MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulog2sumlem2 Structured version   Visualization version   GIF version

Theorem mulog2sumlem2 26119
Description: Lemma for mulog2sum 26121. (Contributed by Mario Carneiro, 19-May-2016.)
Hypotheses
Ref Expression
logdivsum.1 𝐹 = (𝑦 ∈ ℝ+ ↦ (Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) − (((log‘𝑦)↑2) / 2)))
mulog2sumlem.1 (𝜑𝐹𝑟 𝐿)
mulog2sumlem2.t 𝑇 = ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))
mulog2sumlem2.r 𝑅 = (((1 / 2) + (γ + (abs‘𝐿))) + Σ𝑚 ∈ (1...2)((log‘(e / 𝑚)) / 𝑚))
Assertion
Ref Expression
mulog2sumlem2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) − (log‘𝑥))) ∈ 𝑂(1))
Distinct variable groups:   𝑖,𝑚,𝑛,𝑥,𝑦   𝑥,𝐹   𝑛,𝐿,𝑥   𝜑,𝑚,𝑛,𝑥   𝑅,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑖)   𝑅(𝑦,𝑖,𝑚)   𝑇(𝑥,𝑦,𝑖,𝑚,𝑛)   𝐹(𝑦,𝑖,𝑚,𝑛)   𝐿(𝑦,𝑖,𝑚)

Proof of Theorem mulog2sumlem2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 1red 10631 . 2 (𝜑 → 1 ∈ ℝ)
2 2re 11699 . . . 4 2 ∈ ℝ
3 fzfid 13336 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
4 simpr 488 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
5 elfznn 12931 . . . . . . . . 9 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
65nnrpd 12417 . . . . . . . 8 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℝ+)
7 rpdivcl 12402 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ ℝ+) → (𝑥 / 𝑛) ∈ ℝ+)
84, 6, 7syl2an 598 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
98relogcld 25214 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℝ)
10 simplr 768 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
119, 10rerpdivcld 12450 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑛)) / 𝑥) ∈ ℝ)
123, 11fsumrecl 15083 . . . 4 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥) ∈ ℝ)
13 remulcl 10611 . . . 4 ((2 ∈ ℝ ∧ Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥) ∈ ℝ) → (2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) ∈ ℝ)
142, 12, 13sylancr 590 . . 3 ((𝜑𝑥 ∈ ℝ+) → (2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) ∈ ℝ)
15 mulog2sumlem2.r . . . . . 6 𝑅 = (((1 / 2) + (γ + (abs‘𝐿))) + Σ𝑚 ∈ (1...2)((log‘(e / 𝑚)) / 𝑚))
16 halfre 11839 . . . . . . . 8 (1 / 2) ∈ ℝ
17 emre 25591 . . . . . . . . 9 γ ∈ ℝ
18 mulog2sumlem.1 . . . . . . . . . . 11 (𝜑𝐹𝑟 𝐿)
19 rlimcl 14852 . . . . . . . . . . 11 (𝐹𝑟 𝐿𝐿 ∈ ℂ)
2018, 19syl 17 . . . . . . . . . 10 (𝜑𝐿 ∈ ℂ)
2120abscld 14788 . . . . . . . . 9 (𝜑 → (abs‘𝐿) ∈ ℝ)
22 readdcl 10609 . . . . . . . . 9 ((γ ∈ ℝ ∧ (abs‘𝐿) ∈ ℝ) → (γ + (abs‘𝐿)) ∈ ℝ)
2317, 21, 22sylancr 590 . . . . . . . 8 (𝜑 → (γ + (abs‘𝐿)) ∈ ℝ)
24 readdcl 10609 . . . . . . . 8 (((1 / 2) ∈ ℝ ∧ (γ + (abs‘𝐿)) ∈ ℝ) → ((1 / 2) + (γ + (abs‘𝐿))) ∈ ℝ)
2516, 23, 24sylancr 590 . . . . . . 7 (𝜑 → ((1 / 2) + (γ + (abs‘𝐿))) ∈ ℝ)
26 fzfid 13336 . . . . . . . 8 (𝜑 → (1...2) ∈ Fin)
27 epr 15553 . . . . . . . . . . 11 e ∈ ℝ+
28 elfznn 12931 . . . . . . . . . . . . 13 (𝑚 ∈ (1...2) → 𝑚 ∈ ℕ)
2928adantl 485 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (1...2)) → 𝑚 ∈ ℕ)
3029nnrpd 12417 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1...2)) → 𝑚 ∈ ℝ+)
31 rpdivcl 12402 . . . . . . . . . . 11 ((e ∈ ℝ+𝑚 ∈ ℝ+) → (e / 𝑚) ∈ ℝ+)
3227, 30, 31sylancr 590 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1...2)) → (e / 𝑚) ∈ ℝ+)
3332relogcld 25214 . . . . . . . . 9 ((𝜑𝑚 ∈ (1...2)) → (log‘(e / 𝑚)) ∈ ℝ)
3433, 29nndivred 11679 . . . . . . . 8 ((𝜑𝑚 ∈ (1...2)) → ((log‘(e / 𝑚)) / 𝑚) ∈ ℝ)
3526, 34fsumrecl 15083 . . . . . . 7 (𝜑 → Σ𝑚 ∈ (1...2)((log‘(e / 𝑚)) / 𝑚) ∈ ℝ)
3625, 35readdcld 10659 . . . . . 6 (𝜑 → (((1 / 2) + (γ + (abs‘𝐿))) + Σ𝑚 ∈ (1...2)((log‘(e / 𝑚)) / 𝑚)) ∈ ℝ)
3715, 36eqeltrid 2894 . . . . 5 (𝜑𝑅 ∈ ℝ)
38 remulcl 10611 . . . . 5 ((𝑅 ∈ ℝ ∧ 2 ∈ ℝ) → (𝑅 · 2) ∈ ℝ)
3937, 2, 38sylancl 589 . . . 4 (𝜑 → (𝑅 · 2) ∈ ℝ)
4039adantr 484 . . 3 ((𝜑𝑥 ∈ ℝ+) → (𝑅 · 2) ∈ ℝ)
412a1i 11 . . . 4 ((𝜑𝑥 ∈ ℝ+) → 2 ∈ ℝ)
42 rpssre 12384 . . . . 5 + ⊆ ℝ
43 2cnd 11703 . . . . 5 (𝜑 → 2 ∈ ℂ)
44 o1const 14968 . . . . 5 ((ℝ+ ⊆ ℝ ∧ 2 ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1))
4542, 43, 44sylancr 590 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1))
46 logfacrlim2 25810 . . . . 5 (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) ⇝𝑟 1
47 rlimo1 14965 . . . . 5 ((𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) ⇝𝑟 1 → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) ∈ 𝑂(1))
4846, 47mp1i 13 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) ∈ 𝑂(1))
4941, 12, 45, 48o1mul2 14973 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥))) ∈ 𝑂(1))
5039recnd 10658 . . . 4 (𝜑 → (𝑅 · 2) ∈ ℂ)
51 o1const 14968 . . . 4 ((ℝ+ ⊆ ℝ ∧ (𝑅 · 2) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (𝑅 · 2)) ∈ 𝑂(1))
5242, 50, 51sylancr 590 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝑅 · 2)) ∈ 𝑂(1))
5314, 40, 49, 52o1add2 14972 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2))) ∈ 𝑂(1))
5414, 40readdcld 10659 . 2 ((𝜑𝑥 ∈ ℝ+) → ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2)) ∈ ℝ)
555adantl 485 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
56 mucl 25726 . . . . . . . . 9 (𝑛 ∈ ℕ → (μ‘𝑛) ∈ ℤ)
5755, 56syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℤ)
5857zred 12075 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℝ)
5958, 55nndivred 11679 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) / 𝑛) ∈ ℝ)
6059recnd 10658 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) / 𝑛) ∈ ℂ)
61 mulog2sumlem2.t . . . . . 6 𝑇 = ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))
629recnd 10658 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℂ)
6362sqcld 13504 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑛))↑2) ∈ ℂ)
6463halfcld 11870 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((log‘(𝑥 / 𝑛))↑2) / 2) ∈ ℂ)
65 remulcl 10611 . . . . . . . . . 10 ((γ ∈ ℝ ∧ (log‘(𝑥 / 𝑛)) ∈ ℝ) → (γ · (log‘(𝑥 / 𝑛))) ∈ ℝ)
6617, 9, 65sylancr 590 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (γ · (log‘(𝑥 / 𝑛))) ∈ ℝ)
6766recnd 10658 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (γ · (log‘(𝑥 / 𝑛))) ∈ ℂ)
6820ad2antrr 725 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝐿 ∈ ℂ)
6967, 68subcld 10986 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((γ · (log‘(𝑥 / 𝑛))) − 𝐿) ∈ ℂ)
7064, 69addcld 10649 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) ∈ ℂ)
7161, 70eqeltrid 2894 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑇 ∈ ℂ)
7260, 71mulcld 10650 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · 𝑇) ∈ ℂ)
733, 72fsumcl 15082 . . 3 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) ∈ ℂ)
74 relogcl 25167 . . . . 5 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
7574adantl 485 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
