Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1degltdimlem Structured version   Visualization version   GIF version

Theorem ply1degltdimlem 33390
Description: Lemma for ply1degltdim 33391. (Contributed by Thierry Arnoux, 20-Feb-2025.)
Hypotheses
Ref Expression
ply1degltdim.p 𝑃 = (Poly1𝑅)
ply1degltdim.d 𝐷 = ( deg1𝑅)
ply1degltdim.s 𝑆 = (𝐷 “ (-∞[,)𝑁))
ply1degltdim.n (𝜑𝑁 ∈ ℕ0)
ply1degltdim.r (𝜑𝑅 ∈ DivRing)
ply1degltdim.e 𝐸 = (𝑃s 𝑆)
ply1degltdimlem.f 𝐹 = (𝑛 ∈ (0..^𝑁) ↦ (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)))
Assertion
Ref Expression
ply1degltdimlem (𝜑 → ran 𝐹 ∈ (LBasis‘𝐸))
Distinct variable groups:   𝑛,𝐸   𝑛,𝐹   𝑛,𝑁   𝑃,𝑛   𝑅,𝑛   𝑆,𝑛   𝜑,𝑛
Allowed substitution hint:   𝐷(𝑛)

Proof of Theorem ply1degltdimlem
Dummy variables 𝑎 𝑖 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ply1degltdim.p . . . . . 6 𝑃 = (Poly1𝑅)
2 eqid 2725 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
3 ply1degltdim.n . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
43ad3antrrr 728 . . . . . 6 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑁 ∈ ℕ0)
5 ply1degltdim.r . . . . . . . 8 (𝜑𝑅 ∈ DivRing)
65drngringd 20636 . . . . . . 7 (𝜑𝑅 ∈ Ring)
76ad3antrrr 728 . . . . . 6 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑅 ∈ Ring)
8 ply1degltdimlem.f . . . . . 6 𝐹 = (𝑛 ∈ (0..^𝑁) ↦ (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)))
9 eqid 2725 . . . . . 6 (0g𝑅) = (0g𝑅)
10 eqid 2725 . . . . . 6 (0g𝑃) = (0g𝑃)
11 elmapi 8866 . . . . . . . . 9 (𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁)) → 𝑎:(0..^𝑁)⟶(Base‘(Scalar‘𝑃)))
1211adantl 480 . . . . . . . 8 ((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) → 𝑎:(0..^𝑁)⟶(Base‘(Scalar‘𝑃)))
131ply1sca 22180 . . . . . . . . . . . 12 (𝑅 ∈ DivRing → 𝑅 = (Scalar‘𝑃))
145, 13syl 17 . . . . . . . . . . 11 (𝜑𝑅 = (Scalar‘𝑃))
1514fveq2d 6898 . . . . . . . . . 10 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
1615adantr 479 . . . . . . . . 9 ((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
1716feq3d 6708 . . . . . . . 8 ((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) → (𝑎:(0..^𝑁)⟶(Base‘𝑅) ↔ 𝑎:(0..^𝑁)⟶(Base‘(Scalar‘𝑃))))
1812, 17mpbird 256 . . . . . . 7 ((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) → 𝑎:(0..^𝑁)⟶(Base‘𝑅))
1918ad2antrr 724 . . . . . 6 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑎:(0..^𝑁)⟶(Base‘𝑅))
20 simpr 483 . . . . . . 7 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸))
21 ovexd 7452 . . . . . . . 8 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → (0..^𝑁) ∈ V)
221, 5ply1lvec 33317 . . . . . . . . . . . 12 (𝜑𝑃 ∈ LVec)
2322lveclmodd 20996 . . . . . . . . . . 11 (𝜑𝑃 ∈ LMod)
24 ply1degltdim.d . . . . . . . . . . . 12 𝐷 = ( deg1𝑅)
25 ply1degltdim.s . . . . . . . . . . . 12 𝑆 = (𝐷 “ (-∞[,)𝑁))
