Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1degltdimlem Structured version   Visualization version   GIF version

Theorem ply1degltdimlem 33635
Description: Lemma for ply1degltdim 33636. (Contributed by Thierry Arnoux, 20-Feb-2025.)
Hypotheses
Ref Expression
ply1degltdim.p 𝑃 = (Poly1𝑅)
ply1degltdim.d 𝐷 = (deg1𝑅)
ply1degltdim.s 𝑆 = (𝐷 “ (-∞[,)𝑁))
ply1degltdim.n (𝜑𝑁 ∈ ℕ0)
ply1degltdim.r (𝜑𝑅 ∈ DivRing)
ply1degltdim.e 𝐸 = (𝑃s 𝑆)
ply1degltdimlem.f 𝐹 = (𝑛 ∈ (0..^𝑁) ↦ (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)))
Assertion
Ref Expression
ply1degltdimlem (𝜑 → ran 𝐹 ∈ (LBasis‘𝐸))
Distinct variable groups:   𝑛,𝐸   𝑛,𝐹   𝑛,𝑁   𝑃,𝑛   𝑅,𝑛   𝑆,𝑛   𝜑,𝑛
Allowed substitution hint:   𝐷(𝑛)

Proof of Theorem ply1degltdimlem
Dummy variables 𝑎 𝑖 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ply1degltdim.p . . . . . 6 𝑃 = (Poly1𝑅)
2 eqid 2740 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
3 ply1degltdim.n . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
43ad3antrrr 729 . . . . . 6 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑁 ∈ ℕ0)
5 ply1degltdim.r . . . . . . . 8 (𝜑𝑅 ∈ DivRing)
65drngringd 20759 . . . . . . 7 (𝜑𝑅 ∈ Ring)
76ad3antrrr 729 . . . . . 6 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑅 ∈ Ring)
8 ply1degltdimlem.f . . . . . 6 𝐹 = (𝑛 ∈ (0..^𝑁) ↦ (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)))
9 eqid 2740 . . . . . 6 (0g𝑅) = (0g𝑅)
10 eqid 2740 . . . . . 6 (0g𝑃) = (0g𝑃)
11 elmapi 8907 . . . . . . . . 9 (𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁)) → 𝑎:(0..^𝑁)⟶(Base‘(Scalar‘𝑃)))
1211adantl 481 . . . . . . . 8 ((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) → 𝑎:(0..^𝑁)⟶(Base‘(Scalar‘𝑃)))
131ply1sca 22275 . . . . . . . . . . . 12 (𝑅 ∈ DivRing → 𝑅 = (Scalar‘𝑃))
145, 13syl 17 . . . . . . . . . . 11 (𝜑𝑅 = (Scalar‘𝑃))
1514fveq2d 6924 . . . . . . . . . 10 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
1615adantr 480 . . . . . . . . 9 ((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
1716feq3d 6734 . . . . . . . 8 ((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) → (𝑎:(0..^𝑁)⟶(Base‘𝑅) ↔ 𝑎:(0..^𝑁)⟶(Base‘(Scalar‘𝑃))))
1812, 17mpbird 257 . . . . . . 7 ((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) → 𝑎:(0..^𝑁)⟶(Base‘𝑅))
1918ad2antrr 725 . . . . . 6 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑎:(0..^𝑁)⟶(Base‘𝑅))
20 simpr 484 . . . . . . 7 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸))
21 ovexd 7483 . . . . . . . 8 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → (0..^𝑁) ∈ V)
221, 5ply1lvec 33550 . . . . . . . . . . . 12 (𝜑𝑃 ∈ LVec)
2322lveclmodd 21129 . . . . . . . . . . 11 (𝜑𝑃 ∈ LMod)
24 ply1degltdim.d . . . . . . . . . . . 12 𝐷 = (deg1𝑅)
25 ply1degltdim.s . . . . . . . . . . . 12 𝑆 = (𝐷 “ (-∞[,)𝑁))
261, 24, 25, 3, 6ply1degltlss 33582 . . . . . . . . . . 11 (𝜑𝑆 ∈ (LSubSp‘𝑃))
27 eqid 2740 . . . . . . . . . . . 12 (LSubSp‘𝑃) = (LSubSp‘𝑃)
2827lsssubg 20978 . . . . . . . . . . 11 ((𝑃 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑃)) → 𝑆 ∈ (SubGrp‘𝑃))
2923, 26, 28syl2anc 583 . . . . . . . . . 10 (𝜑𝑆 ∈ (SubGrp‘𝑃))
30 subgsubm 19188 . . . . . . . . . 10 (𝑆 ∈ (SubGrp‘𝑃) → 𝑆 ∈ (SubMnd‘𝑃))
3129, 30syl 17 . . . . . . . . 9 (𝜑𝑆 ∈ (SubMnd‘𝑃))
3231ad3antrrr 729 . . . . . . . 8 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑆 ∈ (SubMnd‘𝑃))
33 eqid 2740 . . . . . . . . . . . . . . 15 (Base‘𝑃) = (Base‘𝑃)
3424, 1, 33deg1xrf 26140 . . . . . . . . . . . . . 14 𝐷:(Base‘𝑃)⟶ℝ*
35 ffn 6747 . . . . . . . . . . . . . 14 (𝐷:(Base‘𝑃)⟶ℝ*𝐷 Fn (Base‘𝑃))
3634, 35mp1i 13 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝐷 Fn (Base‘𝑃))
37 eqid 2740 . . . . . . . . . . . . . 14 (Scalar‘𝑃) = (Scalar‘𝑃)
38 eqid 2740 . . . . . . . . . . . . . 14 ( ·𝑠𝑃) = ( ·𝑠𝑃)
39 eqid 2740 . . . . . . . . . . . . . 14 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
4023ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑃 ∈ LMod)
41 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑘 ∈ (Base‘(Scalar‘𝑃)))
4233, 27lssss 20957 . . . . . . . . . . . . . . . . . . 19 (𝑆 ∈ (LSubSp‘𝑃) → 𝑆 ⊆ (Base‘𝑃))
4326, 42syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑆 ⊆ (Base‘𝑃))
44 ply1degltdim.e . . . . . . . . . . . . . . . . . . 19 𝐸 = (𝑃s 𝑆)
4544, 33ressbas2 17296 . . . . . . . . . . . . . . . . . 18 (𝑆 ⊆ (Base‘𝑃) → 𝑆 = (Base‘𝐸))
