| Step | Hyp | Ref
| Expression |
| 1 | | 1red 11262 |
. 2
⊢ (𝜑 → 1 ∈
ℝ) |
| 2 | | 2re 12340 |
. . . 4
⊢ 2 ∈
ℝ |
| 3 | | fzfid 14014 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(1...(⌊‘𝑥))
∈ Fin) |
| 4 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℝ+) |
| 5 | | elfznn 13593 |
. . . . . . . . 9
⊢ (𝑛 ∈
(1...(⌊‘𝑥))
→ 𝑛 ∈
ℕ) |
| 6 | 5 | nnrpd 13075 |
. . . . . . . 8
⊢ (𝑛 ∈
(1...(⌊‘𝑥))
→ 𝑛 ∈
ℝ+) |
| 7 | | rpdivcl 13060 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
ℝ+) → (𝑥 / 𝑛) ∈
ℝ+) |
| 8 | 4, 6, 7 | syl2an 596 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑛) ∈
ℝ+) |
| 9 | 8 | relogcld 26665 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (log‘(𝑥 /
𝑛)) ∈
ℝ) |
| 10 | | simplr 769 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑥 ∈
ℝ+) |
| 11 | 9, 10 | rerpdivcld 13108 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((log‘(𝑥 /
𝑛)) / 𝑥) ∈ ℝ) |
| 12 | 3, 11 | fsumrecl 15770 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥) ∈ ℝ) |
| 13 | | remulcl 11240 |
. . . 4
⊢ ((2
∈ ℝ ∧ Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥) ∈ ℝ) → (2 ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) ∈ ℝ) |
| 14 | 2, 12, 13 | sylancr 587 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (2
· Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) ∈ ℝ) |
| 15 | | mulog2sumlem2.r |
. . . . . 6
⊢ 𝑅 = (((1 / 2) + (γ +
(abs‘𝐿))) +
Σ𝑚 ∈
(1...2)((log‘(e / 𝑚))
/ 𝑚)) |
| 16 | | halfre 12480 |
. . . . . . . 8
⊢ (1 / 2)
∈ ℝ |
| 17 | | emre 27049 |
. . . . . . . . 9
⊢ γ
∈ ℝ |
| 18 | | mulog2sumlem.1 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ⇝𝑟 𝐿) |
| 19 | | rlimcl 15539 |
. . . . . . . . . . 11
⊢ (𝐹 ⇝𝑟
𝐿 → 𝐿 ∈ ℂ) |
| 20 | 18, 19 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐿 ∈ ℂ) |
| 21 | 20 | abscld 15475 |
. . . . . . . . 9
⊢ (𝜑 → (abs‘𝐿) ∈
ℝ) |
| 22 | | readdcl 11238 |
. . . . . . . . 9
⊢ ((γ
∈ ℝ ∧ (abs‘𝐿) ∈ ℝ) → (γ +
(abs‘𝐿)) ∈
ℝ) |
| 23 | 17, 21, 22 | sylancr 587 |
. . . . . . . 8
⊢ (𝜑 → (γ +
(abs‘𝐿)) ∈
ℝ) |
| 24 | | readdcl 11238 |
. . . . . . . 8
⊢ (((1 / 2)
∈ ℝ ∧ (γ + (abs‘𝐿)) ∈ ℝ) → ((1 / 2) +
(γ + (abs‘𝐿)))
∈ ℝ) |
| 25 | 16, 23, 24 | sylancr 587 |
. . . . . . 7
⊢ (𝜑 → ((1 / 2) + (γ +
(abs‘𝐿))) ∈
ℝ) |
| 26 | | fzfid 14014 |
. . . . . . . 8
⊢ (𝜑 → (1...2) ∈
Fin) |
| 27 | | epr 16244 |
. . . . . . . . . . 11
⊢ e ∈
ℝ+ |
| 28 | | elfznn 13593 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ (1...2) → 𝑚 ∈
ℕ) |
| 29 | 28 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (1...2)) → 𝑚 ∈ ℕ) |
| 30 | 29 | nnrpd 13075 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (1...2)) → 𝑚 ∈ ℝ+) |
| 31 | | rpdivcl 13060 |
. . . . . . . . . . 11
⊢ ((e
∈ ℝ+ ∧ 𝑚 ∈ ℝ+) → (e /
𝑚) ∈
ℝ+) |
| 32 | 27, 30, 31 | sylancr 587 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (1...2)) → (e / 𝑚) ∈
ℝ+) |
| 33 | 32 | relogcld 26665 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (1...2)) → (log‘(e / 𝑚)) ∈
ℝ) |
| 34 | 33, 29 | nndivred 12320 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ (1...2)) → ((log‘(e /
𝑚)) / 𝑚) ∈ ℝ) |
| 35 | 26, 34 | fsumrecl 15770 |
. . . . . . 7
⊢ (𝜑 → Σ𝑚 ∈ (1...2)((log‘(e / 𝑚)) / 𝑚) ∈ ℝ) |
| 36 | 25, 35 | readdcld 11290 |
. . . . . 6
⊢ (𝜑 → (((1 / 2) + (γ +
(abs‘𝐿))) +
Σ𝑚 ∈
(1...2)((log‘(e / 𝑚))
/ 𝑚)) ∈
ℝ) |
| 37 | 15, 36 | eqeltrid 2845 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ ℝ) |
| 38 | | remulcl 11240 |
. . . . 5
⊢ ((𝑅 ∈ ℝ ∧ 2 ∈
ℝ) → (𝑅 ·
2) ∈ ℝ) |
| 39 | 37, 2, 38 | sylancl 586 |
. . . 4
⊢ (𝜑 → (𝑅 · 2) ∈
ℝ) |
| 40 | 39 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑅 · 2) ∈
ℝ) |
| 41 | 2 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 2 ∈
ℝ) |
| 42 | | rpssre 13042 |
. . . . 5
⊢
ℝ+ ⊆ ℝ |
| 43 | | 2cnd 12344 |
. . . . 5
⊢ (𝜑 → 2 ∈
ℂ) |
| 44 | | o1const 15656 |
. . . . 5
⊢
((ℝ+ ⊆ ℝ ∧ 2 ∈ ℂ) →
(𝑥 ∈
ℝ+ ↦ 2) ∈ 𝑂(1)) |
| 45 | 42, 43, 44 | sylancr 587 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ 2) ∈
𝑂(1)) |
| 46 | | logfacrlim2 27270 |
. . . . 5
⊢ (𝑥 ∈ ℝ+
↦ Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) ⇝𝑟
1 |
| 47 | | rlimo1 15653 |
. . . . 5
⊢ ((𝑥 ∈ ℝ+
↦ Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) ⇝𝑟 1 →
(𝑥 ∈
ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) ∈ 𝑂(1)) |
| 48 | 46, 47 | mp1i 13 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) ∈ 𝑂(1)) |
| 49 | 41, 12, 45, 48 | o1mul2 15661 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (2
· Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥))) ∈ 𝑂(1)) |
| 50 | 39 | recnd 11289 |
. . . 4
⊢ (𝜑 → (𝑅 · 2) ∈
ℂ) |
| 51 | | o1const 15656 |
. . . 4
⊢
((ℝ+ ⊆ ℝ ∧ (𝑅 · 2) ∈ ℂ) → (𝑥 ∈ ℝ+
↦ (𝑅 · 2))
∈ 𝑂(1)) |
| 52 | 42, 50, 51 | sylancr 587 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝑅 · 2)) ∈
𝑂(1)) |
| 53 | 14, 40, 49, 52 | o1add2 15660 |
. 2
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ ((2
· Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2))) ∈
𝑂(1)) |
| 54 | 14, 40 | readdcld 11290 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((2
· Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2)) ∈
ℝ) |
| 55 | 5 | adantl 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ∈
ℕ) |
| 56 | | mucl 27184 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ →
(μ‘𝑛) ∈
ℤ) |
| 57 | 55, 56 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (μ‘𝑛)
∈ ℤ) |
| 58 | 57 | zred 12722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (μ‘𝑛)
∈ ℝ) |
| 59 | 58, 55 | nndivred 12320 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((μ‘𝑛) /
𝑛) ∈
ℝ) |
| 60 | 59 | recnd 11289 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((μ‘𝑛) /
𝑛) ∈
ℂ) |
| 61 | | mulog2sumlem2.t |
. . . . . 6
⊢ 𝑇 = ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ ·
(log‘(𝑥 / 𝑛))) − 𝐿)) |
| 62 | 9 | recnd 11289 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (log‘(𝑥 /
𝑛)) ∈
ℂ) |
| 63 | 62 | sqcld 14184 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((log‘(𝑥 /
𝑛))↑2) ∈
ℂ) |
| 64 | 63 | halfcld 12511 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((log‘(𝑥 /
𝑛))↑2) / 2) ∈
ℂ) |
| 65 | | remulcl 11240 |
. . . . . . . . . 10
⊢ ((γ
∈ ℝ ∧ (log‘(𝑥 / 𝑛)) ∈ ℝ) → (γ ·
(log‘(𝑥 / 𝑛))) ∈
ℝ) |
| 66 | 17, 9, 65 | sylancr 587 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (γ · (log‘(𝑥 / 𝑛))) ∈ ℝ) |
| 67 | 66 | recnd 11289 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (γ · (log‘(𝑥 / 𝑛))) ∈ ℂ) |
| 68 | 20 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝐿 ∈
ℂ) |
| 69 | 67, 68 | subcld 11620 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((γ · (log‘(𝑥 / 𝑛))) − 𝐿) ∈ ℂ) |
| 70 | 64, 69 | addcld 11280 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((((log‘(𝑥 /
𝑛))↑2) / 2) +
((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) ∈ ℂ) |
| 71 | 61, 70 | eqeltrid 2845 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑇 ∈
ℂ) |
| 72 | 60, 71 | mulcld 11281 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((μ‘𝑛) /
𝑛) · 𝑇) ∈
ℂ) |
| 73 | 3, 72 | fsumcl 15769 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) ∈ ℂ) |
| 74 | | relogcl 26617 |
. . . . 5
⊢ (𝑥 ∈ ℝ+
→ (log‘𝑥) ∈
ℝ) |
| 75 | 74 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(log‘𝑥) ∈
ℝ) |
| 76 | 75 | recnd 11289 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(log‘𝑥) ∈
ℂ) |
| 77 | 73, 76 | subcld 11620 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) − (log‘𝑥)) ∈ ℂ) |
| 78 | 77 | abscld 15475 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(abs‘(Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) − (log‘𝑥))) ∈ ℝ) |
| 79 | 78 | adantrr 717 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
(abs‘(Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) − (log‘𝑥))) ∈ ℝ) |
| 80 | 54 | adantrr 717 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → ((2 ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2)) ∈
ℝ) |
| 81 | 54 | recnd 11289 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((2
· Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2)) ∈
ℂ) |
| 82 | 81 | abscld 15475 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2))) ∈
ℝ) |
| 83 | 82 | adantrr 717 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → (abs‘((2
· Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2))) ∈
ℝ) |
| 84 | 57 | zcnd 12723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (μ‘𝑛)
∈ ℂ) |
| 85 | | fzfid 14014 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (1...(⌊‘(𝑥 / 𝑛))) ∈ Fin) |
| 86 | | elfznn 13593 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛))) → 𝑚 ∈
ℕ) |
| 87 | | nnrp 13046 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℝ+) |
| 88 | | rpdivcl 13060 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 / 𝑛) ∈ ℝ+ ∧ 𝑚 ∈ ℝ+)
→ ((𝑥 / 𝑛) / 𝑚) ∈
ℝ+) |
| 89 | 8, 87, 88 | syl2an 596 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈ ℕ)
→ ((𝑥 / 𝑛) / 𝑚) ∈
ℝ+) |
| 90 | 89 | relogcld 26665 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈ ℕ)
→ (log‘((𝑥 /
𝑛) / 𝑚)) ∈ ℝ) |
| 91 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈ ℕ)
→ 𝑚 ∈
ℕ) |
| 92 | 90, 91 | nndivred 12320 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈ ℕ)
→ ((log‘((𝑥 /
𝑛) / 𝑚)) / 𝑚) ∈ ℝ) |
| 93 | 92 | recnd 11289 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈ ℕ)
→ ((log‘((𝑥 /
𝑛) / 𝑚)) / 𝑚) ∈ ℂ) |
| 94 | 86, 93 | sylan2 593 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))) →
((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ∈ ℂ) |
| 95 | 85, 94 | fsumcl 15769 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ∈ ℂ) |
| 96 | 71, 95 | subcld 11620 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑇 −
Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) ∈ ℂ) |
| 97 | 55 | nncnd 12282 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ∈
ℂ) |
| 98 | 55 | nnne0d 12316 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ≠
0) |
| 99 | 84, 96, 97, 98 | div23d 12080 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((μ‘𝑛)
· (𝑇 −
Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) / 𝑛) = (((μ‘𝑛) / 𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) |
| 100 | 60, 71, 95 | subdid 11719 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((μ‘𝑛) /
𝑛) · (𝑇 − Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) = ((((μ‘𝑛) / 𝑛) · 𝑇) − (((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) |
| 101 | 99, 100 | eqtrd 2777 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((μ‘𝑛)
· (𝑇 −
Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) / 𝑛) = ((((μ‘𝑛) / 𝑛) · 𝑇) − (((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) |
| 102 | 101 | sumeq2dv 15738 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) / 𝑛) = Σ𝑛 ∈ (1...(⌊‘𝑥))((((μ‘𝑛) / 𝑛) · 𝑇) − (((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) |
| 103 | 60, 95 | mulcld 11281 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((μ‘𝑛) /
𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) ∈ ℂ) |
| 104 | 3, 72, 103 | fsumsub 15824 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑛 ∈
(1...(⌊‘𝑥))((((μ‘𝑛) / 𝑛) · 𝑇) − (((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) |
| 105 | 102, 104 | eqtrd 2777 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) / 𝑛) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) |
| 106 | 105 | adantrr 717 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) / 𝑛) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) |
| 107 | 85, 60, 94 | fsummulc2 15820 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((μ‘𝑛) /
𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(((μ‘𝑛) / 𝑛) · ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) |
| 108 | 84 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈ ℕ)
→ (μ‘𝑛)
∈ ℂ) |
| 109 | 97, 98 | jca 511 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑛 ∈ ℂ
∧ 𝑛 ≠
0)) |
| 110 | 109 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈ ℕ)
→ (𝑛 ∈ ℂ
∧ 𝑛 ≠
0)) |
| 111 | | div23 11941 |
. . . . . . . . . . . . . . . . 17
⊢
(((μ‘𝑛)
∈ ℂ ∧ ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (((μ‘𝑛) · ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) / 𝑛) = (((μ‘𝑛) / 𝑛) · ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) |
| 112 | | divass 11940 |
. . . . . . . . . . . . . . . . 17
⊢
(((μ‘𝑛)
∈ ℂ ∧ ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (((μ‘𝑛) · ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) / 𝑛) = ((μ‘𝑛) · (((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) / 𝑛))) |
| 113 | 111, 112 | eqtr3d 2779 |
. . . . . . . . . . . . . . . 16
⊢
(((μ‘𝑛)
∈ ℂ ∧ ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (((μ‘𝑛) / 𝑛) · ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) = ((μ‘𝑛) · (((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) / 𝑛))) |
| 114 | 108, 93, 110, 113 | syl3anc 1373 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈ ℕ)
→ (((μ‘𝑛) /
𝑛) ·
((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) = ((μ‘𝑛) · (((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) / 𝑛))) |
| 115 | 90 | recnd 11289 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈ ℕ)
→ (log‘((𝑥 /
𝑛) / 𝑚)) ∈ ℂ) |
| 116 | 91 | nnrpd 13075 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈ ℕ)
→ 𝑚 ∈
ℝ+) |
| 117 | | rpcnne0 13053 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 ∈ ℝ+
→ (𝑚 ∈ ℂ
∧ 𝑚 ≠
0)) |
| 118 | 116, 117 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈ ℕ)
→ (𝑚 ∈ ℂ
∧ 𝑚 ≠
0)) |
| 119 | | divdiv1 11978 |
. . . . . . . . . . . . . . . . . 18
⊢
(((log‘((𝑥 /
𝑛) / 𝑚)) ∈ ℂ ∧ (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0) ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) / 𝑛) = ((log‘((𝑥 / 𝑛) / 𝑚)) / (𝑚 · 𝑛))) |
| 120 | 115, 118,
110, 119 | syl3anc 1373 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈ ℕ)
→ (((log‘((𝑥 /
𝑛) / 𝑚)) / 𝑚) / 𝑛) = ((log‘((𝑥 / 𝑛) / 𝑚)) / (𝑚 · 𝑛))) |
| 121 | | rpre 13043 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) |
| 122 | 121 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℝ) |
| 123 | 122 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑥 ∈
ℝ) |
| 124 | 123 | recnd 11289 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑥 ∈
ℂ) |
| 125 | 124 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈ ℕ)
→ 𝑥 ∈
ℂ) |
| 126 | | divdiv1 11978 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0) ∧ (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0)) → ((𝑥 / 𝑛) / 𝑚) = (𝑥 / (𝑛 · 𝑚))) |
| 127 | 125, 110,
118, 126 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈ ℕ)
→ ((𝑥 / 𝑛) / 𝑚) = (𝑥 / (𝑛 · 𝑚))) |
| 128 | 127 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈ ℕ)
→ (log‘((𝑥 /
𝑛) / 𝑚)) = (log‘(𝑥 / (𝑛 · 𝑚)))) |
| 129 | 91 | nncnd 12282 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈ ℕ)
→ 𝑚 ∈
ℂ) |
| 130 | 97 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈ ℕ)
→ 𝑛 ∈
ℂ) |
| 131 | 129, 130 | mulcomd 11282 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈ ℕ)
→ (𝑚 · 𝑛) = (𝑛 · 𝑚)) |
| 132 | 128, 131 | oveq12d 7449 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈ ℕ)
→ ((log‘((𝑥 /
𝑛) / 𝑚)) / (𝑚 · 𝑛)) = ((log‘(𝑥 / (𝑛 · 𝑚))) / (𝑛 · 𝑚))) |
| 133 | 120, 132 | eqtrd 2777 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈ ℕ)
→ (((log‘((𝑥 /
𝑛) / 𝑚)) / 𝑚) / 𝑛) = ((log‘(𝑥 / (𝑛 · 𝑚))) / (𝑛 · 𝑚))) |
| 134 | 133 | oveq2d 7447 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈ ℕ)
→ ((μ‘𝑛)
· (((log‘((𝑥 /
𝑛) / 𝑚)) / 𝑚) / 𝑛)) = ((μ‘𝑛) · ((log‘(𝑥 / (𝑛 · 𝑚))) / (𝑛 · 𝑚)))) |
| 135 | 114, 134 | eqtrd 2777 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈ ℕ)
→ (((μ‘𝑛) /
𝑛) ·
((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) = ((μ‘𝑛) · ((log‘(𝑥 / (𝑛 · 𝑚))) / (𝑛 · 𝑚)))) |
| 136 | 86, 135 | sylan2 593 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))) →
(((μ‘𝑛) / 𝑛) · ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) = ((μ‘𝑛) · ((log‘(𝑥 / (𝑛 · 𝑚))) / (𝑛 · 𝑚)))) |
