MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acndom2 Structured version   Visualization version   GIF version

Theorem acndom2 9474
Description: A set smaller than one with choice sequences of length 𝐴 also has choice sequences of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acndom2 (𝑋𝑌 → (𝑌AC 𝐴𝑋AC 𝐴))

Proof of Theorem acndom2
Dummy variables 𝑓 𝑔 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdomi 8514 . 2 (𝑋𝑌 → ∃𝑓 𝑓:𝑋1-1𝑌)
2 simplr 767 . . . . . . . 8 (((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → 𝑌AC 𝐴)
3 imassrn 5934 . . . . . . . . . . 11 (𝑓 “ (𝑔𝑥)) ⊆ ran 𝑓
4 simplll 773 . . . . . . . . . . . 12 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑥𝐴) → 𝑓:𝑋1-1𝑌)
5 f1f 6569 . . . . . . . . . . . 12 (𝑓:𝑋1-1𝑌𝑓:𝑋𝑌)
6 frn 6514 . . . . . . . . . . . 12 (𝑓:𝑋𝑌 → ran 𝑓𝑌)
74, 5, 63syl 18 . . . . . . . . . . 11 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑥𝐴) → ran 𝑓𝑌)
83, 7sstrid 3977 . . . . . . . . . 10 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑥𝐴) → (𝑓 “ (𝑔𝑥)) ⊆ 𝑌)
9 elmapi 8422 . . . . . . . . . . . . . . . . . 18 (𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴) → 𝑔:𝐴⟶(𝒫 𝑋 ∖ {∅}))
109adantl 484 . . . . . . . . . . . . . . . . 17 (((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → 𝑔:𝐴⟶(𝒫 𝑋 ∖ {∅}))
1110ffvelrnda 6845 . . . . . . . . . . . . . . . 16 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑥𝐴) → (𝑔𝑥) ∈ (𝒫 𝑋 ∖ {∅}))
1211eldifad 3947 . . . . . . . . . . . . . . 15 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑥𝐴) → (𝑔𝑥) ∈ 𝒫 𝑋)
1312elpwid 4552 . . . . . . . . . . . . . 14 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑥𝐴) → (𝑔𝑥) ⊆ 𝑋)
14 f1dm 6573 . . . . . . . . . . . . . . 15 (𝑓:𝑋1-1𝑌 → dom 𝑓 = 𝑋)
154, 14syl 17 . . . . . . . . . . . . . 14 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑥𝐴) → dom 𝑓 = 𝑋)
1613, 15sseqtrrd 4007 . . . . . . . . . . . . 13 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑥𝐴) → (𝑔𝑥) ⊆ dom 𝑓)
17 sseqin2 4191 . . . . . . . . . . . . 13 ((𝑔𝑥) ⊆ dom 𝑓 ↔ (dom 𝑓 ∩ (𝑔𝑥)) = (𝑔𝑥))
1816, 17sylib 220 . . . . . . . . . . . 12 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑥𝐴) → (dom 𝑓 ∩ (𝑔𝑥)) = (𝑔𝑥))
19 eldifsni 4715 . . . . . . . . . . . . 13 ((𝑔𝑥) ∈ (𝒫 𝑋 ∖ {∅}) → (𝑔𝑥) ≠ ∅)
2011, 19syl 17 . . . . . . . . . . . 12 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑥𝐴) → (𝑔𝑥) ≠ ∅)
2118, 20eqnetrd 3083 . . . . . . . . . . 11 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑥𝐴) → (dom 𝑓 ∩ (𝑔𝑥)) ≠ ∅)