4643, 45syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑆 = (Base‘𝐸))
4746, 43eqsstrrd 4048 . . . . . . . . . . . . . . . 16 (𝜑 → (Base‘𝐸) ⊆ (Base‘𝑃))
4847sselda 4008 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝐸)) → 𝑥 ∈ (Base‘𝑃))
4948adantlr 714 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑥 ∈ (Base‘𝑃))
5033, 37, 38, 39, 40, 41, 49lmodvscld 20899 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝑘( ·𝑠𝑃)𝑥) ∈ (Base‘𝑃))
51 mnfxr 11347 . . . . . . . . . . . . . . 15 -∞ ∈ ℝ*
5251a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → -∞ ∈ ℝ*)
533nn0red 12614 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℝ)
5453rexrd 11340 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℝ*)
5554ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑁 ∈ ℝ*)
5634a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝐷:(Base‘𝑃)⟶ℝ*)
5756, 50ffvelcdmd 7119 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝐷‘(𝑘( ·𝑠𝑃)𝑥)) ∈ ℝ*)
5857mnfled 13198 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → -∞ ≤ (𝐷‘(𝑘( ·𝑠𝑃)𝑥)))
5956, 49ffvelcdmd 7119 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝐷𝑥) ∈ ℝ*)
606ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑅 ∈ Ring)
6115ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
6241, 61eleqtrrd 2847 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑘 ∈ (Base‘𝑅))
631, 24, 60, 33, 2, 38, 62, 49deg1vscale 26163 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝐷‘(𝑘( ·𝑠𝑃)𝑥)) ≤ (𝐷𝑥))
64 simpll 766 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝜑)
65 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑥 ∈ (Base‘𝐸))
6646ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑆 = (Base‘𝐸))
6765, 66eleqtrrd 2847 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑥𝑆)
6851a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑆) → -∞ ∈ ℝ*)
6954adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑆) → 𝑁 ∈ ℝ*)
7034, 35mp1i 13 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝑆) → 𝐷 Fn (Base‘𝑃))
71 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝑆) → 𝑥𝑆)
7271, 25eleqtrdi 2854 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝑆) → 𝑥 ∈ (𝐷 “ (-∞[,)𝑁)))
73 elpreima 7091 . . . . . . . . . . . . . . . . . . 19 (𝐷 Fn (Base‘𝑃) → (𝑥 ∈ (𝐷 “ (-∞[,)𝑁)) ↔ (𝑥 ∈ (Base‘𝑃) ∧ (𝐷𝑥) ∈ (-∞[,)𝑁))))
7473simplbda 499 . . . . . . . . . . . . . . . . . 18 ((𝐷 Fn (Base‘𝑃) ∧ 𝑥 ∈ (𝐷 “ (-∞[,)𝑁))) → (𝐷𝑥) ∈ (-∞[,)𝑁))
7570, 72, 74syl2anc 583 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑆) → (𝐷𝑥) ∈ (-∞[,)𝑁))
76 elico1 13450 . . . . . . . . . . . . . . . . . . 19 ((-∞ ∈ ℝ*𝑁 ∈ ℝ*) → ((𝐷𝑥) ∈ (-∞[,)𝑁) ↔ ((𝐷𝑥) ∈ ℝ* ∧ -∞ ≤ (𝐷𝑥) ∧ (𝐷𝑥) < 𝑁)))
7776biimpa 476 . . . . . . . . . . . . . . . . . 18 (((-∞ ∈ ℝ*𝑁 ∈ ℝ*) ∧ (𝐷𝑥) ∈ (-∞[,)𝑁)) → ((𝐷𝑥) ∈ ℝ* ∧ -∞ ≤ (𝐷𝑥) ∧ (𝐷𝑥) < 𝑁))
7877simp3d 1144 . . . . . . . . . . . . . . . . 17 (((-∞ ∈ ℝ*𝑁 ∈ ℝ*) ∧ (𝐷𝑥) ∈ (-∞[,)𝑁)) → (𝐷𝑥) < 𝑁)
7968, 69, 75, 78syl21anc 837 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑆) → (𝐷𝑥) < 𝑁)
8064, 67, 79syl2anc 583 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝐷𝑥) < 𝑁)
8157, 59, 55, 63, 80xrlelttrd 13222 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝐷‘(𝑘( ·𝑠𝑃)𝑥)) < 𝑁)
8252, 55, 57, 58, 81elicod 13457 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝐷‘(𝑘( ·𝑠𝑃)𝑥)) ∈ (-∞[,)𝑁))
8336, 50, 82elpreimad 7092 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝑘( ·𝑠𝑃)𝑥) ∈ (𝐷 “ (-∞[,)𝑁)))
8483, 25eleqtrrdi 2855 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝑘( ·𝑠𝑃)𝑥) ∈ 𝑆)
8584anasss 466 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑥 ∈ (Base‘𝐸))) → (𝑘( ·𝑠𝑃)𝑥) ∈ 𝑆)
8685ad5ant15 758 . . . . . . . . 9 (((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑥 ∈ (Base‘𝐸))) → (𝑘( ·𝑠𝑃)𝑥) ∈ 𝑆)
8712ad2antrr 725 . . . . . . . . 9 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑎:(0..^𝑁)⟶(Base‘(Scalar‘𝑃)))
8834, 35mp1i 13 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (0..^𝑁)) → 𝐷 Fn (Base‘𝑃))
89 eqid 2740 . . . . . . . . . . . . . . . 16 (mulGrp‘𝑃) = (mulGrp‘𝑃)
9089, 33mgpbas 20167 . . . . . . . . . . . . . . 15 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
91 eqid 2740 . . . . . . . . . . . . . . 15 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
921ply1ring 22270 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
9389ringmgp 20266 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
