MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acni2 Structured version   Visualization version   GIF version

Theorem acni2 10084
Description: The property of being a choice set of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acni2 ((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) → ∃𝑔(𝑔:𝐴𝑋 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵))
Distinct variable groups:   𝑥,𝑔,𝐴   𝐵,𝑔   𝑔,𝑋,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem acni2
Dummy variables 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifsn 4791 . . . . . . 7 (𝐵 ∈ (𝒫 𝑋 ∖ {∅}) ↔ (𝐵 ∈ 𝒫 𝑋𝐵 ≠ ∅))
2 elpw2g 5339 . . . . . . . 8 (𝑋AC 𝐴 → (𝐵 ∈ 𝒫 𝑋𝐵𝑋))
32anbi1d 631 . . . . . . 7 (𝑋AC 𝐴 → ((𝐵 ∈ 𝒫 𝑋𝐵 ≠ ∅) ↔ (𝐵𝑋𝐵 ≠ ∅)))
41, 3bitrid 283 . . . . . 6 (𝑋AC 𝐴 → (𝐵 ∈ (𝒫 𝑋 ∖ {∅}) ↔ (𝐵𝑋𝐵 ≠ ∅)))
54ralbidv 3176 . . . . 5 (𝑋AC 𝐴 → (∀𝑥𝐴 𝐵 ∈ (𝒫 𝑋 ∖ {∅}) ↔ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)))
65biimpar 477 . . . 4 ((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) → ∀𝑥𝐴 𝐵 ∈ (𝒫 𝑋 ∖ {∅}))
7 eqid 2735 . . . . 5 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
87fmpt 7130 . . . 4 (∀𝑥𝐴 𝐵 ∈ (𝒫 𝑋 ∖ {∅}) ↔ (𝑥𝐴𝐵):𝐴⟶(𝒫 𝑋 ∖ {∅}))
96, 8sylib 218 . . 3 ((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) → (𝑥𝐴𝐵):𝐴⟶(𝒫 𝑋 ∖ {∅}))
10 acni 10083 . . 3 ((𝑋AC 𝐴 ∧ (𝑥𝐴𝐵):𝐴⟶(𝒫 𝑋 ∖ {∅})) → ∃𝑓𝑦𝐴 (𝑓𝑦) ∈ ((𝑥𝐴𝐵)‘𝑦))
119, 10syldan 591 . 2 ((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) → ∃𝑓𝑦𝐴 (𝑓𝑦) ∈ ((𝑥𝐴𝐵)‘𝑦))
12 nffvmpt1 6918 . . . . . 6 𝑥((𝑥𝐴𝐵)‘𝑦)
1312nfel2 2922 . . . . 5 𝑥(𝑓𝑦) ∈ ((𝑥𝐴𝐵)‘𝑦)
14 nfv 1912 . . . . 5 𝑦(𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥)
15 fveq2 6907 . . . . . 6 (𝑦 = 𝑥 → (𝑓𝑦) = (𝑓𝑥))
16 fveq2 6907 . . . . . 6 (𝑦 = 𝑥 → ((𝑥𝐴𝐵)‘𝑦) = ((𝑥𝐴𝐵)‘𝑥))
1715, 16eleq12d 2833 . . . . 5 (𝑦 = 𝑥 → ((𝑓𝑦) ∈ ((𝑥𝐴𝐵)‘𝑦) ↔ (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥)))
1813, 14, 17cbvralw 3304 . . . 4 (∀𝑦𝐴 (𝑓𝑦) ∈ ((𝑥𝐴𝐵)‘𝑦) ↔ ∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥))
19 simplr 769 . . . . . . . . . 10 (((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥)) → ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅))
20 simplr 769 . . . . . . . . . . . . . . . . . 18 (((𝑋AC 𝐴𝑥𝐴) ∧ 𝐵𝑋) → 𝑥𝐴)
21 simpll 767 . . . . . . . . . . . . . . . . . . 19 (((𝑋AC 𝐴𝑥𝐴) ∧ 𝐵𝑋) → 𝑋AC 𝐴)
22 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((𝑋AC 𝐴𝑥𝐴) ∧ 𝐵𝑋) → 𝐵𝑋)
2321, 22ssexd 5330 . . . . . . . . . . . . . . . . . 18 (((𝑋AC 𝐴𝑥𝐴) ∧ 𝐵𝑋) → 𝐵 ∈ V)
247fvmpt2 7027 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐴𝐵 ∈ V) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