7675recnd 10658 . . 3 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
7773, 76subcld 10986 . 2 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) − (log‘𝑥)) ∈ ℂ)
7877abscld 14788 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) − (log‘𝑥))) ∈ ℝ)
7978adantrr 716 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) − (log‘𝑥))) ∈ ℝ)
8054adantrr 716 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2)) ∈ ℝ)
8154recnd 10658 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2)) ∈ ℂ)
8281abscld 14788 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2))) ∈ ℝ)
8382adantrr 716 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2))) ∈ ℝ)
8457zcnd 12076 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℂ)
85 fzfid 13336 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘(𝑥 / 𝑛))) ∈ Fin)
86 elfznn 12931 . . . . . . . . . . . . . 14 (𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛))) → 𝑚 ∈ ℕ)
87 nnrp 12388 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ+)
88 rpdivcl 12402 . . . . . . . . . . . . . . . . . 18 (((𝑥 / 𝑛) ∈ ℝ+𝑚 ∈ ℝ+) → ((𝑥 / 𝑛) / 𝑚) ∈ ℝ+)
898, 87, 88syl2an 598 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → ((𝑥 / 𝑛) / 𝑚) ∈ ℝ+)
9089relogcld 25214 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → (log‘((𝑥 / 𝑛) / 𝑚)) ∈ ℝ)
91 simpr 488 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
9290, 91nndivred 11679 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ∈ ℝ)
9392recnd 10658 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ∈ ℂ)
9486, 93sylan2 595 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ∈ ℂ)
9585, 94fsumcl 15082 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ∈ ℂ)
9671, 95subcld 10986 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) ∈ ℂ)
9755nncnd 11641 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℂ)
9855nnne0d 11675 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ≠ 0)
9984, 96, 97, 98div23d 11442 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) / 𝑛) = (((μ‘𝑛) / 𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))))
10060, 71, 95subdid 11085 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) = ((((μ‘𝑛) / 𝑛) · 𝑇) − (((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))))
10199, 100eqtrd 2833 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) / 𝑛) = ((((μ‘𝑛) / 𝑛) · 𝑇) − (((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))))
102101sumeq2dv 15052 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) / 𝑛) = Σ𝑛 ∈ (1...(⌊‘𝑥))((((μ‘𝑛) / 𝑛) · 𝑇) − (((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))))
10360, 95mulcld 10650 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) ∈ ℂ)
1043, 72, 103fsumsub 15135 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((((μ‘𝑛) / 𝑛) · 𝑇) − (((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))))
105102, 104eqtrd 2833 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) / 𝑛) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))))
106105adantrr 716 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) / 𝑛) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))))
10785, 60, 94fsummulc2 15131 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(((μ‘𝑛) / 𝑛) · ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))
10884adantr 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → (μ‘𝑛) ∈ ℂ)
10997, 98jca 515 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
110109adantr 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
111 div23 11306 . . . . . . . . . . . . . . . . 17 (((μ‘𝑛) ∈ ℂ ∧ ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (((μ‘𝑛) · ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) / 𝑛) = (((μ‘𝑛) / 𝑛) · ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))
112 divass 11305 . . . . . . . . . . . . . . . . 17 (((μ‘𝑛) ∈ ℂ ∧ ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (((μ‘𝑛) · ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) / 𝑛) = ((μ‘𝑛) · (((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) / 𝑛)))
113111, 112eqtr3d 2835 . . . . . . . . . . . . . . . 16 (((μ‘𝑛) ∈ ℂ ∧ ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (((μ‘𝑛) / 𝑛) · ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) = ((μ‘𝑛) · (((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) / 𝑛)))
114108, 93, 110, 113syl3anc 1368 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → (((μ‘𝑛) / 𝑛) · ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) = ((μ‘𝑛) · (((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) / 𝑛)))
11590recnd 10658 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → (log‘((𝑥 / 𝑛) / 𝑚)) ∈ ℂ)
11691nnrpd 12417 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℝ+)
117 rpcnne0 12395 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ ℝ+ → (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0))
118116, 117syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0))
119 divdiv1 11340 . . . . . . . . . . . . . . . . . 18 (((log‘((𝑥 / 𝑛) / 𝑚)) ∈ ℂ ∧ (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0) ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) / 𝑛) = ((log‘((𝑥 / 𝑛) / 𝑚)) / (𝑚 · 𝑛)))
120115, 118, 110, 119syl3anc 1368 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → (((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) / 𝑛) = ((log‘((𝑥 / 𝑛) / 𝑚)) / (𝑚 · 𝑛)))
121 rpre 12385 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
122121adantl 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
123122adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
124123recnd 10658 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℂ)
125124adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → 𝑥 ∈ ℂ)
126 divdiv1 11340 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0) ∧ (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0)) → ((𝑥 / 𝑛) / 𝑚) = (𝑥 / (𝑛 · 𝑚)))
127125, 110, 118, 126syl3anc 1368 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → ((𝑥 / 𝑛) / 𝑚) = (𝑥 / (𝑛 · 𝑚)))
128127fveq2d 6649 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → (log‘((𝑥 / 𝑛) / 𝑚)) = (log‘(𝑥 / (𝑛 · 𝑚))))
12991nncnd 11641 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
13097adantr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → 𝑛 ∈ ℂ)
131129, 130mulcomd 10651 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → (𝑚 · 𝑛) = (𝑛 · 𝑚))
132128, 131oveq12d 7153 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → ((log‘((𝑥 / 𝑛) / 𝑚)) / (𝑚 · 𝑛)) = ((log‘(𝑥 / (𝑛 · 𝑚))) / (𝑛 · 𝑚)))
133120, 132eqtrd 2833 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → (((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) / 𝑛) = ((log‘(𝑥 / (𝑛 · 𝑚))) / (𝑛 · 𝑚)))
