MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulog2sumlem2 Structured version   Visualization version   GIF version

Theorem mulog2sumlem2 26271
Description: Lemma for mulog2sum 26273. (Contributed by Mario Carneiro, 19-May-2016.)
Hypotheses
Ref Expression
logdivsum.1 𝐹 = (𝑦 ∈ ℝ+ ↦ (Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) − (((log‘𝑦)↑2) / 2)))
mulog2sumlem.1 (𝜑𝐹𝑟 𝐿)
mulog2sumlem2.t 𝑇 = ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))
mulog2sumlem2.r 𝑅 = (((1 / 2) + (γ + (abs‘𝐿))) + Σ𝑚 ∈ (1...2)((log‘(e / 𝑚)) / 𝑚))
Assertion
Ref Expression
mulog2sumlem2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) − (log‘𝑥))) ∈ 𝑂(1))
Distinct variable groups:   𝑖,𝑚,𝑛,𝑥,𝑦   𝑥,𝐹   𝑛,𝐿,𝑥   𝜑,𝑚,𝑛,𝑥   𝑅,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑖)   𝑅(𝑦,𝑖,𝑚)   𝑇(𝑥,𝑦,𝑖,𝑚,𝑛)   𝐹(𝑦,𝑖,𝑚,𝑛)   𝐿(𝑦,𝑖,𝑚)

Proof of Theorem mulog2sumlem2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 1red 10720 . 2 (𝜑 → 1 ∈ ℝ)
2 2re 11790 . . . 4 2 ∈ ℝ
3 fzfid 13432 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
4 simpr 488 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
5 elfznn 13027 . . . . . . . . 9 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
65nnrpd 12512 . . . . . . . 8 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℝ+)
7 rpdivcl 12497 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑛 ∈ ℝ+) → (𝑥 / 𝑛) ∈ ℝ+)
84, 6, 7syl2an 599 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
98relogcld 25366 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℝ)
10 simplr 769 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
119, 10rerpdivcld 12545 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑛)) / 𝑥) ∈ ℝ)
123, 11fsumrecl 15184 . . . 4 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥) ∈ ℝ)
13 remulcl 10700 . . . 4 ((2 ∈ ℝ ∧ Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥) ∈ ℝ) → (2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) ∈ ℝ)
142, 12, 13sylancr 590 . . 3 ((𝜑𝑥 ∈ ℝ+) → (2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) ∈ ℝ)
15 mulog2sumlem2.r . . . . . 6 𝑅 = (((1 / 2) + (γ + (abs‘𝐿))) + Σ𝑚 ∈ (1...2)((log‘(e / 𝑚)) / 𝑚))
16 halfre 11930 . . . . . . . 8 (1 / 2) ∈ ℝ
17 emre 25743 . . . . . . . . 9 γ ∈ ℝ
18 mulog2sumlem.1 . . . . . . . . . . 11 (𝜑𝐹𝑟 𝐿)
19 rlimcl 14950 . . . . . . . . . . 11 (𝐹𝑟 𝐿𝐿 ∈ ℂ)
2018, 19syl 17 . . . . . . . . . 10 (𝜑𝐿 ∈ ℂ)
2120abscld 14886 . . . . . . . . 9 (𝜑 → (abs‘𝐿) ∈ ℝ)
22 readdcl 10698 . . . . . . . . 9 ((γ ∈ ℝ ∧ (abs‘𝐿) ∈ ℝ) → (γ + (abs‘𝐿)) ∈ ℝ)
2317, 21, 22sylancr 590 . . . . . . . 8 (𝜑 → (γ + (abs‘𝐿)) ∈ ℝ)
24 readdcl 10698 . . . . . . . 8 (((1 / 2) ∈ ℝ ∧ (γ + (abs‘𝐿)) ∈ ℝ) → ((1 / 2) + (γ + (abs‘𝐿))) ∈ ℝ)
2516, 23, 24sylancr 590 . . . . . . 7 (𝜑 → ((1 / 2) + (γ + (abs‘𝐿))) ∈ ℝ)
26 fzfid 13432 . . . . . . . 8 (𝜑 → (1...2) ∈ Fin)
27 epr 15653 . . . . . . . . . . 11 e ∈ ℝ+
28 elfznn 13027 . . . . . . . . . . . . 13 (𝑚 ∈ (1...2) → 𝑚 ∈ ℕ)
2928adantl 485 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (1...2)) → 𝑚 ∈ ℕ)
3029nnrpd 12512 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1...2)) → 𝑚 ∈ ℝ+)
31 rpdivcl 12497 . . . . . . . . . . 11 ((e ∈ ℝ+𝑚 ∈ ℝ+) → (e / 𝑚) ∈ ℝ+)
3227, 30, 31sylancr 590 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1...2)) → (e / 𝑚) ∈ ℝ+)
3332relogcld 25366 . . . . . . . . 9 ((𝜑𝑚 ∈ (1...2)) → (log‘(e / 𝑚)) ∈ ℝ)
3433, 29nndivred 11770 . . . . . . . 8 ((𝜑𝑚 ∈ (1...2)) → ((log‘(e / 𝑚)) / 𝑚) ∈ ℝ)
3526, 34fsumrecl 15184 . . . . . . 7 (𝜑 → Σ𝑚 ∈ (1...2)((log‘(e / 𝑚)) / 𝑚) ∈ ℝ)
3625, 35readdcld 10748 . . . . . 6 (𝜑 → (((1 / 2) + (γ + (abs‘𝐿))) + Σ𝑚 ∈ (1...2)((log‘(e / 𝑚)) / 𝑚)) ∈ ℝ)
3715, 36eqeltrid 2837 . . . . 5 (𝜑𝑅 ∈ ℝ)
38 remulcl 10700 . . . . 5 ((𝑅 ∈ ℝ ∧ 2 ∈ ℝ) → (𝑅 · 2) ∈ ℝ)
3937, 2, 38sylancl 589 . . . 4 (𝜑 → (𝑅 · 2) ∈ ℝ)
4039adantr 484 . . 3 ((𝜑𝑥 ∈ ℝ+) → (𝑅 · 2) ∈ ℝ)
412a1i 11 . . . 4 ((𝜑𝑥 ∈ ℝ+) → 2 ∈ ℝ)
42 rpssre 12479 . . . . 5 + ⊆ ℝ
43 2cnd 11794 . . . . 5 (𝜑 → 2 ∈ ℂ)
44 o1const 15067 . . . . 5 ((ℝ+ ⊆ ℝ ∧ 2 ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1))
4542, 43, 44sylancr 590 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1))
46 logfacrlim2 25962 . . . . 5 (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) ⇝𝑟 1
47 rlimo1 15064 . . . . 5 ((𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) ⇝𝑟 1 → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) ∈ 𝑂(1))
4846, 47mp1i 13 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) ∈ 𝑂(1))
4941, 12, 45, 48o1mul2 15072 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥))) ∈ 𝑂(1))
5039recnd 10747 . . . 4 (𝜑 → (𝑅 · 2) ∈ ℂ)
51 o1const 15067 . . . 4 ((ℝ+ ⊆ ℝ ∧ (𝑅 · 2) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (𝑅 · 2)) ∈ 𝑂(1))
5242, 50, 51sylancr 590 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝑅 · 2)) ∈ 𝑂(1))
5314, 40, 49, 52o1add2 15071 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2))) ∈ 𝑂(1))
5414, 40readdcld 10748 . 2 ((𝜑𝑥 ∈ ℝ+) → ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2)) ∈ ℝ)
555adantl 485 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
56 mucl 25878 . . . . . . . . 9 (𝑛 ∈ ℕ → (μ‘𝑛) ∈ ℤ)
5755, 56syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℤ)
5857zred 12168 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℝ)
5958, 55nndivred 11770 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) / 𝑛) ∈ ℝ)
6059recnd 10747 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) / 𝑛) ∈ ℂ)
61 mulog2sumlem2.t . . . . . 6 𝑇 = ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))
629recnd 10747 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℂ)
6362sqcld 13600 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑛))↑2) ∈ ℂ)
6463halfcld 11961 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((log‘(𝑥 / 𝑛))↑2) / 2) ∈ ℂ)
65 remulcl 10700 . . . . . . . . . 10 ((γ ∈ ℝ ∧ (log‘(𝑥 / 𝑛)) ∈ ℝ) → (γ · (log‘(𝑥 / 𝑛))) ∈ ℝ)
6617, 9, 65sylancr 590 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (γ · (log‘(𝑥 / 𝑛))) ∈ ℝ)
6766recnd 10747 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (γ · (log‘(𝑥 / 𝑛))) ∈ ℂ)
6820ad2antrr 726 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝐿 ∈ ℂ)
6967, 68subcld 11075 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((γ · (log‘(𝑥 / 𝑛))) − 𝐿) ∈ ℂ)
7064, 69addcld 10738 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) ∈ ℂ)
7161, 70eqeltrid 2837 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑇 ∈ ℂ)
7260, 71mulcld 10739 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · 𝑇) ∈ ℂ)
733, 72fsumcl 15183 . . 3 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) ∈ ℂ)
74 relogcl 25319 . . . . 5 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
7574adantl 485 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
7675recnd 10747 . . 3 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
7773, 76subcld 11075 . 2 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) − (log‘𝑥)) ∈ ℂ)
7877abscld 14886 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) − (log‘𝑥))) ∈ ℝ)
7978adantrr 717 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) − (log‘𝑥))) ∈ ℝ)