2520, 23, 24syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝑋AC 𝐴𝑥𝐴) ∧ 𝐵𝑋) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
2625eleq2d 2825 . . . . . . . . . . . . . . . 16 (((𝑋AC 𝐴𝑥𝐴) ∧ 𝐵𝑋) → ((𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥) ↔ (𝑓𝑥) ∈ 𝐵))
2726ex 412 . . . . . . . . . . . . . . 15 ((𝑋AC 𝐴𝑥𝐴) → (𝐵𝑋 → ((𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥) ↔ (𝑓𝑥) ∈ 𝐵)))
2827adantrd 491 . . . . . . . . . . . . . 14 ((𝑋AC 𝐴𝑥𝐴) → ((𝐵𝑋𝐵 ≠ ∅) → ((𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥) ↔ (𝑓𝑥) ∈ 𝐵)))
2928ralimdva 3165 . . . . . . . . . . . . 13 (𝑋AC 𝐴 → (∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅) → ∀𝑥𝐴 ((𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥) ↔ (𝑓𝑥) ∈ 𝐵)))
3029imp 406 . . . . . . . . . . . 12 ((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) → ∀𝑥𝐴 ((𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥) ↔ (𝑓𝑥) ∈ 𝐵))
31 ralbi 3101 . . . . . . . . . . . 12 (∀𝑥𝐴 ((𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥) ↔ (𝑓𝑥) ∈ 𝐵) → (∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥) ↔ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
3230, 31syl 17 . . . . . . . . . . 11 ((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) → (∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥) ↔ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
3332biimpa 476 . . . . . . . . . 10 (((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥)) → ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)
34 ssel 3989 . . . . . . . . . . . 12 (𝐵𝑋 → ((𝑓𝑥) ∈ 𝐵 → (𝑓𝑥) ∈ 𝑋))
3534adantr 480 . . . . . . . . . . 11 ((𝐵𝑋𝐵 ≠ ∅) → ((𝑓𝑥) ∈ 𝐵 → (𝑓𝑥) ∈ 𝑋))
3635ral2imi 3083 . . . . . . . . . 10 (∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅) → (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 → ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑋))
3719, 33, 36sylc 65 . . . . . . . . 9 (((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥)) → ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑋)
38 fveq2 6907 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑓𝑥) = (𝑓𝑦))
3938eleq1d 2824 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑓𝑥) ∈ 𝑋 ↔ (𝑓𝑦) ∈ 𝑋))
4039rspccva 3621 . . . . . . . . 9 ((∀𝑥𝐴 (𝑓𝑥) ∈ 𝑋𝑦𝐴) → (𝑓𝑦) ∈ 𝑋)
4137, 40sylan 580 . . . . . . . 8 ((((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥)) ∧ 𝑦𝐴) → (𝑓𝑦) ∈ 𝑋)
4241fmpttd 7135 . . . . . . 7 (((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥)) → (𝑦𝐴 ↦ (𝑓𝑦)):𝐴𝑋)
43 simpll 767 . . . . . . . 8 (((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥)) → 𝑋AC 𝐴)
44 acnrcl 10080 . . . . . . . 8 (𝑋AC 𝐴𝐴 ∈ V)