134133oveq2d 7151 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → ((μ‘𝑛) · (((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) / 𝑛)) = ((μ‘𝑛) · ((log‘(𝑥 / (𝑛 · 𝑚))) / (𝑛 · 𝑚))))
135114, 134eqtrd 2833 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → (((μ‘𝑛) / 𝑛) · ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) = ((μ‘𝑛) · ((log‘(𝑥 / (𝑛 · 𝑚))) / (𝑛 · 𝑚))))
13686, 135sylan2 595 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (((μ‘𝑛) / 𝑛) · ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) = ((μ‘𝑛) · ((log‘(𝑥 / (𝑛 · 𝑚))) / (𝑛 · 𝑚))))
137136sumeq2dv 15052 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(((μ‘𝑛) / 𝑛) · ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘(𝑥 / (𝑛 · 𝑚))) / (𝑛 · 𝑚))))
138107, 137eqtrd 2833 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘(𝑥 / (𝑛 · 𝑚))) / (𝑛 · 𝑚))))
139138sumeq2dv 15052 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘(𝑥 / (𝑛 · 𝑚))) / (𝑛 · 𝑚))))
140 oveq2 7143 . . . . . . . . . . . . . 14 (𝑘 = (𝑛 · 𝑚) → (𝑥 / 𝑘) = (𝑥 / (𝑛 · 𝑚)))
141140fveq2d 6649 . . . . . . . . . . . . 13 (𝑘 = (𝑛 · 𝑚) → (log‘(𝑥 / 𝑘)) = (log‘(𝑥 / (𝑛 · 𝑚))))
142 id 22 . . . . . . . . . . . . 13 (𝑘 = (𝑛 · 𝑚) → 𝑘 = (𝑛 · 𝑚))
143141, 142oveq12d 7153 . . . . . . . . . . . 12 (𝑘 = (𝑛 · 𝑚) → ((log‘(𝑥 / 𝑘)) / 𝑘) = ((log‘(𝑥 / (𝑛 · 𝑚))) / (𝑛 · 𝑚)))
144143oveq2d 7151 . . . . . . . . . . 11 (𝑘 = (𝑛 · 𝑚) → ((μ‘𝑛) · ((log‘(𝑥 / 𝑘)) / 𝑘)) = ((μ‘𝑛) · ((log‘(𝑥 / (𝑛 · 𝑚))) / (𝑛 · 𝑚))))
1454rpred 12419 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
146 ssrab2 4007 . . . . . . . . . . . . . . . 16 {𝑦 ∈ ℕ ∣ 𝑦𝑘} ⊆ ℕ
147 simprr 772 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})
148146, 147sseldi 3913 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → 𝑛 ∈ ℕ)
149148, 56syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → (μ‘𝑛) ∈ ℤ)
150149zred 12075 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → (μ‘𝑛) ∈ ℝ)
151 elfznn 12931 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...(⌊‘𝑥)) → 𝑘 ∈ ℕ)
152151adantr 484 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘}) → 𝑘 ∈ ℕ)
153152nnrpd 12417 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘}) → 𝑘 ∈ ℝ+)
154 rpdivcl 12402 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ+𝑘 ∈ ℝ+) → (𝑥 / 𝑘) ∈ ℝ+)
1554, 153, 154syl2an 598 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → (𝑥 / 𝑘) ∈ ℝ+)
156155relogcld 25214 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → (log‘(𝑥 / 𝑘)) ∈ ℝ)
157151ad2antrl 727 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → 𝑘 ∈ ℕ)
158156, 157nndivred 11679 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → ((log‘(𝑥 / 𝑘)) / 𝑘) ∈ ℝ)
159150, 158remulcld 10660 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → ((μ‘𝑛) · ((log‘(𝑥 / 𝑘)) / 𝑘)) ∈ ℝ)
160159recnd 10658 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → ((μ‘𝑛) · ((log‘(𝑥 / 𝑘)) / 𝑘)) ∈ ℂ)
161144, 145, 160dvdsflsumcom 25773 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((μ‘𝑛) · ((log‘(𝑥 / 𝑘)) / 𝑘)) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘(𝑥 / (𝑛 · 𝑚))) / (𝑛 · 𝑚))))
162139, 161eqtr4d 2836 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) = Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((μ‘𝑛) · ((log‘(𝑥 / 𝑘)) / 𝑘)))
163162adantrr 716 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) = Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((μ‘𝑛) · ((log‘(𝑥 / 𝑘)) / 𝑘)))
164 oveq2 7143 . . . . . . . . . . 11 (𝑘 = 1 → (𝑥 / 𝑘) = (𝑥 / 1))
165164fveq2d 6649 . . . . . . . . . 10 (𝑘 = 1 → (log‘(𝑥 / 𝑘)) = (log‘(𝑥 / 1)))
166 id 22 . . . . . . . . . 10 (𝑘 = 1 → 𝑘 = 1)
167165, 166oveq12d 7153 . . . . . . . . 9 (𝑘 = 1 → ((log‘(𝑥 / 𝑘)) / 𝑘) = ((log‘(𝑥 / 1)) / 1))
168 fzfid 13336 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1...(⌊‘𝑥)) ∈ Fin)
169 fz1ssnn 12933 . . . . . . . . . 10 (1...(⌊‘𝑥)) ⊆ ℕ
170169a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1...(⌊‘𝑥)) ⊆ ℕ)
171122adantrr 716 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ)
172 simprr 772 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
173 flge1nn 13186 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ)
174171, 172, 173syl2anc 587 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (⌊‘𝑥) ∈ ℕ)
175 nnuz 12269 . . . . . . . . . . 11 ℕ = (ℤ‘1)
176174, 175eleqtrdi 2900 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (⌊‘𝑥) ∈ (ℤ‘1))
177 eluzfz1 12909 . . . . . . . . . 10 ((⌊‘𝑥) ∈ (ℤ‘1) → 1 ∈ (1...(⌊‘𝑥)))
178176, 177syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ∈ (1...(⌊‘𝑥)))
179151nnrpd 12417 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...(⌊‘𝑥)) → 𝑘 ∈ ℝ+)
1804, 179, 154syl2an 598 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑘) ∈ ℝ+)
181180relogcld 25214 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑘)) ∈ ℝ)
182169a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ⊆ ℕ)
183182sselda 3915 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑘 ∈ ℕ)
184181, 183nndivred 11679 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑘)) / 𝑘) ∈ ℝ)
185184recnd 10658 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑘)) / 𝑘) ∈ ℂ)
186185adantlrr 720 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑘)) / 𝑘) ∈ ℂ)
187167, 168, 170, 178, 186musumsum 25777 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((μ‘𝑛) · ((log‘(𝑥 / 𝑘)) / 𝑘)) = ((log‘(𝑥 / 1)) / 1))
1884rpcnd 12421 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
189188div1d 11397 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (𝑥 / 1) = 𝑥)
190189fveq2d 6649 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (log‘(𝑥 / 1)) = (log‘𝑥))
191190oveq1d 7150 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((log‘(𝑥 / 1)) / 1) = ((log‘𝑥) / 1))
19276div1d 11397 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) / 1) = (log‘𝑥))
193191, 192eqtrd 2833 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ((log‘(𝑥 / 1)) / 1) = (log‘𝑥))
194193adantrr 716 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘(𝑥 / 1)) / 1) = (log‘𝑥))
195163, 187, 1943eqtrd 2837 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) = (log‘𝑥))
196195oveq2d 7151 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) − (log‘𝑥)))
197106, 196eqtrd 2833 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) / 𝑛) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) − (log‘𝑥)))
198197fveq2d 6649 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) / 𝑛)) = (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) − (log‘𝑥))))
199 ere 15434 . . . . . . . . 9 e ∈ ℝ
200199a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → e ∈ ℝ)
201 1re 10630 . . . . . . . . 9 1 ∈ ℝ
202 1lt2 11796 . . . . . . . . . 10 1 < 2
203 egt2lt3 15551 . . . . . . . . . . 11 (2 < e ∧ e < 3)
204203simpli 487 . . . . . . . . . 10 2 < e
