦)) = ((𝑓‘(1st𝑧))‘(2nd𝑧))))
97 djussxp 5835 . . . . . . . . . . . . . . . . . 18 𝑥𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V)
9866, 97eqsstri 4008 . . . . . . . . . . . . . . . . 17 𝑇 ⊆ (𝐴 × V)
99 simprl 768 . . . . . . . . . . . . . . . . 17 ((∀𝑥𝐴 (𝑓𝑥):𝐵1-1𝐶 ∧ (𝑦𝑇𝑧𝑇)) → 𝑦𝑇)
10098, 99sselid 3972 . . . . . . . . . . . . . . . 16 ((∀𝑥𝐴 (𝑓𝑥):𝐵1-1𝐶 ∧ (𝑦𝑇𝑧𝑇)) → 𝑦 ∈ (𝐴 × V))
101100adantr 480 . . . . . . . . . . . . . . 15 (((∀𝑥𝐴 (𝑓𝑥):𝐵1-1𝐶 ∧ (𝑦𝑇𝑧𝑇)) ∧ (1st𝑦) = (1st𝑧)) → 𝑦 ∈ (𝐴 × V))
102 xp1st 8000 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝐴 × V) → (1st𝑦) ∈ 𝐴)
103101, 102syl 17 . . . . . . . . . . . . . 14 (((∀𝑥𝐴 (𝑓𝑥):𝐵1-1𝐶 ∧ (𝑦𝑇𝑧𝑇)) ∧ (1st𝑦) = (1st𝑧)) → (1st𝑦) ∈ 𝐴)
104 simpll 764 . . . . . . . . . . . . . 14 (((∀𝑥𝐴 (𝑓𝑥):𝐵1-1𝐶 ∧ (𝑦𝑇𝑧𝑇)) ∧ (1st𝑦) = (1st𝑧)) → ∀𝑥𝐴 (𝑓𝑥):𝐵1-1𝐶)
105 nfcv 2895 . . . . . . . . . . . . . . . 16 𝑥(𝑓‘(1st𝑦))
106 nfcsb1v 3910 . . . . . . . . . . . . . . . 16 𝑥(1st𝑦) / 𝑥𝐵
107105, 106, 27nff1 6775 . . . . . . . . . . . . . . 15 𝑥(𝑓‘(1st𝑦)):(1st𝑦) / 𝑥𝐵1-1𝐶
108 fveq2 6881 . . . . . . . . . . . . . . . . 17 (𝑥 = (1st𝑦) → (𝑓𝑥) = (𝑓‘(1st𝑦)))
109 f1eq1 6772 . . . . . . . . . . . . . . . . 17 ((𝑓𝑥) = (𝑓‘(1st𝑦)) → ((𝑓𝑥):𝐵1-1𝐶 ↔ (𝑓‘(1st𝑦)):𝐵1-1𝐶))
110108, 109syl 17 . . . . . . . . . . . . . . . 16 (𝑥 = (1st𝑦) → ((𝑓𝑥):𝐵1-1𝐶 ↔ (𝑓‘(1st𝑦)):𝐵1-1𝐶))
111 csbeq1a 3899 . . . . . . . . . . . . . . . . 17 (𝑥 = (1st𝑦) → 𝐵 = (1st𝑦) / 𝑥𝐵)
112 f1eq2 6773 . . . . . . . . . . . . . . . . 17 (𝐵 = (1st𝑦) / 𝑥𝐵 → ((𝑓‘(1st𝑦)):𝐵1-1𝐶 ↔ (𝑓‘(1st𝑦)):(1st𝑦) / 𝑥𝐵1-1𝐶))
113111, 112syl 17 . . . . . . . . . . . . . . . 16 (𝑥 = (1st𝑦) → ((𝑓‘(1st𝑦)):𝐵1-1𝐶 ↔ (𝑓‘(1st𝑦)):(1st𝑦) / 𝑥𝐵1-1𝐶))
114110, 113bitrd 279 . . . . . . . . . . . . . . 15 (𝑥 = (1st𝑦) → ((𝑓𝑥):𝐵1-1𝐶 ↔ (𝑓‘(1st𝑦)):(1st𝑦) / 𝑥𝐵1-1𝐶))