4543, 44syl 17 . . . . . . 7 (((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥)) → 𝐴 ∈ V)
46 fex2 7957 . . . . . . 7 (((𝑦𝐴 ↦ (𝑓𝑦)):𝐴𝑋𝐴 ∈ V ∧ 𝑋AC 𝐴) → (𝑦𝐴 ↦ (𝑓𝑦)) ∈ V)
4742, 45, 43, 46syl3anc 1370 . . . . . 6 (((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥)) → (𝑦𝐴 ↦ (𝑓𝑦)) ∈ V)
48 eqid 2735 . . . . . . . . . . 11 (𝑦𝐴 ↦ (𝑓𝑦)) = (𝑦𝐴 ↦ (𝑓𝑦))
49 fvex 6920 . . . . . . . . . . 11 (𝑓𝑥) ∈ V
5015, 48, 49fvmpt 7016 . . . . . . . . . 10 (𝑥𝐴 → ((𝑦𝐴 ↦ (𝑓𝑦))‘𝑥) = (𝑓𝑥))
5150eleq1d 2824 . . . . . . . . 9 (𝑥𝐴 → (((𝑦𝐴 ↦ (𝑓𝑦))‘𝑥) ∈ 𝐵 ↔ (𝑓𝑥) ∈ 𝐵))
5251ralbiia 3089 . . . . . . . 8 (∀𝑥𝐴 ((𝑦𝐴 ↦ (𝑓𝑦))‘𝑥) ∈ 𝐵 ↔ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)
5333, 52sylibr 234 . . . . . . 7 (((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥)) → ∀𝑥𝐴 ((𝑦𝐴 ↦ (𝑓𝑦))‘𝑥) ∈ 𝐵)
5442, 53jca 511 . . . . . 6 (((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥)) → ((𝑦𝐴 ↦ (𝑓𝑦)):𝐴𝑋 ∧ ∀𝑥𝐴 ((𝑦𝐴 ↦ (𝑓𝑦))‘𝑥) ∈ 𝐵))
55 feq1 6717 . . . . . . 7 (𝑔 = (𝑦𝐴 ↦ (𝑓𝑦)) → (𝑔:𝐴𝑋 ↔ (𝑦𝐴 ↦ (𝑓𝑦)):𝐴𝑋))
56 fveq1 6906 . . . . . . . . 9 (𝑔 = (𝑦𝐴 ↦ (𝑓𝑦)) → (𝑔𝑥) = ((𝑦𝐴 ↦ (𝑓𝑦))‘𝑥))
5756eleq1d 2824 . . . . . . . 8 (𝑔 = (𝑦𝐴 ↦ (𝑓𝑦)) → ((𝑔𝑥) ∈ 𝐵 ↔ ((𝑦𝐴 ↦ (𝑓𝑦))‘𝑥) ∈ 𝐵))
5857ralbidv 3176 . . . . . . 7 (𝑔 = (𝑦𝐴 ↦ (𝑓𝑦)) → (∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵 ↔ ∀𝑥𝐴 ((𝑦𝐴 ↦ (𝑓𝑦))‘𝑥) ∈ 𝐵))
5955, 58anbi12d 632 . . . . . 6 (𝑔 = (𝑦𝐴 ↦ (𝑓𝑦)) → ((𝑔:𝐴𝑋 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵) ↔ ((𝑦𝐴 ↦ (𝑓𝑦)):𝐴𝑋 ∧ ∀𝑥𝐴 ((𝑦𝐴 ↦ (𝑓𝑦))‘𝑥) ∈ 𝐵)))
6047, 54, 59spcedv 3598 . . . . 5 (((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥)) → ∃𝑔(𝑔:𝐴𝑋 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵))
6160ex 412 . . . 4 ((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) → (∀𝑥𝐴 (𝑓𝑥) ∈ ((𝑥𝐴𝐵)‘𝑥) → ∃𝑔(𝑔:𝐴𝑋 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵)))
6218, 61biimtrid 242 . . 3 ((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) → (∀𝑦𝐴 (𝑓𝑦) ∈ ((𝑥𝐴𝐵)‘𝑦) → ∃𝑔(𝑔:𝐴𝑋 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵)))
6362exlimdv 1931 . 2 ((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) → (∃𝑓𝑦𝐴 (𝑓𝑦) ∈ ((𝑥𝐴𝐵)‘𝑦) → ∃𝑔(𝑔:𝐴𝑋 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵)))
6411, 63mpd 15 1 ((𝑋AC 𝐴 ∧ ∀𝑥𝐴 (𝐵𝑋𝐵 ≠ ∅)) → ∃𝑔(𝑔:𝐴𝑋 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1776  wcel 2106  wne 2938  wral 3059  Vcvv 3478  cdif 3960  wss 3963  c0 4339  𝒫 cpw 4605  {csn 4631  cmpt 5231  wf 6559  cfv 6563  AC wacn 9976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867  df-acn 9980
This theorem is referenced by:  acni3  10085  acndom  10089  acnnum  10090  acndom2  10092  dfacacn  10180
  Copyright terms: Public domain W3C validator