205201, 2, 199lttri 10755 . . . . . . . . . 10 ((1 < 2 ∧ 2 < e) → 1 < e)
206202, 204, 205mp2an 691 . . . . . . . . 9 1 < e
207201, 199, 206ltleii 10752 . . . . . . . 8 1 ≤ e
208200, 207jctir 524 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (e ∈ ℝ ∧ 1 ≤ e))
20937adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 𝑅 ∈ ℝ)
21016a1i 11 . . . . . . . . . . . 12 (𝜑 → (1 / 2) ∈ ℝ)
211 1rp 12381 . . . . . . . . . . . . . 14 1 ∈ ℝ+
212 rphalfcl 12404 . . . . . . . . . . . . . 14 (1 ∈ ℝ+ → (1 / 2) ∈ ℝ+)
213211, 212ax-mp 5 . . . . . . . . . . . . 13 (1 / 2) ∈ ℝ+
214 rpge0 12390 . . . . . . . . . . . . 13 ((1 / 2) ∈ ℝ+ → 0 ≤ (1 / 2))
215213, 214mp1i 13 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (1 / 2))
21617a1i 11 . . . . . . . . . . . . 13 (𝜑 → γ ∈ ℝ)
217 0re 10632 . . . . . . . . . . . . . . 15 0 ∈ ℝ
218 emgt0 25592 . . . . . . . . . . . . . . 15 0 < γ
219217, 17, 218ltleii 10752 . . . . . . . . . . . . . 14 0 ≤ γ
220219a1i 11 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ γ)
22120absge0d 14796 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (abs‘𝐿))
222216, 21, 220, 221addge0d 11205 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (γ + (abs‘𝐿)))
223210, 23, 215, 222addge0d 11205 . . . . . . . . . . 11 (𝜑 → 0 ≤ ((1 / 2) + (γ + (abs‘𝐿))))
224 log1 25177 . . . . . . . . . . . . . 14 (log‘1) = 0
22529nncnd 11641 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (1...2)) → 𝑚 ∈ ℂ)
226225mulid2d 10648 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ (1...2)) → (1 · 𝑚) = 𝑚)
22730rpred 12419 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (1...2)) → 𝑚 ∈ ℝ)
2282a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (1...2)) → 2 ∈ ℝ)
229199a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (1...2)) → e ∈ ℝ)
230 elfzle2 12906 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ (1...2) → 𝑚 ≤ 2)
231230adantl 485 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (1...2)) → 𝑚 ≤ 2)
2322, 199, 204ltleii 10752 . . . . . . . . . . . . . . . . . . 19 2 ≤ e
233232a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (1...2)) → 2 ≤ e)
234227, 228, 229, 231, 233letrd 10786 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ (1...2)) → 𝑚 ≤ e)
235226, 234eqbrtrd 5052 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (1...2)) → (1 · 𝑚) ≤ e)
236 1red 10631 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ (1...2)) → 1 ∈ ℝ)
237236, 229, 30lemuldivd 12468 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (1...2)) → ((1 · 𝑚) ≤ e ↔ 1 ≤ (e / 𝑚)))
238235, 237mpbid 235 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (1...2)) → 1 ≤ (e / 𝑚))
239 logleb 25194 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ+ ∧ (e / 𝑚) ∈ ℝ+) → (1 ≤ (e / 𝑚) ↔ (log‘1) ≤ (log‘(e / 𝑚))))
240211, 32, 239sylancr 590 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (1...2)) → (1 ≤ (e / 𝑚) ↔ (log‘1) ≤ (log‘(e / 𝑚))))
241238, 240mpbid 235 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (1...2)) → (log‘1) ≤ (log‘(e / 𝑚)))
242224, 241eqbrtrrid 5066 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (1...2)) → 0 ≤ (log‘(e / 𝑚)))
24333, 30, 242divge0d 12459 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (1...2)) → 0 ≤ ((log‘(e / 𝑚)) / 𝑚))
24426, 34, 243fsumge0 15142 . . . . . . . . . . 11 (𝜑 → 0 ≤ Σ𝑚 ∈ (1...2)((log‘(e / 𝑚)) / 𝑚))
24525, 35, 223, 244addge0d 11205 . . . . . . . . . 10 (𝜑 → 0 ≤ (((1 / 2) + (γ + (abs‘𝐿))) + Σ𝑚 ∈ (1...2)((log‘(e / 𝑚)) / 𝑚)))
246245, 15breqtrrdi 5072 . . . . . . . . 9 (𝜑 → 0 ≤ 𝑅)
247246adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ 𝑅)
248209, 247jca 515 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
24984, 96mulcld 10650 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) ∈ ℂ)
250 remulcl 10611 . . . . . . . 8 ((2 ∈ ℝ ∧ ((log‘(𝑥 / 𝑛)) / 𝑥) ∈ ℝ) → (2 · ((log‘(𝑥 / 𝑛)) / 𝑥)) ∈ ℝ)
2512, 11, 250sylancr 590 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · ((log‘(𝑥 / 𝑛)) / 𝑥)) ∈ ℝ)
2522a1i 11 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 2 ∈ ℝ)
253 0le2 11727 . . . . . . . . 9 0 ≤ 2
254253a1i 11 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ 2)
25597mulid2d 10648 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 · 𝑛) = 𝑛)
256 fznnfl 13225 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → (𝑛 ∈ (1...(⌊‘𝑥)) ↔ (𝑛 ∈ ℕ ∧ 𝑛𝑥)))
257122, 256syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → (𝑛 ∈ (1...(⌊‘𝑥)) ↔ (𝑛 ∈ ℕ ∧ 𝑛𝑥)))
258257simplbda 503 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛𝑥)
259255, 258eqbrtrd 5052 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 · 𝑛) ≤ 𝑥)
260 1red 10631 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
26155nnrpd 12417 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
262260, 123, 261lemuldivd 12468 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((1 · 𝑛) ≤ 𝑥 ↔ 1 ≤ (𝑥 / 𝑛)))
263259, 262mpbid 235 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ≤ (𝑥 / 𝑛))
264 logleb 25194 . . . . . . . . . . . 12 ((1 ∈ ℝ+ ∧ (𝑥 / 𝑛) ∈ ℝ+) → (1 ≤ (𝑥 / 𝑛) ↔ (log‘1) ≤ (log‘(𝑥 / 𝑛))))
265211, 8, 264sylancr 590 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 ≤ (𝑥 / 𝑛) ↔ (log‘1) ≤ (log‘(𝑥 / 𝑛))))
266263, 265mpbid 235 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘1) ≤ (log‘(𝑥 / 𝑛)))
267224, 266eqbrtrrid 5066 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (log‘(𝑥 / 𝑛)))
268 rpregt0 12391 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
269268ad2antlr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
270 divge0 11498 . . . . . . . . 9 ((((log‘(𝑥 / 𝑛)) ∈ ℝ ∧ 0 ≤ (log‘(𝑥 / 𝑛))) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → 0 ≤ ((log‘(𝑥 / 𝑛)) / 𝑥))
2719, 267, 269, 270syl21anc 836 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((log‘(𝑥 / 𝑛)) / 𝑥))
272252, 11, 254, 271mulge0d 11206 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (2 · ((log‘(𝑥 / 𝑛)) / 𝑥)))
273249abscld 14788 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) ∈ ℝ)
274273adantr 484 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ e ≤ (𝑥 / 𝑛)) → (abs‘((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) ∈ ℝ)
27596adantr 484 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ e ≤ (𝑥 / 𝑛)) → (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) ∈ ℂ)
276275abscld 14788 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ e ≤ (𝑥 / 𝑛)) → (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) ∈ ℝ)
277261rpred 12419 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ)
278251, 277remulcld 10660 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((2 · ((log‘(𝑥 / 𝑛)) / 𝑥)) · 𝑛) ∈ ℝ)
279278adantr 484 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ e ≤ (𝑥 / 𝑛)) → ((2 · ((log‘(𝑥 / 𝑛)) / 𝑥)) · 𝑛) ∈ ℝ)
