Step | Hyp | Ref
| Expression |
1 | | indcardi.b |
. . 3
β’ (π β π β dom card) |
2 | | domrefg 8979 |
. . 3
β’ (π β dom card β π βΌ π) |
3 | 1, 2 | syl 17 |
. 2
β’ (π β π βΌ π) |
4 | | indcardi.a |
. . 3
β’ (π β π΄ β π) |
5 | | cardon 9935 |
. . . 4
β’
(cardβπ)
β On |
6 | 5 | a1i 11 |
. . 3
β’ (π β (cardβπ) β On) |
7 | | simpl1 1191 |
. . . . 5
β’ (((π β§ ((cardβπ
) β On β§
(cardβπ
) β
(cardβπ)) β§
βπ¦((cardβπ) β (cardβπ
) β (π βΌ π β π))) β§ π
βΌ π) β π) |
8 | | simpr 485 |
. . . . 5
β’ (((π β§ ((cardβπ
) β On β§
(cardβπ
) β
(cardβπ)) β§
βπ¦((cardβπ) β (cardβπ
) β (π βΌ π β π))) β§ π
βΌ π) β π
βΌ π) |
9 | | simpr 485 |
. . . . . . . . . . . . 13
β’ (((π β§ ((cardβπ
) β On β§
(cardβπ
) β
(cardβπ)) β§ π
βΌ π) β§ π βΊ π
) β π βΊ π
) |
10 | | simpl1 1191 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ ((cardβπ
) β On β§
(cardβπ
) β
(cardβπ)) β§ π
βΌ π) β§ π βΊ π
) β π) |
11 | 10, 1 | syl 17 |
. . . . . . . . . . . . . . 15
β’ (((π β§ ((cardβπ
) β On β§
(cardβπ
) β
(cardβπ)) β§ π
βΌ π) β§ π βΊ π
) β π β dom card) |
12 | | sdomdom 8972 |
. . . . . . . . . . . . . . . 16
β’ (π βΊ π
β π βΌ π
) |
13 | | simpl3 1193 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ ((cardβπ
) β On β§
(cardβπ
) β
(cardβπ)) β§ π
βΌ π) β§ π βΊ π
) β π
βΌ π) |
14 | | domtr 8999 |
. . . . . . . . . . . . . . . 16
β’ ((π βΌ π
β§ π
βΌ π) β π βΌ π) |
15 | 12, 13, 14 | syl2an2 684 |
. . . . . . . . . . . . . . 15
β’ (((π β§ ((cardβπ
) β On β§
(cardβπ
) β
(cardβπ)) β§ π
βΌ π) β§ π βΊ π
) β π βΌ π) |
16 | | numdom 10029 |
. . . . . . . . . . . . . . 15
β’ ((π β dom card β§ π βΌ π) β π β dom card) |
17 | 11, 15, 16 | syl2anc 584 |
. . . . . . . . . . . . . 14
β’ (((π β§ ((cardβπ
) β On β§
(cardβπ
) β
(cardβπ)) β§ π
βΌ π) β§ π βΊ π
) β π β dom card) |
18 | | numdom 10029 |
. . . . . . . . . . . . . . 15
β’ ((π β dom card β§ π
βΌ π) β π
β dom card) |
19 | 11, 13, 18 | syl2anc 584 |
. . . . . . . . . . . . . 14
β’ (((π β§ ((cardβπ
) β On β§
(cardβπ
) β
(cardβπ)) β§ π
βΌ π) β§ π βΊ π
) β π
β dom card) |
20 | | cardsdom2 9979 |
. . . . . . . . . . . . . 14
β’ ((π β dom card β§ π
β dom card) β
((cardβπ) β
(cardβπ
) β π βΊ π
)) |
21 | 17, 19, 20 | syl2anc 584 |
. . . . . . . . . . . . 13
β’ (((π β§ ((cardβπ
) β On β§
(cardβπ
) β
(cardβπ)) β§ π
βΌ π) β§ π βΊ π
) β ((cardβπ) β (cardβπ
) β π βΊ π
)) |
22 | 9, 21 | mpbird 256 |
. . . . . . . . . . . 12
β’ (((π β§ ((cardβπ
) β On β§
(cardβπ
) β
(cardβπ)) β§ π
βΌ π) β§ π βΊ π
) β (cardβπ) β (cardβπ
)) |
23 | | id 22 |
. . . . . . . . . . . . 13