| 137 | 136 | sumeq2dv 15738 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))(((μ‘𝑛) / 𝑛) · ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘(𝑥 / (𝑛 · 𝑚))) / (𝑛 · 𝑚)))) |
| 138 | 107, 137 | eqtrd 2777 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((μ‘𝑛) /
𝑛) · Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘(𝑥 / (𝑛 · 𝑚))) / (𝑛 · 𝑚)))) |
| 139 | 138 | sumeq2dv 15738 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘(𝑥 / (𝑛 · 𝑚))) / (𝑛 · 𝑚)))) |
| 140 | | oveq2 7439 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (𝑛 · 𝑚) → (𝑥 / 𝑘) = (𝑥 / (𝑛 · 𝑚))) |
| 141 | 140 | fveq2d 6910 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑛 · 𝑚) → (log‘(𝑥 / 𝑘)) = (log‘(𝑥 / (𝑛 · 𝑚)))) |
| 142 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑛 · 𝑚) → 𝑘 = (𝑛 · 𝑚)) |
| 143 | 141, 142 | oveq12d 7449 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑛 · 𝑚) → ((log‘(𝑥 / 𝑘)) / 𝑘) = ((log‘(𝑥 / (𝑛 · 𝑚))) / (𝑛 · 𝑚))) |
| 144 | 143 | oveq2d 7447 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑛 · 𝑚) → ((μ‘𝑛) · ((log‘(𝑥 / 𝑘)) / 𝑘)) = ((μ‘𝑛) · ((log‘(𝑥 / (𝑛 · 𝑚))) / (𝑛 · 𝑚)))) |
| 145 | 4 | rpred 13077 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℝ) |
| 146 | | ssrab2 4080 |
. . . . . . . . . . . . . . . 16
⊢ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘} ⊆ ℕ |
| 147 | | simprr 773 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈
(1...(⌊‘𝑥))
∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘})) → 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘}) |
| 148 | 146, 147 | sselid 3981 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈
(1...(⌊‘𝑥))
∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘})) → 𝑛 ∈ ℕ) |
| 149 | 148, 56 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈
(1...(⌊‘𝑥))
∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘})) → (μ‘𝑛) ∈ ℤ) |
| 150 | 149 | zred 12722 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈
(1...(⌊‘𝑥))
∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘})) → (μ‘𝑛) ∈ ℝ) |
| 151 | | elfznn 13593 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈
(1...(⌊‘𝑥))
→ 𝑘 ∈
ℕ) |
| 152 | 151 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈
(1...(⌊‘𝑥))
∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘}) → 𝑘 ∈ ℕ) |
| 153 | 152 | nnrpd 13075 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈
(1...(⌊‘𝑥))
∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘}) → 𝑘 ∈ ℝ+) |
| 154 | | rpdivcl 13060 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ+
∧ 𝑘 ∈
ℝ+) → (𝑥 / 𝑘) ∈
ℝ+) |
| 155 | 4, 153, 154 | syl2an 596 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈
(1...(⌊‘𝑥))
∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘})) → (𝑥 / 𝑘) ∈
ℝ+) |
| 156 | 155 | relogcld 26665 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈
(1...(⌊‘𝑥))
∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘})) → (log‘(𝑥 / 𝑘)) ∈ ℝ) |
| 157 | 151 | ad2antrl 728 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈
(1...(⌊‘𝑥))
∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘})) → 𝑘 ∈ ℕ) |
| 158 | 156, 157 | nndivred 12320 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈
(1...(⌊‘𝑥))
∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘})) → ((log‘(𝑥 / 𝑘)) / 𝑘) ∈ ℝ) |
| 159 | 150, 158 | remulcld 11291 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈
(1...(⌊‘𝑥))
∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘})) → ((μ‘𝑛) · ((log‘(𝑥 / 𝑘)) / 𝑘)) ∈ ℝ) |
| 160 | 159 | recnd 11289 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈
(1...(⌊‘𝑥))
∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘})) → ((μ‘𝑛) · ((log‘(𝑥 / 𝑘)) / 𝑘)) ∈ ℂ) |
| 161 | 144, 145,
160 | dvdsflsumcom 27231 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑘 ∈
(1...(⌊‘𝑥))Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘} ((μ‘𝑛) · ((log‘(𝑥 / 𝑘)) / 𝑘)) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘(𝑥 / (𝑛 · 𝑚))) / (𝑛 · 𝑚)))) |
| 162 | 139, 161 | eqtr4d 2780 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) = Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘} ((μ‘𝑛) · ((log‘(𝑥 / 𝑘)) / 𝑘))) |
| 163 | 162 | adantrr 717 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) = Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘} ((μ‘𝑛) · ((log‘(𝑥 / 𝑘)) / 𝑘))) |
| 164 | | oveq2 7439 |
. . . . . . . . . . 11
⊢ (𝑘 = 1 → (𝑥 / 𝑘) = (𝑥 / 1)) |
| 165 | 164 | fveq2d 6910 |
. . . . . . . . . 10
⊢ (𝑘 = 1 → (log‘(𝑥 / 𝑘)) = (log‘(𝑥 / 1))) |
| 166 | | id 22 |
. . . . . . . . . 10
⊢ (𝑘 = 1 → 𝑘 = 1) |
| 167 | 165, 166 | oveq12d 7449 |
. . . . . . . . 9
⊢ (𝑘 = 1 → ((log‘(𝑥 / 𝑘)) / 𝑘) = ((log‘(𝑥 / 1)) / 1)) |
| 168 | | fzfid 14014 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
(1...(⌊‘𝑥))
∈ Fin) |
| 169 | | fz1ssnn 13595 |
. . . . . . . . . 10
⊢
(1...(⌊‘𝑥)) ⊆ ℕ |
| 170 | 169 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
(1...(⌊‘𝑥))
⊆ ℕ) |
| 171 | 122 | adantrr 717 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → 𝑥 ∈
ℝ) |
| 172 | | simprr 773 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → 1 ≤ 𝑥) |
| 173 | | flge1nn 13861 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ ∧ 1 ≤
𝑥) →
(⌊‘𝑥) ∈
ℕ) |
| 174 | 171, 172,
173 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
(⌊‘𝑥) ∈
ℕ) |
| 175 | | nnuz 12921 |
. . . . . . . . . . 11
⊢ ℕ =
(ℤ≥‘1) |
| 176 | 174, 175 | eleqtrdi 2851 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
(⌊‘𝑥) ∈
(ℤ≥‘1)) |
| 177 | | eluzfz1 13571 |
. . . . . . . . . 10
⊢
((⌊‘𝑥)
∈ (ℤ≥‘1) → 1 ∈
(1...(⌊‘𝑥))) |
| 178 | 176, 177 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → 1 ∈
(1...(⌊‘𝑥))) |
| 179 | 151 | nnrpd 13075 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈
(1...(⌊‘𝑥))
→ 𝑘 ∈
ℝ+) |
| 180 | 4, 179, 154 | syl2an 596 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑘) ∈
ℝ+) |
| 181 | 180 | relogcld 26665 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈
(1...(⌊‘𝑥)))
→ (log‘(𝑥 /
𝑘)) ∈
ℝ) |
| 182 | 169 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(1...(⌊‘𝑥))
⊆ ℕ) |
| 183 | 182 | sselda 3983 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈
(1...(⌊‘𝑥)))
→ 𝑘 ∈
ℕ) |
| 184 | 181, 183 | nndivred 12320 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈
(1...(⌊‘𝑥)))
→ ((log‘(𝑥 /
𝑘)) / 𝑘) ∈ ℝ) |
| 185 | 184 | recnd 11289 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈
(1...(⌊‘𝑥)))
→ ((log‘(𝑥 /
𝑘)) / 𝑘) ∈ ℂ) |
| 186 | 185 | adantlrr 721 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) ∧ 𝑘 ∈
(1...(⌊‘𝑥)))
→ ((log‘(𝑥 /
𝑘)) / 𝑘) ∈ ℂ) |
| 187 | 167, 168,
170, 178, 186 | musumsum 27235 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → Σ𝑘 ∈
(1...(⌊‘𝑥))Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘} ((μ‘𝑛) · ((log‘(𝑥 / 𝑘)) / 𝑘)) = ((log‘(𝑥 / 1)) / 1)) |
| 188 | 4 | rpcnd 13079 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℂ) |
| 189 | 188 | div1d 12035 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥 / 1) = 𝑥) |
| 190 | 189 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(log‘(𝑥 / 1)) =
(log‘𝑥)) |
| 191 | 190 | oveq1d 7446 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((log‘(𝑥 / 1)) / 1) =
((log‘𝑥) /
1)) |
| 192 | 76 | div1d 12035 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((log‘𝑥) / 1) =
(log‘𝑥)) |
| 193 | 191, 192 | eqtrd 2777 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((log‘(𝑥 / 1)) / 1) =
(log‘𝑥)) |
| 194 | 193 | adantrr 717 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
((log‘(𝑥 / 1)) / 1) =
(log‘𝑥)) |
| 195 | 163, 187,
194 | 3eqtrd 2781 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) = (log‘𝑥)) |
| 196 | 195 | oveq2d 7447 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → (Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) − (log‘𝑥))) |