8054adantrr 717 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2)) ∈ ℝ)
8154recnd 10747 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2)) ∈ ℂ)
8281abscld 14886 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2))) ∈ ℝ)
8382adantrr 717 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2))) ∈ ℝ)
8457zcnd 12169 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℂ)
85 fzfid 13432 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘(𝑥 / 𝑛))) ∈ Fin)
86 elfznn 13027 . . . . . . . . . . . . . 14 (𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛))) → 𝑚 ∈ ℕ)
87 nnrp 12483 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ+)
88 rpdivcl 12497 . . . . . . . . . . . . . . . . . 18 (((𝑥 / 𝑛) ∈ ℝ+𝑚 ∈ ℝ+) → ((𝑥 / 𝑛) / 𝑚) ∈ ℝ+)
898, 87, 88syl2an 599 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → ((𝑥 / 𝑛) / 𝑚) ∈ ℝ+)
9089relogcld 25366 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → (log‘((𝑥 / 𝑛) / 𝑚)) ∈ ℝ)
91 simpr 488 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
9290, 91nndivred 11770 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ∈ ℝ)
9392recnd 10747 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ∈ ℂ)
9486, 93sylan2 596 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ∈ ℂ)
9585, 94fsumcl 15183 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ∈ ℂ)
9671, 95subcld 11075 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) ∈ ℂ)
9755nncnd 11732 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℂ)
9855nnne0d 11766 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ≠ 0)
9984, 96, 97, 98div23d 11531 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) / 𝑛) = (((μ‘𝑛) / 𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))))
10060, 71, 95subdid 11174 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) = ((((μ‘𝑛) / 𝑛) · 𝑇) − (((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))))
10199, 100eqtrd 2773 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) / 𝑛) = ((((μ‘𝑛) / 𝑛) · 𝑇) − (((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))))
102101sumeq2dv 15153 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) / 𝑛) = Σ𝑛 ∈ (1...(⌊‘𝑥))((((μ‘𝑛) / 𝑛) · 𝑇) − (((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))))
10360, 95mulcld 10739 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) ∈ ℂ)
1043, 72, 103fsumsub 15236 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((((μ‘𝑛) / 𝑛) · 𝑇) − (((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))))
105102, 104eqtrd 2773 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) / 𝑛) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))))
106105adantrr 717 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) / 𝑛) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))))
10785, 60, 94fsummulc2 15232 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(((μ‘𝑛) / 𝑛) · ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))
10884adantr 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → (μ‘𝑛) ∈ ℂ)
10997, 98jca 515 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
110109adantr 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
111 div23 11395 . . . . . . . . . . . . . . . . 17 (((μ‘𝑛) ∈ ℂ ∧ ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (((μ‘𝑛) · ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) / 𝑛) = (((μ‘𝑛) / 𝑛) · ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))
112 divass 11394 . . . . . . . . . . . . . . . . 17 (((μ‘𝑛) ∈ ℂ ∧ ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (((μ‘𝑛) · ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) / 𝑛) = ((μ‘𝑛) · (((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) / 𝑛)))
113111, 112eqtr3d 2775 . . . . . . . . . . . . . . . 16 (((μ‘𝑛) ∈ ℂ ∧ ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (((μ‘𝑛) / 𝑛) · ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) = ((μ‘𝑛) · (((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) / 𝑛)))
114108, 93, 110, 113syl3anc 1372 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → (((μ‘𝑛) / 𝑛) · ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) = ((μ‘𝑛) · (((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) / 𝑛)))
11590recnd 10747 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → (log‘((𝑥 / 𝑛) / 𝑚)) ∈ ℂ)
11691nnrpd 12512 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℝ+)
117 rpcnne0 12490 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ ℝ+ → (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0))
118116, 117syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0))
119 divdiv1 11429 . . . . . . . . . . . . . . . . . 18 (((log‘((𝑥 / 𝑛) / 𝑚)) ∈ ℂ ∧ (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0) ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) / 𝑛) = ((log‘((𝑥 / 𝑛) / 𝑚)) / (𝑚 · 𝑛)))
120115, 118, 110, 119syl3anc 1372 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → (((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) / 𝑛) = ((log‘((𝑥 / 𝑛) / 𝑚)) / (𝑚 · 𝑛)))
121 rpre 12480 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
122121adantl 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
123122adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
124123recnd 10747 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℂ)
125124adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → 𝑥 ∈ ℂ)
126 divdiv1 11429 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0) ∧ (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0)) → ((𝑥 / 𝑛) / 𝑚) = (𝑥 / (𝑛 · 𝑚)))
127125, 110, 118, 126syl3anc 1372 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → ((𝑥 / 𝑛) / 𝑚) = (𝑥 / (𝑛 · 𝑚)))
128127fveq2d 6678 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → (log‘((𝑥 / 𝑛) / 𝑚)) = (log‘(𝑥 / (𝑛 · 𝑚))))
12991nncnd 11732 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
13097adantr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → 𝑛 ∈ ℂ)
131129, 130mulcomd 10740 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → (𝑚 · 𝑛) = (𝑛 · 𝑚))
132128, 131oveq12d 7188 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → ((log‘((𝑥 / 𝑛) / 𝑚)) / (𝑚 · 𝑛)) = ((log‘(𝑥 / (𝑛 · 𝑚))) / (𝑛 · 𝑚)))
133120, 132eqtrd 2773 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → (((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) / 𝑛) = ((log‘(𝑥 / (𝑛 · 𝑚))) / (𝑛 · 𝑚)))
134133oveq2d 7186 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → ((μ‘𝑛) · (((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) / 𝑛)) = ((μ‘𝑛) · ((log‘(𝑥 / (𝑛 · 𝑚))) / (𝑛 · 𝑚))))
135114, 134eqtrd 2773 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → (((μ‘𝑛) / 𝑛) · ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) = ((μ‘𝑛) · ((log‘(𝑥 / (𝑛 · 𝑚))) / (𝑛 · 𝑚))))
13686, 135sylan2 596 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (((μ‘𝑛) / 𝑛) · ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) = ((μ‘𝑛) · ((log‘(𝑥 / (𝑛 · 𝑚))) / (𝑛 · 𝑚))))
137136sumeq2dv 15153 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))(((μ‘𝑛) / 𝑛) · ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘(𝑥 / (𝑛 · 𝑚))) / (𝑛 · 𝑚))))
