MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acni Structured version   Visualization version   GIF version

Theorem acni 9945
Description: The property of being a choice set of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acni ((𝑋AC 𝐴𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅})) → ∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥))
Distinct variable groups:   𝑥,𝑔,𝐴   𝑔,𝐹,𝑥   𝑔,𝑋,𝑥

Proof of Theorem acni
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6829 . . . . 5 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
21eleq2d 2819 . . . 4 (𝑓 = 𝐹 → ((𝑔𝑥) ∈ (𝑓𝑥) ↔ (𝑔𝑥) ∈ (𝐹𝑥)))
32ralbidv 3156 . . 3 (𝑓 = 𝐹 → (∀𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥) ↔ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥)))
43exbidv 1922 . 2 (𝑓 = 𝐹 → (∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥) ↔ ∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥)))
5 acnrcl 9942 . . . . 5 (𝑋AC 𝐴𝐴 ∈ V)
6 isacn 9944 . . . . 5 ((𝑋AC 𝐴𝐴 ∈ V) → (𝑋AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)))
75, 6mpdan 687 . . . 4 (𝑋AC 𝐴 → (𝑋AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)))
87ibi 267 . . 3 (𝑋AC 𝐴 → ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))
98adantr 480 . 2 ((𝑋AC 𝐴𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅})) → ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))
10 pwexg 5320 . . . . 5 (𝑋AC 𝐴 → 𝒫 𝑋 ∈ V)
1110difexd 5273 . . . 4 (𝑋AC 𝐴 → (𝒫 𝑋 ∖ {∅}) ∈ V)
1211, 5elmapd 8772 . . 3 (𝑋AC 𝐴 → (𝐹 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴) ↔ 𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅})))
1312biimpar 477 . 2 ((𝑋AC 𝐴𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅})) → 𝐹 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴))
144, 9, 13rspcdva 3574 1 ((𝑋AC 𝐴𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅})) → ∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2113  wral 3048  Vcvv 3437  cdif 3895  c0 4282  𝒫 cpw 4551  {csn 4577  wf 6484  cfv 6488  (class class class)co 7354  m cmap 8758  AC wacn 9840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-fv 6496  df-ov 7357  df-oprab 7358  df-mpo 7359  df-map 8760  df-acn 9844
This theorem is referenced by:  acni2  9946
  Copyright terms: Public domain W3C validator