946, 92, 933syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (mulGrp‘𝑃) ∈ Mnd)
9594adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑁)) → (mulGrp‘𝑃) ∈ Mnd)
96 elfzonn0 13761 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (0..^𝑁) → 𝑛 ∈ ℕ0)
9796adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑁)) → 𝑛 ∈ ℕ0)
98 eqid 2740 . . . . . . . . . . . . . . . . . 18 (var1𝑅) = (var1𝑅)
9998, 1, 33vr1cl 22240 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Ring → (var1𝑅) ∈ (Base‘𝑃))
1006, 99syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (var1𝑅) ∈ (Base‘𝑃))
101100adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑁)) → (var1𝑅) ∈ (Base‘𝑃))
10290, 91, 95, 97, 101mulgnn0cld 19135 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃))
10351a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑁)) → -∞ ∈ ℝ*)
10454adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑁)) → 𝑁 ∈ ℝ*)
10524, 1, 33deg1xrcl 26141 . . . . . . . . . . . . . . . 16 ((𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ ℝ*)
106102, 105syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ ℝ*)
107106mnfled 13198 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑁)) → -∞ ≤ (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))))
10896nn0red 12614 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (0..^𝑁) → 𝑛 ∈ ℝ)
109108rexrd 11340 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (0..^𝑁) → 𝑛 ∈ ℝ*)
110109adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑁)) → 𝑛 ∈ ℝ*)
11124, 1, 98, 89, 91deg1pwle 26179 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝑛 ∈ ℕ0) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))) ≤ 𝑛)
1126, 96, 111syl2an 595 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))) ≤ 𝑛)
113 elfzolt2 13725 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (0..^𝑁) → 𝑛 < 𝑁)
114113adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑁)) → 𝑛 < 𝑁)
115106, 110, 104, 112, 114xrlelttrd 13222 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))) < 𝑁)
116103, 104, 106, 107, 115elicod 13457 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ (-∞[,)𝑁))
11788, 102, 116elpreimad 7092 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (𝐷 “ (-∞[,)𝑁)))
118117, 25eleqtrrdi 2855 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ 𝑆)
11946adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑁)) → 𝑆 = (Base‘𝐸))
120118, 119eleqtrd 2846 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝐸))
121120, 8fmptd 7148 . . . . . . . . . 10 (𝜑𝐹:(0..^𝑁)⟶(Base‘𝐸))
122121ad3antrrr 729 . . . . . . . . 9 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝐹:(0..^𝑁)⟶(Base‘𝐸))
123 inidm 4248 . . . . . . . . 9 ((0..^𝑁) ∩ (0..^𝑁)) = (0..^𝑁)
12486, 87, 122, 21, 21, 123off 7732 . . . . . . . 8 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → (𝑎f ( ·𝑠𝑃)𝐹):(0..^𝑁)⟶𝑆)
12521, 32, 124, 44gsumsubm 18870 . . . . . . 7 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → (𝑃 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)))
126 ringmnd 20270 . . . . . . . . . 10 (𝑃 ∈ Ring → 𝑃 ∈ Mnd)
1276, 92, 1263syl 18 . . . . . . . . 9 (𝜑𝑃 ∈ Mnd)
12834, 35mp1i 13 . . . . . . . . . . 11 (𝜑𝐷 Fn (Base‘𝑃))
12933, 10mndidcl 18787 . . . . . . . . . . . 12 (𝑃 ∈ Mnd → (0g𝑃) ∈ (Base‘𝑃))
130127, 129syl 17 . . . . . . . . . . 11 (𝜑 → (0g𝑃) ∈ (Base‘𝑃))
13151a1i 11 . . . . . . . . . . . 12 (𝜑 → -∞ ∈ ℝ*)
13224, 1, 33deg1xrcl 26141 . . . . . . . . . . . . 13 ((0g𝑃) ∈ (Base‘𝑃) → (𝐷‘(0g𝑃)) ∈ ℝ*)
133130, 132syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐷‘(0g𝑃)) ∈ ℝ*)
134133mnfled 13198 . . . . . . . . . . . 12 (𝜑 → -∞ ≤ (𝐷‘(0g𝑃)))
13524, 1, 10deg1z 26146 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → (𝐷‘(0g𝑃)) = -∞)
1366, 135syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐷‘(0g𝑃)) = -∞)
13753mnfltd 13187 . . . . . . . . . . . . 13 (𝜑 → -∞ < 𝑁)
138136, 137eqbrtrd 5188 . . . . . . . . . . . 12 (𝜑 → (𝐷‘(0g𝑃)) < 𝑁)
139131, 54, 133, 134, 138elicod 13457 . . . . . . . . . . 11 (𝜑 → (𝐷‘(0g𝑃)) ∈ (-∞[,)𝑁))
140128, 130, 139elpreimad 7092 . . . . . . . . . 10 (𝜑 → (0g𝑃) ∈ (𝐷 “ (-∞[,)𝑁)))
141140, 25eleqtrrdi 2855 . . . . . . . . 9 (𝜑 → (0g𝑃) ∈ 𝑆)
14244, 33, 10ress0g 18800 . . . . . . . . 9 ((𝑃 ∈ Mnd ∧ (0g𝑃) ∈ 𝑆𝑆 ⊆ (Base‘𝑃)) → (0g𝑃) = (0g𝐸))
143127, 141, 43, 142syl3anc 1371 . . . . . . . 8 (𝜑 → (0g𝑃) = (0g𝐸))