138107, 137eqtrd 2773 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘(𝑥 / (𝑛 · 𝑚))) / (𝑛 · 𝑚))))
139138sumeq2dv 15153 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘(𝑥 / (𝑛 · 𝑚))) / (𝑛 · 𝑚))))
140 oveq2 7178 . . . . . . . . . . . . . 14 (𝑘 = (𝑛 · 𝑚) → (𝑥 / 𝑘) = (𝑥 / (𝑛 · 𝑚)))
141140fveq2d 6678 . . . . . . . . . . . . 13 (𝑘 = (𝑛 · 𝑚) → (log‘(𝑥 / 𝑘)) = (log‘(𝑥 / (𝑛 · 𝑚))))
142 id 22 . . . . . . . . . . . . 13 (𝑘 = (𝑛 · 𝑚) → 𝑘 = (𝑛 · 𝑚))
143141, 142oveq12d 7188 . . . . . . . . . . . 12 (𝑘 = (𝑛 · 𝑚) → ((log‘(𝑥 / 𝑘)) / 𝑘) = ((log‘(𝑥 / (𝑛 · 𝑚))) / (𝑛 · 𝑚)))
144143oveq2d 7186 . . . . . . . . . . 11 (𝑘 = (𝑛 · 𝑚) → ((μ‘𝑛) · ((log‘(𝑥 / 𝑘)) / 𝑘)) = ((μ‘𝑛) · ((log‘(𝑥 / (𝑛 · 𝑚))) / (𝑛 · 𝑚))))
1454rpred 12514 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
146 ssrab2 3969 . . . . . . . . . . . . . . . 16 {𝑦 ∈ ℕ ∣ 𝑦𝑘} ⊆ ℕ
147 simprr 773 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})
148146, 147sseldi 3875 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → 𝑛 ∈ ℕ)
149148, 56syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → (μ‘𝑛) ∈ ℤ)
150149zred 12168 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → (μ‘𝑛) ∈ ℝ)
151 elfznn 13027 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...(⌊‘𝑥)) → 𝑘 ∈ ℕ)
152151adantr 484 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘}) → 𝑘 ∈ ℕ)
153152nnrpd 12512 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘}) → 𝑘 ∈ ℝ+)
154 rpdivcl 12497 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ+𝑘 ∈ ℝ+) → (𝑥 / 𝑘) ∈ ℝ+)
1554, 153, 154syl2an 599 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → (𝑥 / 𝑘) ∈ ℝ+)
156155relogcld 25366 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → (log‘(𝑥 / 𝑘)) ∈ ℝ)
157151ad2antrl 728 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → 𝑘 ∈ ℕ)
158156, 157nndivred 11770 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → ((log‘(𝑥 / 𝑘)) / 𝑘) ∈ ℝ)
159150, 158remulcld 10749 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → ((μ‘𝑛) · ((log‘(𝑥 / 𝑘)) / 𝑘)) ∈ ℝ)
160159recnd 10747 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑘 ∈ (1...(⌊‘𝑥)) ∧ 𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘})) → ((μ‘𝑛) · ((log‘(𝑥 / 𝑘)) / 𝑘)) ∈ ℂ)
161144, 145, 160dvdsflsumcom 25925 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((μ‘𝑛) · ((log‘(𝑥 / 𝑘)) / 𝑘)) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘(𝑥 / (𝑛 · 𝑚))) / (𝑛 · 𝑚))))
162139, 161eqtr4d 2776 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) = Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((μ‘𝑛) · ((log‘(𝑥 / 𝑘)) / 𝑘)))
163162adantrr 717 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) = Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((μ‘𝑛) · ((log‘(𝑥 / 𝑘)) / 𝑘)))
164 oveq2 7178 . . . . . . . . . . 11 (𝑘 = 1 → (𝑥 / 𝑘) = (𝑥 / 1))
165164fveq2d 6678 . . . . . . . . . 10 (𝑘 = 1 → (log‘(𝑥 / 𝑘)) = (log‘(𝑥 / 1)))
166 id 22 . . . . . . . . . 10 (𝑘 = 1 → 𝑘 = 1)
167165, 166oveq12d 7188 . . . . . . . . 9 (𝑘 = 1 → ((log‘(𝑥 / 𝑘)) / 𝑘) = ((log‘(𝑥 / 1)) / 1))
168 fzfid 13432 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1...(⌊‘𝑥)) ∈ Fin)
169 fz1ssnn 13029 . . . . . . . . . 10 (1...(⌊‘𝑥)) ⊆ ℕ
170169a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1...(⌊‘𝑥)) ⊆ ℕ)
171122adantrr 717 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ)
172 simprr 773 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
173 flge1nn 13282 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ)
174171, 172, 173syl2anc 587 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (⌊‘𝑥) ∈ ℕ)
175 nnuz 12363 . . . . . . . . . . 11 ℕ = (ℤ‘1)
176174, 175eleqtrdi 2843 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (⌊‘𝑥) ∈ (ℤ‘1))
177 eluzfz1 13005 . . . . . . . . . 10 ((⌊‘𝑥) ∈ (ℤ‘1) → 1 ∈ (1...(⌊‘𝑥)))
178176, 177syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ∈ (1...(⌊‘𝑥)))
179151nnrpd 12512 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...(⌊‘𝑥)) → 𝑘 ∈ ℝ+)
1804, 179, 154syl2an 599 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑘) ∈ ℝ+)
181180relogcld 25366 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑘)) ∈ ℝ)
182169a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ⊆ ℕ)
183182sselda 3877 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → 𝑘 ∈ ℕ)
184181, 183nndivred 11770 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑘)) / 𝑘) ∈ ℝ)
185184recnd 10747 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑘)) / 𝑘) ∈ ℂ)
186185adantlrr 721 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑘)) / 𝑘) ∈ ℂ)
187167, 168, 170, 178, 186musumsum 25929 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ (1...(⌊‘𝑥))Σ𝑛 ∈ {𝑦 ∈ ℕ ∣ 𝑦𝑘} ((μ‘𝑛) · ((log‘(𝑥 / 𝑘)) / 𝑘)) = ((log‘(𝑥 / 1)) / 1))
1884rpcnd 12516 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
189188div1d 11486 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → (𝑥 / 1) = 𝑥)
190189fveq2d 6678 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → (log‘(𝑥 / 1)) = (log‘𝑥))
191190oveq1d 7185 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((log‘(𝑥 / 1)) / 1) = ((log‘𝑥) / 1))
19276div1d 11486 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) / 1) = (log‘𝑥))
193191, 192eqtrd 2773 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ((log‘(𝑥 / 1)) / 1) = (log‘𝑥))
194193adantrr 717 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘(𝑥 / 1)) / 1) = (log‘𝑥))
195163, 187, 1943eqtrd 2777 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) = (log‘𝑥))
196195oveq2d 7186 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) − (log‘𝑥)))
197106, 196eqtrd 2773 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) / 𝑛) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) − (log‘𝑥)))
198197fveq2d 6678 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) / 𝑛)) = (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) − (log‘𝑥))))
199 ere 15534 . . . . . . . . 9 e ∈ ℝ
200199a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → e ∈ ℝ)
201 1re 10719 . . . . . . . . 9 1 ∈ ℝ
202 1lt2 11887 . . . . . . . . . 10 1 < 2
203 egt2lt3 15651 . . . . . . . . . . 11 (2 < e ∧ e < 3)
204203simpli 487 . . . . . . . . . 10 2 < e
205201, 2, 199lttri 10844 . . . . . . . . . 10 ((1 < 2 ∧ 2 < e) → 1 < e)
206202, 204, 205mp2an 692 . . . . . . . . 9 1 < e
207201, 199, 206ltleii 10841 . . . . . . . 8 1 ≤ e
208200, 207jctir 524 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (e ∈ ℝ ∧ 1 ≤ e))
20937adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 𝑅 ∈ ℝ)
21016a1i 11 . . . . . . . . . . . 12 (𝜑 → (1 / 2) ∈ ℝ)
211 1rp 12476 . . . . . . . . . . . . . 14 1 ∈ ℝ+
212 rphalfcl 12499 . . . . . . . . . . . . . 14 (1 ∈ ℝ+ → (1 / 2) ∈ ℝ+)
213211, 212ax-mp 5 . . . . . . . . . . . . 13 (1 / 2) ∈ ℝ+
214 rpge0 12485 . . . . . . . . . . . . 13 ((1 / 2) ∈ ℝ+ → 0 ≤ (1 / 2))
215213, 214mp1i 13 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (1 / 2))
21617a1i 11 . . . . . . . . . . . . 13 (𝜑 → γ ∈ ℝ)
217 0re 10721 . . . . . . . . . . . . . . 15 0 ∈ ℝ
