MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acndom2 Structured version   Visualization version   GIF version

Theorem acndom2 9456
Description: A set smaller than one with choice sequences of length 𝐴 also has choice sequences of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acndom2 (𝑋𝑌 → (𝑌AC 𝐴𝑋AC 𝐴))

Proof of Theorem acndom2
Dummy variables 𝑓 𝑔 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdomi 8496 . 2 (𝑋𝑌 → ∃𝑓 𝑓:𝑋1-1𝑌)
2 simplr 767 . . . . . . . 8 (((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → 𝑌AC 𝐴)
3 imassrn 5914 . . . . . . . . . . 11 (𝑓 “ (𝑔𝑥)) ⊆ ran 𝑓
4 simplll 773 . . . . . . . . . . . 12 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑥𝐴) → 𝑓:𝑋1-1𝑌)
5 f1f 6549 . . . . . . . . . . . 12 (𝑓:𝑋1-1𝑌𝑓:𝑋𝑌)
6 frn 6494 . . . . . . . . . . . 12 (𝑓:𝑋𝑌 → ran 𝑓𝑌)
74, 5, 63syl 18 . . . . . . . . . . 11 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑥𝐴) → ran 𝑓𝑌)
83, 7sstrid 3954 . . . . . . . . . 10 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑥𝐴) → (𝑓 “ (𝑔𝑥)) ⊆ 𝑌)
9 elmapi 8404 . . . . . . . . . . . . . . . . . 18 (𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴) → 𝑔:𝐴⟶(𝒫 𝑋 ∖ {∅}))
109adantl 484 . . . . . . . . . . . . . . . . 17 (((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → 𝑔:𝐴⟶(𝒫 𝑋 ∖ {∅}))
1110ffvelrnda 6825 . . . . . . . . . . . . . . . 16 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑥𝐴) → (𝑔𝑥) ∈ (𝒫 𝑋 ∖ {∅}))
1211eldifad 3924 . . . . . . . . . . . . . . 15 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑥𝐴) → (𝑔𝑥) ∈ 𝒫 𝑋)
1312elpwid 4524 . . . . . . . . . . . . . 14 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑥𝐴) → (𝑔𝑥) ⊆ 𝑋)
14 f1dm 6553 . . . . . . . . . . . . . . 15 (𝑓:𝑋1-1𝑌 → dom 𝑓 = 𝑋)
154, 14syl 17 . . . . . . . . . . . . . 14 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑥𝐴) → dom 𝑓 = 𝑋)
1613, 15sseqtrrd 3984 . . . . . . . . . . . . 13 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑥𝐴) → (𝑔𝑥) ⊆ dom 𝑓)
17 sseqin2 4168 . . . . . . . . . . . . 13 ((𝑔𝑥) ⊆ dom 𝑓 ↔ (dom 𝑓 ∩ (𝑔𝑥)) = (𝑔𝑥))
1816, 17sylib 220 . . . . . . . . . . . 12 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑥𝐴) → (dom 𝑓 ∩ (𝑔𝑥)) = (𝑔𝑥))
19 eldifsni 4696 . . . . . . . . . . . . 13 ((𝑔𝑥) ∈ (𝒫 𝑋 ∖ {∅}) → (𝑔𝑥) ≠ ∅)
2011, 19syl 17 . . . . . . . . . . . 12 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑥𝐴) → (𝑔𝑥) ≠ ∅)
2118, 20eqnetrd 3073 . . . . . . . . . . 11 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑥𝐴) → (dom 𝑓 ∩ (𝑔𝑥)) ≠ ∅)
22 imadisj 5922 . . . . . . . . . . . 12 ((𝑓 “ (𝑔𝑥)) = ∅ ↔ (dom 𝑓 ∩ (𝑔𝑥)) = ∅)
2322necon3bii 3058 . . . . . . . . . . 11 ((𝑓 “ (𝑔𝑥)) ≠ ∅ ↔ (dom 𝑓 ∩ (𝑔𝑥)) ≠ ∅)