144143ad3antrrr 729 . . . . . . 7 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → (0g𝑃) = (0g𝐸))
14520, 125, 1443eqtr4d 2790 . . . . . 6 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → (𝑃 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝑃))
1461, 2, 4, 7, 8, 9, 10, 19, 145ply1gsumz 33584 . . . . 5 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑎 = ((0..^𝑁) × {(0g𝑅)}))
14714fveq2d 6924 . . . . . . . 8 (𝜑 → (0g𝑅) = (0g‘(Scalar‘𝑃)))
148147sneqd 4660 . . . . . . 7 (𝜑 → {(0g𝑅)} = {(0g‘(Scalar‘𝑃))})
149148xpeq2d 5730 . . . . . 6 (𝜑 → ((0..^𝑁) × {(0g𝑅)}) = ((0..^𝑁) × {(0g‘(Scalar‘𝑃))}))
150149ad3antrrr 729 . . . . 5 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → ((0..^𝑁) × {(0g𝑅)}) = ((0..^𝑁) × {(0g‘(Scalar‘𝑃))}))
151146, 150eqtrd 2780 . . . 4 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑎 = ((0..^𝑁) × {(0g‘(Scalar‘𝑃))}))
152151expl 457 . . 3 ((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) → ((𝑎 finSupp (0g‘(Scalar‘𝑃)) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑎 = ((0..^𝑁) × {(0g‘(Scalar‘𝑃))})))
153152ralrimiva 3152 . 2 (𝜑 → ∀𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))((𝑎 finSupp (0g‘(Scalar‘𝑃)) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑎 = ((0..^𝑁) × {(0g‘(Scalar‘𝑃))})))
154118, 8fmptd 7148 . . . . . 6 (𝜑𝐹:(0..^𝑁)⟶𝑆)
155154frnd 6755 . . . . 5 (𝜑 → ran 𝐹𝑆)
156 eqid 2740 . . . . . 6 (LSpan‘𝑃) = (LSpan‘𝑃)
15727, 156lspssp 21009 . . . . 5 ((𝑃 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑃) ∧ ran 𝐹𝑆) → ((LSpan‘𝑃)‘ran 𝐹) ⊆ 𝑆)
15823, 26, 155, 157syl3anc 1371 . . . 4 (𝜑 → ((LSpan‘𝑃)‘ran 𝐹) ⊆ 𝑆)
159 breq1 5169 . . . . . . . 8 (𝑎 = ((coe1𝑥) ↾ (0..^𝑁)) → (𝑎 finSupp (0g‘(Scalar‘𝑃)) ↔ ((coe1𝑥) ↾ (0..^𝑁)) finSupp (0g‘(Scalar‘𝑃))))
160 oveq1 7455 . . . . . . . . . 10 (𝑎 = ((coe1𝑥) ↾ (0..^𝑁)) → (𝑎f ( ·𝑠𝑃)𝐹) = (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹))
161160oveq2d 7464 . . . . . . . . 9 (𝑎 = ((coe1𝑥) ↾ (0..^𝑁)) → (𝑃 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (𝑃 Σg (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹)))
162161eqeq2d 2751 . . . . . . . 8 (𝑎 = ((coe1𝑥) ↾ (0..^𝑁)) → (𝑥 = (𝑃 Σg (𝑎f ( ·𝑠𝑃)𝐹)) ↔ 𝑥 = (𝑃 Σg (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹))))
163159, 162anbi12d 631 . . . . . . 7 (𝑎 = ((coe1𝑥) ↾ (0..^𝑁)) → ((𝑎 finSupp (0g‘(Scalar‘𝑃)) ∧ 𝑥 = (𝑃 Σg (𝑎f ( ·𝑠𝑃)𝐹))) ↔ (((coe1𝑥) ↾ (0..^𝑁)) finSupp (0g‘(Scalar‘𝑃)) ∧ 𝑥 = (𝑃 Σg (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹)))))
164 fvexd 6935 . . . . . . . 8 ((𝜑𝑥𝑆) → (Base‘(Scalar‘𝑃)) ∈ V)
165 ovexd 7483 . . . . . . . 8 ((𝜑𝑥𝑆) → (0..^𝑁) ∈ V)
16643sselda 4008 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → 𝑥 ∈ (Base‘𝑃))
167 eqid 2740 . . . . . . . . . . . 12 (coe1𝑥) = (coe1𝑥)
168167, 33, 1, 2coe1f 22234 . . . . . . . . . . 11 (𝑥 ∈ (Base‘𝑃) → (coe1𝑥):ℕ0⟶(Base‘𝑅))
169166, 168syl 17 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (coe1𝑥):ℕ0⟶(Base‘𝑅))
17015adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
171170feq3d 6734 . . . . . . . . . 10 ((𝜑𝑥𝑆) → ((coe1𝑥):ℕ0⟶(Base‘𝑅) ↔ (coe1𝑥):ℕ0⟶(Base‘(Scalar‘𝑃))))
172169, 171mpbid 232 . . . . . . . . 9 ((𝜑𝑥𝑆) → (coe1𝑥):ℕ0⟶(Base‘(Scalar‘𝑃)))
173 fzo0ssnn0 13797 . . . . . . . . . 10 (0..^𝑁) ⊆ ℕ0
174173a1i 11 . . . . . . . . 9 ((𝜑𝑥𝑆) → (0..^𝑁) ⊆ ℕ0)
175172, 174fssresd 6788 . . . . . . . 8 ((𝜑𝑥𝑆) → ((coe1𝑥) ↾ (0..^𝑁)):(0..^𝑁)⟶(Base‘(Scalar‘𝑃)))
176164, 165, 175elmapdd 8899 . . . . . . 7 ((𝜑𝑥𝑆) → ((coe1𝑥) ↾ (0..^𝑁)) ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁)))
177169ffund 6751 . . . . . . . . 9 ((𝜑𝑥𝑆) → Fun (coe1𝑥))
178 fzofi 14025 . . . . . . . . . 10 (0..^𝑁) ∈ Fin
179178a1i 11 . . . . . . . . 9 ((𝜑𝑥𝑆) → (0..^𝑁) ∈ Fin)
180 fvexd 6935 . . . . . . . . 9 ((𝜑𝑥𝑆) → (0g‘(Scalar‘𝑃)) ∈ V)
181177, 179, 180resfifsupp 9466 . . . . . . . 8 ((𝜑𝑥𝑆) → ((coe1𝑥) ↾ (0..^𝑁)) finSupp (0g‘(Scalar‘𝑃)))
182 ringcmn 20305 . . . . . . . . . . . 12 (𝑃 ∈ Ring → 𝑃 ∈ CMnd)
1836, 92, 1823syl 18 . . . . . . . . . . 11 (𝜑𝑃 ∈ CMnd)
184183adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝑆) → 𝑃 ∈ CMnd)
185 nn0ex 12559 . . . . . . . . . . 11 0 ∈ V
186185a1i 11 . . . . . . . . . 10 ((𝜑𝑥𝑆) → ℕ0 ∈ V)
18723ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑖 ∈ ℕ0) → 𝑃 ∈ LMod)
188172ffvelcdmda 7118 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑖 ∈ ℕ0) → ((coe1𝑥)‘𝑖) ∈ (Base‘(Scalar‘𝑃)))
1896ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑖 ∈ ℕ0) → 𝑅 ∈ Ring)
