MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indcardi Structured version   Visualization version   GIF version

Theorem indcardi 10082
Description: Indirect strong induction on the cardinality of a finite or numerable set. (Contributed by Stefan O'Rear, 24-Aug-2015.)
Hypotheses
Ref Expression
indcardi.a (𝜑𝐴𝑉)
indcardi.b (𝜑𝑇 ∈ dom card)
indcardi.c ((𝜑𝑅𝑇 ∧ ∀𝑦(𝑆𝑅𝜒)) → 𝜓)
indcardi.d (𝑥 = 𝑦 → (𝜓𝜒))
indcardi.e (𝑥 = 𝐴 → (𝜓𝜃))
indcardi.f (𝑥 = 𝑦𝑅 = 𝑆)
indcardi.g (𝑥 = 𝐴𝑅 = 𝑇)
Assertion
Ref Expression
indcardi (𝜑𝜃)
Distinct variable groups:   𝑥,𝑦,𝑇   𝑥,𝐴   𝑥,𝑆   𝜒,𝑥   𝜑,𝑥,𝑦   𝜃,𝑥   𝑦,𝑅   𝜓,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)   𝜃(𝑦)   𝐴(𝑦)   𝑅(𝑥)   𝑆(𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem indcardi
StepHypRef Expression
1 indcardi.b . . 3 (𝜑𝑇 ∈ dom card)
2 domrefg 9028 . . 3 (𝑇 ∈ dom card → 𝑇𝑇)
31, 2syl 17 . 2 (𝜑𝑇𝑇)
4 indcardi.a . . 3 (𝜑𝐴𝑉)
5 cardon 9985 . . . 4 (card‘𝑇) ∈ On
65a1i 11 . . 3 (𝜑 → (card‘𝑇) ∈ On)
7 simpl1 1191 . . . . 5 (((𝜑 ∧ ((card‘𝑅) ∈ On ∧ (card‘𝑅) ⊆ (card‘𝑇)) ∧ ∀𝑦((card‘𝑆) ∈ (card‘𝑅) → (𝑆𝑇𝜒))) ∧ 𝑅𝑇) → 𝜑)
8 simpr 484 . . . . 5 (((𝜑 ∧ ((card‘𝑅) ∈ On ∧ (card‘𝑅) ⊆ (card‘𝑇)) ∧ ∀𝑦((card‘𝑆) ∈ (card‘𝑅) → (𝑆𝑇𝜒))) ∧ 𝑅𝑇) → 𝑅𝑇)
9 simpr 484 . . . . . . . . . . . . 13 (((𝜑 ∧ ((card‘𝑅) ∈ On ∧ (card‘𝑅) ⊆ (card‘𝑇)) ∧ 𝑅𝑇) ∧ 𝑆𝑅) → 𝑆𝑅)
10 simpl1 1191 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ((card‘𝑅) ∈ On ∧ (card‘𝑅) ⊆ (card‘𝑇)) ∧ 𝑅𝑇) ∧ 𝑆𝑅) → 𝜑)
1110, 1syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((card‘𝑅) ∈ On ∧ (card‘𝑅) ⊆ (card‘𝑇)) ∧ 𝑅𝑇) ∧ 𝑆𝑅) → 𝑇 ∈ dom card)
12 sdomdom 9021 . . . . . . . . . . . . . . . 16 (𝑆𝑅𝑆𝑅)
13 simpl3 1193 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ((card‘𝑅) ∈ On ∧ (card‘𝑅) ⊆ (card‘𝑇)) ∧ 𝑅𝑇) ∧ 𝑆𝑅) → 𝑅𝑇)
14 domtr 9048 . . . . . . . . . . . . . . . 16 ((𝑆𝑅𝑅𝑇) → 𝑆𝑇)
1512, 13, 14syl2an2 686 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((card‘𝑅) ∈ On ∧ (card‘𝑅) ⊆ (card‘𝑇)) ∧ 𝑅𝑇) ∧ 𝑆𝑅) → 𝑆𝑇)
16 numdom 10079 . . . . . . . . . . . . . . 15 ((𝑇 ∈ dom card ∧ 𝑆𝑇) → 𝑆 ∈ dom card)
1711, 15, 16syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((card‘𝑅) ∈ On ∧ (card‘𝑅) ⊆ (card‘𝑇)) ∧ 𝑅𝑇) ∧ 𝑆𝑅) → 𝑆 ∈ dom card)
18 numdom 10079 . . . . . . . . . . . . . . 15 ((𝑇 ∈ dom card ∧ 𝑅𝑇) → 𝑅 ∈ dom card)
1911, 13, 18syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((card‘𝑅) ∈ On ∧ (card‘𝑅) ⊆ (card‘𝑇)) ∧ 𝑅𝑇) ∧ 𝑆𝑅) → 𝑅 ∈ dom card)
20 cardsdom2 10029 . . . . . . . . . . . . . 14 ((𝑆 ∈ dom card ∧ 𝑅 ∈ dom card) → ((card‘𝑆) ∈ (card‘𝑅) ↔ 𝑆𝑅))