261, 24, 25, 3, 6ply1degltlss 33337 . . . . . . . . . . 11 (𝜑𝑆 ∈ (LSubSp‘𝑃))
27 eqid 2725 . . . . . . . . . . . 12 (LSubSp‘𝑃) = (LSubSp‘𝑃)
2827lsssubg 20845 . . . . . . . . . . 11 ((𝑃 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑃)) → 𝑆 ∈ (SubGrp‘𝑃))
2923, 26, 28syl2anc 582 . . . . . . . . . 10 (𝜑𝑆 ∈ (SubGrp‘𝑃))
30 subgsubm 19107 . . . . . . . . . 10 (𝑆 ∈ (SubGrp‘𝑃) → 𝑆 ∈ (SubMnd‘𝑃))
3129, 30syl 17 . . . . . . . . 9 (𝜑𝑆 ∈ (SubMnd‘𝑃))
3231ad3antrrr 728 . . . . . . . 8 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑆 ∈ (SubMnd‘𝑃))
33 eqid 2725 . . . . . . . . . . . . . . 15 (Base‘𝑃) = (Base‘𝑃)
3424, 1, 33deg1xrf 26047 . . . . . . . . . . . . . 14 𝐷:(Base‘𝑃)⟶ℝ*
35 ffn 6721 . . . . . . . . . . . . . 14 (𝐷:(Base‘𝑃)⟶ℝ*𝐷 Fn (Base‘𝑃))
3634, 35mp1i 13 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝐷 Fn (Base‘𝑃))
37 eqid 2725 . . . . . . . . . . . . . 14 (Scalar‘𝑃) = (Scalar‘𝑃)
38 eqid 2725 . . . . . . . . . . . . . 14 ( ·𝑠𝑃) = ( ·𝑠𝑃)
39 eqid 2725 . . . . . . . . . . . . . 14 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
4023ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑃 ∈ LMod)
41 simplr 767 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑘 ∈ (Base‘(Scalar‘𝑃)))
4233, 27lssss 20824 . . . . . . . . . . . . . . . . . . 19 (𝑆 ∈ (LSubSp‘𝑃) → 𝑆 ⊆ (Base‘𝑃))
4326, 42syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑆 ⊆ (Base‘𝑃))
44 ply1degltdim.e . . . . . . . . . . . . . . . . . . 19 𝐸 = (𝑃s 𝑆)
4544, 33ressbas2 17217 . . . . . . . . . . . . . . . . . 18 (𝑆 ⊆ (Base‘𝑃) → 𝑆 = (Base‘𝐸))
4643, 45syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑆 = (Base‘𝐸))
4746, 43eqsstrrd 4017 . . . . . . . . . . . . . . . 16 (𝜑 → (Base‘𝐸) ⊆ (Base‘𝑃))
4847sselda 3977 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝐸)) → 𝑥 ∈ (Base‘𝑃))
4948adantlr 713 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑥 ∈ (Base‘𝑃))
5033, 37, 38, 39, 40, 41, 49lmodvscld 20766 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝑘( ·𝑠𝑃)𝑥) ∈ (Base‘𝑃))
51 mnfxr 11301 . . . . . . . . . . . . . . 15 -∞ ∈ ℝ*
5251a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → -∞ ∈ ℝ*)
533nn0red 12563 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℝ)
5453rexrd 11294 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℝ*)
5554ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑁 ∈ ℝ*)
5634a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝐷:(Base‘𝑃)⟶ℝ*)
5756, 50ffvelcdmd 7092 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝐷‘(𝑘( ·𝑠𝑃)𝑥)) ∈ ℝ*)
5857mnfled 13147 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → -∞ ≤ (𝐷‘(𝑘( ·𝑠𝑃)𝑥)))
5956, 49ffvelcdmd 7092 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝐷𝑥) ∈ ℝ*)
606ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑅 ∈ Ring)
