Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > acni | Structured version Visualization version GIF version |
Description: The property of being a choice set of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
acni | ⊢ ((𝑋 ∈ AC 𝐴 ∧ 𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅})) → ∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝐹‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6829 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
2 | 1 | eleq2d 2823 | . . . 4 ⊢ (𝑓 = 𝐹 → ((𝑔‘𝑥) ∈ (𝑓‘𝑥) ↔ (𝑔‘𝑥) ∈ (𝐹‘𝑥))) |
3 | 2 | ralbidv 3171 | . . 3 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥) ↔ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝐹‘𝑥))) |
4 | 3 | exbidv 1924 | . 2 ⊢ (𝑓 = 𝐹 → (∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥) ↔ ∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝐹‘𝑥))) |
5 | acnrcl 9904 | . . . . 5 ⊢ (𝑋 ∈ AC 𝐴 → 𝐴 ∈ V) | |
6 | isacn 9906 | . . . . 5 ⊢ ((𝑋 ∈ AC 𝐴 ∧ 𝐴 ∈ V) → (𝑋 ∈ AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥))) | |
7 | 5, 6 | mpdan 685 | . . . 4 ⊢ (𝑋 ∈ AC 𝐴 → (𝑋 ∈ AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥))) |
8 | 7 | ibi 267 | . . 3 ⊢ (𝑋 ∈ AC 𝐴 → ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥)) |
9 | 8 | adantr 482 | . 2 ⊢ ((𝑋 ∈ AC 𝐴 ∧ 𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅})) → ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥)) |
10 | pwexg 5326 | . . . . 5 ⊢ (𝑋 ∈ AC 𝐴 → 𝒫 𝑋 ∈ V) | |
11 | 10 | difexd 5278 | . . . 4 ⊢ (𝑋 ∈ AC 𝐴 → (𝒫 𝑋 ∖ {∅}) ∈ V) |
12 | 11, 5 | elmapd 8705 | . . 3 ⊢ (𝑋 ∈ AC 𝐴 → (𝐹 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴) ↔ 𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅}))) |
13 | 12 | biimpar 479 | . 2 ⊢ ((𝑋 ∈ AC 𝐴 ∧ 𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅})) → 𝐹 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) |
14 | 4, 9, 13 | rspcdva 3575 | 1 ⊢ ((𝑋 ∈ AC 𝐴 ∧ 𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅})) → ∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝐹‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ∀wral 3062 Vcvv 3442 ∖ cdif 3899 ∅c0 4274 𝒫 cpw 4552 {csn 4578 ⟶wf 6480 ‘cfv 6484 (class class class)co 7342 ↑m cmap 8691 AC wacn 9800 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-sbc 3732 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-br 5098 df-opab 5160 df-id 5523 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-fv 6492 df-ov 7345 df-oprab 7346 df-mpo 7347 df-map 8693 df-acn 9804 |
This theorem is referenced by: acni2 9908 |
Copyright terms: Public domain | W3C validator |