190189, 92, 933syl 18 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑖 ∈ ℕ0) → (mulGrp‘𝑃) ∈ Mnd)
191 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
192189, 99syl 17 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑖 ∈ ℕ0) → (var1𝑅) ∈ (Base‘𝑃))
19390, 91, 190, 191, 192mulgnn0cld 19135 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑖 ∈ ℕ0) → (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃))
19433, 37, 38, 39, 187, 188, 193lmodvscld 20899 . . . . . . . . . . 11 (((𝜑𝑥𝑆) ∧ 𝑖 ∈ ℕ0) → (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ (Base‘𝑃))
195 eqid 2740 . . . . . . . . . . 11 (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) = (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))
196194, 195fmptd 7148 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))):ℕ0⟶(Base‘𝑃))
197 nfv 1913 . . . . . . . . . . . 12 𝑖(𝜑𝑥𝑆)
198197, 194, 195fnmptd 6721 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) Fn ℕ0)
199 fveq2 6920 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → ((coe1𝑥)‘𝑖) = ((coe1𝑥)‘𝑗))
200 oveq1 7455 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑗(.g‘(mulGrp‘𝑃))(var1𝑅)))
201199, 200oveq12d 7466 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))) = (((coe1𝑥)‘𝑗)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))))
202 simplr 768 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → 𝑗 ∈ ℕ0)
203 ovexd 7483 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (((coe1𝑥)‘𝑗)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ V)
204195, 201, 202, 203fvmptd3 7052 . . . . . . . . . . . 12 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝑗) = (((coe1𝑥)‘𝑗)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))))
205166ad2antrr 725 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → 𝑥 ∈ (Base‘𝑃))
206 icossxr 13492 . . . . . . . . . . . . . . . . 17 (-∞[,)𝑁) ⊆ ℝ*
207206, 75sselid 4006 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑆) → (𝐷𝑥) ∈ ℝ*)
208207ad2antrr 725 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (𝐷𝑥) ∈ ℝ*)
20954ad3antrrr 729 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → 𝑁 ∈ ℝ*)
210202nn0red 12614 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → 𝑗 ∈ ℝ)
211210rexrd 11340 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → 𝑗 ∈ ℝ*)
21279ad2antrr 725 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (𝐷𝑥) < 𝑁)
213 simpr 484 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → 𝑁𝑗)
214208, 209, 211, 212, 213xrltletrd 13223 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (𝐷𝑥) < 𝑗)
21524, 1, 33, 9, 167deg1lt 26156 . . . . . . . . . . . . . 14 ((𝑥 ∈ (Base‘𝑃) ∧ 𝑗 ∈ ℕ0 ∧ (𝐷𝑥) < 𝑗) → ((coe1𝑥)‘𝑗) = (0g𝑅))
216205, 202, 214, 215syl3anc 1371 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → ((coe1𝑥)‘𝑗) = (0g𝑅))
217216oveq1d 7463 . . . . . . . . . . . 12 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (((coe1𝑥)‘𝑗)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))) = ((0g𝑅)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))))
218147ad3antrrr 729 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (0g𝑅) = (0g‘(Scalar‘𝑃)))
219218oveq1d 7463 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → ((0g𝑅)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))) = ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))))
22023ad3antrrr 729 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → 𝑃 ∈ LMod)
22194ad3antrrr 729 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (mulGrp‘𝑃) ∈ Mnd)
222100ad3antrrr 729 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (var1𝑅) ∈ (Base‘𝑃))
22390, 91, 221, 202, 222mulgnn0cld 19135 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (𝑗(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃))
224 eqid 2740 . . . . . . . . . . . . . . 15 (0g‘(Scalar‘𝑃)) = (0g‘(Scalar‘𝑃))
22533, 37, 38, 224, 10lmod0vs 20915 . . . . . . . . . . . . . 14 ((𝑃 ∈ LMod ∧ (𝑗(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃)) → ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃))
226220, 223, 225syl2anc 583 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃))
227219, 226eqtrd 2780 . . . . . . . . . . . 12 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → ((0g𝑅)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃))
228204, 217, 2273eqtrd 2784 . . . . . . . . . . 11 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝑗) = (0g𝑃))