6115ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
6241, 61eleqtrrd 2828 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑘 ∈ (Base‘𝑅))
631, 24, 60, 33, 2, 38, 62, 49deg1vscale 26070 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝐷‘(𝑘( ·𝑠𝑃)𝑥)) ≤ (𝐷𝑥))
64 simpll 765 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝜑)
65 simpr 483 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑥 ∈ (Base‘𝐸))
6646ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑆 = (Base‘𝐸))
6765, 66eleqtrrd 2828 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑥𝑆)
6851a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑆) → -∞ ∈ ℝ*)
6954adantr 479 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑆) → 𝑁 ∈ ℝ*)
7034, 35mp1i 13 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝑆) → 𝐷 Fn (Base‘𝑃))
71 simpr 483 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝑆) → 𝑥𝑆)
7271, 25eleqtrdi 2835 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝑆) → 𝑥 ∈ (𝐷 “ (-∞[,)𝑁)))
73 elpreima 7064 . . . . . . . . . . . . . . . . . . 19 (𝐷 Fn (Base‘𝑃) → (𝑥 ∈ (𝐷 “ (-∞[,)𝑁)) ↔ (𝑥 ∈ (Base‘𝑃) ∧ (𝐷𝑥) ∈ (-∞[,)𝑁))))
7473simplbda 498 . . . . . . . . . . . . . . . . . 18 ((𝐷 Fn (Base‘𝑃) ∧ 𝑥 ∈ (𝐷 “ (-∞[,)𝑁))) → (𝐷𝑥) ∈ (-∞[,)𝑁))
7570, 72, 74syl2anc 582 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑆) → (𝐷𝑥) ∈ (-∞[,)𝑁))
76 elico1 13399 . . . . . . . . . . . . . . . . . . 19 ((-∞ ∈ ℝ*𝑁 ∈ ℝ*) → ((𝐷𝑥) ∈ (-∞[,)𝑁) ↔ ((𝐷𝑥) ∈ ℝ* ∧ -∞ ≤ (𝐷𝑥) ∧ (𝐷𝑥) < 𝑁)))
7776biimpa 475 . . . . . . . . . . . . . . . . . 18 (((-∞ ∈ ℝ*𝑁 ∈ ℝ*) ∧ (𝐷𝑥) ∈ (-∞[,)𝑁)) → ((𝐷𝑥) ∈ ℝ* ∧ -∞ ≤ (𝐷𝑥) ∧ (𝐷𝑥) < 𝑁))
7877simp3d 1141 . . . . . . . . . . . . . . . . 17 (((-∞ ∈ ℝ*𝑁 ∈ ℝ*) ∧ (𝐷𝑥) ∈ (-∞[,)𝑁)) → (𝐷𝑥) < 𝑁)
7968, 69, 75, 78syl21anc 836 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑆) → (𝐷𝑥) < 𝑁)
8064, 67, 79syl2anc 582 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝐷𝑥) < 𝑁)
8157, 59, 55, 63, 80xrlelttrd 13171 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝐷‘(𝑘( ·𝑠𝑃)𝑥)) < 𝑁)
8252, 55, 57, 58, 81elicod 13406 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝐷‘(𝑘( ·𝑠𝑃)𝑥)) ∈ (-∞[,)𝑁))
8336, 50, 82elpreimad 7065 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝑘( ·𝑠𝑃)𝑥) ∈ (𝐷 “ (-∞[,)𝑁)))
8483, 25eleqtrrdi 2836 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝑘( ·𝑠𝑃)𝑥) ∈ 𝑆)
8584anasss 465 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑥 ∈ (Base‘𝐸))) → (𝑘( ·𝑠𝑃)𝑥) ∈ 𝑆)
8685ad5ant15 757 . . . . . . . . 9 (((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑥 ∈ (Base‘𝐸))) → (𝑘( ·𝑠𝑃)𝑥) ∈ 𝑆)
8712ad2antrr 724 . . . . . . . . 9 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑎:(0..^𝑁)⟶(Base‘(Scalar‘𝑃)))
8834, 35mp1i 13 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (0..^𝑁)) → 𝐷 Fn (Base‘𝑃))
