MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acndom2 Structured version   Visualization version   GIF version

Theorem acndom2 9990
Description: A set smaller than one with choice sequences of length 𝐴 also has choice sequences of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acndom2 (𝑋𝑌 → (𝑌AC 𝐴𝑋AC 𝐴))

Proof of Theorem acndom2
Dummy variables 𝑓 𝑔 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdomi 8898 . 2 (𝑋𝑌 → ∃𝑓 𝑓:𝑋1-1𝑌)
2 simplr 767 . . . . . . . 8 (((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → 𝑌AC 𝐴)
3 imassrn 6024 . . . . . . . . . . 11 (𝑓 “ (𝑔𝑥)) ⊆ ran 𝑓
4 simplll 773 . . . . . . . . . . . 12 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑥𝐴) → 𝑓:𝑋1-1𝑌)
5 f1f 6738 . . . . . . . . . . . 12 (𝑓:𝑋1-1𝑌𝑓:𝑋𝑌)
6 frn 6675 . . . . . . . . . . . 12 (𝑓:𝑋𝑌 → ran 𝑓𝑌)
74, 5, 63syl 18 . . . . . . . . . . 11 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑥𝐴) → ran 𝑓𝑌)
83, 7sstrid 3955 . . . . . . . . . 10 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑥𝐴) → (𝑓 “ (𝑔𝑥)) ⊆ 𝑌)
9 elmapi 8787 . . . . . . . . . . . . . . . . . 18 (𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴) → 𝑔:𝐴⟶(𝒫 𝑋 ∖ {∅}))
109adantl 482 . . . . . . . . . . . . . . . . 17 (((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → 𝑔:𝐴⟶(𝒫 𝑋 ∖ {∅}))
1110ffvelcdmda 7035 . . . . . . . . . . . . . . . 16 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑥𝐴) → (𝑔𝑥) ∈ (𝒫 𝑋 ∖ {∅}))
1211eldifad 3922 . . . . . . . . . . . . . . 15 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑥𝐴) → (𝑔𝑥) ∈ 𝒫 𝑋)
1312elpwid 4569 . . . . . . . . . . . . . 14 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑥𝐴) → (𝑔𝑥) ⊆ 𝑋)
14 f1dm 6742 . . . . . . . . . . . . . . 15 (𝑓:𝑋1-1𝑌 → dom 𝑓 = 𝑋)
154, 14syl 17 . . . . . . . . . . . . . 14 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑥𝐴) → dom 𝑓 = 𝑋)
1613, 15sseqtrrd 3985 . . . . . . . . . . . . 13 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑥𝐴) → (𝑔𝑥) ⊆ dom 𝑓)
17 sseqin2 4175 . . . . . . . . . . . . 13 ((𝑔𝑥) ⊆ dom 𝑓 ↔ (dom 𝑓 ∩ (𝑔𝑥)) = (𝑔𝑥))
1816, 17sylib 217 . . . . . . . . . . . 12 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑥𝐴) → (dom 𝑓 ∩ (𝑔𝑥)) = (𝑔𝑥))
19 eldifsni 4750 . . . . . . . . . . . . 13 ((𝑔𝑥) ∈ (𝒫 𝑋 ∖ {∅}) → (𝑔𝑥) ≠ ∅)
2011, 19syl 17 . . . . . . . . . . . 12 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑥𝐴) → (𝑔𝑥) ≠ ∅)
2118, 20eqnetrd 3011 . . . . . . . . . . 11 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑥𝐴) → (dom 𝑓 ∩ (𝑔𝑥)) ≠ ∅)