2293nn0zd 12665 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
230229adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → 𝑁 ∈ ℤ)
231198, 228, 230suppssnn0 32812 . . . . . . . . . 10 ((𝜑𝑥𝑆) → ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) supp (0g𝑃)) ⊆ (0..^𝑁))
232186mptexd 7261 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ∈ V)
233198fnfund 6680 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → Fun (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))))
234 fvexd 6935 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (0g𝑃) ∈ V)
235 suppssfifsupp 9449 . . . . . . . . . . 11 ((((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ∈ V ∧ Fun (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ∧ (0g𝑃) ∈ V) ∧ ((0..^𝑁) ∈ Fin ∧ ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) supp (0g𝑃)) ⊆ (0..^𝑁))) → (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) finSupp (0g𝑃))
236232, 233, 234, 179, 231, 235syl32anc 1378 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) finSupp (0g𝑃))
23733, 10, 184, 186, 196, 231, 236gsumres 19955 . . . . . . . . 9 ((𝜑𝑥𝑆) → (𝑃 Σg ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ↾ (0..^𝑁))) = (𝑃 Σg (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))))
238 fvexd 6935 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → (coe1𝑥) ∈ V)
239 ovexd 7483 . . . . . . . . . . . . . 14 (𝜑 → (0..^𝑁) ∈ V)
240154, 239fexd 7264 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ V)
241240adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → 𝐹 ∈ V)
242 offres 8024 . . . . . . . . . . . 12 (((coe1𝑥) ∈ V ∧ 𝐹 ∈ V) → (((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹) ↾ (0..^𝑁)) = (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)(𝐹 ↾ (0..^𝑁))))
243238, 241, 242syl2anc 583 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹) ↾ (0..^𝑁)) = (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)(𝐹 ↾ (0..^𝑁))))
244169ffnd 6748 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑆) → (coe1𝑥) Fn ℕ0)
245154ffnd 6748 . . . . . . . . . . . . . . . 16 (𝜑𝐹 Fn (0..^𝑁))
246245adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑆) → 𝐹 Fn (0..^𝑁))
247 sseqin2 4244 . . . . . . . . . . . . . . . 16 ((0..^𝑁) ⊆ ℕ0 ↔ (ℕ0 ∩ (0..^𝑁)) = (0..^𝑁))
248173, 247mpbi 230 . . . . . . . . . . . . . . 15 (ℕ0 ∩ (0..^𝑁)) = (0..^𝑁)
249 eqidd 2741 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) → ((coe1𝑥)‘𝑗) = ((coe1𝑥)‘𝑗))
250 oveq1 7455 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗 → (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑗(.g‘(mulGrp‘𝑃))(var1𝑅)))
251 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ (0..^𝑁))
252 ovexd 7483 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → (𝑗(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ V)
2538, 250, 251, 252fvmptd3 7052 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → (𝐹𝑗) = (𝑗(.g‘(mulGrp‘𝑃))(var1𝑅)))
254244, 246, 186, 165, 248, 249, 253ofval 7725 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → (((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹)‘𝑗) = (((coe1𝑥)‘𝑗)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))))
255173, 251sselid 4006 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ ℕ0)
256 ovexd 7483 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → (((coe1𝑥)‘𝑗)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ V)
257195, 201, 255, 256fvmptd3 7052 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝑗) = (((coe1𝑥)‘𝑗)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))))
258254, 257eqtr4d 2783 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → (((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹)‘𝑗) = ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝑗))
259258ralrimiva 3152 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → ∀𝑗 ∈ (0..^𝑁)(((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹)‘𝑗) = ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝑗))
260244, 246, 186, 165, 248offn 7727 . . . . . . . . . . . . 13 ((𝜑𝑥𝑆) → ((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹) Fn (0..^𝑁))
261 ssidd 4032 . . . . . . . . . . . . 13 ((𝜑𝑥𝑆) → (0..^𝑁) ⊆ (0..^𝑁))