28084, 96absmuld 14806 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) = ((abs‘(μ‘𝑛)) · (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))))
28184abscld 14788 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(μ‘𝑛)) ∈ ℝ)
28296abscld 14788 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) ∈ ℝ)
28396absge0d 14796 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))))
284 mule1 25733 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (abs‘(μ‘𝑛)) ≤ 1)
28555, 284syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(μ‘𝑛)) ≤ 1)
286281, 260, 282, 283, 285lemul1ad 11568 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(μ‘𝑛)) · (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) ≤ (1 · (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))))
287282recnd 10658 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) ∈ ℂ)
288287mulid2d 10648 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 · (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) = (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))))
289286, 288breqtrd 5056 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(μ‘𝑛)) · (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) ≤ (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))))
290280, 289eqbrtrd 5052 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) ≤ (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))))
291290adantr 484 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ e ≤ (𝑥 / 𝑛)) → (abs‘((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) ≤ (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))))
292 logdivsum.1 . . . . . . . . . 10 𝐹 = (𝑦 ∈ ℝ+ ↦ (Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) − (((log‘𝑦)↑2) / 2)))
29318ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ e ≤ (𝑥 / 𝑛)) → 𝐹𝑟 𝐿)
2948adantr 484 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ e ≤ (𝑥 / 𝑛)) → (𝑥 / 𝑛) ∈ ℝ+)
295 simpr 488 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ e ≤ (𝑥 / 𝑛)) → e ≤ (𝑥 / 𝑛))
296292, 293, 294, 295mulog2sumlem1 26118 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ e ≤ (𝑥 / 𝑛)) → (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) − ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)))) ≤ (2 · ((log‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))))
29771, 95abssubd 14805 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) = (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) − 𝑇)))
298297adantr 484 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ e ≤ (𝑥 / 𝑛)) → (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) = (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) − 𝑇)))
29961oveq2i 7146 . . . . . . . . . . 11 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) − 𝑇) = (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) − ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)))
300299fveq2i 6648 . . . . . . . . . 10 (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) − 𝑇)) = (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) − ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))))
301298, 300eqtrdi 2849 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ e ≤ (𝑥 / 𝑛)) → (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) = (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) − ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)))))
302 2cnd 11703 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 2 ∈ ℂ)
30311recnd 10658 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑛)) / 𝑥) ∈ ℂ)
304302, 303, 97mulassd 10653 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((2 · ((log‘(𝑥 / 𝑛)) / 𝑥)) · 𝑛) = (2 · (((log‘(𝑥 / 𝑛)) / 𝑥) · 𝑛)))
305 rpcnne0 12395 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
306305ad2antlr 726 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
307 divdiv2 11341 . . . . . . . . . . . . . 14 (((log‘(𝑥 / 𝑛)) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((log‘(𝑥 / 𝑛)) / (𝑥 / 𝑛)) = (((log‘(𝑥 / 𝑛)) · 𝑛) / 𝑥))
30862, 306, 109, 307syl3anc 1368 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑛)) / (𝑥 / 𝑛)) = (((log‘(𝑥 / 𝑛)) · 𝑛) / 𝑥))
309 div23 11306 . . . . . . . . . . . . . 14 (((log‘(𝑥 / 𝑛)) ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((log‘(𝑥 / 𝑛)) · 𝑛) / 𝑥) = (((log‘(𝑥 / 𝑛)) / 𝑥) · 𝑛))
31062, 97, 306, 309syl3anc 1368 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((log‘(𝑥 / 𝑛)) · 𝑛) / 𝑥) = (((log‘(𝑥 / 𝑛)) / 𝑥) · 𝑛))
311308, 310eqtrd 2833 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑛)) / (𝑥 / 𝑛)) = (((log‘(𝑥 / 𝑛)) / 𝑥) · 𝑛))
312311oveq2d 7151 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · ((log‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) = (2 · (((log‘(𝑥 / 𝑛)) / 𝑥) · 𝑛)))
313304, 312eqtr4d 2836 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((2 · ((log‘(𝑥 / 𝑛)) / 𝑥)) · 𝑛) = (2 · ((log‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))))
314313adantr 484 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ e ≤ (𝑥 / 𝑛)) → ((2 · ((log‘(𝑥 / 𝑛)) / 𝑥)) · 𝑛) = (2 · ((log‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))))
315296, 301, 3143brtr4d 5062 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ e ≤ (𝑥 / 𝑛)) → (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) ≤ ((2 · ((log‘(𝑥 / 𝑛)) / 𝑥)) · 𝑛))
316274, 276, 279, 291, 315letrd 10786 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ e ≤ (𝑥 / 𝑛)) → (abs‘((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) ≤ ((2 · ((log‘(𝑥 / 𝑛)) / 𝑥)) · 𝑛))
317273adantr 484 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) ∈ ℝ)
318282adantr 484 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) ∈ ℝ)
31937ad3antrrr 729 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → 𝑅 ∈ ℝ)
320290adantr 484 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) ≤ (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))))
32171adantr 484 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → 𝑇 ∈ ℂ)
322321abscld 14788 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘𝑇) ∈ ℝ)
32395adantr 484 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ∈ ℂ)
324323abscld 14788 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) ∈ ℝ)
325322, 324readdcld 10659 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → ((abs‘𝑇) + (abs‘Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) ∈ ℝ)
326321, 323abs2dif2d 14810 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) ≤ ((abs‘𝑇) + (abs‘Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))))
32725ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → ((1 / 2) + (γ + (abs‘𝐿))) ∈ ℝ)
32835ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → Σ𝑚 ∈ (1...2)((log‘(e / 𝑚)) / 𝑚) ∈ ℝ)
