Proof of Theorem indcardi
| Step | Hyp | Ref
| Expression |
| 1 | | indcardi.b |
. . 3
⊢ (𝜑 → 𝑇 ∈ dom card) |
| 2 | | domrefg 9006 |
. . 3
⊢ (𝑇 ∈ dom card → 𝑇 ≼ 𝑇) |
| 3 | 1, 2 | syl 17 |
. 2
⊢ (𝜑 → 𝑇 ≼ 𝑇) |
| 4 | | indcardi.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 5 | | cardon 9963 |
. . . 4
⊢
(card‘𝑇)
∈ On |
| 6 | 5 | a1i 11 |
. . 3
⊢ (𝜑 → (card‘𝑇) ∈ On) |
| 7 | | simpl1 1192 |
. . . . 5
⊢ (((𝜑 ∧ ((card‘𝑅) ∈ On ∧
(card‘𝑅) ⊆
(card‘𝑇)) ∧
∀𝑦((card‘𝑆) ∈ (card‘𝑅) → (𝑆 ≼ 𝑇 → 𝜒))) ∧ 𝑅 ≼ 𝑇) → 𝜑) |
| 8 | | simpr 484 |
. . . . 5
⊢ (((𝜑 ∧ ((card‘𝑅) ∈ On ∧
(card‘𝑅) ⊆
(card‘𝑇)) ∧
∀𝑦((card‘𝑆) ∈ (card‘𝑅) → (𝑆 ≼ 𝑇 → 𝜒))) ∧ 𝑅 ≼ 𝑇) → 𝑅 ≼ 𝑇) |
| 9 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((card‘𝑅) ∈ On ∧
(card‘𝑅) ⊆
(card‘𝑇)) ∧ 𝑅 ≼ 𝑇) ∧ 𝑆 ≺ 𝑅) → 𝑆 ≺ 𝑅) |
| 10 | | simpl1 1192 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ ((card‘𝑅) ∈ On ∧
(card‘𝑅) ⊆
(card‘𝑇)) ∧ 𝑅 ≼ 𝑇) ∧ 𝑆 ≺ 𝑅) → 𝜑) |
| 11 | 10, 1 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ((card‘𝑅) ∈ On ∧
(card‘𝑅) ⊆
(card‘𝑇)) ∧ 𝑅 ≼ 𝑇) ∧ 𝑆 ≺ 𝑅) → 𝑇 ∈ dom card) |
| 12 | | sdomdom 8999 |
. . . . . . . . . . . . . . . 16
⊢ (𝑆 ≺ 𝑅 → 𝑆 ≼ 𝑅) |
| 13 | | simpl3 1194 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ ((card‘𝑅) ∈ On ∧
(card‘𝑅) ⊆
(card‘𝑇)) ∧ 𝑅 ≼ 𝑇) ∧ 𝑆 ≺ 𝑅) → 𝑅 ≼ 𝑇) |
| 14 | | domtr 9026 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑆 ≼ 𝑅 ∧ 𝑅 ≼ 𝑇) → 𝑆 ≼ 𝑇) |
| 15 | 12, 13, 14 | syl2an2 686 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ((card‘𝑅) ∈ On ∧
(card‘𝑅) ⊆
(card‘𝑇)) ∧ 𝑅 ≼ 𝑇) ∧ 𝑆 ≺ 𝑅) → 𝑆 ≼ 𝑇) |
| 16 | | numdom 10057 |
. . . . . . . . . . . . . . 15
⊢ ((𝑇 ∈ dom card ∧ 𝑆 ≼ 𝑇) → 𝑆 ∈ dom card) |
| 17 | 11, 15, 16 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ((card‘𝑅) ∈ On ∧