| 197 | 106, 196 | eqtrd 2777 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) / 𝑛) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) − (log‘𝑥))) |
| 198 | 197 | fveq2d 6910 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
(abs‘Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) / 𝑛)) = (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) − (log‘𝑥)))) |
| 199 | | ere 16125 |
. . . . . . . . 9
⊢ e ∈
ℝ |
| 200 | 199 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → e ∈
ℝ) |
| 201 | | 1re 11261 |
. . . . . . . . 9
⊢ 1 ∈
ℝ |
| 202 | | 1lt2 12437 |
. . . . . . . . . 10
⊢ 1 <
2 |
| 203 | | egt2lt3 16242 |
. . . . . . . . . . 11
⊢ (2 < e
∧ e < 3) |
| 204 | 203 | simpli 483 |
. . . . . . . . . 10
⊢ 2 <
e |
| 205 | 201, 2, 199 | lttri 11387 |
. . . . . . . . . 10
⊢ ((1 <
2 ∧ 2 < e) → 1 < e) |
| 206 | 202, 204,
205 | mp2an 692 |
. . . . . . . . 9
⊢ 1 <
e |
| 207 | 201, 199,
206 | ltleii 11384 |
. . . . . . . 8
⊢ 1 ≤
e |
| 208 | 200, 207 | jctir 520 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (e ∈
ℝ ∧ 1 ≤ e)) |
| 209 | 37 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑅 ∈
ℝ) |
| 210 | 16 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1 / 2) ∈
ℝ) |
| 211 | | 1rp 13038 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℝ+ |
| 212 | | rphalfcl 13062 |
. . . . . . . . . . . . . 14
⊢ (1 ∈
ℝ+ → (1 / 2) ∈ ℝ+) |
| 213 | 211, 212 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (1 / 2)
∈ ℝ+ |
| 214 | | rpge0 13048 |
. . . . . . . . . . . . 13
⊢ ((1 / 2)
∈ ℝ+ → 0 ≤ (1 / 2)) |
| 215 | 213, 214 | mp1i 13 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 ≤ (1 /
2)) |
| 216 | 17 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → γ ∈
ℝ) |
| 217 | | 0re 11263 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
ℝ |
| 218 | | emgt0 27050 |
. . . . . . . . . . . . . . 15
⊢ 0 <
γ |
| 219 | 217, 17, 218 | ltleii 11384 |
. . . . . . . . . . . . . 14
⊢ 0 ≤
γ |
| 220 | 219 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 ≤
γ) |
| 221 | 20 | absge0d 15483 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 ≤ (abs‘𝐿)) |
| 222 | 216, 21, 220, 221 | addge0d 11839 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 ≤ (γ +
(abs‘𝐿))) |
| 223 | 210, 23, 215, 222 | addge0d 11839 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 ≤ ((1 / 2) + (γ
+ (abs‘𝐿)))) |
| 224 | | log1 26627 |
. . . . . . . . . . . . . 14
⊢
(log‘1) = 0 |
| 225 | 29 | nncnd 12282 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑚 ∈ (1...2)) → 𝑚 ∈ ℂ) |
| 226 | 225 | mullidd 11279 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑚 ∈ (1...2)) → (1 · 𝑚) = 𝑚) |
| 227 | 30 | rpred 13077 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑚 ∈ (1...2)) → 𝑚 ∈ ℝ) |
| 228 | 2 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑚 ∈ (1...2)) → 2 ∈
ℝ) |
| 229 | 199 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑚 ∈ (1...2)) → e ∈
ℝ) |
| 230 | | elfzle2 13568 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 ∈ (1...2) → 𝑚 ≤ 2) |
| 231 | 230 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑚 ∈ (1...2)) → 𝑚 ≤ 2) |
| 232 | 2, 199, 204 | ltleii 11384 |
. . . . . . . . . . . . . . . . . . 19
⊢ 2 ≤
e |
| 233 | 232 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑚 ∈ (1...2)) → 2 ≤
e) |
| 234 | 227, 228,
229, 231, 233 | letrd 11418 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑚 ∈ (1...2)) → 𝑚 ≤ e) |
| 235 | 226, 234 | eqbrtrd 5165 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑚 ∈ (1...2)) → (1 · 𝑚) ≤ e) |
| 236 | | 1red 11262 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑚 ∈ (1...2)) → 1 ∈
ℝ) |
| 237 | 236, 229,
30 | lemuldivd 13126 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑚 ∈ (1...2)) → ((1 · 𝑚) ≤ e ↔ 1 ≤ (e /
𝑚))) |
| 238 | 235, 237 | mpbid 232 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ (1...2)) → 1 ≤ (e / 𝑚)) |
| 239 | | logleb 26645 |
. . . . . . . . . . . . . . . 16
⊢ ((1
∈ ℝ+ ∧ (e / 𝑚) ∈ ℝ+) → (1 ≤
(e / 𝑚) ↔
(log‘1) ≤ (log‘(e / 𝑚)))) |
| 240 | 211, 32, 239 | sylancr 587 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ (1...2)) → (1 ≤ (e / 𝑚) ↔ (log‘1) ≤
(log‘(e / 𝑚)))) |
| 241 | 238, 240 | mpbid 232 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ (1...2)) → (log‘1) ≤
(log‘(e / 𝑚))) |
| 242 | 224, 241 | eqbrtrrid 5179 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ (1...2)) → 0 ≤ (log‘(e
/ 𝑚))) |
| 243 | 33, 30, 242 | divge0d 13117 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (1...2)) → 0 ≤ ((log‘(e
/ 𝑚)) / 𝑚)) |
| 244 | 26, 34, 243 | fsumge0 15831 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 ≤ Σ𝑚 ∈ (1...2)((log‘(e /
𝑚)) / 𝑚)) |
| 245 | 25, 35, 223, 244 | addge0d 11839 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ≤ (((1 / 2) +
(γ + (abs‘𝐿)))
+ Σ𝑚 ∈
(1...2)((log‘(e / 𝑚))
/ 𝑚))) |
| 246 | 245, 15 | breqtrrdi 5185 |
. . . . . . . . 9
⊢ (𝜑 → 0 ≤ 𝑅) |
| 247 | 246 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 0 ≤
𝑅) |
| 248 | 209, 247 | jca 511 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑅 ∈ ℝ ∧ 0 ≤
𝑅)) |
| 249 | 84, 96 | mulcld 11281 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((μ‘𝑛)
· (𝑇 −
Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) ∈ ℂ) |
| 250 | | remulcl 11240 |
. . . . . . . 8
⊢ ((2
∈ ℝ ∧ ((log‘(𝑥 / 𝑛)) / 𝑥) ∈ ℝ) → (2 ·
((log‘(𝑥 / 𝑛)) / 𝑥)) ∈ ℝ) |
| 251 | 2, 11, 250 | sylancr 587 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (2 · ((log‘(𝑥 / 𝑛)) / 𝑥)) ∈ ℝ) |
| 252 | 2 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 2 ∈ ℝ) |
| 253 | | 0le2 12368 |
. . . . . . . . 9
⊢ 0 ≤
2 |
| 254 | 253 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ 2) |
| 255 | 97 | mullidd 11279 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (1 · 𝑛) =
𝑛) |
| 256 | | fznnfl 13902 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℝ → (𝑛 ∈
(1...(⌊‘𝑥))
↔ (𝑛 ∈ ℕ
∧ 𝑛 ≤ 𝑥))) |
| 257 | 122, 256 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑛 ∈
(1...(⌊‘𝑥))
↔ (𝑛 ∈ ℕ
∧ 𝑛 ≤ 𝑥))) |
| 258 | 257 | simplbda 499 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ≤ 𝑥) |
| 259 | 255, 258 | eqbrtrd 5165 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (1 · 𝑛) ≤
𝑥) |
| 260 | | 1red 11262 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 1 ∈ ℝ) |
| 261 | 55 | nnrpd 13075 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ∈
ℝ+) |
| 262 | 260, 123,
261 | lemuldivd 13126 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((1 · 𝑛) ≤
𝑥 ↔ 1 ≤ (𝑥 / 𝑛))) |
| 263 | 259, 262 | mpbid 232 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 1 ≤ (𝑥 / 𝑛)) |
| 264 | | logleb 26645 |
. . . . . . . . . . . 12
⊢ ((1
∈ ℝ+ ∧ (𝑥 / 𝑛) ∈ ℝ+) → (1 ≤
(𝑥 / 𝑛) ↔ (log‘1) ≤ (log‘(𝑥 / 𝑛)))) |
| 265 | 211, 8, 264 | sylancr 587 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (1 ≤ (𝑥 / 𝑛) ↔ (log‘1) ≤
(log‘(𝑥 / 𝑛)))) |
| 266 | 263, 265 | mpbid 232 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (log‘1) ≤ (log‘(𝑥 / 𝑛))) |
| 267 | 224, 266 | eqbrtrrid 5179 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ (log‘(𝑥
/ 𝑛))) |
| 268 | | rpregt0 13049 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ (𝑥 ∈ ℝ
∧ 0 < 𝑥)) |
| 269 | 268 | ad2antlr 727 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑥 ∈ ℝ
∧ 0 < 𝑥)) |
| 270 | | divge0 12137 |
. . . . . . . . 9
⊢
((((log‘(𝑥 /
𝑛)) ∈ ℝ ∧ 0
≤ (log‘(𝑥 / 𝑛))) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → 0 ≤
((log‘(𝑥 / 𝑛)) / 𝑥)) |
| 271 | 9, 267, 269, 270 | syl21anc 838 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ ((log‘(𝑥 / 𝑛)) / 𝑥)) |
| 272 | 252, 11, 254, 271 | mulge0d 11840 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ (2 · ((log‘(𝑥 / 𝑛)) / 𝑥))) |
| 273 | 249 | abscld 15475 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) ∈ ℝ) |
| 274 | 273 | adantr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ e ≤ (𝑥 / 𝑛)) →
(abs‘((μ‘𝑛)
· (𝑇 −
Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) ∈ ℝ) |