32961fveq2i 6648 . . . . . . . . . . . 12 (abs‘𝑇) = (abs‘((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)))
330329, 322eqeltrrid 2895 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) ∈ ℝ)
33164adantr 484 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (((log‘(𝑥 / 𝑛))↑2) / 2) ∈ ℂ)
332331abscld 14788 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘(((log‘(𝑥 / 𝑛))↑2) / 2)) ∈ ℝ)
33369adantr 484 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → ((γ · (log‘(𝑥 / 𝑛))) − 𝐿) ∈ ℂ)
334333abscld 14788 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) ∈ ℝ)
335332, 334readdcld 10659 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → ((abs‘(((log‘(𝑥 / 𝑛))↑2) / 2)) + (abs‘((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) ∈ ℝ)
336331, 333abstrid 14808 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) ≤ ((abs‘(((log‘(𝑥 / 𝑛))↑2) / 2)) + (abs‘((γ · (log‘(𝑥 / 𝑛))) − 𝐿))))
33716a1i 11 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (1 / 2) ∈ ℝ)
33823ad3antrrr 729 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (γ + (abs‘𝐿)) ∈ ℝ)
3399resqcld 13607 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑛))↑2) ∈ ℝ)
340339rehalfcld 11872 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((log‘(𝑥 / 𝑛))↑2) / 2) ∈ ℝ)
3419sqge0d 13608 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((log‘(𝑥 / 𝑛))↑2))
342 2pos 11728 . . . . . . . . . . . . . . . . . . . 20 0 < 2
3432, 342pm3.2i 474 . . . . . . . . . . . . . . . . . . 19 (2 ∈ ℝ ∧ 0 < 2)
344343a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 ∈ ℝ ∧ 0 < 2))
345 divge0 11498 . . . . . . . . . . . . . . . . . 18 (((((log‘(𝑥 / 𝑛))↑2) ∈ ℝ ∧ 0 ≤ ((log‘(𝑥 / 𝑛))↑2)) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ (((log‘(𝑥 / 𝑛))↑2) / 2))
346339, 341, 344, 345syl21anc 836 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (((log‘(𝑥 / 𝑛))↑2) / 2))
347340, 346absidd 14774 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(((log‘(𝑥 / 𝑛))↑2) / 2)) = (((log‘(𝑥 / 𝑛))↑2) / 2))
348347adantr 484 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘(((log‘(𝑥 / 𝑛))↑2) / 2)) = (((log‘(𝑥 / 𝑛))↑2) / 2))
3498rpred 12419 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ)
350 ltle 10718 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 / 𝑛) ∈ ℝ ∧ e ∈ ℝ) → ((𝑥 / 𝑛) < e → (𝑥 / 𝑛) ≤ e))
351349, 199, 350sylancl 589 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑥 / 𝑛) < e → (𝑥 / 𝑛) ≤ e))
352351imp 410 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (𝑥 / 𝑛) ≤ e)
3538adantr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (𝑥 / 𝑛) ∈ ℝ+)
354 logleb 25194 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 / 𝑛) ∈ ℝ+ ∧ e ∈ ℝ+) → ((𝑥 / 𝑛) ≤ e ↔ (log‘(𝑥 / 𝑛)) ≤ (log‘e)))
355353, 27, 354sylancl 589 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → ((𝑥 / 𝑛) ≤ e ↔ (log‘(𝑥 / 𝑛)) ≤ (log‘e)))
356352, 355mpbid 235 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (log‘(𝑥 / 𝑛)) ≤ (log‘e))
357 loge 25178 . . . . . . . . . . . . . . . . . . 19 (log‘e) = 1
358356, 357breqtrdi 5071 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (log‘(𝑥 / 𝑛)) ≤ 1)
359 0le1 11152 . . . . . . . . . . . . . . . . . . . . 21 0 ≤ 1
360359a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ 1)
3619, 260, 267, 360le2sqd 13616 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑛)) ≤ 1 ↔ ((log‘(𝑥 / 𝑛))↑2) ≤ (1↑2)))
362361adantr 484 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → ((log‘(𝑥 / 𝑛)) ≤ 1 ↔ ((log‘(𝑥 / 𝑛))↑2) ≤ (1↑2)))
363358, 362mpbid 235 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → ((log‘(𝑥 / 𝑛))↑2) ≤ (1↑2))
364 sq1 13554 . . . . . . . . . . . . . . . . 17 (1↑2) = 1
365363, 364breqtrdi 5071 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → ((log‘(𝑥 / 𝑛))↑2) ≤ 1)
366339adantr 484 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → ((log‘(𝑥 / 𝑛))↑2) ∈ ℝ)
367 1red 10631 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → 1 ∈ ℝ)
368343a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (2 ∈ ℝ ∧ 0 < 2))
369 lediv1 11494 . . . . . . . . . . . . . . . . 17 ((((log‘(𝑥 / 𝑛))↑2) ∈ ℝ ∧ 1 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((log‘(𝑥 / 𝑛))↑2) ≤ 1 ↔ (((log‘(𝑥 / 𝑛))↑2) / 2) ≤ (1 / 2)))
370366, 367, 368, 369syl3anc 1368 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (((log‘(𝑥 / 𝑛))↑2) ≤ 1 ↔ (((log‘(𝑥 / 𝑛))↑2) / 2) ≤ (1 / 2)))
371365, 370mpbid 235 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (((log‘(𝑥 / 𝑛))↑2) / 2) ≤ (1 / 2))
372348, 371eqbrtrd 5052 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘(((log‘(𝑥 / 𝑛))↑2) / 2)) ≤ (1 / 2))
37368abscld 14788 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘𝐿) ∈ ℝ)
37466, 373readdcld 10659 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((γ · (log‘(𝑥 / 𝑛))) + (abs‘𝐿)) ∈ ℝ)
375374adantr 484 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → ((γ · (log‘(𝑥 / 𝑛))) + (abs‘𝐿)) ∈ ℝ)
37667adantr 484 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (γ · (log‘(𝑥 / 𝑛))) ∈ ℂ)
37720ad3antrrr 729 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → 𝐿 ∈ ℂ)
378376, 377abs2dif2d 14810 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) ≤ ((abs‘(γ · (log‘(𝑥 / 𝑛)))) + (abs‘𝐿)))
37917a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → γ ∈ ℝ)
380219a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ γ)
381379, 9, 380, 267mulge0d 11206 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (γ · (log‘(𝑥 / 𝑛))))
38266, 381absidd 14774 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(γ · (log‘(𝑥 / 𝑛)))) = (γ · (log‘(𝑥 / 𝑛))))
383382adantr 484 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘(γ · (log‘(𝑥 / 𝑛)))) = (γ · (log‘(𝑥 / 𝑛))))
384383oveq1d 7150 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → ((abs‘(γ · (log‘(𝑥 / 𝑛)))) + (abs‘𝐿)) = ((γ · (log‘(𝑥 / 𝑛))) + (abs‘𝐿)))
385378, 384breqtrd 5056 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) ≤ ((γ · (log‘(𝑥 / 𝑛))) + (abs‘𝐿)))
38666adantr 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (γ · (log‘(𝑥 / 𝑛))) ∈ ℝ)
38717a1i 11 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → γ ∈ ℝ)
388377abscld 14788 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘𝐿) ∈ ℝ)
3899adantr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (log‘(𝑥 / 𝑛)) ∈ ℝ)
390387, 218jctir 524 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (γ ∈ ℝ ∧ 0 < γ))
391 lemul2 11482 . . . . . . . . . . . . . . . . . . 19 (((log‘(𝑥 / 𝑛)) ∈ ℝ ∧ 1 ∈ ℝ ∧ (γ ∈ ℝ ∧ 0 < γ)) → ((log‘(𝑥 / 𝑛)) ≤ 1 ↔ (γ · (log‘(𝑥 / 𝑛))) ≤ (γ · 1)))
392389, 367, 390, 391syl3anc 1368 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → ((log‘(𝑥 / 𝑛)) ≤ 1 ↔ (γ · (log‘(𝑥 / 𝑛))) ≤ (γ · 1)))
393358, 392mpbid 235 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (γ · (log‘(𝑥 / 𝑛))) ≤ (γ · 1))