262 fvreseq0 7071 . . . . . . . . . . . . 13 (((((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹) Fn (0..^𝑁) ∧ (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) Fn ℕ0) ∧ ((0..^𝑁) ⊆ (0..^𝑁) ∧ (0..^𝑁) ⊆ ℕ0)) → ((((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹) ↾ (0..^𝑁)) = ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ↾ (0..^𝑁)) ↔ ∀𝑗 ∈ (0..^𝑁)(((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹)‘𝑗) = ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝑗)))
263260, 198, 261, 174, 262syl22anc 838 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → ((((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹) ↾ (0..^𝑁)) = ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ↾ (0..^𝑁)) ↔ ∀𝑗 ∈ (0..^𝑁)(((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹)‘𝑗) = ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝑗)))
264259, 263mpbird 257 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹) ↾ (0..^𝑁)) = ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ↾ (0..^𝑁)))
265 fnresdm 6699 . . . . . . . . . . . . . 14 (𝐹 Fn (0..^𝑁) → (𝐹 ↾ (0..^𝑁)) = 𝐹)
266245, 265syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐹 ↾ (0..^𝑁)) = 𝐹)
267266adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → (𝐹 ↾ (0..^𝑁)) = 𝐹)
268267oveq2d 7464 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)(𝐹 ↾ (0..^𝑁))) = (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹))
269243, 264, 2683eqtr3rd 2789 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹) = ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ↾ (0..^𝑁)))
270269oveq2d 7464 . . . . . . . . 9 ((𝜑𝑥𝑆) → (𝑃 Σg (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹)) = (𝑃 Σg ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ↾ (0..^𝑁))))
2716adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝑆) → 𝑅 ∈ Ring)
2721, 98, 33, 38, 89, 91, 167ply1coe 22323 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑃)) → 𝑥 = (𝑃 Σg (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))))
273271, 166, 272syl2anc 583 . . . . . . . . 9 ((𝜑𝑥𝑆) → 𝑥 = (𝑃 Σg (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))))
274237, 270, 2733eqtr4rd 2791 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝑥 = (𝑃 Σg (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹)))
275181, 274jca 511 . . . . . . 7 ((𝜑𝑥𝑆) → (((coe1𝑥) ↾ (0..^𝑁)) finSupp (0g‘(Scalar‘𝑃)) ∧ 𝑥 = (𝑃 Σg (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹))))
276163, 176, 275rspcedvdw 3638 . . . . . 6 ((𝜑𝑥𝑆) → ∃𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))(𝑎 finSupp (0g‘(Scalar‘𝑃)) ∧ 𝑥 = (𝑃 Σg (𝑎f ( ·𝑠𝑃)𝐹))))
277102, 8fmptd 7148 . . . . . . . 8 (𝜑𝐹:(0..^𝑁)⟶(Base‘𝑃))
278156, 33, 39, 37, 224, 38, 277, 23, 239ellspd 21845 . . . . . . 7 (𝜑 → (𝑥 ∈ ((LSpan‘𝑃)‘(𝐹 “ (0..^𝑁))) ↔ ∃𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))(𝑎 finSupp (0g‘(Scalar‘𝑃)) ∧ 𝑥 = (𝑃 Σg (𝑎f ( ·𝑠𝑃)𝐹)))))
279278adantr 480 . . . . . 6 ((𝜑𝑥𝑆) → (𝑥 ∈ ((LSpan‘𝑃)‘(𝐹 “ (0..^𝑁))) ↔ ∃𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))(𝑎 finSupp (0g‘(Scalar‘𝑃)) ∧ 𝑥 = (𝑃 Σg (𝑎f ( ·𝑠𝑃)𝐹)))))
280276, 279mpbird 257 . . . . 5 ((𝜑𝑥𝑆) → 𝑥 ∈ ((LSpan‘𝑃)‘(𝐹 “ (0..^𝑁))))
281 imadmrn 6099 . . . . . . . 8 (𝐹 “ dom 𝐹) = ran 𝐹
282154fdmd 6757 . . . . . . . . 9 (𝜑 → dom 𝐹 = (0..^𝑁))
283282imaeq2d 6089 . . . . . . . 8 (𝜑 → (𝐹 “ dom 𝐹) = (𝐹 “ (0..^𝑁)))
284281, 283eqtr3id 2794 . . . . . . 7 (𝜑 → ran 𝐹 = (𝐹 “ (0..^𝑁)))
285284fveq2d 6924 . . . . . 6 (𝜑 → ((LSpan‘𝑃)‘ran 𝐹) = ((LSpan‘𝑃)‘(𝐹 “ (0..^𝑁))))
286285adantr 480 . . . . 5 ((𝜑𝑥𝑆) → ((LSpan‘𝑃)‘ran 𝐹) = ((LSpan‘𝑃)‘(𝐹 “ (0..^𝑁))))
287280, 286eleqtrrd 2847 . . . 4 ((𝜑𝑥𝑆) → 𝑥 ∈ ((LSpan‘𝑃)‘ran 𝐹))
288158, 287eqelssd 4030 . . 3 (𝜑 → ((LSpan‘𝑃)‘ran 𝐹) = 𝑆)
289 eqid 2740 . . . . . 6 (LSpan‘𝐸) = (LSpan‘𝐸)
29044, 156, 289, 27lsslsp 21036 . . . . 5 ((𝑃 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑃) ∧ ran 𝐹𝑆) → ((LSpan‘𝐸)‘ran 𝐹) = ((LSpan‘𝑃)‘ran 𝐹))
291290eqcomd 2746 . . . 4 ((𝑃 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑃) ∧ ran 𝐹𝑆) → ((LSpan‘𝑃)‘ran 𝐹) = ((LSpan‘𝐸)‘ran 𝐹))
29223, 26, 155, 291syl3anc 1371 . . 3 (𝜑 → ((LSpan‘𝑃)‘ran 𝐹) = ((LSpan‘𝐸)‘ran 𝐹))
293288, 292, 463eqtr3d 2788 . 2 (𝜑 → ((LSpan‘𝐸)‘ran 𝐹) = (Base‘𝐸))
294 eqid 2740 . . 3 (Base‘𝐸) = (Base‘𝐸)
29524fvexi 6934 . . . . . . 7 𝐷 ∈ V
296 cnvexg 7964 . . . . . . 7 (𝐷 ∈ V → 𝐷 ∈ V)
297 imaexg 7953 . . . . . . 7 (𝐷 ∈ V → (𝐷 “ (-∞[,)𝑁)) ∈ V)
298295, 296, 297mp2b 10 . . . . . 6 (𝐷 “ (-∞[,)𝑁)) ∈ V
29925, 298eqeltri 2840 . . . . 5 𝑆 ∈ V
30044, 37resssca 17402 . . . . 5 (𝑆 ∈ V → (Scalar‘𝑃) = (Scalar‘𝐸))