(card‘𝑅) ⊆
(card‘𝑇)) ∧ 𝑅 ≼ 𝑇) ∧ 𝑆 ≺ 𝑅) → 𝑆 ∈ dom card) |
| 18 | | numdom 10057 |
. . . . . . . . . . . . . . 15
⊢ ((𝑇 ∈ dom card ∧ 𝑅 ≼ 𝑇) → 𝑅 ∈ dom card) |
| 19 | 11, 13, 18 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ((card‘𝑅) ∈ On ∧
(card‘𝑅) ⊆
(card‘𝑇)) ∧ 𝑅 ≼ 𝑇) ∧ 𝑆 ≺ 𝑅) → 𝑅 ∈ dom card) |
| 20 | | cardsdom2 10007 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∈ dom card ∧ 𝑅 ∈ dom card) →
((card‘𝑆) ∈
(card‘𝑅) ↔ 𝑆 ≺ 𝑅)) |
| 21 | 17, 19, 20 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((card‘𝑅) ∈ On ∧
(card‘𝑅) ⊆
(card‘𝑇)) ∧ 𝑅 ≼ 𝑇) ∧ 𝑆 ≺ 𝑅) → ((card‘𝑆) ∈ (card‘𝑅) ↔ 𝑆 ≺ 𝑅)) |
| 22 | 9, 21 | mpbird 257 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((card‘𝑅) ∈ On ∧
(card‘𝑅) ⊆
(card‘𝑇)) ∧ 𝑅 ≼ 𝑇) ∧ 𝑆 ≺ 𝑅) → (card‘𝑆) ∈ (card‘𝑅)) |
| 23 | | id 22 |
. . . . . . . . . . . . 13
⊢
(((card‘𝑆)
∈ (card‘𝑅)
→ (𝑆 ≼ 𝑇 → 𝜒)) → ((card‘𝑆) ∈ (card‘𝑅) → (𝑆 ≼ 𝑇 → 𝜒))) |
| 24 | 23 | com3l 89 |
. . . . . . . . . . . 12
⊢
((card‘𝑆)
∈ (card‘𝑅)
→ (𝑆 ≼ 𝑇 → (((card‘𝑆) ∈ (card‘𝑅) → (𝑆 ≼ 𝑇 → 𝜒)) → 𝜒))) |
| 25 | 22, 15, 24 | sylc 65 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((card‘𝑅) ∈ On ∧
(card‘𝑅) ⊆
(card‘𝑇)) ∧ 𝑅 ≼ 𝑇) ∧ 𝑆 ≺ 𝑅) → (((card‘𝑆) ∈ (card‘𝑅) → (𝑆 ≼ 𝑇 → 𝜒)) → 𝜒)) |
| 26 | 25 | ex 412 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((card‘𝑅) ∈ On ∧
(card‘𝑅) ⊆
(card‘𝑇)) ∧ 𝑅 ≼ 𝑇) → (𝑆 ≺ 𝑅 → (((card‘𝑆) ∈ (card‘𝑅) → (𝑆 ≼ 𝑇 → 𝜒)) → 𝜒))) |
| 27 | 26 | com23 86 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((card‘𝑅) ∈ On ∧
(card‘𝑅) ⊆
(card‘𝑇)) ∧ 𝑅 ≼ 𝑇) → (((card‘𝑆) ∈ (card‘𝑅) → (𝑆 ≼ 𝑇 → 𝜒)) → (𝑆 ≺ 𝑅 → 𝜒))) |
| 28 | 27 | alimdv 1916 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((card‘𝑅) ∈ On ∧
(card‘𝑅) ⊆
