![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > acni | Structured version Visualization version GIF version |
Description: The property of being a choice set of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
acni | ⊢ ((𝑋 ∈ AC 𝐴 ∧ 𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅})) → ∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝐹‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6906 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
2 | 1 | eleq2d 2825 | . . . 4 ⊢ (𝑓 = 𝐹 → ((𝑔‘𝑥) ∈ (𝑓‘𝑥) ↔ (𝑔‘𝑥) ∈ (𝐹‘𝑥))) |
3 | 2 | ralbidv 3176 | . . 3 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥) ↔ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝐹‘𝑥))) |
4 | 3 | exbidv 1919 | . 2 ⊢ (𝑓 = 𝐹 → (∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥) ↔ ∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝐹‘𝑥))) |
5 | acnrcl 10080 | . . . . 5 ⊢ (𝑋 ∈ AC 𝐴 → 𝐴 ∈ V) | |
6 | isacn 10082 | . . . . 5 ⊢ ((𝑋 ∈ AC 𝐴 ∧ 𝐴 ∈ V) → (𝑋 ∈ AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥))) | |
7 | 5, 6 | mpdan 687 | . . . 4 ⊢ (𝑋 ∈ AC 𝐴 → (𝑋 ∈ AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥))) |
8 | 7 | ibi 267 | . . 3 ⊢ (𝑋 ∈ AC 𝐴 → ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥)) |
9 | 8 | adantr 480 | . 2 ⊢ ((𝑋 ∈ AC 𝐴 ∧ 𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅})) → ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝑓‘𝑥)) |
10 | pwexg 5384 | . . . . 5 ⊢ (𝑋 ∈ AC 𝐴 → 𝒫 𝑋 ∈ V) | |
11 | 10 | difexd 5337 | . . . 4 ⊢ (𝑋 ∈ AC 𝐴 → (𝒫 𝑋 ∖ {∅}) ∈ V) |
12 | 11, 5 | elmapd 8879 | . . 3 ⊢ (𝑋 ∈ AC 𝐴 → (𝐹 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴) ↔ 𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅}))) |
13 | 12 | biimpar 477 | . 2 ⊢ ((𝑋 ∈ AC 𝐴 ∧ 𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅})) → 𝐹 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) |
14 | 4, 9, 13 | rspcdva 3623 | 1 ⊢ ((𝑋 ∈ AC 𝐴 ∧ 𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅})) → ∃𝑔∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ (𝐹‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1776 ∈ wcel 2106 ∀wral 3059 Vcvv 3478 ∖ cdif 3960 ∅c0 4339 𝒫 cpw 4605 {csn 4631 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ↑m cmap 8865 AC wacn 9976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8867 df-acn 9980 |
This theorem is referenced by: acni2 10084 |
Copyright terms: Public domain | W3C validator |