218 emgt0 25744 . . . . . . . . . . . . . . 15 0 < γ
219217, 17, 218ltleii 10841 . . . . . . . . . . . . . 14 0 ≤ γ
220219a1i 11 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ γ)
22120absge0d 14894 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (abs‘𝐿))
222216, 21, 220, 221addge0d 11294 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (γ + (abs‘𝐿)))
223210, 23, 215, 222addge0d 11294 . . . . . . . . . . 11 (𝜑 → 0 ≤ ((1 / 2) + (γ + (abs‘𝐿))))
224 log1 25329 . . . . . . . . . . . . . 14 (log‘1) = 0
22529nncnd 11732 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (1...2)) → 𝑚 ∈ ℂ)
226225mulid2d 10737 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ (1...2)) → (1 · 𝑚) = 𝑚)
22730rpred 12514 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (1...2)) → 𝑚 ∈ ℝ)
2282a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (1...2)) → 2 ∈ ℝ)
229199a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (1...2)) → e ∈ ℝ)
230 elfzle2 13002 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ (1...2) → 𝑚 ≤ 2)
231230adantl 485 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (1...2)) → 𝑚 ≤ 2)
2322, 199, 204ltleii 10841 . . . . . . . . . . . . . . . . . . 19 2 ≤ e
233232a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (1...2)) → 2 ≤ e)
234227, 228, 229, 231, 233letrd 10875 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ (1...2)) → 𝑚 ≤ e)
235226, 234eqbrtrd 5052 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (1...2)) → (1 · 𝑚) ≤ e)
236 1red 10720 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ (1...2)) → 1 ∈ ℝ)
237236, 229, 30lemuldivd 12563 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (1...2)) → ((1 · 𝑚) ≤ e ↔ 1 ≤ (e / 𝑚)))
238235, 237mpbid 235 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (1...2)) → 1 ≤ (e / 𝑚))
239 logleb 25346 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ+ ∧ (e / 𝑚) ∈ ℝ+) → (1 ≤ (e / 𝑚) ↔ (log‘1) ≤ (log‘(e / 𝑚))))
240211, 32, 239sylancr 590 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (1...2)) → (1 ≤ (e / 𝑚) ↔ (log‘1) ≤ (log‘(e / 𝑚))))
241238, 240mpbid 235 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (1...2)) → (log‘1) ≤ (log‘(e / 𝑚)))
242224, 241eqbrtrrid 5066 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ (1...2)) → 0 ≤ (log‘(e / 𝑚)))
24333, 30, 242divge0d 12554 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (1...2)) → 0 ≤ ((log‘(e / 𝑚)) / 𝑚))
24426, 34, 243fsumge0 15243 . . . . . . . . . . 11 (𝜑 → 0 ≤ Σ𝑚 ∈ (1...2)((log‘(e / 𝑚)) / 𝑚))
24525, 35, 223, 244addge0d 11294 . . . . . . . . . 10 (𝜑 → 0 ≤ (((1 / 2) + (γ + (abs‘𝐿))) + Σ𝑚 ∈ (1...2)((log‘(e / 𝑚)) / 𝑚)))
246245, 15breqtrrdi 5072 . . . . . . . . 9 (𝜑 → 0 ≤ 𝑅)
247246adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ 𝑅)
248209, 247jca 515 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
24984, 96mulcld 10739 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) ∈ ℂ)
250 remulcl 10700 . . . . . . . 8 ((2 ∈ ℝ ∧ ((log‘(𝑥 / 𝑛)) / 𝑥) ∈ ℝ) → (2 · ((log‘(𝑥 / 𝑛)) / 𝑥)) ∈ ℝ)
2512, 11, 250sylancr 590 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · ((log‘(𝑥 / 𝑛)) / 𝑥)) ∈ ℝ)
2522a1i 11 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 2 ∈ ℝ)
253 0le2 11818 . . . . . . . . 9 0 ≤ 2
254253a1i 11 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ 2)
25597mulid2d 10737 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 · 𝑛) = 𝑛)
256 fznnfl 13321 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → (𝑛 ∈ (1...(⌊‘𝑥)) ↔ (𝑛 ∈ ℕ ∧ 𝑛𝑥)))
257122, 256syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → (𝑛 ∈ (1...(⌊‘𝑥)) ↔ (𝑛 ∈ ℕ ∧ 𝑛𝑥)))
258257simplbda 503 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛𝑥)
259255, 258eqbrtrd 5052 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 · 𝑛) ≤ 𝑥)
260 1red 10720 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
26155nnrpd 12512 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
262260, 123, 261lemuldivd 12563 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((1 · 𝑛) ≤ 𝑥 ↔ 1 ≤ (𝑥 / 𝑛)))
263259, 262mpbid 235 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ≤ (𝑥 / 𝑛))
264 logleb 25346 . . . . . . . . . . . 12 ((1 ∈ ℝ+ ∧ (𝑥 / 𝑛) ∈ ℝ+) → (1 ≤ (𝑥 / 𝑛) ↔ (log‘1) ≤ (log‘(𝑥 / 𝑛))))
265211, 8, 264sylancr 590 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 ≤ (𝑥 / 𝑛) ↔ (log‘1) ≤ (log‘(𝑥 / 𝑛))))
266263, 265mpbid 235 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘1) ≤ (log‘(𝑥 / 𝑛)))
267224, 266eqbrtrrid 5066 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (log‘(𝑥 / 𝑛)))
268 rpregt0 12486 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
269268ad2antlr 727 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
270 divge0 11587 . . . . . . . . 9 ((((log‘(𝑥 / 𝑛)) ∈ ℝ ∧ 0 ≤ (log‘(𝑥 / 𝑛))) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → 0 ≤ ((log‘(𝑥 / 𝑛)) / 𝑥))
2719, 267, 269, 270syl21anc 837 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((log‘(𝑥 / 𝑛)) / 𝑥))
272252, 11, 254, 271mulge0d 11295 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (2 · ((log‘(𝑥 / 𝑛)) / 𝑥)))
273249abscld 14886 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) ∈ ℝ)
274273adantr 484 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ e ≤ (𝑥 / 𝑛)) → (abs‘((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) ∈ ℝ)
27596adantr 484 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ e ≤ (𝑥 / 𝑛)) → (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) ∈ ℂ)
276275abscld 14886 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ e ≤ (𝑥 / 𝑛)) → (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) ∈ ℝ)
277261rpred 12514 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ)
278251, 277remulcld 10749 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((2 · ((log‘(𝑥 / 𝑛)) / 𝑥)) · 𝑛) ∈ ℝ)
279278adantr 484 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ e ≤ (𝑥 / 𝑛)) → ((2 · ((log‘(𝑥 / 𝑛)) / 𝑥)) · 𝑛) ∈ ℝ)
28084, 96absmuld 14904 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) = ((abs‘(μ‘𝑛)) · (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))))
28184abscld 14886 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(μ‘𝑛)) ∈ ℝ)
28296abscld 14886 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) ∈ ℝ)
28396absge0d 14894 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))))
284 mule1 25885 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (abs‘(μ‘𝑛)) ≤ 1)
28555, 284syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(μ‘𝑛)) ≤ 1)
286281, 260, 282, 283, 285lemul1ad 11657 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(μ‘𝑛)) · (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) ≤ (1 · (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))))
287282recnd 10747 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) ∈ ℂ)
288287mulid2d 10737 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 · (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) = (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))))
