Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > acni | Structured version Visualization version GIF version |
Description: The property of being a choice set of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
acni | ⊢ ((𝑋 ∈ AC 𝐴 ∧ 𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅})) → ∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝐹‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6773 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
2 | 1 | eleq2d 2824 | . . . 4 ⊢ (𝑓 = 𝐹 → ((𝑔‘𝑥) ∈ (𝑓‘𝑥) ↔ (𝑔‘𝑥) ∈ (𝐹‘𝑥))) |
3 | 2 | ralbidv 3112 | . . 3 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥) ↔ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝐹‘𝑥))) |
4 | 3 | exbidv 1924 | . 2 ⊢ (𝑓 = 𝐹 → (∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥) ↔ ∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝐹‘𝑥))) |
5 | acnrcl 9798 | . . . . 5 ⊢ (𝑋 ∈ AC 𝐴 → 𝐴 ∈ V) | |
6 | isacn 9800 | . . . . 5 ⊢ ((𝑋 ∈ AC 𝐴 ∧ 𝐴 ∈ V) → (𝑋 ∈ AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥))) | |
7 | 5, 6 | mpdan 684 | . . . 4 ⊢ (𝑋 ∈ AC 𝐴 → (𝑋 ∈ AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥))) |
8 | 7 | ibi 266 | . . 3 ⊢ (𝑋 ∈ AC 𝐴 → ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥)) |
9 | 8 | adantr 481 | . 2 ⊢ ((𝑋 ∈ AC 𝐴 ∧ 𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅})) → ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥)) |
10 | pwexg 5301 | . . . . 5 ⊢ (𝑋 ∈ AC 𝐴 → 𝒫 𝑋 ∈ V) | |
11 | 10 | difexd 5253 | . . . 4 ⊢ (𝑋 ∈ AC 𝐴 → (𝒫 𝑋 ∖ {∅}) ∈ V) |
12 | 11, 5 | elmapd 8629 | . . 3 ⊢ (𝑋 ∈ AC 𝐴 → (𝐹 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴) ↔ 𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅}))) |
13 | 12 | biimpar 478 | . 2 ⊢ ((𝑋 ∈ AC 𝐴 ∧ 𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅})) → 𝐹 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) |
14 | 4, 9, 13 | rspcdva 3562 | 1 ⊢ ((𝑋 ∈ AC 𝐴 ∧ 𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅})) → ∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝐹‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ∖ cdif 3884 ∅c0 4256 𝒫 cpw 4533 {csn 4561 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ↑m cmap 8615 AC wacn 9696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-acn 9700 |
This theorem is referenced by: acni2 9802 |
Copyright terms: Public domain | W3C validator |