(card‘𝑇)) ∧ 𝑅 ≼ 𝑇) → (∀𝑦((card‘𝑆) ∈ (card‘𝑅) → (𝑆 ≼ 𝑇 → 𝜒)) → ∀𝑦(𝑆 ≺ 𝑅 → 𝜒))) |
| 29 | 28 | 3exp 1119 |
. . . . . . 7
⊢ (𝜑 → (((card‘𝑅) ∈ On ∧
(card‘𝑅) ⊆
(card‘𝑇)) →
(𝑅 ≼ 𝑇 → (∀𝑦((card‘𝑆) ∈ (card‘𝑅) → (𝑆 ≼ 𝑇 → 𝜒)) → ∀𝑦(𝑆 ≺ 𝑅 → 𝜒))))) |
| 30 | 29 | com34 91 |
. . . . . 6
⊢ (𝜑 → (((card‘𝑅) ∈ On ∧
(card‘𝑅) ⊆
(card‘𝑇)) →
(∀𝑦((card‘𝑆) ∈ (card‘𝑅) → (𝑆 ≼ 𝑇 → 𝜒)) → (𝑅 ≼ 𝑇 → ∀𝑦(𝑆 ≺ 𝑅 → 𝜒))))) |
| 31 | 30 | 3imp1 1348 |
. . . . 5
⊢ (((𝜑 ∧ ((card‘𝑅) ∈ On ∧
(card‘𝑅) ⊆
(card‘𝑇)) ∧
∀𝑦((card‘𝑆) ∈ (card‘𝑅) → (𝑆 ≼ 𝑇 → 𝜒))) ∧ 𝑅 ≼ 𝑇) → ∀𝑦(𝑆 ≺ 𝑅 → 𝜒)) |
| 32 | | indcardi.c |
. . . . 5
⊢ ((𝜑 ∧ 𝑅 ≼ 𝑇 ∧ ∀𝑦(𝑆 ≺ 𝑅 → 𝜒)) → 𝜓) |
| 33 | 7, 8, 31, 32 | syl3anc 1373 |
. . . 4
⊢ (((𝜑 ∧ ((card‘𝑅) ∈ On ∧
(card‘𝑅) ⊆
(card‘𝑇)) ∧
∀𝑦((card‘𝑆) ∈ (card‘𝑅) → (𝑆 ≼ 𝑇 → 𝜒))) ∧ 𝑅 ≼ 𝑇) → 𝜓) |
| 34 | 33 | ex 412 |
. . 3
⊢ ((𝜑 ∧ ((card‘𝑅) ∈ On ∧
(card‘𝑅) ⊆
(card‘𝑇)) ∧
∀𝑦((card‘𝑆) ∈ (card‘𝑅) → (𝑆 ≼ 𝑇 → 𝜒))) → (𝑅 ≼ 𝑇 → 𝜓)) |
| 35 | | indcardi.f |
. . . . 5
⊢ (𝑥 = 𝑦 → 𝑅 = 𝑆) |
| 36 | 35 | breq1d 5134 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝑅 ≼ 𝑇 ↔ 𝑆 ≼ 𝑇)) |
| 37 | | indcardi.d |
. . . 4
⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) |
| 38 | 36, 37 | imbi12d 344 |
. . 3
⊢ (𝑥 = 𝑦 → ((𝑅 ≼ 𝑇 → 𝜓) ↔ (𝑆 ≼ 𝑇 → 𝜒))) |
| 39 | | indcardi.g |
. . . . 5
⊢ (𝑥 = 𝐴 → 𝑅 = 𝑇) |
| 40 | 39 | breq1d 5134 |
. . . 4
⊢ (𝑥 = 𝐴 → (𝑅 ≼ 𝑇 ↔ 𝑇 ≼ 𝑇)) |
| 41 | | indcardi.e |
. . . 4
⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) |
| 42 | 40, 41 | imbi12d 344 |
. . 3
⊢ (𝑥 = 𝐴 → ((𝑅 ≼ 𝑇 → 𝜓) ↔ (𝑇 ≼ 𝑇 → 𝜃))) |
| 43 | 35 | fveq2d 6885 |
. . 3
⊢ (𝑥 = 𝑦 → (card‘𝑅) = (card‘𝑆)) |
| 44 | 39 | fveq2d 6885 |
. . 3
⊢ (𝑥 = 𝐴 → (card‘𝑅) = (card‘𝑇)) |
| 45 | 4, 6, 34, 38, 42, 43, 44 | tfisi 7859 |
. 2
⊢ (𝜑 → (𝑇 ≼ 𝑇 → 𝜃)) |
| 46 | 3, 45 | mpd 15 |
1
⊢ (𝜑 → 𝜃) |