289286, 288breqtrd 5056 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(μ‘𝑛)) · (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) ≤ (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))))
290280, 289eqbrtrd 5052 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) ≤ (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))))
291290adantr 484 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ e ≤ (𝑥 / 𝑛)) → (abs‘((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) ≤ (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))))
292 logdivsum.1 . . . . . . . . . 10 𝐹 = (𝑦 ∈ ℝ+ ↦ (Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) − (((log‘𝑦)↑2) / 2)))
29318ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ e ≤ (𝑥 / 𝑛)) → 𝐹𝑟 𝐿)
2948adantr 484 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ e ≤ (𝑥 / 𝑛)) → (𝑥 / 𝑛) ∈ ℝ+)
295 simpr 488 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ e ≤ (𝑥 / 𝑛)) → e ≤ (𝑥 / 𝑛))
296292, 293, 294, 295mulog2sumlem1 26270 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ e ≤ (𝑥 / 𝑛)) → (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) − ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)))) ≤ (2 · ((log‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))))
29771, 95abssubd 14903 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) = (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) − 𝑇)))
298297adantr 484 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ e ≤ (𝑥 / 𝑛)) → (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) = (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) − 𝑇)))
29961oveq2i 7181 . . . . . . . . . . 11 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) − 𝑇) = (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) − ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)))
300299fveq2i 6677 . . . . . . . . . 10 (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) − 𝑇)) = (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) − ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))))
301298, 300eqtrdi 2789 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ e ≤ (𝑥 / 𝑛)) → (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) = (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) − ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)))))
302 2cnd 11794 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 2 ∈ ℂ)
30311recnd 10747 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑛)) / 𝑥) ∈ ℂ)
304302, 303, 97mulassd 10742 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((2 · ((log‘(𝑥 / 𝑛)) / 𝑥)) · 𝑛) = (2 · (((log‘(𝑥 / 𝑛)) / 𝑥) · 𝑛)))
305 rpcnne0 12490 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
306305ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
307 divdiv2 11430 . . . . . . . . . . . . . 14 (((log‘(𝑥 / 𝑛)) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((log‘(𝑥 / 𝑛)) / (𝑥 / 𝑛)) = (((log‘(𝑥 / 𝑛)) · 𝑛) / 𝑥))
30862, 306, 109, 307syl3anc 1372 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑛)) / (𝑥 / 𝑛)) = (((log‘(𝑥 / 𝑛)) · 𝑛) / 𝑥))
309 div23 11395 . . . . . . . . . . . . . 14 (((log‘(𝑥 / 𝑛)) ∈ ℂ ∧ 𝑛 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((log‘(𝑥 / 𝑛)) · 𝑛) / 𝑥) = (((log‘(𝑥 / 𝑛)) / 𝑥) · 𝑛))
31062, 97, 306, 309syl3anc 1372 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((log‘(𝑥 / 𝑛)) · 𝑛) / 𝑥) = (((log‘(𝑥 / 𝑛)) / 𝑥) · 𝑛))
311308, 310eqtrd 2773 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑛)) / (𝑥 / 𝑛)) = (((log‘(𝑥 / 𝑛)) / 𝑥) · 𝑛))
312311oveq2d 7186 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · ((log‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))) = (2 · (((log‘(𝑥 / 𝑛)) / 𝑥) · 𝑛)))
313304, 312eqtr4d 2776 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((2 · ((log‘(𝑥 / 𝑛)) / 𝑥)) · 𝑛) = (2 · ((log‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))))
314313adantr 484 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ e ≤ (𝑥 / 𝑛)) → ((2 · ((log‘(𝑥 / 𝑛)) / 𝑥)) · 𝑛) = (2 · ((log‘(𝑥 / 𝑛)) / (𝑥 / 𝑛))))
315296, 301, 3143brtr4d 5062 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ e ≤ (𝑥 / 𝑛)) → (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) ≤ ((2 · ((log‘(𝑥 / 𝑛)) / 𝑥)) · 𝑛))
316274, 276, 279, 291, 315letrd 10875 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ e ≤ (𝑥 / 𝑛)) → (abs‘((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) ≤ ((2 · ((log‘(𝑥 / 𝑛)) / 𝑥)) · 𝑛))
317273adantr 484 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) ∈ ℝ)
318282adantr 484 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) ∈ ℝ)
31937ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → 𝑅 ∈ ℝ)
320290adantr 484 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) ≤ (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))))
32171adantr 484 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → 𝑇 ∈ ℂ)
322321abscld 14886 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘𝑇) ∈ ℝ)
32395adantr 484 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ∈ ℂ)
324323abscld 14886 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) ∈ ℝ)
325322, 324readdcld 10748 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → ((abs‘𝑇) + (abs‘Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) ∈ ℝ)
326321, 323abs2dif2d 14908 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) ≤ ((abs‘𝑇) + (abs‘Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))))
32725ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → ((1 / 2) + (γ + (abs‘𝐿))) ∈ ℝ)
32835ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → Σ𝑚 ∈ (1...2)((log‘(e / 𝑚)) / 𝑚) ∈ ℝ)
32961fveq2i 6677 . . . . . . . . . . . 12 (abs‘𝑇) = (abs‘((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)))
330329, 322eqeltrrid 2838 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) ∈ ℝ)
33164adantr 484 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (((log‘(𝑥 / 𝑛))↑2) / 2) ∈ ℂ)
332331abscld 14886 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘(((log‘(𝑥 / 𝑛))↑2) / 2)) ∈ ℝ)
33369adantr 484 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → ((γ · (log‘(𝑥 / 𝑛))) − 𝐿) ∈ ℂ)
334333abscld 14886 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) ∈ ℝ)
335332, 334readdcld 10748 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → ((abs‘(((log‘(𝑥 / 𝑛))↑2) / 2)) + (abs‘((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) ∈ ℝ)
336331, 333abstrid 14906 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) ≤ ((abs‘(((log‘(𝑥 / 𝑛))↑2) / 2)) + (abs‘((γ · (log‘(𝑥 / 𝑛))) − 𝐿))))
33716a1i 11 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (1 / 2) ∈ ℝ)
33823ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (γ + (abs‘𝐿)) ∈ ℝ)
3399resqcld 13703 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑛))↑2) ∈ ℝ)
340339rehalfcld 11963 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((log‘(𝑥 / 𝑛))↑2) / 2) ∈ ℝ)
3419sqge0d 13704 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((log‘(𝑥 / 𝑛))↑2))
342 2pos 11819 . . . . . . . . . . . . . . . . . . . 20 0 < 2
3432, 342pm3.2i 474 . . . . . . . . . . . . . . . . . . 19 (2 ∈ ℝ ∧ 0 < 2)