39417recni 10644 . . . . . . . . . . . . . . . . . 18 γ ∈ ℂ
395394mulid1i 10634 . . . . . . . . . . . . . . . . 17 (γ · 1) = γ
396393, 395breqtrdi 5071 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (γ · (log‘(𝑥 / 𝑛))) ≤ γ)
397386, 387, 388, 396leadd1dd 11243 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → ((γ · (log‘(𝑥 / 𝑛))) + (abs‘𝐿)) ≤ (γ + (abs‘𝐿)))
398334, 375, 338, 385, 397letrd 10786 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) ≤ (γ + (abs‘𝐿)))
399332, 334, 337, 338, 372, 398le2addd 11248 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → ((abs‘(((log‘(𝑥 / 𝑛))↑2) / 2)) + (abs‘((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) ≤ ((1 / 2) + (γ + (abs‘𝐿))))
400330, 335, 327, 336, 399letrd 10786 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) ≤ ((1 / 2) + (γ + (abs‘𝐿))))
401329, 400eqbrtrid 5065 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘𝑇) ≤ ((1 / 2) + (γ + (abs‘𝐿))))
40286, 92sylan2 595 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ∈ ℝ)
40385, 402fsumrecl 15083 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ∈ ℝ)
404403adantr 484 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ∈ ℝ)
40586, 90sylan2 595 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (log‘((𝑥 / 𝑛) / 𝑚)) ∈ ℝ)
40686, 129sylan2 595 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑚 ∈ ℂ)
407406mulid2d 10648 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (1 · 𝑚) = 𝑚)
408 fznnfl 13225 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 / 𝑛) ∈ ℝ → (𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛))) ↔ (𝑚 ∈ ℕ ∧ 𝑚 ≤ (𝑥 / 𝑛))))
409349, 408syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛))) ↔ (𝑚 ∈ ℕ ∧ 𝑚 ≤ (𝑥 / 𝑛))))
410409simplbda 503 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑚 ≤ (𝑥 / 𝑛))
411407, 410eqbrtrd 5052 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (1 · 𝑚) ≤ (𝑥 / 𝑛))
412 1red 10631 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 1 ∈ ℝ)
413349adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (𝑥 / 𝑛) ∈ ℝ)
414116rpregt0d 12425 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → (𝑚 ∈ ℝ ∧ 0 < 𝑚))
41586, 414sylan2 595 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (𝑚 ∈ ℝ ∧ 0 < 𝑚))
416 lemuldiv 11509 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℝ ∧ (𝑥 / 𝑛) ∈ ℝ ∧ (𝑚 ∈ ℝ ∧ 0 < 𝑚)) → ((1 · 𝑚) ≤ (𝑥 / 𝑛) ↔ 1 ≤ ((𝑥 / 𝑛) / 𝑚)))
417412, 413, 415, 416syl3anc 1368 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((1 · 𝑚) ≤ (𝑥 / 𝑛) ↔ 1 ≤ ((𝑥 / 𝑛) / 𝑚)))
418411, 417mpbid 235 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 1 ≤ ((𝑥 / 𝑛) / 𝑚))
41986, 89sylan2 595 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((𝑥 / 𝑛) / 𝑚) ∈ ℝ+)
420 logleb 25194 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ+ ∧ ((𝑥 / 𝑛) / 𝑚) ∈ ℝ+) → (1 ≤ ((𝑥 / 𝑛) / 𝑚) ↔ (log‘1) ≤ (log‘((𝑥 / 𝑛) / 𝑚))))
421211, 419, 420sylancr 590 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (1 ≤ ((𝑥 / 𝑛) / 𝑚) ↔ (log‘1) ≤ (log‘((𝑥 / 𝑛) / 𝑚))))
422418, 421mpbid 235 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (log‘1) ≤ (log‘((𝑥 / 𝑛) / 𝑚)))
423224, 422eqbrtrrid 5066 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 0 ≤ (log‘((𝑥 / 𝑛) / 𝑚)))
424 divge0 11498 . . . . . . . . . . . . . . . 16 ((((log‘((𝑥 / 𝑛) / 𝑚)) ∈ ℝ ∧ 0 ≤ (log‘((𝑥 / 𝑛) / 𝑚))) ∧ (𝑚 ∈ ℝ ∧ 0 < 𝑚)) → 0 ≤ ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))
425405, 423, 415, 424syl21anc 836 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 0 ≤ ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))
42685, 402, 425fsumge0 15142 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))
427426adantr 484 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → 0 ≤ Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))
428404, 427absidd 14774 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))
429 fzfid 13336 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (1...(⌊‘(𝑥 / 𝑛))) ∈ Fin)
430349flcld 13163 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (⌊‘(𝑥 / 𝑛)) ∈ ℤ)
431430adantr 484 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (⌊‘(𝑥 / 𝑛)) ∈ ℤ)
432 2z 12002 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℤ
433432a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → 2 ∈ ℤ)
434349adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (𝑥 / 𝑛) ∈ ℝ)
435199a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → e ∈ ℝ)
436 3re 11705 . . . . . . . . . . . . . . . . . . . . . . 23 3 ∈ ℝ
437436a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → 3 ∈ ℝ)
438 simpr 488 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (𝑥 / 𝑛) < e)
439203simpri 489 . . . . . . . . . . . . . . . . . . . . . . 23 e < 3
440439a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → e < 3)
441434, 435, 437, 438, 440lttrd 10790 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (𝑥 / 𝑛) < 3)
442 3z 12003 . . . . . . . . . . . . . . . . . . . . . 22 3 ∈ ℤ
443 fllt 13171 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 / 𝑛) ∈ ℝ ∧ 3 ∈ ℤ) → ((𝑥 / 𝑛) < 3 ↔ (⌊‘(𝑥 / 𝑛)) < 3))
444434, 442, 443sylancl 589 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → ((𝑥 / 𝑛) < 3 ↔ (⌊‘(𝑥 / 𝑛)) < 3))
445441, 444mpbid 235 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (⌊‘(𝑥 / 𝑛)) < 3)
446 df-3 11689 . . . . . . . . . . . . . . . . . . . 20 3 = (2 + 1)
447445, 446breqtrdi 5071 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (⌊‘(𝑥 / 𝑛)) < (2 + 1))
448 zleltp1 12021 . . . . . . . . . . . . . . . . . . . 20 (((⌊‘(𝑥 / 𝑛)) ∈ ℤ ∧ 2 ∈ ℤ) → ((⌊‘(𝑥 / 𝑛)) ≤ 2 ↔ (⌊‘(𝑥 / 𝑛)) < (2 + 1)))
449431, 432, 448sylancl 589 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → ((⌊‘(𝑥 / 𝑛)) ≤ 2 ↔ (⌊‘(𝑥 / 𝑛)) < (2 + 1)))
450447, 449mpbird 260 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (⌊‘(𝑥 / 𝑛)) ≤ 2)
451 eluz2 12237 . . . . . . . . . . . . . . . . . 18 (2 ∈ (ℤ‘(⌊‘(𝑥 / 𝑛))) ↔ ((⌊‘(𝑥 / 𝑛)) ∈ ℤ ∧ 2 ∈ ℤ ∧ (⌊‘(𝑥 / 𝑛)) ≤ 2))
452431, 433, 450, 451syl3anbrc 1340 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → 2 ∈ (ℤ‘(⌊‘(𝑥 / 𝑛))))
453 fzss2 12942 . . . . . . . . . . . . . . . . 17 (2 ∈ (ℤ‘(⌊‘(𝑥 / 𝑛))) → (1...(⌊‘(𝑥 / 𝑛))) ⊆ (1...2))
454452, 453syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (1...(⌊‘(𝑥 / 𝑛))) ⊆ (1...2))
455454sselda 3915 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑚 ∈ (1...2))
45634ad5ant15 758 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) → ((log‘(e / 𝑚)) / 𝑚) ∈ ℝ)
457455, 456syldan 594 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((log‘(e / 𝑚)) / 𝑚) ∈ ℝ)
458429, 457fsumrecl 15083 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘(e / 𝑚)) / 𝑚) ∈ ℝ)
45992adantlr 714 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ ℕ) → ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ∈ ℝ)