| 275 | 96 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ e ≤ (𝑥 / 𝑛)) → (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) ∈ ℂ) |
| 276 | 275 | abscld 15475 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ e ≤ (𝑥 / 𝑛)) → (abs‘(𝑇 − Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) ∈ ℝ) |
| 277 | 261 | rpred 13077 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ∈
ℝ) |
| 278 | 251, 277 | remulcld 11291 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((2 · ((log‘(𝑥 / 𝑛)) / 𝑥)) · 𝑛) ∈ ℝ) |
| 279 | 278 | adantr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ e ≤ (𝑥 / 𝑛)) → ((2 ·
((log‘(𝑥 / 𝑛)) / 𝑥)) · 𝑛) ∈ ℝ) |
| 280 | 84, 96 | absmuld 15493 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) = ((abs‘(μ‘𝑛)) · (abs‘(𝑇 − Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))))) |
| 281 | 84 | abscld 15475 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘(μ‘𝑛)) ∈ ℝ) |
| 282 | 96 | abscld 15475 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘(𝑇
− Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) ∈ ℝ) |
| 283 | 96 | absge0d 15483 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ (abs‘(𝑇
− Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) |
| 284 | | mule1 27191 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ →
(abs‘(μ‘𝑛))
≤ 1) |
| 285 | 55, 284 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘(μ‘𝑛)) ≤ 1) |
| 286 | 281, 260,
282, 283, 285 | lemul1ad 12207 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((abs‘(μ‘𝑛)) · (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) ≤ (1 · (abs‘(𝑇 − Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))))) |
| 287 | 282 | recnd 11289 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘(𝑇
− Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) ∈ ℂ) |
| 288 | 287 | mullidd 11279 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (1 · (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) = (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) |
| 289 | 286, 288 | breqtrd 5169 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((abs‘(μ‘𝑛)) · (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) ≤ (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) |
| 290 | 280, 289 | eqbrtrd 5165 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) ≤ (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) |
| 291 | 290 | adantr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ e ≤ (𝑥 / 𝑛)) →
(abs‘((μ‘𝑛)
· (𝑇 −
Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) ≤ (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) |
| 292 | | logdivsum.1 |
. . . . . . . . . 10
⊢ 𝐹 = (𝑦 ∈ ℝ+ ↦
(Σ𝑖 ∈
(1...(⌊‘𝑦))((log‘𝑖) / 𝑖) − (((log‘𝑦)↑2) / 2))) |
| 293 | 18 | ad3antrrr 730 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ e ≤ (𝑥 / 𝑛)) → 𝐹 ⇝𝑟 𝐿) |
| 294 | 8 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ e ≤ (𝑥 / 𝑛)) → (𝑥 / 𝑛) ∈
ℝ+) |
| 295 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ e ≤ (𝑥 / 𝑛)) → e ≤ (𝑥 / 𝑛)) |
| 296 | 292, 293,
294, 295 | mulog2sumlem1 27578 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ e ≤ (𝑥 / 𝑛)) →
(abs‘(Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) − ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ ·
(log‘(𝑥 / 𝑛))) − 𝐿)))) ≤ (2 · ((log‘(𝑥 / 𝑛)) / (𝑥 / 𝑛)))) |
| 297 | 71, 95 | abssubd 15492 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘(𝑇
− Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) = (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) − 𝑇))) |
| 298 | 297 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ e ≤ (𝑥 / 𝑛)) → (abs‘(𝑇 − Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) = (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) − 𝑇))) |
| 299 | 61 | oveq2i 7442 |
. . . . . . . . . . 11
⊢
(Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) − 𝑇) = (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) − ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ ·
(log‘(𝑥 / 𝑛))) − 𝐿))) |
| 300 | 299 | fveq2i 6909 |
. . . . . . . . . 10
⊢
(abs‘(Σ𝑚
∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) − 𝑇)) = (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) − ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ ·
(log‘(𝑥 / 𝑛))) − 𝐿)))) |
| 301 | 298, 300 | eqtrdi 2793 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ e ≤ (𝑥 / 𝑛)) → (abs‘(𝑇 − Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) = (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) − ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ ·
(log‘(𝑥 / 𝑛))) − 𝐿))))) |
| 302 | | 2cnd 12344 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 2 ∈ ℂ) |
| 303 | 11 | recnd 11289 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((log‘(𝑥 /
𝑛)) / 𝑥) ∈ ℂ) |
| 304 | 302, 303,
97 | mulassd 11284 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((2 · ((log‘(𝑥 / 𝑛)) / 𝑥)) · 𝑛) = (2 · (((log‘(𝑥 / 𝑛)) / 𝑥) · 𝑛))) |
| 305 | | rpcnne0 13053 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℝ+
→ (𝑥 ∈ ℂ
∧ 𝑥 ≠
0)) |
| 306 | 305 | ad2antlr 727 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑥 ∈ ℂ
∧ 𝑥 ≠
0)) |
| 307 | | divdiv2 11979 |
. . . . . . . . . . . . . 14
⊢
(((log‘(𝑥 /
𝑛)) ∈ ℂ ∧
(𝑥 ∈ ℂ ∧
𝑥 ≠ 0) ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) →
((log‘(𝑥 / 𝑛)) / (𝑥 / 𝑛)) = (((log‘(𝑥 / 𝑛)) · 𝑛) / 𝑥)) |
| 308 | 62, 306, 109, 307 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((log‘(𝑥 /
𝑛)) / (𝑥 / 𝑛)) = (((log‘(𝑥 / 𝑛)) · 𝑛) / 𝑥)) |
| 309 | | div23 11941 |
. . . . . . . . . . . . . 14
⊢
(((log‘(𝑥 /
𝑛)) ∈ ℂ ∧
𝑛 ∈ ℂ ∧
(𝑥 ∈ ℂ ∧
𝑥 ≠ 0)) →
(((log‘(𝑥 / 𝑛)) · 𝑛) / 𝑥) = (((log‘(𝑥 / 𝑛)) / 𝑥) · 𝑛)) |
| 310 | 62, 97, 306, 309 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((log‘(𝑥 /
𝑛)) · 𝑛) / 𝑥) = (((log‘(𝑥 / 𝑛)) / 𝑥) · 𝑛)) |
| 311 | 308, 310 | eqtrd 2777 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((log‘(𝑥 /
𝑛)) / (𝑥 / 𝑛)) = (((log‘(𝑥 / 𝑛)) / 𝑥) · 𝑛)) |
| 312 | 311 | oveq2d 7447 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (2 · ((log‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) = (2 · (((log‘(𝑥 / 𝑛)) / 𝑥) · 𝑛))) |
| 313 | 304, 312 | eqtr4d 2780 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((2 · ((log‘(𝑥 / 𝑛)) / 𝑥)) · 𝑛) = (2 · ((log‘(𝑥 / 𝑛)) / (𝑥 / 𝑛)))) |
| 314 | 313 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ e ≤ (𝑥 / 𝑛)) → ((2 ·
((log‘(𝑥 / 𝑛)) / 𝑥)) · 𝑛) = (2 · ((log‘(𝑥 / 𝑛)) / (𝑥 / 𝑛)))) |
| 315 | 296, 301,
314 | 3brtr4d 5175 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ e ≤ (𝑥 / 𝑛)) → (abs‘(𝑇 − Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) ≤ ((2 · ((log‘(𝑥 / 𝑛)) / 𝑥)) · 𝑛)) |
| 316 | 274, 276,
279, 291, 315 | letrd 11418 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ e ≤ (𝑥 / 𝑛)) →
(abs‘((μ‘𝑛)
· (𝑇 −
Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) ≤ ((2 · ((log‘(𝑥 / 𝑛)) / 𝑥)) · 𝑛)) |
| 317 | 273 | adantr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
(abs‘((μ‘𝑛)
· (𝑇 −
Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) ∈ ℝ) |
| 318 | 282 | adantr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
(abs‘(𝑇 −
Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) ∈ ℝ) |
| 319 | 37 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) → 𝑅 ∈
ℝ) |
| 320 | 290 | adantr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
(abs‘((μ‘𝑛)
· (𝑇 −
Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) ≤ (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) |
| 321 | 71 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) → 𝑇 ∈
ℂ) |
| 322 | 321 | abscld 15475 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
(abs‘𝑇) ∈
ℝ) |
| 323 | 95 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) → Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ∈ ℂ) |
| 324 | 323 | abscld 15475 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
(abs‘Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) ∈ ℝ) |