22 imadisj 5942 . . . . . . . . . . . 12 ((𝑓 “ (𝑔𝑥)) = ∅ ↔ (dom 𝑓 ∩ (𝑔𝑥)) = ∅)
2322necon3bii 3068 . . . . . . . . . . 11 ((𝑓 “ (𝑔𝑥)) ≠ ∅ ↔ (dom 𝑓 ∩ (𝑔𝑥)) ≠ ∅)
2421, 23sylibr 236 . . . . . . . . . 10 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑥𝐴) → (𝑓 “ (𝑔𝑥)) ≠ ∅)
258, 24jca 514 . . . . . . . . 9 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑥𝐴) → ((𝑓 “ (𝑔𝑥)) ⊆ 𝑌 ∧ (𝑓 “ (𝑔𝑥)) ≠ ∅))
2625ralrimiva 3182 . . . . . . . 8 (((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → ∀𝑥𝐴 ((𝑓 “ (𝑔𝑥)) ⊆ 𝑌 ∧ (𝑓 “ (𝑔𝑥)) ≠ ∅))
27 acni2 9466 . . . . . . . 8 ((𝑌AC 𝐴 ∧ ∀𝑥𝐴 ((𝑓 “ (𝑔𝑥)) ⊆ 𝑌 ∧ (𝑓 “ (𝑔𝑥)) ≠ ∅)) → ∃𝑘(𝑘:𝐴𝑌 ∧ ∀𝑥𝐴 (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥))))
282, 26, 27syl2anc 586 . . . . . . 7 (((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → ∃𝑘(𝑘:𝐴𝑌 ∧ ∀𝑥𝐴 (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥))))
29 acnrcl 9462 . . . . . . . . 9 (𝑌AC 𝐴𝐴 ∈ V)
3029ad3antlr 729 . . . . . . . 8 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ (𝑘:𝐴𝑌 ∧ ∀𝑥𝐴 (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → 𝐴 ∈ V)
31 simp-4l 781 . . . . . . . . . . . . . . 15 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → 𝑓:𝑋1-1𝑌)
32 f1f1orn 6620 . . . . . . . . . . . . . . 15 (𝑓:𝑋1-1𝑌𝑓:𝑋1-1-onto→ran 𝑓)
3331, 32syl 17 . . . . . . . . . . . . . 14 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → 𝑓:𝑋1-1-onto→ran 𝑓)
34 simprr 771 . . . . . . . . . . . . . . 15 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))
353, 34sseldi 3964 . . . . . . . . . . . . . 14 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → (𝑘𝑥) ∈ ran 𝑓)
36 f1ocnvfv2 7028 . . . . . . . . . . . . . 14 ((𝑓:𝑋1-1-onto→ran 𝑓 ∧ (𝑘𝑥) ∈ ran 𝑓) → (𝑓‘(𝑓‘(𝑘𝑥))) = (𝑘𝑥))
3733, 35, 36syl2anc 586 . . . . . . . . . . . . 13 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → (𝑓‘(𝑓‘(𝑘𝑥))) = (𝑘𝑥))
3837, 34eqeltrd 2913 . . . . . . . . . . . 12 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → (𝑓‘(𝑓‘(𝑘𝑥))) ∈ (𝑓 “ (𝑔𝑥)))
39 f1ocnv 6621 . . . . . . . . . . . . . . 15 (𝑓:𝑋1-1-onto→ran 𝑓𝑓:ran 𝑓1-1-onto𝑋)
40 f1of 6609 . . . . . . . . . . . . . . 15 (𝑓:ran 𝑓1-1-onto𝑋𝑓:ran 𝑓𝑋)
4133, 39, 403syl 18 . . . . . . . . . . . . . 14 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → 𝑓:ran 𝑓𝑋)
4241, 35ffvelrnd 6846 . . . . . . . . . . . . 13 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → (𝑓‘(𝑘𝑥)) ∈ 𝑋)
4313ad2ant2r 745 . . . . . . . . . . . . 13 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → (𝑔𝑥) ⊆ 𝑋)