46086, 459sylan2 595 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ∈ ℝ)
461352adantr 484 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) → (𝑥 / 𝑛) ≤ e)
462434adantr 484 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) → (𝑥 / 𝑛) ∈ ℝ)
463199a1i 11 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) → e ∈ ℝ)
46430rpregt0d 12425 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚 ∈ (1...2)) → (𝑚 ∈ ℝ ∧ 0 < 𝑚))
465464ad5ant15 758 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) → (𝑚 ∈ ℝ ∧ 0 < 𝑚))
466 lediv1 11494 . . . . . . . . . . . . . . . . . . 19 (((𝑥 / 𝑛) ∈ ℝ ∧ e ∈ ℝ ∧ (𝑚 ∈ ℝ ∧ 0 < 𝑚)) → ((𝑥 / 𝑛) ≤ e ↔ ((𝑥 / 𝑛) / 𝑚) ≤ (e / 𝑚)))
467462, 463, 465, 466syl3anc 1368 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) → ((𝑥 / 𝑛) ≤ e ↔ ((𝑥 / 𝑛) / 𝑚) ≤ (e / 𝑚)))
468461, 467mpbid 235 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) → ((𝑥 / 𝑛) / 𝑚) ≤ (e / 𝑚))
46989adantlr 714 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ ℕ) → ((𝑥 / 𝑛) / 𝑚) ∈ ℝ+)
47028, 469sylan2 595 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) → ((𝑥 / 𝑛) / 𝑚) ∈ ℝ+)
47132ad5ant15 758 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) → (e / 𝑚) ∈ ℝ+)
472470, 471logled 25218 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) → (((𝑥 / 𝑛) / 𝑚) ≤ (e / 𝑚) ↔ (log‘((𝑥 / 𝑛) / 𝑚)) ≤ (log‘(e / 𝑚))))
473468, 472mpbid 235 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) → (log‘((𝑥 / 𝑛) / 𝑚)) ≤ (log‘(e / 𝑚)))
47490adantlr 714 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ ℕ) → (log‘((𝑥 / 𝑛) / 𝑚)) ∈ ℝ)
47528, 474sylan2 595 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) → (log‘((𝑥 / 𝑛) / 𝑚)) ∈ ℝ)
47633ad5ant15 758 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) → (log‘(e / 𝑚)) ∈ ℝ)
477 lediv1 11494 . . . . . . . . . . . . . . . . 17 (((log‘((𝑥 / 𝑛) / 𝑚)) ∈ ℝ ∧ (log‘(e / 𝑚)) ∈ ℝ ∧ (𝑚 ∈ ℝ ∧ 0 < 𝑚)) → ((log‘((𝑥 / 𝑛) / 𝑚)) ≤ (log‘(e / 𝑚)) ↔ ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ≤ ((log‘(e / 𝑚)) / 𝑚)))
478475, 476, 465, 477syl3anc 1368 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) → ((log‘((𝑥 / 𝑛) / 𝑚)) ≤ (log‘(e / 𝑚)) ↔ ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ≤ ((log‘(e / 𝑚)) / 𝑚)))
479473, 478mpbid 235 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) → ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ≤ ((log‘(e / 𝑚)) / 𝑚))
480455, 479syldan 594 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ≤ ((log‘(e / 𝑚)) / 𝑚))
481429, 460, 457, 480fsumle 15146 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ≤ Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘(e / 𝑚)) / 𝑚))
482 fzfid 13336 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (1...2) ∈ Fin)
483243ad5ant15 758 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) → 0 ≤ ((log‘(e / 𝑚)) / 𝑚))
484482, 456, 483, 454fsumless 15143 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘(e / 𝑚)) / 𝑚) ≤ Σ𝑚 ∈ (1...2)((log‘(e / 𝑚)) / 𝑚))
485404, 458, 328, 481, 484letrd 10786 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ≤ Σ𝑚 ∈ (1...2)((log‘(e / 𝑚)) / 𝑚))
486428, 485eqbrtrd 5052 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) ≤ Σ𝑚 ∈ (1...2)((log‘(e / 𝑚)) / 𝑚))
487322, 324, 327, 328, 401, 486le2addd 11248 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → ((abs‘𝑇) + (abs‘Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) ≤ (((1 / 2) + (γ + (abs‘𝐿))) + Σ𝑚 ∈ (1...2)((log‘(e / 𝑚)) / 𝑚)))
488487, 15breqtrrdi 5072 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → ((abs‘𝑇) + (abs‘Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) ≤ 𝑅)
489318, 325, 319, 326, 488letrd 10786 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) ≤ 𝑅)
490317, 318, 319, 320, 489letrd 10786 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) ≤ 𝑅)
4914, 208, 248, 249, 251, 272, 316, 490fsumharmonic 25597 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) / 𝑛)) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))(2 · ((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · ((log‘e) + 1))))
492 2cnd 11703 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 2 ∈ ℂ)
4933, 492, 303fsummulc2 15131 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) = Σ𝑛 ∈ (1...(⌊‘𝑥))(2 · ((log‘(𝑥 / 𝑛)) / 𝑥)))
494 df-2 11688 . . . . . . . . . 10 2 = (1 + 1)
495357oveq1i 7145 . . . . . . . . . 10 ((log‘e) + 1) = (1 + 1)
496494, 495eqtr4i 2824 . . . . . . . . 9 2 = ((log‘e) + 1)
497496a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 2 = ((log‘e) + 1))
498497oveq2d 7151 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (𝑅 · 2) = (𝑅 · ((log‘e) + 1)))
499493, 498oveq12d 7153 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(2 · ((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · ((log‘e) + 1))))
500491, 499breqtrrd 5058 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) / 𝑛)) ≤ ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2)))
501500adantrr 716 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) / 𝑛)) ≤ ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2)))
502198, 501eqbrtrrd 5054 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) − (log‘𝑥))) ≤ ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2)))
50354leabsd 14766 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2)) ≤ (abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2))))
504503adantrr 716 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2)) ≤ (abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2))))
50579, 80, 83, 502, 504letrd 10786 . 2 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) − (log‘𝑥))) ≤ (abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2))))
5061, 53, 54, 77, 505o1le 15001 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) − (log‘𝑥))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  {crab 3110  wss 3881   class class class wbr 5030  cmpt 5110  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11625  2c2 11680  3c3 11681  cz 11969  cuz 12231  +crp 12377  ...cfz 12885  cfl 13155  cexp 13425  abscabs 14585  𝑟 crli 14834  𝑂(1)co1 14835  Σcsu 15034  eceu 15408  cdvds 15599  logclog 25146  γcem 25577  μcmu 25680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-o1 14839  df-lo1 14840  df-sum 15035  df-ef 15413  df-e 15414  df-sin 15415  df-cos 15416  df-tan 15417  df-pi 15418  df-dvds 15600  df-gcd 15834  df-prm 16006  df-pc 16164  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-cmp 21992  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470  df-ulm 24972  df-log 25148  df-cxp 25149  df-atan 25453  df-em 25578  df-mu 25686
This theorem is referenced by:  mulog2sumlem3  26120
  Copyright terms: Public domain W3C validator