| 325 | 322, 324 | readdcld 11290 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
((abs‘𝑇) +
(abs‘Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) ∈ ℝ) |
| 326 | 321, 323 | abs2dif2d 15497 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
(abs‘(𝑇 −
Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) ≤ ((abs‘𝑇) + (abs‘Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) |
| 327 | 25 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) → ((1 / 2) +
(γ + (abs‘𝐿)))
∈ ℝ) |
| 328 | 35 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) → Σ𝑚 ∈ (1...2)((log‘(e /
𝑚)) / 𝑚) ∈ ℝ) |
| 329 | 61 | fveq2i 6909 |
. . . . . . . . . . . 12
⊢
(abs‘𝑇) =
(abs‘((((log‘(𝑥
/ 𝑛))↑2) / 2) +
((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) |
| 330 | 329, 322 | eqeltrrid 2846 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
(abs‘((((log‘(𝑥
/ 𝑛))↑2) / 2) +
((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) ∈ ℝ) |
| 331 | 64 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
(((log‘(𝑥 / 𝑛))↑2) / 2) ∈
ℂ) |
| 332 | 331 | abscld 15475 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
(abs‘(((log‘(𝑥
/ 𝑛))↑2) / 2)) ∈
ℝ) |
| 333 | 69 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) → ((γ
· (log‘(𝑥 /
𝑛))) − 𝐿) ∈
ℂ) |
| 334 | 333 | abscld 15475 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
(abs‘((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) ∈ ℝ) |
| 335 | 332, 334 | readdcld 11290 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
((abs‘(((log‘(𝑥
/ 𝑛))↑2) / 2)) +
(abs‘((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) ∈ ℝ) |
| 336 | 331, 333 | abstrid 15495 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
(abs‘((((log‘(𝑥
/ 𝑛))↑2) / 2) +
((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) ≤ ((abs‘(((log‘(𝑥 / 𝑛))↑2) / 2)) + (abs‘((γ
· (log‘(𝑥 /
𝑛))) − 𝐿)))) |
| 337 | 16 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) → (1 / 2) ∈
ℝ) |
| 338 | 23 | ad3antrrr 730 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) → (γ +
(abs‘𝐿)) ∈
ℝ) |
| 339 | 9 | resqcld 14165 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((log‘(𝑥 /
𝑛))↑2) ∈
ℝ) |
| 340 | 339 | rehalfcld 12513 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((log‘(𝑥 /
𝑛))↑2) / 2) ∈
ℝ) |
| 341 | 9 | sqge0d 14177 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ ((log‘(𝑥 / 𝑛))↑2)) |
| 342 | | 2pos 12369 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 0 <
2 |
| 343 | 2, 342 | pm3.2i 470 |
. . . . . . . . . . . . . . . . . . 19
⊢ (2 ∈
ℝ ∧ 0 < 2) |
| 344 | 343 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (2 ∈ ℝ ∧ 0 < 2)) |
| 345 | | divge0 12137 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((log‘(𝑥 /
𝑛))↑2) ∈ ℝ
∧ 0 ≤ ((log‘(𝑥
/ 𝑛))↑2)) ∧ (2
∈ ℝ ∧ 0 < 2)) → 0 ≤ (((log‘(𝑥 / 𝑛))↑2) / 2)) |
| 346 | 339, 341,
344, 345 | syl21anc 838 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ (((log‘(𝑥 / 𝑛))↑2) / 2)) |
| 347 | 340, 346 | absidd 15461 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘(((log‘(𝑥 / 𝑛))↑2) / 2)) = (((log‘(𝑥 / 𝑛))↑2) / 2)) |
| 348 | 347 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
(abs‘(((log‘(𝑥
/ 𝑛))↑2) / 2)) =
(((log‘(𝑥 / 𝑛))↑2) /
2)) |
| 349 | 8 | rpred 13077 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑛) ∈
ℝ) |
| 350 | | ltle 11349 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑥 / 𝑛) ∈ ℝ ∧ e ∈ ℝ)
→ ((𝑥 / 𝑛) < e → (𝑥 / 𝑛) ≤ e)) |
| 351 | 349, 199,
350 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((𝑥 / 𝑛) < e → (𝑥 / 𝑛) ≤ e)) |
| 352 | 351 | imp 406 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) → (𝑥 / 𝑛) ≤ e) |
| 353 | 8 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) → (𝑥 / 𝑛) ∈
ℝ+) |
| 354 | | logleb 26645 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑥 / 𝑛) ∈ ℝ+ ∧ e ∈
ℝ+) → ((𝑥 / 𝑛) ≤ e ↔ (log‘(𝑥 / 𝑛)) ≤ (log‘e))) |
| 355 | 353, 27, 354 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) → ((𝑥 / 𝑛) ≤ e ↔ (log‘(𝑥 / 𝑛)) ≤ (log‘e))) |
| 356 | 352, 355 | mpbid 232 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
(log‘(𝑥 / 𝑛)) ≤
(log‘e)) |
| 357 | | loge 26628 |
. . . . . . . . . . . . . . . . . . 19
⊢
(log‘e) = 1 |
| 358 | 356, 357 | breqtrdi 5184 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
(log‘(𝑥 / 𝑛)) ≤ 1) |
| 359 | | 0le1 11786 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 0 ≤
1 |
| 360 | 359 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ 1) |
| 361 | 9, 260, 267, 360 | le2sqd 14296 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((log‘(𝑥 /
𝑛)) ≤ 1 ↔
((log‘(𝑥 / 𝑛))↑2) ≤
(1↑2))) |
| 362 | 361 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
((log‘(𝑥 / 𝑛)) ≤ 1 ↔
((log‘(𝑥 / 𝑛))↑2) ≤
(1↑2))) |
| 363 | 358, 362 | mpbid 232 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
((log‘(𝑥 / 𝑛))↑2) ≤
(1↑2)) |
| 364 | | sq1 14234 |
. . . . . . . . . . . . . . . . 17
⊢
(1↑2) = 1 |
| 365 | 363, 364 | breqtrdi 5184 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
((log‘(𝑥 / 𝑛))↑2) ≤
1) |
| 366 | 339 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
((log‘(𝑥 / 𝑛))↑2) ∈
ℝ) |
| 367 | | 1red 11262 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) → 1 ∈
ℝ) |
| 368 | 343 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) → (2 ∈
ℝ ∧ 0 < 2)) |
| 369 | | lediv1 12133 |
. . . . . . . . . . . . . . . . 17
⊢
((((log‘(𝑥 /
𝑛))↑2) ∈ ℝ
∧ 1 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) →
(((log‘(𝑥 / 𝑛))↑2) ≤ 1 ↔
(((log‘(𝑥 / 𝑛))↑2) / 2) ≤ (1 /
2))) |
| 370 | 366, 367,
368, 369 | syl3anc 1373 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
(((log‘(𝑥 / 𝑛))↑2) ≤ 1 ↔
(((log‘(𝑥 / 𝑛))↑2) / 2) ≤ (1 /
2))) |
| 371 | 365, 370 | mpbid 232 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
(((log‘(𝑥 / 𝑛))↑2) / 2) ≤ (1 /
2)) |
| 372 | 348, 371 | eqbrtrd 5165 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
(abs‘(((log‘(𝑥
/ 𝑛))↑2) / 2)) ≤ (1
/ 2)) |
| 373 | 68 | abscld 15475 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘𝐿) ∈
ℝ) |
| 374 | 66, 373 | readdcld 11290 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((γ · (log‘(𝑥 / 𝑛))) + (abs‘𝐿)) ∈ ℝ) |
| 375 | 374 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) → ((γ
· (log‘(𝑥 /
𝑛))) + (abs‘𝐿)) ∈
ℝ) |
| 376 | 67 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) → (γ
· (log‘(𝑥 /
𝑛))) ∈
ℂ) |
| 377 | 20 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) → 𝐿 ∈
ℂ) |
| 378 | 376, 377 | abs2dif2d 15497 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
(abs‘((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) ≤ ((abs‘(γ ·
(log‘(𝑥 / 𝑛)))) + (abs‘𝐿))) |
| 379 | 17 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ γ ∈ ℝ) |
| 380 | 219 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ γ) |
| 381 | 379, 9, 380, 267 | mulge0d 11840 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ (γ · (log‘(𝑥 / 𝑛)))) |
| 382 | 66, 381 | absidd 15461 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (abs‘(γ · (log‘(𝑥 / 𝑛)))) = (γ · (log‘(𝑥 / 𝑛)))) |
| 383 | 382 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
(abs‘(γ · (log‘(𝑥 / 𝑛)))) = (γ · (log‘(𝑥 / 𝑛)))) |
| 384 | 383 | oveq1d 7446 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
((abs‘(γ · (log‘(𝑥 / 𝑛)))) + (abs‘𝐿)) = ((γ · (log‘(𝑥 / 𝑛))) + (abs‘𝐿))) |
| 385 | 378, 384 | breqtrd 5169 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
(abs‘((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) ≤ ((γ · (log‘(𝑥 / 𝑛))) + (abs‘𝐿))) |
| 386 | 66 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) → (γ
· (log‘(𝑥 /
𝑛))) ∈
ℝ) |
| 387 | 17 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) → γ ∈
ℝ) |
| 388 | 377 | abscld 15475 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
(abs‘𝐿) ∈
ℝ) |
| 389 | 9 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
(log‘(𝑥 / 𝑛)) ∈
ℝ) |
| 390 | 387, 218 | jctir 520 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) → (γ ∈
