MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acni Structured version   Visualization version   GIF version

Theorem acni 10114
Description: The property of being a choice set of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acni ((𝑋AC 𝐴𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅})) → ∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥))
Distinct variable groups:   𝑥,𝑔,𝐴   𝑔,𝐹,𝑥   𝑔,𝑋,𝑥

Proof of Theorem acni
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6919 . . . . 5 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
21eleq2d 2830 . . . 4 (𝑓 = 𝐹 → ((𝑔𝑥) ∈ (𝑓𝑥) ↔ (𝑔𝑥) ∈ (𝐹𝑥)))
32ralbidv 3184 . . 3 (𝑓 = 𝐹 → (∀𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥) ↔ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥)))
43exbidv 1920 . 2 (𝑓 = 𝐹 → (∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥) ↔ ∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥)))
5 acnrcl 10111 . . . . 5 (𝑋AC 𝐴𝐴 ∈ V)
6 isacn 10113 . . . . 5 ((𝑋AC 𝐴𝐴 ∈ V) → (𝑋AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)))
75, 6mpdan 686 . . . 4 (𝑋AC 𝐴 → (𝑋AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)))
87ibi 267 . . 3 (𝑋AC 𝐴 → ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))
98adantr 480 . 2 ((𝑋AC 𝐴𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅})) → ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))
10 pwexg 5396 . . . . 5 (𝑋AC 𝐴 → 𝒫 𝑋 ∈ V)
1110difexd 5349 . . . 4 (𝑋AC 𝐴 → (𝒫 𝑋 ∖ {∅}) ∈ V)
1211, 5elmapd 8898 . . 3 (𝑋AC 𝐴 → (𝐹 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴) ↔ 𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅})))
1312biimpar 477 . 2 ((𝑋AC 𝐴𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅})) → 𝐹 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴))
144, 9, 13rspcdva 3636 1 ((𝑋AC 𝐴𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅})) → ∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wral 3067  Vcvv 3488  cdif 3973  c0 4352  𝒫 cpw 4622  {csn 4648  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  AC wacn 10007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-acn 10011
This theorem is referenced by:  acni2  10115
  Copyright terms: Public domain W3C validator