89 eqid 2725 . . . . . . . . . . . . . . . 16 (mulGrp‘𝑃) = (mulGrp‘𝑃)
9089, 33mgpbas 20084 . . . . . . . . . . . . . . 15 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
91 eqid 2725 . . . . . . . . . . . . . . 15 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
921ply1ring 22175 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
9389ringmgp 20183 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
946, 92, 933syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (mulGrp‘𝑃) ∈ Mnd)
9594adantr 479 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑁)) → (mulGrp‘𝑃) ∈ Mnd)
96 elfzonn0 13709 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (0..^𝑁) → 𝑛 ∈ ℕ0)
9796adantl 480 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑁)) → 𝑛 ∈ ℕ0)
98 eqid 2725 . . . . . . . . . . . . . . . . . 18 (var1𝑅) = (var1𝑅)
9998, 1, 33vr1cl 22145 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Ring → (var1𝑅) ∈ (Base‘𝑃))
1006, 99syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (var1𝑅) ∈ (Base‘𝑃))
101100adantr 479 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑁)) → (var1𝑅) ∈ (Base‘𝑃))
10290, 91, 95, 97, 101mulgnn0cld 19054 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃))
10351a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑁)) → -∞ ∈ ℝ*)
10454adantr 479 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑁)) → 𝑁 ∈ ℝ*)
10524, 1, 33deg1xrcl 26048 . . . . . . . . . . . . . . . 16 ((𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ ℝ*)
106102, 105syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ ℝ*)
107106mnfled 13147 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑁)) → -∞ ≤ (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))))
10896nn0red 12563 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (0..^𝑁) → 𝑛 ∈ ℝ)
109108rexrd 11294 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (0..^𝑁) → 𝑛 ∈ ℝ*)
110109adantl 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑁)) → 𝑛 ∈ ℝ*)
11124, 1, 98, 89, 91deg1pwle 26085 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝑛 ∈ ℕ0) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))) ≤ 𝑛)
1126, 96, 111syl2an 594 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))) ≤ 𝑛)
113 elfzolt2 13673 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (0..^𝑁) → 𝑛 < 𝑁)
114113adantl 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑁)) → 𝑛 < 𝑁)
115106, 110, 104, 112, 114xrlelttrd 13171 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))) < 𝑁)
116103, 104, 106, 107, 115elicod 13406 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ (-∞[,)𝑁))
11788, 102, 116elpreimad 7065 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (𝐷 “ (-∞[,)𝑁)))