ℝ ∧ 0 < γ)) |
| 391 | | lemul2 12120 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((log‘(𝑥 /
𝑛)) ∈ ℝ ∧ 1
∈ ℝ ∧ (γ ∈ ℝ ∧ 0 < γ)) →
((log‘(𝑥 / 𝑛)) ≤ 1 ↔ (γ
· (log‘(𝑥 /
𝑛))) ≤ (γ ·
1))) |
| 392 | 389, 367,
390, 391 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
((log‘(𝑥 / 𝑛)) ≤ 1 ↔ (γ
· (log‘(𝑥 /
𝑛))) ≤ (γ ·
1))) |
| 393 | 358, 392 | mpbid 232 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) → (γ
· (log‘(𝑥 /
𝑛))) ≤ (γ ·
1)) |
| 394 | 17 | recni 11275 |
. . . . . . . . . . . . . . . . . 18
⊢ γ
∈ ℂ |
| 395 | 394 | mulridi 11265 |
. . . . . . . . . . . . . . . . 17
⊢ (γ
· 1) = γ |
| 396 | 393, 395 | breqtrdi 5184 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) → (γ
· (log‘(𝑥 /
𝑛))) ≤
γ) |
| 397 | 386, 387,
388, 396 | leadd1dd 11877 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) → ((γ
· (log‘(𝑥 /
𝑛))) + (abs‘𝐿)) ≤ (γ +
(abs‘𝐿))) |
| 398 | 334, 375,
338, 385, 397 | letrd 11418 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
(abs‘((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) ≤ (γ + (abs‘𝐿))) |
| 399 | 332, 334,
337, 338, 372, 398 | le2addd 11882 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
((abs‘(((log‘(𝑥
/ 𝑛))↑2) / 2)) +
(abs‘((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) ≤ ((1 / 2) + (γ +
(abs‘𝐿)))) |
| 400 | 330, 335,
327, 336, 399 | letrd 11418 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
(abs‘((((log‘(𝑥
/ 𝑛))↑2) / 2) +
((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) ≤ ((1 / 2) + (γ +
(abs‘𝐿)))) |
| 401 | 329, 400 | eqbrtrid 5178 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
(abs‘𝑇) ≤ ((1 / 2)
+ (γ + (abs‘𝐿)))) |
| 402 | 86, 92 | sylan2 593 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))) →
((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ∈ ℝ) |
| 403 | 85, 402 | fsumrecl 15770 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ∈ ℝ) |
| 404 | 403 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) → Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ∈ ℝ) |
| 405 | 86, 90 | sylan2 593 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))) →
(log‘((𝑥 / 𝑛) / 𝑚)) ∈ ℝ) |
| 406 | 86, 129 | sylan2 593 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))) → 𝑚 ∈
ℂ) |
| 407 | 406 | mullidd 11279 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))) → (1 ·
𝑚) = 𝑚) |
| 408 | | fznnfl 13902 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑥 / 𝑛) ∈ ℝ → (𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛))) ↔ (𝑚 ∈ ℕ ∧ 𝑚 ≤ (𝑥 / 𝑛)))) |
| 409 | 349, 408 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛))) ↔ (𝑚 ∈ ℕ ∧ 𝑚 ≤ (𝑥 / 𝑛)))) |
| 410 | 409 | simplbda 499 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))) → 𝑚 ≤ (𝑥 / 𝑛)) |
| 411 | 407, 410 | eqbrtrd 5165 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))) → (1 ·
𝑚) ≤ (𝑥 / 𝑛)) |
| 412 | | 1red 11262 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))) → 1 ∈
ℝ) |
| 413 | 349 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))) → (𝑥 / 𝑛) ∈ ℝ) |
| 414 | 116 | rpregt0d 13083 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈ ℕ)
→ (𝑚 ∈ ℝ
∧ 0 < 𝑚)) |
| 415 | 86, 414 | sylan2 593 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))) → (𝑚 ∈ ℝ ∧ 0 <
𝑚)) |
| 416 | | lemuldiv 12148 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((1
∈ ℝ ∧ (𝑥 /
𝑛) ∈ ℝ ∧
(𝑚 ∈ ℝ ∧ 0
< 𝑚)) → ((1
· 𝑚) ≤ (𝑥 / 𝑛) ↔ 1 ≤ ((𝑥 / 𝑛) / 𝑚))) |
| 417 | 412, 413,
415, 416 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))) → ((1 ·
𝑚) ≤ (𝑥 / 𝑛) ↔ 1 ≤ ((𝑥 / 𝑛) / 𝑚))) |
| 418 | 411, 417 | mpbid 232 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))) → 1 ≤ ((𝑥 / 𝑛) / 𝑚)) |
| 419 | 86, 89 | sylan2 593 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))) → ((𝑥 / 𝑛) / 𝑚) ∈
ℝ+) |
| 420 | | logleb 26645 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((1
∈ ℝ+ ∧ ((𝑥 / 𝑛) / 𝑚) ∈ ℝ+) → (1 ≤
((𝑥 / 𝑛) / 𝑚) ↔ (log‘1) ≤
(log‘((𝑥 / 𝑛) / 𝑚)))) |
| 421 | 211, 419,
420 | sylancr 587 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))) → (1 ≤
((𝑥 / 𝑛) / 𝑚) ↔ (log‘1) ≤
(log‘((𝑥 / 𝑛) / 𝑚)))) |
| 422 | 418, 421 | mpbid 232 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))) → (log‘1)
≤ (log‘((𝑥 / 𝑛) / 𝑚))) |
| 423 | 224, 422 | eqbrtrrid 5179 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))) → 0 ≤
(log‘((𝑥 / 𝑛) / 𝑚))) |
| 424 | | divge0 12137 |
. . . . . . . . . . . . . . . 16
⊢
((((log‘((𝑥 /
𝑛) / 𝑚)) ∈ ℝ ∧ 0 ≤
(log‘((𝑥 / 𝑛) / 𝑚))) ∧ (𝑚 ∈ ℝ ∧ 0 < 𝑚)) → 0 ≤
((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) |
| 425 | 405, 423,
415, 424 | syl21anc 838 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ 𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))) → 0 ≤
((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) |
| 426 | 85, 402, 425 | fsumge0 15831 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ Σ𝑚
∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) |
| 427 | 426 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) → 0 ≤
Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) |
| 428 | 404, 427 | absidd 15461 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
(abs‘Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) |
| 429 | | fzfid 14014 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
(1...(⌊‘(𝑥 /
𝑛))) ∈
Fin) |
| 430 | 349 | flcld 13838 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (⌊‘(𝑥 /
𝑛)) ∈
ℤ) |
| 431 | 430 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
(⌊‘(𝑥 / 𝑛)) ∈
ℤ) |
| 432 | | 2z 12649 |
. . . . . . . . . . . . . . . . . . 19
⊢ 2 ∈
ℤ |
| 433 | 432 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) → 2 ∈
ℤ) |
| 434 | 349 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) → (𝑥 / 𝑛) ∈ ℝ) |
| 435 | 199 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) → e ∈
ℝ) |
| 436 | | 3re 12346 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 3 ∈
ℝ |
| 437 | 436 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) → 3 ∈
ℝ) |
| 438 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) → (𝑥 / 𝑛) < e) |
| 439 | 203 | simpri 485 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ e <
3 |
| 440 | 439 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) → e <
3) |
| 441 | 434, 435,
437, 438, 440 | lttrd 11422 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) → (𝑥 / 𝑛) < 3) |
| 442 | | 3z 12650 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 3 ∈
ℤ |
| 443 | | fllt 13846 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑥 / 𝑛) ∈ ℝ ∧ 3 ∈ ℤ)
→ ((𝑥 / 𝑛) < 3 ↔
(⌊‘(𝑥 / 𝑛)) < 3)) |
| 444 | 434, 442,
443 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) → ((𝑥 / 𝑛) < 3 ↔ (⌊‘(𝑥 / 𝑛)) < 3)) |
| 445 | 441, 444 | mpbid 232 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
(⌊‘(𝑥 / 𝑛)) < 3) |
| 446 | | df-3 12330 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 3 = (2 +
1) |
| 447 | 445, 446 | breqtrdi 5184 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
(⌊‘(𝑥 / 𝑛)) < (2 +
1)) |
| 448 | | zleltp1 12668 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((⌊‘(𝑥
/ 𝑛)) ∈ ℤ ∧
2 ∈ ℤ) → ((⌊‘(𝑥 / 𝑛)) ≤ 2 ↔ (⌊‘(𝑥 / 𝑛)) < (2 + 1))) |
| 449 | 431, 432,
448 | sylancl 586 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
((⌊‘(𝑥 / 𝑛)) ≤ 2 ↔
(⌊‘(𝑥 / 𝑛)) < (2 +
1))) |
| 450 | 447, 449 | mpbird 257 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
(⌊‘(𝑥 / 𝑛)) ≤ 2) |
| 451 | | eluz2 12884 |
. . . . . . . . . . . . . . . . . 18
⊢ (2 ∈
(ℤ≥‘(⌊‘(𝑥 / 𝑛))) ↔ ((⌊‘(𝑥 / 𝑛)) ∈ ℤ ∧ 2 ∈ ℤ
∧ (⌊‘(𝑥 /
𝑛)) ≤
2)) |
| 452 | 431, 433,
450, 451 | syl3anbrc 1344 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) → 2 ∈
(ℤ≥‘(⌊‘(𝑥 / 𝑛)))) |
| 453 | | fzss2 13604 |
. . . . . . . . . . . . . . . . 17
⊢ (2 ∈
(ℤ≥‘(⌊‘(𝑥 / 𝑛))) → (1...(⌊‘(𝑥 / 𝑛))) ⊆ (1...2)) |
| 454 | 452, 453 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
(1...(⌊‘(𝑥 /
𝑛))) ⊆
(1...2)) |
| 455 | 454 | sselda 3983 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))) → 𝑚 ∈