2117, 19, 20syl2anc 584 . . . . . . . . . . . . 13 (((𝜑 ∧ ((card‘𝑅) ∈ On ∧ (card‘𝑅) ⊆ (card‘𝑇)) ∧ 𝑅𝑇) ∧ 𝑆𝑅) → ((card‘𝑆) ∈ (card‘𝑅) ↔ 𝑆𝑅))
229, 21mpbird 257 . . . . . . . . . . . 12 (((𝜑 ∧ ((card‘𝑅) ∈ On ∧ (card‘𝑅) ⊆ (card‘𝑇)) ∧ 𝑅𝑇) ∧ 𝑆𝑅) → (card‘𝑆) ∈ (card‘𝑅))
23 id 22 . . . . . . . . . . . . 13 (((card‘𝑆) ∈ (card‘𝑅) → (𝑆𝑇𝜒)) → ((card‘𝑆) ∈ (card‘𝑅) → (𝑆𝑇𝜒)))
2423com3l 89 . . . . . . . . . . . 12 ((card‘𝑆) ∈ (card‘𝑅) → (𝑆𝑇 → (((card‘𝑆) ∈ (card‘𝑅) → (𝑆𝑇𝜒)) → 𝜒)))
2522, 15, 24sylc 65 . . . . . . . . . . 11 (((𝜑 ∧ ((card‘𝑅) ∈ On ∧ (card‘𝑅) ⊆ (card‘𝑇)) ∧ 𝑅𝑇) ∧ 𝑆𝑅) → (((card‘𝑆) ∈ (card‘𝑅) → (𝑆𝑇𝜒)) → 𝜒))
2625ex 412 . . . . . . . . . 10 ((𝜑 ∧ ((card‘𝑅) ∈ On ∧ (card‘𝑅) ⊆ (card‘𝑇)) ∧ 𝑅𝑇) → (𝑆𝑅 → (((card‘𝑆) ∈ (card‘𝑅) → (𝑆𝑇𝜒)) → 𝜒)))
2726com23 86 . . . . . . . . 9 ((𝜑 ∧ ((card‘𝑅) ∈ On ∧ (card‘𝑅) ⊆ (card‘𝑇)) ∧ 𝑅𝑇) → (((card‘𝑆) ∈ (card‘𝑅) → (𝑆𝑇𝜒)) → (𝑆𝑅𝜒)))
2827alimdv 1915 . . . . . . . 8 ((𝜑 ∧ ((card‘𝑅) ∈ On ∧ (card‘𝑅) ⊆ (card‘𝑇)) ∧ 𝑅𝑇) → (∀𝑦((card‘𝑆) ∈ (card‘𝑅) → (𝑆𝑇𝜒)) → ∀𝑦(𝑆𝑅𝜒)))
29283exp 1119 . . . . . . 7 (𝜑 → (((card‘𝑅) ∈ On ∧ (card‘𝑅) ⊆ (card‘𝑇)) → (𝑅𝑇 → (∀𝑦((card‘𝑆) ∈ (card‘𝑅) → (𝑆𝑇𝜒)) → ∀𝑦(𝑆𝑅𝜒)))))
3029com34 91 . . . . . 6 (𝜑 → (((card‘𝑅) ∈ On ∧ (card‘𝑅) ⊆ (card‘𝑇)) → (∀𝑦((card‘𝑆) ∈ (card‘𝑅) → (𝑆𝑇𝜒)) → (𝑅𝑇 → ∀𝑦(𝑆𝑅𝜒)))))
31303imp1 1347 . . . . 5 (((𝜑 ∧ ((card‘𝑅) ∈ On ∧ (card‘𝑅) ⊆ (card‘𝑇)) ∧ ∀𝑦((card‘𝑆) ∈ (card‘𝑅) → (𝑆𝑇𝜒))) ∧ 𝑅𝑇) → ∀𝑦(𝑆𝑅𝜒))
32 indcardi.c . . . . 5 ((𝜑𝑅𝑇 ∧ ∀𝑦(𝑆𝑅𝜒)) → 𝜓)
337, 8, 31, 32syl3anc 1372 . . . 4 (((𝜑 ∧ ((card‘𝑅) ∈ On ∧ (card‘𝑅) ⊆ (card‘𝑇)) ∧ ∀𝑦((card‘𝑆) ∈ (card‘𝑅) → (𝑆𝑇𝜒))) ∧ 𝑅𝑇) → 𝜓)
3433ex 412 . . 3 ((𝜑 ∧ ((card‘𝑅) ∈ On ∧ (card‘𝑅) ⊆ (card‘𝑇)) ∧ ∀𝑦((card‘𝑆) ∈ (card‘𝑅) → (𝑆𝑇𝜒))) → (𝑅𝑇𝜓))
35 indcardi.f . . . . 5 (𝑥 = 𝑦𝑅 = 𝑆)
3635breq1d 5152 . . . 4 (𝑥 = 𝑦 → (𝑅𝑇𝑆𝑇))
37 indcardi.d . . . 4 (𝑥 = 𝑦 → (𝜓𝜒))
3836, 37imbi12d 344 . . 3 (𝑥 = 𝑦 → ((𝑅𝑇𝜓) ↔ (𝑆𝑇𝜒)))
39 indcardi.g . . . . 5 (𝑥 = 𝐴𝑅 = 𝑇)
4039breq1d 5152 . . . 4 (𝑥 = 𝐴 → (𝑅𝑇𝑇𝑇))
41 indcardi.e . . . 4 (𝑥 = 𝐴 → (𝜓𝜃))
4240, 41imbi12d 344 . . 3 (𝑥 = 𝐴 → ((𝑅𝑇𝜓) ↔ (𝑇𝑇𝜃)))
4335fveq2d 6909 . . 3 (𝑥 = 𝑦 → (card‘𝑅) = (card‘𝑆))
4439fveq2d 6909 . . 3 (𝑥 = 𝐴 → (card‘𝑅) = (card‘𝑇))
454, 6, 34, 38, 42, 43, 44tfisi 7881 . 2 (𝜑 → (𝑇𝑇𝜃))
463, 45mpd 15 1 (𝜑𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1537   = wceq 1539  wcel 2107  wss 3950   class class class wbr 5142  dom cdm 5684  Oncon0 6383  cfv 6560  cdom 8984  csdm 8985  cardccrd 9976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-card 9980
This theorem is referenced by:  uzindi  14024  symggen  19489
  Copyright terms: Public domain W3C validator