118117, 25eleqtrrdi 2836 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ 𝑆)
11946adantr 479 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑁)) → 𝑆 = (Base‘𝐸))
120118, 119eleqtrd 2827 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝐸))
121120, 8fmptd 7121 . . . . . . . . . 10 (𝜑𝐹:(0..^𝑁)⟶(Base‘𝐸))
122121ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝐹:(0..^𝑁)⟶(Base‘𝐸))
123 inidm 4218 . . . . . . . . 9 ((0..^𝑁) ∩ (0..^𝑁)) = (0..^𝑁)
12486, 87, 122, 21, 21, 123off 7701 . . . . . . . 8 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → (𝑎f ( ·𝑠𝑃)𝐹):(0..^𝑁)⟶𝑆)
12521, 32, 124, 44gsumsubm 18791 . . . . . . 7 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → (𝑃 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)))
126 ringmnd 20187 . . . . . . . . . 10 (𝑃 ∈ Ring → 𝑃 ∈ Mnd)
1276, 92, 1263syl 18 . . . . . . . . 9 (𝜑𝑃 ∈ Mnd)
12834, 35mp1i 13 . . . . . . . . . . 11 (𝜑𝐷 Fn (Base‘𝑃))
12933, 10mndidcl 18708 . . . . . . . . . . . 12 (𝑃 ∈ Mnd → (0g𝑃) ∈ (Base‘𝑃))
130127, 129syl 17 . . . . . . . . . . 11 (𝜑 → (0g𝑃) ∈ (Base‘𝑃))
13151a1i 11 . . . . . . . . . . . 12 (𝜑 → -∞ ∈ ℝ*)
13224, 1, 33deg1xrcl 26048 . . . . . . . . . . . . 13 ((0g𝑃) ∈ (Base‘𝑃) → (𝐷‘(0g𝑃)) ∈ ℝ*)
133130, 132syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐷‘(0g𝑃)) ∈ ℝ*)
134133mnfled 13147 . . . . . . . . . . . 12 (𝜑 → -∞ ≤ (𝐷‘(0g𝑃)))
13524, 1, 10deg1z 26053 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → (𝐷‘(0g𝑃)) = -∞)
1366, 135syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐷‘(0g𝑃)) = -∞)
13753mnfltd 13136 . . . . . . . . . . . . 13 (𝜑 → -∞ < 𝑁)
138136, 137eqbrtrd 5170 . . . . . . . . . . . 12 (𝜑 → (𝐷‘(0g𝑃)) < 𝑁)
139131, 54, 133, 134, 138elicod 13406 . . . . . . . . . . 11 (𝜑 → (𝐷‘(0g𝑃)) ∈ (-∞[,)𝑁))
140128, 130, 139elpreimad 7065 . . . . . . . . . 10 (𝜑 → (0g𝑃) ∈ (𝐷 “ (-∞[,)𝑁)))
141140, 25eleqtrrdi 2836 . . . . . . . . 9 (𝜑 → (0g𝑃) ∈ 𝑆)
14244, 33, 10ress0g 18721 . . . . . . . . 9 ((𝑃 ∈ Mnd ∧ (0g𝑃) ∈ 𝑆𝑆 ⊆ (Base‘𝑃)) → (0g𝑃) = (0g𝐸))
143127, 141, 43, 142syl3anc 1368 . . . . . . . 8 (𝜑 → (0g𝑃) = (0g𝐸))
144143ad3antrrr 728 . . . . . . 7 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → (0g𝑃) = (0g𝐸))
14520, 125, 1443eqtr4d 2775 . . . . . 6 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → (𝑃 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝑃))
1461, 2, 4, 7, 8, 9, 10, 19, 145ply1gsumz 33339 . . . . 5 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑎 = ((0..^𝑁) × {(0g𝑅)}))
14714fveq2d 6898 . . . . . . . 8 (𝜑 → (0g𝑅) = (0g‘(Scalar‘𝑃)))
148147sneqd 4641 . . . . . . 7 (𝜑 → {(0g𝑅)} = {(0g‘(Scalar‘𝑃))})
149148xpeq2d 5707 . . . . . 6 (𝜑 → ((0..^𝑁) × {(0g𝑅)}) = ((0..^𝑁) × {(0g‘(Scalar‘𝑃))}))
150149ad3antrrr 728 . . . . 5 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → ((0..^𝑁) × {(0g𝑅)}) = ((0..^𝑁) × {(0g‘(Scalar‘𝑃))}))