2421, 23sylibr 236 . . . . . . . . . 10 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑥𝐴) → (𝑓 “ (𝑔𝑥)) ≠ ∅)
258, 24jca 514 . . . . . . . . 9 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑥𝐴) → ((𝑓 “ (𝑔𝑥)) ⊆ 𝑌 ∧ (𝑓 “ (𝑔𝑥)) ≠ ∅))
2625ralrimiva 3169 . . . . . . . 8 (((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → ∀𝑥𝐴 ((𝑓 “ (𝑔𝑥)) ⊆ 𝑌 ∧ (𝑓 “ (𝑔𝑥)) ≠ ∅))
27 acni2 9448 . . . . . . . 8 ((𝑌AC 𝐴 ∧ ∀𝑥𝐴 ((𝑓 “ (𝑔𝑥)) ⊆ 𝑌 ∧ (𝑓 “ (𝑔𝑥)) ≠ ∅)) → ∃𝑘(𝑘:𝐴𝑌 ∧ ∀𝑥𝐴 (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥))))
282, 26, 27syl2anc 586 . . . . . . 7 (((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → ∃𝑘(𝑘:𝐴𝑌 ∧ ∀𝑥𝐴 (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥))))
29 acnrcl 9444 . . . . . . . . 9 (𝑌AC 𝐴𝐴 ∈ V)
3029ad3antlr 729 . . . . . . . 8 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ (𝑘:𝐴𝑌 ∧ ∀𝑥𝐴 (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → 𝐴 ∈ V)
31 simp-4l 781 . . . . . . . . . . . . . . 15 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → 𝑓:𝑋1-1𝑌)
32 f1f1orn 6600 . . . . . . . . . . . . . . 15 (𝑓:𝑋1-1𝑌𝑓:𝑋1-1-onto→ran 𝑓)
3331, 32syl 17 . . . . . . . . . . . . . 14 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → 𝑓:𝑋1-1-onto→ran 𝑓)
34 simprr 771 . . . . . . . . . . . . . . 15 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))
353, 34sseldi 3941 . . . . . . . . . . . . . 14 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → (𝑘𝑥) ∈ ran 𝑓)
36 f1ocnvfv2 7009 . . . . . . . . . . . . . 14 ((𝑓:𝑋1-1-onto→ran 𝑓 ∧ (𝑘𝑥) ∈ ran 𝑓) → (𝑓‘(𝑓‘(𝑘𝑥))) = (𝑘𝑥))
3733, 35, 36syl2anc 586 . . . . . . . . . . . . 13 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → (𝑓‘(𝑓‘(𝑘𝑥))) = (𝑘𝑥))
3837, 34eqeltrd 2911 . . . . . . . . . . . 12 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → (𝑓‘(𝑓‘(𝑘𝑥))) ∈ (𝑓 “ (𝑔𝑥)))
39 f1ocnv 6601 . . . . . . . . . . . . . . 15 (𝑓:𝑋1-1-onto→ran 𝑓𝑓:ran 𝑓1-1-onto𝑋)
40 f1of 6589 . . . . . . . . . . . . . . 15 (𝑓:ran 𝑓1-1-onto𝑋𝑓:ran 𝑓𝑋)
4133, 39, 403syl 18 . . . . . . . . . . . . . 14 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → 𝑓:ran 𝑓𝑋)
4241, 35ffvelrnd 6826 . . . . . . . . . . . . 13 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → (𝑓‘(𝑘𝑥)) ∈ 𝑋)
4313ad2ant2r 745 . . . . . . . . . . . . 13 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → (𝑔𝑥) ⊆ 𝑋)
44 f1elima 6996 . . . . . . . . . . . . 13 ((𝑓:𝑋1-1𝑌 ∧ (𝑓‘(𝑘𝑥)) ∈ 𝑋 ∧ (𝑔𝑥) ⊆ 𝑋) → ((𝑓‘(𝑓‘(𝑘𝑥))) ∈ (𝑓 “ (𝑔𝑥)) ↔ (𝑓‘(𝑘𝑥)) ∈ (𝑔𝑥)))
4531, 42, 43, 44syl3anc 1367 . . . . . . . . . . . 12 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → ((𝑓‘(𝑓‘(𝑘𝑥))) ∈ (𝑓 “ (𝑔𝑥)) ↔ (𝑓‘(𝑘𝑥)) ∈ (𝑔𝑥)))
4638, 45mpbid 234 . . . . . . . . . . 11 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → (𝑓‘(𝑘𝑥)) ∈ (𝑔𝑥))