22 imadisj 6032 . . . . . . . . . . . 12 ((𝑓 “ (𝑔𝑥)) = ∅ ↔ (dom 𝑓 ∩ (𝑔𝑥)) = ∅)
2322necon3bii 2996 . . . . . . . . . . 11 ((𝑓 “ (𝑔𝑥)) ≠ ∅ ↔ (dom 𝑓 ∩ (𝑔𝑥)) ≠ ∅)
2421, 23sylibr 233 . . . . . . . . . 10 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑥𝐴) → (𝑓 “ (𝑔𝑥)) ≠ ∅)
258, 24jca 512 . . . . . . . . 9 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑥𝐴) → ((𝑓 “ (𝑔𝑥)) ⊆ 𝑌 ∧ (𝑓 “ (𝑔𝑥)) ≠ ∅))
2625ralrimiva 3143 . . . . . . . 8 (((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → ∀𝑥𝐴 ((𝑓 “ (𝑔𝑥)) ⊆ 𝑌 ∧ (𝑓 “ (𝑔𝑥)) ≠ ∅))
27 acni2 9982 . . . . . . . 8 ((𝑌AC 𝐴 ∧ ∀𝑥𝐴 ((𝑓 “ (𝑔𝑥)) ⊆ 𝑌 ∧ (𝑓 “ (𝑔𝑥)) ≠ ∅)) → ∃𝑘(𝑘:𝐴𝑌 ∧ ∀𝑥𝐴 (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥))))
282, 26, 27syl2anc 584 . . . . . . 7 (((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → ∃𝑘(𝑘:𝐴𝑌 ∧ ∀𝑥𝐴 (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥))))
29 acnrcl 9978 . . . . . . . . 9 (𝑌AC 𝐴𝐴 ∈ V)
3029ad3antlr 729 . . . . . . . 8 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ (𝑘:𝐴𝑌 ∧ ∀𝑥𝐴 (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → 𝐴 ∈ V)
31 simp-4l 781 . . . . . . . . . . . . . . 15 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → 𝑓:𝑋1-1𝑌)
32 f1f1orn 6795 . . . . . . . . . . . . . . 15 (𝑓:𝑋1-1𝑌𝑓:𝑋1-1-onto→ran 𝑓)
3331, 32syl 17 . . . . . . . . . . . . . 14 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → 𝑓:𝑋1-1-onto→ran 𝑓)
34 simprr 771 . . . . . . . . . . . . . . 15 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))
353, 34sselid 3942 . . . . . . . . . . . . . 14 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → (𝑘𝑥) ∈ ran 𝑓)
36 f1ocnvfv2 7223 . . . . . . . . . . . . . 14 ((𝑓:𝑋1-1-onto→ran 𝑓 ∧ (𝑘𝑥) ∈ ran 𝑓) → (𝑓‘(𝑓‘(𝑘𝑥))) = (𝑘𝑥))
3733, 35, 36syl2anc 584 . . . . . . . . . . . . 13 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → (𝑓‘(𝑓‘(𝑘𝑥))) = (𝑘𝑥))
3837, 34eqeltrd 2838 . . . . . . . . . . . 12 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → (𝑓‘(𝑓‘(𝑘𝑥))) ∈ (𝑓 “ (𝑔𝑥)))
39 f1ocnv 6796 . . . . . . . . . . . . . . 15 (𝑓:𝑋1-1-onto→ran 𝑓𝑓:ran 𝑓1-1-onto𝑋)
40 f1of 6784 . . . . . . . . . . . . . . 15 (𝑓:ran 𝑓1-1-onto𝑋𝑓:ran 𝑓𝑋)
4133, 39, 403syl 18 . . . . . . . . . . . . . 14 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → 𝑓:ran 𝑓𝑋)
4241, 35ffvelcdmd 7036 . . . . . . . . . . . . 13 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → (𝑓‘(𝑘𝑥)) ∈ 𝑋)
4313ad2ant2r 745 . . . . . . . . . . . . 13 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → (𝑔𝑥) ⊆ 𝑋)
44 f1elima 7210 . . . . . . . . . . . . 13 ((𝑓:𝑋1-1𝑌 ∧ (𝑓‘(𝑘𝑥)) ∈ 𝑋 ∧ (𝑔𝑥) ⊆ 𝑋) → ((𝑓‘(𝑓‘(𝑘𝑥))) ∈ (𝑓 “ (𝑔𝑥)) ↔ (𝑓‘(𝑘𝑥)) ∈ (𝑔𝑥)))