301299, 300ax-mp 5 . . . 4 (Scalar‘𝑃) = (Scalar‘𝐸)
302301fveq2i 6923 . . 3 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝐸))
303 eqid 2740 . . 3 (Scalar‘𝐸) = (Scalar‘𝐸)
30444, 38ressvsca 17403 . . . 4 (𝑆 ∈ V → ( ·𝑠𝑃) = ( ·𝑠𝐸))
305299, 304ax-mp 5 . . 3 ( ·𝑠𝑃) = ( ·𝑠𝐸)
306 eqid 2740 . . 3 (0g𝐸) = (0g𝐸)
307301fveq2i 6923 . . 3 (0g‘(Scalar‘𝑃)) = (0g‘(Scalar‘𝐸))
308 eqid 2740 . . 3 (LBasis‘𝐸) = (LBasis‘𝐸)
30944, 27lsslvec 21131 . . . . 5 ((𝑃 ∈ LVec ∧ 𝑆 ∈ (LSubSp‘𝑃)) → 𝐸 ∈ LVec)
31022, 26, 309syl2anc 583 . . . 4 (𝜑𝐸 ∈ LVec)
311310lveclmodd 21129 . . 3 (𝜑𝐸 ∈ LMod)
31214, 5eqeltrrd 2845 . . . . 5 (𝜑 → (Scalar‘𝑃) ∈ DivRing)
313 drngnzr 20770 . . . . 5 ((Scalar‘𝑃) ∈ DivRing → (Scalar‘𝑃) ∈ NzRing)
314312, 313syl 17 . . . 4 (𝜑 → (Scalar‘𝑃) ∈ NzRing)
315301, 314eqeltrrid 2849 . . 3 (𝜑 → (Scalar‘𝐸) ∈ NzRing)
316120ralrimiva 3152 . . . 4 (𝜑 → ∀𝑛 ∈ (0..^𝑁)(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝐸))
317 drngnzr 20770 . . . . . . . . . 10 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
3185, 317syl 17 . . . . . . . . 9 (𝜑𝑅 ∈ NzRing)
319318ad2antrr 725 . . . . . . . 8 (((𝜑𝑛 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑅 ∈ NzRing)
32097adantr 480 . . . . . . . 8 (((𝜑𝑛 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑛 ∈ ℕ0)
321 elfzonn0 13761 . . . . . . . . 9 (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ ℕ0)
322321adantl 481 . . . . . . . 8 (((𝜑𝑛 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ ℕ0)
3231, 98, 91, 319, 320, 322ply1moneq 33576 . . . . . . 7 (((𝜑𝑛 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) ↔ 𝑛 = 𝑖))
324323biimpd 229 . . . . . 6 (((𝜑𝑛 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) → 𝑛 = 𝑖))
325324anasss 466 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (0..^𝑁) ∧ 𝑖 ∈ (0..^𝑁))) → ((𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) → 𝑛 = 𝑖))
326325ralrimivva 3208 . . . 4 (𝜑 → ∀𝑛 ∈ (0..^𝑁)∀𝑖 ∈ (0..^𝑁)((𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) → 𝑛 = 𝑖))
327 oveq1 7455 . . . . 5 (𝑛 = 𝑖 → (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))
3288, 327f1mpt 7298 . . . 4 (𝐹:(0..^𝑁)–1-1→(Base‘𝐸) ↔ (∀𝑛 ∈ (0..^𝑁)(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝐸) ∧ ∀𝑛 ∈ (0..^𝑁)∀𝑖 ∈ (0..^𝑁)((𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) → 𝑛 = 𝑖)))
329316, 326, 328sylanbrc 582 . . 3 (𝜑𝐹:(0..^𝑁)–1-1→(Base‘𝐸))
330294, 302, 303, 305, 306, 307, 308, 289, 311, 315, 239, 329islbs5 33373 . 2 (𝜑 → (ran 𝐹 ∈ (LBasis‘𝐸) ↔ (∀𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))((𝑎 finSupp (0g‘(Scalar‘𝑃)) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑎 = ((0..^𝑁) × {(0g‘(Scalar‘𝑃))})) ∧ ((LSpan‘𝐸)‘ran 𝐹) = (Base‘𝐸))))
331153, 293, 330mpbir2and 712 1 (𝜑 → ran 𝐹 ∈ (LBasis‘𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  cin 3975  wss 3976  {csn 4648   class class class wbr 5166  cmpt 5249   × cxp 5698  ccnv 5699  dom cdm 5700  ran crn 5701  cres 5702  cima 5703  Fun wfun 6567   Fn wfn 6568  wf 6569  1-1wf1 6570  cfv 6573  (class class class)co 7448  f cof 7712   supp csupp 8201  m cmap 8884  Fincfn 9003   finSupp cfsupp 9431  0cc0 11184  -∞cmnf 11322  *cxr 11323   < clt 11324  cle 11325  0cn0 12553  cz 12639  [,)cico 13409  ..^cfzo 13711  Basecbs 17258  s cress 17287  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499   Σg cgsu 17500  Mndcmnd 18772  SubMndcsubmnd 18817  .gcmg 19107  SubGrpcsubg 19160  CMndccmn 19822  mulGrpcmgp 20161  Ringcrg 20260  NzRingcnzr 20538  DivRingcdr 20751  LModclmod 20880  LSubSpclss 20952  LSpanclspn 20992  LBasisclbs 21096  LVecclvec 21124  var1cv1 22198  Poly1cpl1 22199  coe1cco1 22200  deg1cdg1 26113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-ico 13413  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-srg 20214  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-nzr 20539  df-subrng 20572  df-subrg 20597  df-drng 20753  df-lmod 20882  df-lss 20953  df-lsp 20993  df-lmhm 21044  df-lbs 21097  df-lvec 21125  df-sra 21195  df-rgmod 21196  df-cnfld 21388  df-dsmm 21775  df-frlm 21790  df-uvc 21826  df-lindf 21849  df-linds 21850  df-psr 21952  df-mvr 21953  df-mpl 21954  df-opsr 21956  df-psr1 22202  df-vr1 22203  df-ply1 22204  df-coe1 22205  df-mdeg 26114  df-deg1 26115
This theorem is referenced by:  ply1degltdim  33636
  Copyright terms: Public domain W3C validator