115107, 114rspc 3592 . . . . . . . . . . . . . 14 ((1st𝑦) ∈ 𝐴 → (∀𝑥𝐴 (𝑓𝑥):𝐵1-1𝐶 → (𝑓‘(1st𝑦)):(1st𝑦) / 𝑥𝐵1-1𝐶))
116103, 104, 115sylc 65 . . . . . . . . . . . . 13 (((∀𝑥𝐴 (𝑓𝑥):𝐵1-1𝐶 ∧ (𝑦𝑇𝑧𝑇)) ∧ (1st𝑦) = (1st𝑧)) → (𝑓‘(1st𝑦)):(1st𝑦) / 𝑥𝐵1-1𝐶)
117106nfel2 2913 . . . . . . . . . . . . . . . . . . . 20 𝑥(2nd𝑦) ∈ (1st𝑦) / 𝑥𝐵
11874eqcomd 2730 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥𝐴 ∧ ((𝑓𝑥):𝐵1-1𝐶𝑦 ∈ ({𝑥} × 𝐵))) → 𝑥 = (1st𝑦))
119118, 111syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥𝐴 ∧ ((𝑓𝑥):𝐵1-1𝐶𝑦 ∈ ({𝑥} × 𝐵))) → 𝐵 = (1st𝑦) / 𝑥𝐵)
12082, 119eleqtrd 2827 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥𝐴 ∧ ((𝑓𝑥):𝐵1-1𝐶𝑦 ∈ ({𝑥} × 𝐵))) → (2nd𝑦) ∈ (1st𝑦) / 𝑥𝐵)
121120ex 412 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝐴 → (((𝑓𝑥):𝐵1-1𝐶𝑦 ∈ ({𝑥} × 𝐵)) → (2nd𝑦) ∈ (1st𝑦) / 𝑥𝐵))
122117, 121rexlimi 3248 . . . . . . . . . . . . . . . . . . 19 (∃𝑥𝐴 ((𝑓𝑥):𝐵1-1𝐶𝑦 ∈ ({𝑥} × 𝐵)) → (2nd𝑦) ∈ (1st𝑦) / 𝑥𝐵)
12370, 122syl 17 . . . . . . . . . . . . . . . . . 18 ((∀𝑥𝐴 (𝑓𝑥):𝐵1-1𝐶 ∧ ∃𝑥𝐴 𝑦 ∈ ({𝑥} × 𝐵)) → (2nd𝑦) ∈ (1st𝑦) / 𝑥𝐵)
124123ex 412 . . . . . . . . . . . . . . . . 17 (∀𝑥𝐴 (𝑓𝑥):𝐵1-1𝐶 → (∃𝑥𝐴 𝑦 ∈ ({𝑥} × 𝐵) → (2nd𝑦) ∈ (1st𝑦) / 𝑥𝐵))
12569, 124biimtrid 241 . . . . . . . . . . . . . . . 16 (∀𝑥𝐴 (𝑓𝑥):𝐵1-1𝐶 → (𝑦𝑇 → (2nd𝑦) ∈ (1st𝑦) / 𝑥𝐵))
126125imp 406 . . . . . . . . . . . . . . 15 ((∀𝑥𝐴 (𝑓𝑥):𝐵1-1𝐶𝑦𝑇) → (2nd𝑦) ∈ (1st𝑦) / 𝑥𝐵)
127126adantrr 714 . . . . . . . . . . . . . 14 ((∀𝑥𝐴 (𝑓𝑥):𝐵1-1𝐶 ∧ (𝑦𝑇𝑧𝑇)) → (2nd𝑦) ∈ (1st𝑦) / 𝑥𝐵)
128127adantr 480 . . . . . . . . . . . . 13 (((∀𝑥𝐴 (𝑓𝑥):𝐵1-1𝐶 ∧ (𝑦𝑇𝑧𝑇)) ∧ (1st𝑦) = (1st𝑧)) → (2nd𝑦) ∈ (1st𝑦) / 𝑥𝐵)
129125ralrimiv 3137 . . . . . . . . . . . . . . . . 17 (∀𝑥𝐴 (𝑓𝑥):𝐵1-1𝐶 → ∀𝑦𝑇 (2nd𝑦) ∈ (1st𝑦) / 𝑥𝐵)
130 fveq2 6881 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑧 → (2nd𝑦) = (2nd𝑧))