4531, 42, 43, 44syl3anc 1371 . . . . . . . . . . . 12 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → ((𝑓‘(𝑓‘(𝑘𝑥))) ∈ (𝑓 “ (𝑔𝑥)) ↔ (𝑓‘(𝑘𝑥)) ∈ (𝑔𝑥)))
4638, 45mpbid 231 . . . . . . . . . . 11 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ (𝑥𝐴 ∧ (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → (𝑓‘(𝑘𝑥)) ∈ (𝑔𝑥))
4746expr 457 . . . . . . . . . 10 (((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐴𝑌) ∧ 𝑥𝐴) → ((𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)) → (𝑓‘(𝑘𝑥)) ∈ (𝑔𝑥)))
4847ralimdva 3164 . . . . . . . . 9 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ 𝑘:𝐴𝑌) → (∀𝑥𝐴 (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)) → ∀𝑥𝐴 (𝑓‘(𝑘𝑥)) ∈ (𝑔𝑥)))
4948impr 455 . . . . . . . 8 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ (𝑘:𝐴𝑌 ∧ ∀𝑥𝐴 (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → ∀𝑥𝐴 (𝑓‘(𝑘𝑥)) ∈ (𝑔𝑥))
50 acnlem 9984 . . . . . . . 8 ((𝐴 ∈ V ∧ ∀𝑥𝐴 (𝑓‘(𝑘𝑥)) ∈ (𝑔𝑥)) → ∃𝑥𝐴 (𝑥) ∈ (𝑔𝑥))
5130, 49, 50syl2anc 584 . . . . . . 7 ((((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) ∧ (𝑘:𝐴𝑌 ∧ ∀𝑥𝐴 (𝑘𝑥) ∈ (𝑓 “ (𝑔𝑥)))) → ∃𝑥𝐴 (𝑥) ∈ (𝑔𝑥))
5228, 51exlimddv 1938 . . . . . 6 (((𝑓:𝑋1-1𝑌𝑌AC 𝐴) ∧ 𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)) → ∃𝑥𝐴 (𝑥) ∈ (𝑔𝑥))
5352ralrimiva 3143 . . . . 5 ((𝑓:𝑋1-1𝑌𝑌AC 𝐴) → ∀𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑥𝐴 (𝑥) ∈ (𝑔𝑥))
54 vex 3449 . . . . . . . 8 𝑓 ∈ V
5554dmex 7848 . . . . . . 7 dom 𝑓 ∈ V
5614, 55eqeltrrdi 2847 . . . . . 6 (𝑓:𝑋1-1𝑌𝑋 ∈ V)
57 isacn 9980 . . . . . 6 ((𝑋 ∈ V ∧ 𝐴 ∈ V) → (𝑋AC 𝐴 ↔ ∀𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑥𝐴 (𝑥) ∈ (𝑔𝑥)))
5856, 29, 57syl2an 596 . . . . 5 ((𝑓:𝑋1-1𝑌𝑌AC 𝐴) → (𝑋AC 𝐴 ↔ ∀𝑔 ∈ ((𝒫 𝑋 ∖ {∅}) ↑m 𝐴)∃𝑥𝐴 (𝑥) ∈ (𝑔𝑥)))
5953, 58mpbird 256 . . . 4 ((𝑓:𝑋1-1𝑌𝑌AC 𝐴) → 𝑋AC 𝐴)
6059ex 413 . . 3 (𝑓:𝑋1-1𝑌 → (𝑌AC 𝐴𝑋AC 𝐴))
6160exlimiv 1933 . 2 (∃𝑓 𝑓:𝑋1-1𝑌 → (𝑌AC 𝐴𝑋AC 𝐴))
621, 61syl 17 1 (𝑋𝑌 → (𝑌AC 𝐴𝑋AC 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  wne 2943  wral 3064  Vcvv 3445  cdif 3907  cin 3909  wss 3910  c0 4282  𝒫 cpw 4560  {csn 4586   class class class wbr 5105  ccnv 5632  dom cdm 5633  ran crn 5634  cima 5636  wf 6492  1-1wf1 6493  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  m cmap 8765  cdom 8881  AC wacn 9874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-map 8767  df-dom 8885  df-acn 9878
This theorem is referenced by:  acnen2  9991  dfac13  10078  iundomg  10477  iunctb  10510
  Copyright terms: Public domain W3C validator