MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acni Structured version   Visualization version   GIF version

Theorem acni 9907
Description: The property of being a choice set of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acni ((𝑋AC 𝐴𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅})) → ∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥))
Distinct variable groups:   𝑥,𝑔,𝐴   𝑔,𝐹,𝑥   𝑔,𝑋,𝑥

Proof of Theorem acni
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6829 . . . . 5 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
21eleq2d 2823 . . . 4 (𝑓 = 𝐹 → ((𝑔𝑥) ∈ (𝑓𝑥) ↔ (𝑔𝑥) ∈ (𝐹𝑥)))
32ralbidv 3171 . . 3 (𝑓 = 𝐹 → (∀𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥) ↔ ∀𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥)))
43exbidv 1924 . 2 (𝑓 = 𝐹 → (∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥) ↔ ∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥)))
5 acnrcl 9904 . . . . 5 (𝑋AC 𝐴𝐴 ∈ V)
6 isacn 9906 . . . . 5 ((𝑋AC 𝐴𝐴 ∈ V) → (𝑋AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)))
75, 6mpdan 685 . . . 4 (𝑋AC 𝐴 → (𝑋AC 𝐴 ↔ ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥)))
87ibi 267 . . 3 (𝑋AC 𝐴 → ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))
98adantr 482 . 2 ((𝑋AC 𝐴𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅})) → ∀𝑓 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))
10 pwexg 5326 . . . . 5 (𝑋AC 𝐴 → 𝒫 𝑋 ∈ V)
1110difexd 5278 . . . 4 (𝑋AC 𝐴 → (𝒫 𝑋 ∖ {∅}) ∈ V)
1211, 5elmapd 8705 . . 3 (𝑋AC 𝐴 → (𝐹 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴) ↔ 𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅})))
1312biimpar 479 . 2 ((𝑋AC 𝐴𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅})) → 𝐹 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴))
144, 9, 13rspcdva 3575 1 ((𝑋AC 𝐴𝐹:𝐴⟶(𝒫 𝑋 ∖ {∅})) → ∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1541  wex 1781  wcel 2106  wral 3062  Vcvv 3442  cdif 3899  c0 4274  𝒫 cpw 4552  {csn 4578  wf 6480  cfv 6484  (class class class)co 7342  m cmap 8691  AC wacn 9800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3444  df-sbc 3732  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-br 5098  df-opab 5160  df-id 5523  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-fv 6492  df-ov 7345  df-oprab 7346  df-mpo 7347  df-map 8693  df-acn 9804
This theorem is referenced by:  acni2  9908
  Copyright terms: Public domain W3C validator