44 f1elima 7015 . . . . . . . . . . . . 13 ((𝑓:𝑋1-1𝑌 ∧ (𝑓‘(𝑘𝑥)) ∈ 𝑋 ∧ (𝑔𝑥) ⊆ 𝑋) → ((𝑓‘(𝑓‘(𝑘𝑥))) ∈ (𝑓 “ (𝑔𝑥)) ↔ (𝑓‘(𝑘𝑥)) ∈ (𝑔𝑥)))
4531, 42, 43, 44syl3anc 1367 . . . . . . . . . . . 12 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → ((𝑓‘(𝑓‘(𝑘𝑥))) ∈ (𝑓 “ (𝑔𝑥)) ↔ (𝑓‘(𝑘𝑥)) ∈ (𝑔𝑥)))
4638, 45mpbid 234 . . . . . . . . . . 11 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → (𝑓‘(𝑘𝑥)) ∈ (𝑔𝑥))
4746expr 459 . . . . . . . . . 10 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ 𝑥𝐴) → ((𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)) → (𝑓‘(𝑘𝑥)) ∈ (𝑔𝑥)))
4847ralimdva 3177 . . . . . . . . 9 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐴𝑌) → (∀𝑥𝐴 (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)) → ∀𝑥𝐴 (𝑓‘(𝑘𝑥)) ∈ (𝑔𝑥)))
4948impr 457 . . . . . . . 8 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ (𝑘:𝐴𝑌 ∧ ∀𝑥𝐴 (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → ∀𝑥𝐴 (𝑓‘(𝑘𝑥)) ∈ (𝑔𝑥))
50 acnlem 9468 . . . . . . . 8 ((𝐴 ∈ V ∧ ∀𝑥𝐴 (𝑓‘(𝑘𝑥)) ∈ (𝑔𝑥)) → ∃𝑥𝐴 (𝑥) ∈ (𝑔𝑥))
5130, 49, 50syl2anc 586 . . . . . . 7 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ (𝑘:𝐴𝑌 ∧ ∀𝑥𝐴 (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → ∃𝑥𝐴 (𝑥) ∈ (𝑔𝑥))
5228, 51exlimddv 1932 . . . . . 6 (((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → ∃𝑥𝐴 (𝑥) ∈ (𝑔𝑥))
5352ralrimiva 3182 . . . . 5 ((𝑓:𝑋1-1𝑌𝑌AC 𝐴) → ∀𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑥𝐴 (𝑥) ∈ (𝑔𝑥))
54 vex 3497 . . . . . . . 8 𝑓 ∈ V
5554dmex 7610 . . . . . . 7 dom 𝑓 ∈ V
5614, 55eqeltrrdi 2922 . . . . . 6 (𝑓:𝑋1-1𝑌𝑋 ∈ V)
57 isacn 9464 . . . . . 6 ((𝑋 ∈ V ∧ 𝐴 ∈ V) → (𝑋AC 𝐴 ↔ ∀𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑥𝐴 (𝑥) ∈ (𝑔𝑥)))
5856, 29, 57syl2an 597 . . . . 5 ((𝑓:𝑋1-1𝑌𝑌AC 𝐴) → (𝑋AC 𝐴 ↔ ∀𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑥𝐴 (𝑥) ∈ (𝑔𝑥)))
5953, 58mpbird 259 . . . 4 ((𝑓:𝑋1-1𝑌𝑌AC 𝐴) → 𝑋AC 𝐴)
6059ex 415 . . 3 (𝑓:𝑋1-1𝑌 → (𝑌AC 𝐴𝑋AC 𝐴))
6160exlimiv 1927 . 2 (∃𝑓 𝑓:𝑋1-1𝑌 → (𝑌AC 𝐴𝑋AC 𝐴))
621, 61syl 17 1 (𝑋𝑌 → (𝑌AC 𝐴𝑋AC 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wex 1776  wcel 2110  wne 3016  wral 3138  Vcvv 3494  cdif 3932  cin 3934  wss 3935  c0 4290  𝒫 cpw 4538  {csn 4560   class class class wbr 5058  ccnv 5548  dom cdm 5549  ran crn 5550  cima 5552  wf 6345  1-1wf1 6346  1-1-ontowf1o 6348  cfv 6349  (class class class)co 7150  m cmap 8400  cdom 8501  AC wacn 9361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-map 8402  df-dom 8505  df-acn 9365
This theorem is referenced by:  acnen2  9475  dfac13  9562  iundomg  9957  iunctb  9990
  Copyright terms: Public domain W3C validator