344343a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 ∈ ℝ ∧ 0 < 2))
345 divge0 11587 . . . . . . . . . . . . . . . . . 18 (((((log‘(𝑥 / 𝑛))↑2) ∈ ℝ ∧ 0 ≤ ((log‘(𝑥 / 𝑛))↑2)) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ (((log‘(𝑥 / 𝑛))↑2) / 2))
346339, 341, 344, 345syl21anc 837 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (((log‘(𝑥 / 𝑛))↑2) / 2))
347340, 346absidd 14872 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(((log‘(𝑥 / 𝑛))↑2) / 2)) = (((log‘(𝑥 / 𝑛))↑2) / 2))
348347adantr 484 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘(((log‘(𝑥 / 𝑛))↑2) / 2)) = (((log‘(𝑥 / 𝑛))↑2) / 2))
3498rpred 12514 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ)
350 ltle 10807 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 / 𝑛) ∈ ℝ ∧ e ∈ ℝ) → ((𝑥 / 𝑛) < e → (𝑥 / 𝑛) ≤ e))
351349, 199, 350sylancl 589 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑥 / 𝑛) < e → (𝑥 / 𝑛) ≤ e))
352351imp 410 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (𝑥 / 𝑛) ≤ e)
3538adantr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (𝑥 / 𝑛) ∈ ℝ+)
354 logleb 25346 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 / 𝑛) ∈ ℝ+ ∧ e ∈ ℝ+) → ((𝑥 / 𝑛) ≤ e ↔ (log‘(𝑥 / 𝑛)) ≤ (log‘e)))
355353, 27, 354sylancl 589 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → ((𝑥 / 𝑛) ≤ e ↔ (log‘(𝑥 / 𝑛)) ≤ (log‘e)))
356352, 355mpbid 235 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (log‘(𝑥 / 𝑛)) ≤ (log‘e))
357 loge 25330 . . . . . . . . . . . . . . . . . . 19 (log‘e) = 1
358356, 357breqtrdi 5071 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (log‘(𝑥 / 𝑛)) ≤ 1)
359 0le1 11241 . . . . . . . . . . . . . . . . . . . . 21 0 ≤ 1
360359a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ 1)
3619, 260, 267, 360le2sqd 13712 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑛)) ≤ 1 ↔ ((log‘(𝑥 / 𝑛))↑2) ≤ (1↑2)))
362361adantr 484 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → ((log‘(𝑥 / 𝑛)) ≤ 1 ↔ ((log‘(𝑥 / 𝑛))↑2) ≤ (1↑2)))
363358, 362mpbid 235 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → ((log‘(𝑥 / 𝑛))↑2) ≤ (1↑2))
364 sq1 13650 . . . . . . . . . . . . . . . . 17 (1↑2) = 1
365363, 364breqtrdi 5071 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → ((log‘(𝑥 / 𝑛))↑2) ≤ 1)
366339adantr 484 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → ((log‘(𝑥 / 𝑛))↑2) ∈ ℝ)
367 1red 10720 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → 1 ∈ ℝ)
368343a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (2 ∈ ℝ ∧ 0 < 2))
369 lediv1 11583 . . . . . . . . . . . . . . . . 17 ((((log‘(𝑥 / 𝑛))↑2) ∈ ℝ ∧ 1 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((log‘(𝑥 / 𝑛))↑2) ≤ 1 ↔ (((log‘(𝑥 / 𝑛))↑2) / 2) ≤ (1 / 2)))
370366, 367, 368, 369syl3anc 1372 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (((log‘(𝑥 / 𝑛))↑2) ≤ 1 ↔ (((log‘(𝑥 / 𝑛))↑2) / 2) ≤ (1 / 2)))
371365, 370mpbid 235 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (((log‘(𝑥 / 𝑛))↑2) / 2) ≤ (1 / 2))
372348, 371eqbrtrd 5052 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘(((log‘(𝑥 / 𝑛))↑2) / 2)) ≤ (1 / 2))
37368abscld 14886 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘𝐿) ∈ ℝ)
37466, 373readdcld 10748 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((γ · (log‘(𝑥 / 𝑛))) + (abs‘𝐿)) ∈ ℝ)
375374adantr 484 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → ((γ · (log‘(𝑥 / 𝑛))) + (abs‘𝐿)) ∈ ℝ)
37667adantr 484 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (γ · (log‘(𝑥 / 𝑛))) ∈ ℂ)
37720ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → 𝐿 ∈ ℂ)
378376, 377abs2dif2d 14908 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) ≤ ((abs‘(γ · (log‘(𝑥 / 𝑛)))) + (abs‘𝐿)))
37917a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → γ ∈ ℝ)
380219a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ γ)
381379, 9, 380, 267mulge0d 11295 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (γ · (log‘(𝑥 / 𝑛))))
38266, 381absidd 14872 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(γ · (log‘(𝑥 / 𝑛)))) = (γ · (log‘(𝑥 / 𝑛))))
383382adantr 484 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘(γ · (log‘(𝑥 / 𝑛)))) = (γ · (log‘(𝑥 / 𝑛))))
384383oveq1d 7185 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → ((abs‘(γ · (log‘(𝑥 / 𝑛)))) + (abs‘𝐿)) = ((γ · (log‘(𝑥 / 𝑛))) + (abs‘𝐿)))
385378, 384breqtrd 5056 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) ≤ ((γ · (log‘(𝑥 / 𝑛))) + (abs‘𝐿)))
38666adantr 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (γ · (log‘(𝑥 / 𝑛))) ∈ ℝ)
38717a1i 11 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → γ ∈ ℝ)
388377abscld 14886 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘𝐿) ∈ ℝ)
3899adantr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (log‘(𝑥 / 𝑛)) ∈ ℝ)
390387, 218jctir 524 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (γ ∈ ℝ ∧ 0 < γ))
391 lemul2 11571 . . . . . . . . . . . . . . . . . . 19 (((log‘(𝑥 / 𝑛)) ∈ ℝ ∧ 1 ∈ ℝ ∧ (γ ∈ ℝ ∧ 0 < γ)) → ((log‘(𝑥 / 𝑛)) ≤ 1 ↔ (γ · (log‘(𝑥 / 𝑛))) ≤ (γ · 1)))
392389, 367, 390, 391syl3anc 1372 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → ((log‘(𝑥 / 𝑛)) ≤ 1 ↔ (γ · (log‘(𝑥 / 𝑛))) ≤ (γ · 1)))
393358, 392mpbid 235 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (γ · (log‘(𝑥 / 𝑛))) ≤ (γ · 1))
39417recni 10733 . . . . . . . . . . . . . . . . . 18 γ ∈ ℂ
395394mulid1i 10723 . . . . . . . . . . . . . . . . 17 (γ · 1) = γ
396393, 395breqtrdi 5071 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (γ · (log‘(𝑥 / 𝑛))) ≤ γ)
397386, 387, 388, 396leadd1dd 11332 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → ((γ · (log‘(𝑥 / 𝑛))) + (abs‘𝐿)) ≤ (γ + (abs‘𝐿)))
398334, 375, 338, 385, 397letrd 10875 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) ≤ (γ + (abs‘𝐿)))
399332, 334, 337, 338, 372, 398le2addd 11337 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → ((abs‘(((log‘(𝑥 / 𝑛))↑2) / 2)) + (abs‘((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) ≤ ((1 / 2) + (γ + (abs‘𝐿))))
400330, 335, 327, 336, 399letrd 10875 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) ≤ ((1 / 2) + (γ + (abs‘𝐿))))
401329, 400eqbrtrid 5065 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘𝑇) ≤ ((1 / 2) + (γ + (abs‘𝐿))))
40286, 92sylan2 596 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ∈ ℝ)
40385, 402fsumrecl 15184 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ∈ ℝ)
404403adantr 484 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ∈ ℝ)
40586, 90sylan2 596 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (log‘((𝑥 / 𝑛) / 𝑚)) ∈ ℝ)
40686, 129sylan2 596 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑚 ∈ ℂ)
407406mulid2d 10737 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (1 · 𝑚) = 𝑚)
408 fznnfl 13321 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 / 𝑛) ∈ ℝ → (𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛))) ↔ (𝑚 ∈ ℕ ∧ 𝑚 ≤ (𝑥 / 𝑛))))
409349, 408syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛))) ↔ (𝑚 ∈ ℕ ∧ 𝑚 ≤ (𝑥 / 𝑛))))
410409simplbda 503 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑚 ≤ (𝑥 / 𝑛))