(1...2)) |
| 456 | 34 | ad5ant15 759 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) →
((log‘(e / 𝑚)) /
𝑚) ∈
ℝ) |
| 457 | 455, 456 | syldan 591 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))) → ((log‘(e
/ 𝑚)) / 𝑚) ∈ ℝ) |
| 458 | 429, 457 | fsumrecl 15770 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) → Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘(e / 𝑚)) / 𝑚) ∈ ℝ) |
| 459 | 92 | adantlr 715 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ ℕ) →
((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ∈ ℝ) |
| 460 | 86, 459 | sylan2 593 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))) →
((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ∈ ℝ) |
| 461 | 352 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) → (𝑥 / 𝑛) ≤ e) |
| 462 | 434 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) → (𝑥 / 𝑛) ∈ ℝ) |
| 463 | 199 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) → e ∈
ℝ) |
| 464 | 30 | rpregt0d 13083 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑚 ∈ (1...2)) → (𝑚 ∈ ℝ ∧ 0 < 𝑚)) |
| 465 | 464 | ad5ant15 759 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) → (𝑚 ∈ ℝ ∧ 0 <
𝑚)) |
| 466 | | lediv1 12133 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 / 𝑛) ∈ ℝ ∧ e ∈ ℝ ∧
(𝑚 ∈ ℝ ∧ 0
< 𝑚)) → ((𝑥 / 𝑛) ≤ e ↔ ((𝑥 / 𝑛) / 𝑚) ≤ (e / 𝑚))) |
| 467 | 462, 463,
465, 466 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) → ((𝑥 / 𝑛) ≤ e ↔ ((𝑥 / 𝑛) / 𝑚) ≤ (e / 𝑚))) |
| 468 | 461, 467 | mpbid 232 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) → ((𝑥 / 𝑛) / 𝑚) ≤ (e / 𝑚)) |
| 469 | 89 | adantlr 715 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ ℕ) → ((𝑥 / 𝑛) / 𝑚) ∈
ℝ+) |
| 470 | 28, 469 | sylan2 593 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) → ((𝑥 / 𝑛) / 𝑚) ∈
ℝ+) |
| 471 | 32 | ad5ant15 759 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) → (e /
𝑚) ∈
ℝ+) |
| 472 | 470, 471 | logled 26669 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) → (((𝑥 / 𝑛) / 𝑚) ≤ (e / 𝑚) ↔ (log‘((𝑥 / 𝑛) / 𝑚)) ≤ (log‘(e / 𝑚)))) |
| 473 | 468, 472 | mpbid 232 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) →
(log‘((𝑥 / 𝑛) / 𝑚)) ≤ (log‘(e / 𝑚))) |
| 474 | 90 | adantlr 715 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ ℕ) →
(log‘((𝑥 / 𝑛) / 𝑚)) ∈ ℝ) |
| 475 | 28, 474 | sylan2 593 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) →
(log‘((𝑥 / 𝑛) / 𝑚)) ∈ ℝ) |
| 476 | 33 | ad5ant15 759 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) →
(log‘(e / 𝑚)) ∈
ℝ) |
| 477 | | lediv1 12133 |
. . . . . . . . . . . . . . . . 17
⊢
(((log‘((𝑥 /
𝑛) / 𝑚)) ∈ ℝ ∧ (log‘(e / 𝑚)) ∈ ℝ ∧ (𝑚 ∈ ℝ ∧ 0 <
𝑚)) →
((log‘((𝑥 / 𝑛) / 𝑚)) ≤ (log‘(e / 𝑚)) ↔ ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ≤ ((log‘(e / 𝑚)) / 𝑚))) |
| 478 | 475, 476,
465, 477 | syl3anc 1373 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) →
((log‘((𝑥 / 𝑛) / 𝑚)) ≤ (log‘(e / 𝑚)) ↔ ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ≤ ((log‘(e / 𝑚)) / 𝑚))) |
| 479 | 473, 478 | mpbid 232 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) →
((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ≤ ((log‘(e / 𝑚)) / 𝑚)) |
| 480 | 455, 479 | syldan 591 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))) →
((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ≤ ((log‘(e / 𝑚)) / 𝑚)) |
| 481 | 429, 460,
457, 480 | fsumle 15835 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) → Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ≤ Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘(e / 𝑚)) / 𝑚)) |
| 482 | | fzfid 14014 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) → (1...2) ∈
Fin) |
| 483 | 243 | ad5ant15 759 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) → 0 ≤
((log‘(e / 𝑚)) /
𝑚)) |
| 484 | 482, 456,
483, 454 | fsumless 15832 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) → Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘(e / 𝑚)) / 𝑚) ≤ Σ𝑚 ∈ (1...2)((log‘(e / 𝑚)) / 𝑚)) |
| 485 | 404, 458,
328, 481, 484 | letrd 11418 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) → Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ≤ Σ𝑚 ∈ (1...2)((log‘(e / 𝑚)) / 𝑚)) |
| 486 | 428, 485 | eqbrtrd 5165 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
(abs‘Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) ≤ Σ𝑚 ∈ (1...2)((log‘(e / 𝑚)) / 𝑚)) |
| 487 | 322, 324,
327, 328, 401, 486 | le2addd 11882 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
((abs‘𝑇) +
(abs‘Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) ≤ (((1 / 2) + (γ +
(abs‘𝐿))) +
Σ𝑚 ∈
(1...2)((log‘(e / 𝑚))
/ 𝑚))) |
| 488 | 487, 15 | breqtrrdi 5185 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
((abs‘𝑇) +
(abs‘Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) ≤ 𝑅) |
| 489 | 318, 325,
319, 326, 488 | letrd 11418 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
(abs‘(𝑇 −
Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) ≤ 𝑅) |
| 490 | 317, 318,
319, 320, 489 | letrd 11418 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑛) < e) →
(abs‘((μ‘𝑛)
· (𝑇 −
Σ𝑚 ∈
(1...(⌊‘(𝑥 /
𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) ≤ 𝑅) |
| 491 | 4, 208, 248, 249, 251, 272, 316, 490 | fsumharmonic 27055 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(abs‘Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) / 𝑛)) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))(2 · ((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · ((log‘e) +
1)))) |
| 492 | | 2cnd 12344 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 2 ∈
ℂ) |
| 493 | 3, 492, 303 | fsummulc2 15820 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (2
· Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) = Σ𝑛 ∈ (1...(⌊‘𝑥))(2 · ((log‘(𝑥 / 𝑛)) / 𝑥))) |
| 494 | | df-2 12329 |
. . . . . . . . . 10
⊢ 2 = (1 +
1) |
| 495 | 357 | oveq1i 7441 |
. . . . . . . . . 10
⊢
((log‘e) + 1) = (1 + 1) |
| 496 | 494, 495 | eqtr4i 2768 |
. . . . . . . . 9
⊢ 2 =
((log‘e) + 1) |
| 497 | 496 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 2 =
((log‘e) + 1)) |
| 498 | 497 | oveq2d 7447 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑅 · 2) = (𝑅 · ((log‘e) +
1))) |
| 499 | 493, 498 | oveq12d 7449 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((2
· Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(2 · ((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · ((log‘e) +
1)))) |
| 500 | 491, 499 | breqtrrd 5171 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(abs‘Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) / 𝑛)) ≤ ((2 · Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2))) |
| 501 | 500 | adantrr 717 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
(abs‘Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) / 𝑛)) ≤ ((2 · Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2))) |
| 502 | 198, 501 | eqbrtrrd 5167 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
(abs‘(Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) − (log‘𝑥))) ≤ ((2 · Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2))) |
| 503 | 54 | leabsd 15453 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((2
· Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2)) ≤ (abs‘((2 ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2)))) |
| 504 | 503 | adantrr 717 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) → ((2 ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2)) ≤ (abs‘((2 ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2)))) |
| 505 | 79, 80, 83, 502, 504 | letrd 11418 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
(abs‘(Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) − (log‘𝑥))) ≤ (abs‘((2 · Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2)))) |
| 506 | 1, 53, 54, 77, 505 | o1le 15689 |
1
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) − (log‘𝑥))) ∈ 𝑂(1)) |