131 fveq2 6881 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑧 → (1st𝑦) = (1st𝑧))
132131csbeq1d 3889 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑧(1st𝑦) / 𝑥𝐵 = (1st𝑧) / 𝑥𝐵)
133130, 132eleq12d 2819 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑧 → ((2nd𝑦) ∈ (1st𝑦) / 𝑥𝐵 ↔ (2nd𝑧) ∈ (1st𝑧) / 𝑥𝐵))
134133rspccva 3603 . . . . . . . . . . . . . . . . 17 ((∀𝑦𝑇 (2nd𝑦) ∈ (1st𝑦) / 𝑥𝐵𝑧𝑇) → (2nd𝑧) ∈ (1st𝑧) / 𝑥𝐵)
135129, 134sylan 579 . . . . . . . . . . . . . . . 16 ((∀𝑥𝐴 (𝑓𝑥):𝐵1-1𝐶𝑧𝑇) → (2nd𝑧) ∈ (1st𝑧) / 𝑥𝐵)
136135adantrl 713 . . . . . . . . . . . . . . 15 ((∀𝑥𝐴 (𝑓𝑥):𝐵1-1𝐶 ∧ (𝑦𝑇𝑧𝑇)) → (2nd𝑧) ∈ (1st𝑧) / 𝑥𝐵)
137136adantr 480 . . . . . . . . . . . . . 14 (((∀𝑥𝐴 (𝑓𝑥):𝐵1-1𝐶 ∧ (𝑦𝑇𝑧𝑇)) ∧ (1st𝑦) = (1st𝑧)) → (2nd𝑧) ∈ (1st𝑧) / 𝑥𝐵)
13893csbeq1d 3889 . . . . . . . . . . . . . 14 (((∀𝑥𝐴 (𝑓𝑥):𝐵1-1𝐶 ∧ (𝑦𝑇𝑧𝑇)) ∧ (1st𝑦) = (1st𝑧)) → (1st𝑦) / 𝑥𝐵 = (1st𝑧) / 𝑥𝐵)
139137, 138eleqtrrd 2828 . . . . . . . . . . . . 13 (((∀𝑥𝐴 (𝑓𝑥):𝐵1-1𝐶 ∧ (𝑦𝑇𝑧𝑇)) ∧ (1st𝑦) = (1st𝑧)) → (2nd𝑧) ∈ (1st𝑦) / 𝑥𝐵)
140 f1fveq 7253 . . . . . . . . . . . . 13 (((𝑓‘(1st𝑦)):(1st𝑦) / 𝑥𝐵1-1𝐶 ∧ ((2nd𝑦) ∈ (1st𝑦) / 𝑥𝐵 ∧ (2nd𝑧) ∈ (1st𝑦) / 𝑥𝐵)) → (((𝑓‘(1st𝑦))‘(2nd𝑦)) = ((𝑓‘(1st𝑦))‘(2nd𝑧)) ↔ (2nd𝑦) = (2nd𝑧)))
141116, 128, 139, 140syl12anc 834 . . . . . . . . . . . 12 (((∀𝑥𝐴 (𝑓𝑥):𝐵1-1𝐶 ∧ (𝑦𝑇𝑧𝑇)) ∧ (1st𝑦) = (1st𝑧)) → (((𝑓‘(1st𝑦))‘(2nd𝑦)) = ((𝑓‘(1st𝑦))‘(2nd𝑧)) ↔ (2nd𝑦) = (2nd𝑧)))
14296, 141bitr3d 281 . . . . . . . . . . 11 (((∀𝑥𝐴 (𝑓𝑥):𝐵1-1𝐶 ∧ (𝑦𝑇𝑧𝑇)) ∧ (1st𝑦) = (1st𝑧)) → (((𝑓‘(1st𝑦))‘(2nd𝑦)) = ((𝑓‘(1st𝑧))‘(2nd𝑧)) ↔ (2nd𝑦) = (2nd𝑧)))
143142pm5.32da 578 . . . . . . . . . 10 ((∀𝑥𝐴 (𝑓𝑥):𝐵1-1𝐶 ∧ (𝑦𝑇𝑧𝑇)) → (((1st𝑦) = (1st𝑧) ∧ ((𝑓‘(1st𝑦))‘(2nd𝑦)) = ((𝑓‘(1st𝑧))‘(2nd𝑧))) ↔ ((1st𝑦) = (1st𝑧) ∧ (2nd𝑦) = (2nd𝑧))))
144 simprr 770 . . . . . . . . . . . 12 ((∀𝑥𝐴 (𝑓𝑥):𝐵1-1𝐶 ∧ (𝑦𝑇𝑧𝑇)) → 𝑧𝑇)