411407, 410eqbrtrd 5052 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (1 · 𝑚) ≤ (𝑥 / 𝑛))
412 1red 10720 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 1 ∈ ℝ)
413349adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (𝑥 / 𝑛) ∈ ℝ)
414116rpregt0d 12520 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ ℕ) → (𝑚 ∈ ℝ ∧ 0 < 𝑚))
41586, 414sylan2 596 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (𝑚 ∈ ℝ ∧ 0 < 𝑚))
416 lemuldiv 11598 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℝ ∧ (𝑥 / 𝑛) ∈ ℝ ∧ (𝑚 ∈ ℝ ∧ 0 < 𝑚)) → ((1 · 𝑚) ≤ (𝑥 / 𝑛) ↔ 1 ≤ ((𝑥 / 𝑛) / 𝑚)))
417412, 413, 415, 416syl3anc 1372 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((1 · 𝑚) ≤ (𝑥 / 𝑛) ↔ 1 ≤ ((𝑥 / 𝑛) / 𝑚)))
418411, 417mpbid 235 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 1 ≤ ((𝑥 / 𝑛) / 𝑚))
41986, 89sylan2 596 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((𝑥 / 𝑛) / 𝑚) ∈ ℝ+)
420 logleb 25346 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ+ ∧ ((𝑥 / 𝑛) / 𝑚) ∈ ℝ+) → (1 ≤ ((𝑥 / 𝑛) / 𝑚) ↔ (log‘1) ≤ (log‘((𝑥 / 𝑛) / 𝑚))))
421211, 419, 420sylancr 590 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (1 ≤ ((𝑥 / 𝑛) / 𝑚) ↔ (log‘1) ≤ (log‘((𝑥 / 𝑛) / 𝑚))))
422418, 421mpbid 235 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (log‘1) ≤ (log‘((𝑥 / 𝑛) / 𝑚)))
423224, 422eqbrtrrid 5066 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 0 ≤ (log‘((𝑥 / 𝑛) / 𝑚)))
424 divge0 11587 . . . . . . . . . . . . . . . 16 ((((log‘((𝑥 / 𝑛) / 𝑚)) ∈ ℝ ∧ 0 ≤ (log‘((𝑥 / 𝑛) / 𝑚))) ∧ (𝑚 ∈ ℝ ∧ 0 < 𝑚)) → 0 ≤ ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))
425405, 423, 415, 424syl21anc 837 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 0 ≤ ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))
42685, 402, 425fsumge0 15243 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))
427426adantr 484 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → 0 ≤ Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))
428404, 427absidd 14872 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))
429 fzfid 13432 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (1...(⌊‘(𝑥 / 𝑛))) ∈ Fin)
430349flcld 13259 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (⌊‘(𝑥 / 𝑛)) ∈ ℤ)
431430adantr 484 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (⌊‘(𝑥 / 𝑛)) ∈ ℤ)
432 2z 12095 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℤ
433432a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → 2 ∈ ℤ)
434349adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (𝑥 / 𝑛) ∈ ℝ)
435199a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → e ∈ ℝ)
436 3re 11796 . . . . . . . . . . . . . . . . . . . . . . 23 3 ∈ ℝ
437436a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → 3 ∈ ℝ)
438 simpr 488 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (𝑥 / 𝑛) < e)
439203simpri 489 . . . . . . . . . . . . . . . . . . . . . . 23 e < 3
440439a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → e < 3)
441434, 435, 437, 438, 440lttrd 10879 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (𝑥 / 𝑛) < 3)
442 3z 12096 . . . . . . . . . . . . . . . . . . . . . 22 3 ∈ ℤ
443 fllt 13267 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 / 𝑛) ∈ ℝ ∧ 3 ∈ ℤ) → ((𝑥 / 𝑛) < 3 ↔ (⌊‘(𝑥 / 𝑛)) < 3))
444434, 442, 443sylancl 589 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → ((𝑥 / 𝑛) < 3 ↔ (⌊‘(𝑥 / 𝑛)) < 3))
445441, 444mpbid 235 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (⌊‘(𝑥 / 𝑛)) < 3)
446 df-3 11780 . . . . . . . . . . . . . . . . . . . 20 3 = (2 + 1)
447445, 446breqtrdi 5071 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (⌊‘(𝑥 / 𝑛)) < (2 + 1))
448 zleltp1 12114 . . . . . . . . . . . . . . . . . . . 20 (((⌊‘(𝑥 / 𝑛)) ∈ ℤ ∧ 2 ∈ ℤ) → ((⌊‘(𝑥 / 𝑛)) ≤ 2 ↔ (⌊‘(𝑥 / 𝑛)) < (2 + 1)))
449431, 432, 448sylancl 589 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → ((⌊‘(𝑥 / 𝑛)) ≤ 2 ↔ (⌊‘(𝑥 / 𝑛)) < (2 + 1)))
450447, 449mpbird 260 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (⌊‘(𝑥 / 𝑛)) ≤ 2)
451 eluz2 12330 . . . . . . . . . . . . . . . . . 18 (2 ∈ (ℤ‘(⌊‘(𝑥 / 𝑛))) ↔ ((⌊‘(𝑥 / 𝑛)) ∈ ℤ ∧ 2 ∈ ℤ ∧ (⌊‘(𝑥 / 𝑛)) ≤ 2))
452431, 433, 450, 451syl3anbrc 1344 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → 2 ∈ (ℤ‘(⌊‘(𝑥 / 𝑛))))
453 fzss2 13038 . . . . . . . . . . . . . . . . 17 (2 ∈ (ℤ‘(⌊‘(𝑥 / 𝑛))) → (1...(⌊‘(𝑥 / 𝑛))) ⊆ (1...2))
454452, 453syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (1...(⌊‘(𝑥 / 𝑛))) ⊆ (1...2))
455454sselda 3877 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑚 ∈ (1...2))
45634ad5ant15 759 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) → ((log‘(e / 𝑚)) / 𝑚) ∈ ℝ)
457455, 456syldan 594 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((log‘(e / 𝑚)) / 𝑚) ∈ ℝ)
458429, 457fsumrecl 15184 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘(e / 𝑚)) / 𝑚) ∈ ℝ)
45992adantlr 715 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ ℕ) → ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ∈ ℝ)
46086, 459sylan2 596 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ∈ ℝ)
461352adantr 484 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) → (𝑥 / 𝑛) ≤ e)
462434adantr 484 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) → (𝑥 / 𝑛) ∈ ℝ)
463199a1i 11 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) → e ∈ ℝ)
46430rpregt0d 12520 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚 ∈ (1...2)) → (𝑚 ∈ ℝ ∧ 0 < 𝑚))
465464ad5ant15 759 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) → (𝑚 ∈ ℝ ∧ 0 < 𝑚))
466 lediv1 11583 . . . . . . . . . . . . . . . . . . 19 (((𝑥 / 𝑛) ∈ ℝ ∧ e ∈ ℝ ∧ (𝑚 ∈ ℝ ∧ 0 < 𝑚)) → ((𝑥 / 𝑛) ≤ e ↔ ((𝑥 / 𝑛) / 𝑚) ≤ (e / 𝑚)))
467462, 463, 465, 466syl3anc 1372 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) → ((𝑥 / 𝑛) ≤ e ↔ ((𝑥 / 𝑛) / 𝑚) ≤ (e / 𝑚)))
468461, 467mpbid 235 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) → ((𝑥 / 𝑛) / 𝑚) ≤ (e / 𝑚))
46989adantlr 715 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ ℕ) → ((𝑥 / 𝑛) / 𝑚) ∈ ℝ+)
47028, 469sylan2 596 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) → ((𝑥 / 𝑛) / 𝑚) ∈ ℝ+)
47132ad5ant15 759 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) → (e / 𝑚) ∈ ℝ+)
472470, 471logled 25370 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) → (((𝑥 / 𝑛) / 𝑚) ≤ (e / 𝑚) ↔ (log‘((𝑥 / 𝑛) / 𝑚)) ≤ (log‘(e / 𝑚))))
473468, 472mpbid 235 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) → (log‘((𝑥 / 𝑛) / 𝑚)) ≤ (log‘(e / 𝑚)))
47490adantlr 715 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ ℕ) → (log‘((𝑥 / 𝑛) / 𝑚)) ∈ ℝ)
47528, 474sylan2 596 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) → (log‘((𝑥 / 𝑛) / 𝑚)) ∈ ℝ)
47633ad5ant15 759 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) → (log‘(e / 𝑚)) ∈ ℝ)
477 lediv1 11583 . . . . . . . . . . . . . . . . 17 (((log‘((𝑥 / 𝑛) / 𝑚)) ∈ ℝ ∧ (log‘(e / 𝑚)) ∈ ℝ ∧ (𝑚 ∈ ℝ ∧ 0 < 𝑚)) → ((log‘((𝑥 / 𝑛) / 𝑚)) ≤ (log‘(e / 𝑚)) ↔ ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ≤ ((log‘(e / 𝑚)) / 𝑚)))
