MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acni Structured version   Visualization version   GIF version

Theorem acni 9958
Description: The property of being a choice set of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acni ((𝑋AC 𝐴𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅})) → ∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥))
Distinct variable groups:   𝑥,𝑔,𝐴   𝑔,𝐹,𝑥   𝑔,𝑋,𝑥

Proof of Theorem acni
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6825 . . . . 5 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
21eleq2d 2814 . . . 4 (𝑓 = 𝐹 → ((𝑔𝑥) ∈ (𝑓𝑥) ↔ (𝑔𝑥) ∈ (𝐹𝑥)))
32ralbidv 3152 . . 3 (𝑓 = 𝐹 → (∀𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥) ↔ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥)))
43exbidv 1921 . 2 (𝑓 = 𝐹 → (∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥) ↔ ∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥)))
5 acnrcl 9955 . . . . 5 (𝑋AC 𝐴𝐴 ∈ V)
6 isacn 9957 . . . . 5 ((𝑋AC 𝐴𝐴 ∈ V) → (𝑋AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)))
75, 6mpdan 687 . . . 4 (𝑋AC 𝐴 → (𝑋AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)))
87ibi 267 . . 3 (𝑋AC 𝐴 → ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))
98adantr 480 . 2 ((𝑋AC 𝐴𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅})) → ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))
10 pwexg 5320 . . . . 5 (𝑋AC 𝐴 → 𝒫 𝑋 ∈ V)
1110difexd 5273 . . . 4 (𝑋AC 𝐴 → (𝒫 𝑋 ∖ {∅}) ∈ V)
1211, 5elmapd 8774 . . 3 (𝑋AC 𝐴 → (𝐹 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴) ↔ 𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅})))
1312biimpar 477 . 2 ((𝑋AC 𝐴𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅})) → 𝐹 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴))
144, 9, 13rspcdva 3580 1 ((𝑋AC 𝐴𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅})) → ∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  Vcvv 3438  cdif 3902  c0 4286  𝒫 cpw 4553  {csn 4579  wf 6482  cfv 6486  (class class class)co 7353  m cmap 8760  AC wacn 9853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-map 8762  df-acn 9857
This theorem is referenced by:  acni2  9959
  Copyright terms: Public domain W3C validator