β’
(((cardβπ)
β (cardβπ
)
β (π βΌ π β π)) β ((cardβπ) β (cardβπ
) β (π βΌ π β π))) |
24 | 23 | com3l 89 |
. . . . . . . . . . . 12
β’
((cardβπ)
β (cardβπ
)
β (π βΌ π β (((cardβπ) β (cardβπ
) β (π βΌ π β π)) β π))) |
25 | 22, 15, 24 | sylc 65 |
. . . . . . . . . . 11
β’ (((π β§ ((cardβπ
) β On β§
(cardβπ
) β
(cardβπ)) β§ π
βΌ π) β§ π βΊ π
) β (((cardβπ) β (cardβπ
) β (π βΌ π β π)) β π)) |
26 | 25 | ex 413 |
. . . . . . . . . 10
β’ ((π β§ ((cardβπ
) β On β§
(cardβπ
) β
(cardβπ)) β§ π
βΌ π) β (π βΊ π
β (((cardβπ) β (cardβπ
) β (π βΌ π β π)) β π))) |
27 | 26 | com23 86 |
. . . . . . . . 9
β’ ((π β§ ((cardβπ
) β On β§
(cardβπ
) β
(cardβπ)) β§ π
βΌ π) β (((cardβπ) β (cardβπ
) β (π βΌ π β π)) β (π βΊ π
β π))) |
28 | 27 | alimdv 1919 |
. . . . . . . 8
β’ ((π β§ ((cardβπ
) β On β§
(cardβπ
) β
(cardβπ)) β§ π
βΌ π) β (βπ¦((cardβπ) β (cardβπ
) β (π βΌ π β π)) β βπ¦(π βΊ π
β π))) |
29 | 28 | 3exp 1119 |
. . . . . . 7
β’ (π β (((cardβπ
) β On β§
(cardβπ
) β
(cardβπ)) β
(π
βΌ π β (βπ¦((cardβπ) β (cardβπ
) β (π βΌ π β π)) β βπ¦(π βΊ π
β π))))) |
30 | 29 | com34 91 |
. . . . . 6
β’ (π β (((cardβπ
) β On β§
(cardβπ
) β
(cardβπ)) β
(βπ¦((cardβπ) β (cardβπ
) β (π βΌ π β π)) β (π
βΌ π β βπ¦(π βΊ π
β π))))) |
31 | 30 | 3imp1 1347 |
. . . . 5
β’ (((π β§ ((cardβπ
) β On β§
(cardβπ
) β
(cardβπ)) β§
βπ¦((cardβπ) β (cardβπ
) β (π βΌ π β π))) β§ π
βΌ π) β βπ¦(π βΊ π
β π)) |
32 | | indcardi.c |
. . . . 5
β’ ((π β§ π
βΌ π β§ βπ¦(π βΊ π
β π)) β π) |
33 | 7, 8, 31, 32 | syl3anc 1371 |
. . . 4
β’ (((π β§ ((cardβπ
) β On β§
(cardβπ
) β
(cardβπ)) β§
βπ¦((cardβπ) β (cardβπ
) β (π βΌ π β π))) β§ π
βΌ π) β π) |
34 | 33 | ex 413 |
. . 3
β’ ((π β§ ((cardβπ
) β On β§
(cardβπ
) β
(cardβπ)) β§
βπ¦((cardβπ) β (cardβπ
) β (π βΌ π β π))) β (π
βΌ π β π)) |
35 | | indcardi.f |
. . . . 5
β’ (π₯ = π¦ β π
= π) |
36 | 35 | breq1d 5157 |
. . . 4
β’ (π₯ = π¦ β (π
βΌ π β π βΌ π)) |
37 | | indcardi.d |
. . . 4
β’ (π₯ = π¦ β (π β π)) |
38 | 36, 37 | imbi12d 344 |
. . 3
β’ (π₯ = π¦ β ((π
βΌ π β π) β (π βΌ π β π))) |
39 | | indcardi.g |
. . . . 5
β’ (π₯ = π΄ β π
= π) |
40 | 39 | breq1d 5157 |
. . . 4
β’ (π₯ = π΄ β (π
βΌ π β π βΌ π)) |
41 | | indcardi.e |
. . . 4
β’ (π₯ = π΄ β (π β π)) |
42 | 40, 41 | imbi12d 344 |
. . 3
β’ (π₯ = π΄ β ((π
βΌ π β π) β (π βΌ π β π))) |
43 | 35 | fveq2d 6892 |
. . 3
β’ (π₯ = π¦ β (cardβπ
) = (cardβπ)) |
44 | 39 | fveq2d 6892 |
. . 3
β’ (π₯ = π΄ β (cardβπ
) = (cardβπ)) |
45 | 4, 6, 34, 38, 42, 43, 44 | tfisi 7844 |
. 2
β’ (π β (π βΌ π β π)) |
46 | 3, 45 | mpd 15 |
1
β’ (π β π) |