478475, 476, 465, 477syl3anc 1372 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) → ((log‘((𝑥 / 𝑛) / 𝑚)) ≤ (log‘(e / 𝑚)) ↔ ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ≤ ((log‘(e / 𝑚)) / 𝑚)))
479473, 478mpbid 235 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) → ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ≤ ((log‘(e / 𝑚)) / 𝑚))
480455, 479syldan 594 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ≤ ((log‘(e / 𝑚)) / 𝑚))
481429, 460, 457, 480fsumle 15247 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ≤ Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘(e / 𝑚)) / 𝑚))
482 fzfid 13432 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (1...2) ∈ Fin)
483243ad5ant15 759 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) ∧ 𝑚 ∈ (1...2)) → 0 ≤ ((log‘(e / 𝑚)) / 𝑚))
484482, 456, 483, 454fsumless 15244 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘(e / 𝑚)) / 𝑚) ≤ Σ𝑚 ∈ (1...2)((log‘(e / 𝑚)) / 𝑚))
485404, 458, 328, 481, 484letrd 10875 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚) ≤ Σ𝑚 ∈ (1...2)((log‘(e / 𝑚)) / 𝑚))
486428, 485eqbrtrd 5052 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)) ≤ Σ𝑚 ∈ (1...2)((log‘(e / 𝑚)) / 𝑚))
487322, 324, 327, 328, 401, 486le2addd 11337 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → ((abs‘𝑇) + (abs‘Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) ≤ (((1 / 2) + (γ + (abs‘𝐿))) + Σ𝑚 ∈ (1...2)((log‘(e / 𝑚)) / 𝑚)))
488487, 15breqtrrdi 5072 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → ((abs‘𝑇) + (abs‘Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) ≤ 𝑅)
489318, 325, 319, 326, 488letrd 10875 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘(𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) ≤ 𝑅)
490317, 318, 319, 320, 489letrd 10875 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑛) < e) → (abs‘((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚)))) ≤ 𝑅)
4914, 208, 248, 249, 251, 272, 316, 490fsumharmonic 25749 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) / 𝑛)) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))(2 · ((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · ((log‘e) + 1))))
492 2cnd 11794 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 2 ∈ ℂ)
4933, 492, 303fsummulc2 15232 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) = Σ𝑛 ∈ (1...(⌊‘𝑥))(2 · ((log‘(𝑥 / 𝑛)) / 𝑥)))
494 df-2 11779 . . . . . . . . . 10 2 = (1 + 1)
495357oveq1i 7180 . . . . . . . . . 10 ((log‘e) + 1) = (1 + 1)
496494, 495eqtr4i 2764 . . . . . . . . 9 2 = ((log‘e) + 1)
497496a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 2 = ((log‘e) + 1))
498497oveq2d 7186 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (𝑅 · 2) = (𝑅 · ((log‘e) + 1)))
499493, 498oveq12d 7188 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(2 · ((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · ((log‘e) + 1))))
500491, 499breqtrrd 5058 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) / 𝑛)) ≤ ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2)))
501500adantrr 717 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) · (𝑇 − Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘((𝑥 / 𝑛) / 𝑚)) / 𝑚))) / 𝑛)) ≤ ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2)))
502198, 501eqbrtrrd 5054 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) − (log‘𝑥))) ≤ ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2)))
50354leabsd 14864 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2)) ≤ (abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2))))
504503adantrr 717 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2)) ≤ (abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2))))
50579, 80, 83, 502, 504letrd 10875 . 2 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) − (log‘𝑥))) ≤ (abs‘((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛)) / 𝑥)) + (𝑅 · 2))))
5061, 53, 54, 77, 505o1le 15102 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝑇) − (log‘𝑥))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wne 2934  {crab 3057  wss 3843   class class class wbr 5030  cmpt 5110  cfv 6339  (class class class)co 7170  cc 10613  cr 10614  0cc0 10615  1c1 10616   + caddc 10618   · cmul 10620   < clt 10753  cle 10754  cmin 10948   / cdiv 11375  cn 11716  2c2 11771  3c3 11772  cz 12062  cuz 12324  +crp 12472  ...cfz 12981  cfl 13251  cexp 13521  abscabs 14683  𝑟 crli 14932  𝑂(1)co1 14933  Σcsu 15135  eceu 15508  cdvds 15699  logclog 25298  γcem 25729  μcmu 25832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-inf2 9177  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693  ax-addf 10694  ax-mulf 10695
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-se 5484  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-of 7425  df-om 7600  df-1st 7714  df-2nd 7715  df-supp 7857  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-2o 8132  df-oadd 8135  df-er 8320  df-map 8439  df-pm 8440  df-ixp 8508  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-fsupp 8907  df-fi 8948  df-sup 8979  df-inf 8980  df-oi 9047  df-dju 9403  df-card 9441  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-4 11781  df-5 11782  df-6 11783  df-7 11784  df-8 11785  df-9 11786  df-n0 11977  df-xnn0 12049  df-z 12063  df-dec 12180  df-uz 12325  df-q 12431  df-rp 12473  df-xneg 12590  df-xadd 12591  df-xmul 12592  df-ioo 12825  df-ioc 12826  df-ico 12827  df-icc 12828  df-fz 12982  df-fzo 13125  df-fl 13253  df-mod 13329  df-seq 13461  df-exp 13522  df-fac 13726  df-bc 13755  df-hash 13783  df-shft 14516  df-cj 14548  df-re 14549  df-im 14550  df-sqrt 14684  df-abs 14685  df-limsup 14918  df-clim 14935  df-rlim 14936  df-o1 14937  df-lo1 14938  df-sum 15136  df-ef 15513  df-e 15514  df-sin 15515  df-cos 15516  df-tan 15517  df-pi 15518  df-dvds 15700  df-gcd 15938  df-prm 16113  df-pc 16274  df-struct 16588  df-ndx 16589  df-slot 16590  df-base 16592  df-sets 16593  df-ress 16594  df-plusg 16681  df-mulr 16682  df-starv 16683  df-sca 16684  df-vsca 16685  df-ip 16686  df-tset 16687  df-ple 16688  df-ds 16690  df-unif 16691  df-hom 16692  df-cco 16693  df-rest 16799  df-topn 16800  df-0g 16818  df-gsum 16819  df-topgen 16820  df-pt 16821  df-prds 16824  df-xrs 16878  df-qtop 16883  df-imas 16884  df-xps 16886  df-mre 16960  df-mrc 16961  df-acs 16963  df-mgm 17968  df-sgrp 18017  df-mnd 18028  df-submnd 18073  df-mulg 18343  df-cntz 18565  df-cmn 19026  df-psmet 20209  df-xmet 20210  df-met 20211  df-bl 20212  df-mopn 20213  df-fbas 20214  df-fg 20215  df-cnfld 20218  df-top 21645  df-topon 21662  df-topsp 21684  df-bases 21697  df-cld 21770  df-ntr 21771  df-cls 21772  df-nei 21849  df-lp 21887  df-perf 21888  df-cn 21978  df-cnp 21979  df-haus 22066  df-cmp 22138  df-tx 22313  df-hmeo 22506  df-fil 22597  df-fm 22689  df-flim 22690  df-flf 22691  df-xms 23073  df-ms 23074  df-tms 23075  df-cncf 23630  df-limc 24618  df-dv 24619  df-ulm 25124  df-log 25300  df-cxp 25301  df-atan 25605  df-em 25730  df-mu 25838
This theorem is referenced by:  mulog2sumlem3  26272
  Copyright terms: Public domain W3C validator