4746expr 459 . . . . . . . . . 10 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ 𝑥𝐴) → ((𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)) → (𝑓‘(𝑘𝑥)) ∈ (𝑔𝑥)))
4847ralimdva 3164 . . . . . . . . 9 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐴𝑌) → (∀𝑥𝐴 (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)) → ∀𝑥𝐴 (𝑓‘(𝑘𝑥)) ∈ (𝑔𝑥)))
4948impr 457 . . . . . . . 8 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ (𝑘:𝐴𝑌 ∧ ∀𝑥𝐴 (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → ∀𝑥𝐴 (𝑓‘(𝑘𝑥)) ∈ (𝑔𝑥))
50 acnlem 9450 . . . . . . . 8 ((𝐴 ∈ V ∧ ∀𝑥𝐴 (𝑓‘(𝑘𝑥)) ∈ (𝑔𝑥)) → ∃𝑥𝐴 (𝑥) ∈ (𝑔𝑥))
5130, 49, 50syl2anc 586 . . . . . . 7 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ (𝑘:𝐴𝑌 ∧ ∀𝑥𝐴 (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → ∃𝑥𝐴 (𝑥) ∈ (𝑔𝑥))
5228, 51exlimddv 1936 . . . . . 6 (((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → ∃𝑥𝐴 (𝑥) ∈ (𝑔𝑥))
5352ralrimiva 3169 . . . . 5 ((𝑓:𝑋1-1𝑌𝑌AC 𝐴) → ∀𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑥𝐴 (𝑥) ∈ (𝑔𝑥))
54 vex 3476 . . . . . . . 8 𝑓 ∈ V
5554dmex 7592 . . . . . . 7 dom 𝑓 ∈ V
5614, 55eqeltrrdi 2920 . . . . . 6 (𝑓:𝑋1-1𝑌𝑋 ∈ V)
57 isacn 9446 . . . . . 6 ((𝑋 ∈ V ∧ 𝐴 ∈ V) → (𝑋AC 𝐴 ↔ ∀𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑥𝐴 (𝑥) ∈ (𝑔𝑥)))
5856, 29, 57syl2an 597 . . . . 5 ((𝑓:𝑋1-1𝑌𝑌AC 𝐴) → (𝑋AC 𝐴 ↔ ∀𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑥𝐴 (𝑥) ∈ (𝑔𝑥)))
5953, 58mpbird 259 . . . 4 ((𝑓:𝑋1-1𝑌𝑌AC 𝐴) → 𝑋AC 𝐴)
6059ex 415 . . 3 (𝑓:𝑋1-1𝑌 → (𝑌AC 𝐴𝑋AC 𝐴))
6160exlimiv 1931 . 2 (∃𝑓 𝑓:𝑋1-1𝑌 → (𝑌AC 𝐴𝑋AC 𝐴))
621, 61syl 17 1 (𝑋𝑌 → (𝑌AC 𝐴𝑋AC 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wex 1780  wcel 2114  wne 3006  wral 3125  Vcvv 3473  cdif 3909  cin 3911  wss 3912  c0 4267  𝒫 cpw 4513  {csn 4541   class class class wbr 5040  ccnv 5528  dom cdm 5529  ran crn 5530  cima 5532  wf 6325  1-1wf1 6326  1-1-ontowf1o 6328  cfv 6329  (class class class)co 7131  m cmap 8382  cdom 8483  AC wacn 9343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5177  ax-nul 5184  ax-pow 5240  ax-pr 5304  ax-un 7437
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-rab 3134  df-v 3475  df-sbc 3752  df-csb 3860  df-dif 3915  df-un 3917  df-in 3919  df-ss 3928  df-nul 4268  df-if 4442  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4813  df-iun 4895  df-br 5041  df-opab 5103  df-mpt 5121  df-id 5434  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-iota 6288  df-fun 6331  df-fn 6332  df-f 6333  df-f1 6334  df-fo 6335  df-f1o 6336  df-fv 6337  df-ov 7134  df-oprab 7135  df-mpo 7136  df-1st 7665  df-2nd 7666  df-map 8384  df-dom 8487  df-acn 9347
This theorem is referenced by:  acnen2  9457  dfac13  9544  iundomg  9939  iunctb  9972
  Copyright terms: Public domain W3C validator