14598, 144sselid 3972 . . . . . . . . . . 11 ((∀𝑥𝐴 (𝑓𝑥):𝐵1-1𝐶 ∧ (𝑦𝑇𝑧𝑇)) → 𝑧 ∈ (𝐴 × V))
146 xpopth 8009 . . . . . . . . . . 11 ((𝑦 ∈ (𝐴 × V) ∧ 𝑧 ∈ (𝐴 × V)) → (((1st𝑦) = (1st𝑧) ∧ (2nd𝑦) = (2nd𝑧)) ↔ 𝑦 = 𝑧))
147100, 145, 146syl2anc 583 . . . . . . . . . 10 ((∀𝑥𝐴 (𝑓𝑥):𝐵1-1𝐶 ∧ (𝑦𝑇𝑧𝑇)) → (((1st𝑦) = (1st𝑧) ∧ (2nd𝑦) = (2nd𝑧)) ↔ 𝑦 = 𝑧))
148143, 147bitrd 279 . . . . . . . . 9 ((∀𝑥𝐴 (𝑓𝑥):𝐵1-1𝐶 ∧ (𝑦𝑇𝑧𝑇)) → (((1st𝑦) = (1st𝑧) ∧ ((𝑓‘(1st𝑦))‘(2nd𝑦)) = ((𝑓‘(1st𝑧))‘(2nd𝑧))) ↔ 𝑦 = 𝑧))
14992, 148bitrid 283 . . . . . . . 8 ((∀𝑥𝐴 (𝑓𝑥):𝐵1-1𝐶 ∧ (𝑦𝑇𝑧𝑇)) → (⟨(1st𝑦), ((𝑓‘(1st𝑦))‘(2nd𝑦))⟩ = ⟨(1st𝑧), ((𝑓‘(1st𝑧))‘(2nd𝑧))⟩ ↔ 𝑦 = 𝑧))
150149ex 412 . . . . . . 7 (∀𝑥𝐴 (𝑓𝑥):𝐵1-1𝐶 → ((𝑦𝑇𝑧𝑇) → (⟨(1st𝑦), ((𝑓‘(1st𝑦))‘(2nd𝑦))⟩ = ⟨(1st𝑧), ((𝑓‘(1st𝑧))‘(2nd𝑧))⟩ ↔ 𝑦 = 𝑧)))
15189, 150dom2d 8984 . . . . . 6 (∀𝑥𝐴 (𝑓𝑥):𝐵1-1𝐶 → ((𝐴 × 𝐶) ∈ V → 𝑇 ≼ (𝐴 × 𝐶)))
15265, 151syl5com 31 . . . . 5 (𝜑 → (∀𝑥𝐴 (𝑓𝑥):𝐵1-1𝐶𝑇 ≼ (𝐴 × 𝐶)))
15348, 152biimtrrid 242 . . . 4 (𝜑 → (∀𝑦𝐴 (𝑓𝑦):𝑦 / 𝑥𝐵1-1𝐶𝑇 ≼ (𝐴 × 𝐶)))
154153adantld 490 . . 3 (𝜑 → ((𝑓:𝐴 𝑥𝐴 (𝐶m 𝐵) ∧ ∀𝑦𝐴 (𝑓𝑦):𝑦 / 𝑥𝐵1-1𝐶) → 𝑇 ≼ (𝐴 × 𝐶)))
155154exlimdv 1928 . 2 (𝜑 → (∃𝑓(𝑓:𝐴 𝑥𝐴 (𝐶m 𝐵) ∧ ∀𝑦𝐴 (𝑓𝑦):𝑦 / 𝑥𝐵1-1𝐶) → 𝑇 ≼ (𝐴 × 𝐶)))
15638, 155mpd 15 1 (𝜑𝑇 ≼ (𝐴 × 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1533  wex 1773  wcel 2098  wne 2932  wral 3053  wrex 3062  Vcvv 3466  csb 3885  wss 3940  c0 4314  {csn 4620  cop 4626   ciun 4987   class class class wbr 5138   × cxp 5664  wf 6529  1-1wf1 6530  cfv 6533  (class class class)co 7401  1st c1st 7966  2nd c2nd 7967  m cmap 8815  cdom 8932  AC wacn 9928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-1st 7968  df-2nd 7969  df-map 8817  df-dom 8936  df-acn 9932
This theorem is referenced by:  iundomg  10531  iundom  10532
  Copyright terms: Public domain W3C validator