151146, 150eqtrd 2765 . . . 4 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑎 = ((0..^𝑁) × {(0g‘(Scalar‘𝑃))}))
152151expl 456 . . 3 ((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) → ((𝑎 finSupp (0g‘(Scalar‘𝑃)) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑎 = ((0..^𝑁) × {(0g‘(Scalar‘𝑃))})))
153152ralrimiva 3136 . 2 (𝜑 → ∀𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))((𝑎 finSupp (0g‘(Scalar‘𝑃)) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑎 = ((0..^𝑁) × {(0g‘(Scalar‘𝑃))})))
154118, 8fmptd 7121 . . . . . 6 (𝜑𝐹:(0..^𝑁)⟶𝑆)
155154frnd 6729 . . . . 5 (𝜑 → ran 𝐹𝑆)
156 eqid 2725 . . . . . 6 (LSpan‘𝑃) = (LSpan‘𝑃)
15727, 156lspssp 20876 . . . . 5 ((𝑃 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑃) ∧ ran 𝐹𝑆) → ((LSpan‘𝑃)‘ran 𝐹) ⊆ 𝑆)
15823, 26, 155, 157syl3anc 1368 . . . 4 (𝜑 → ((LSpan‘𝑃)‘ran 𝐹) ⊆ 𝑆)
159 breq1 5151 . . . . . . . 8 (𝑎 = ((coe1𝑥) ↾ (0..^𝑁)) → (𝑎 finSupp (0g‘(Scalar‘𝑃)) ↔ ((coe1𝑥) ↾ (0..^𝑁)) finSupp (0g‘(Scalar‘𝑃))))
160 oveq1 7424 . . . . . . . . . 10 (𝑎 = ((coe1𝑥) ↾ (0..^𝑁)) → (𝑎f ( ·𝑠𝑃)𝐹) = (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹))
161160oveq2d 7433 . . . . . . . . 9 (𝑎 = ((coe1𝑥) ↾ (0..^𝑁)) → (𝑃 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (𝑃 Σg (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹)))
162161eqeq2d 2736 . . . . . . . 8 (𝑎 = ((coe1𝑥) ↾ (0..^𝑁)) → (𝑥 = (𝑃 Σg (𝑎f ( ·𝑠𝑃)𝐹)) ↔ 𝑥 = (𝑃 Σg (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹))))
163159, 162anbi12d 630 . . . . . . 7 (𝑎 = ((coe1𝑥) ↾ (0..^𝑁)) → ((𝑎 finSupp (0g‘(Scalar‘𝑃)) ∧ 𝑥 = (𝑃 Σg (𝑎f ( ·𝑠𝑃)𝐹))) ↔ (((coe1𝑥) ↾ (0..^𝑁)) finSupp (0g‘(Scalar‘𝑃)) ∧ 𝑥 = (𝑃 Σg (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹)))))
164 fvexd 6909 . . . . . . . 8 ((𝜑𝑥𝑆) → (Base‘(Scalar‘𝑃)) ∈ V)
165 ovexd 7452 . . . . . . . 8 ((𝜑𝑥𝑆) → (0..^𝑁) ∈ V)
16643sselda 3977 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → 𝑥 ∈ (Base‘𝑃))
167 eqid 2725 . . . . . . . . . . . 12 (coe1𝑥) = (coe1𝑥)
168167, 33, 1, 2coe1f 22139 . . . . . . . . . . 11 (𝑥 ∈ (Base‘𝑃) → (coe1𝑥):ℕ0⟶(Base‘𝑅))
169166, 168syl 17 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (coe1𝑥):ℕ0⟶(Base‘𝑅))
17015adantr 479 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
171170feq3d 6708 . . . . . . . . . 10 ((𝜑𝑥𝑆) → ((coe1𝑥):ℕ0⟶(Base‘𝑅) ↔ (coe1𝑥):ℕ0⟶(Base‘(Scalar‘𝑃))))
172169, 171mpbid 231 . . . . . . . . 9 ((𝜑𝑥𝑆) → (coe1𝑥):ℕ0⟶(Base‘(Scalar‘𝑃)))
173 fzo0ssnn0 13745 . . . . . . . . . 10 (0..^𝑁) ⊆ ℕ0
174173a1i 11 . . . . . . . . 9 ((𝜑𝑥𝑆) → (0..^𝑁) ⊆ ℕ0)
175172, 174fssresd 6762 . . . . . . . 8 ((𝜑𝑥𝑆) → ((coe1𝑥) ↾ (0..^𝑁)):(0..^𝑁)⟶(Base‘(Scalar‘𝑃)))
176164, 165, 175elmapdd 8858 . . . . . . 7 ((𝜑𝑥𝑆) → ((coe1𝑥) ↾ (0..^𝑁)) ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁)))
177169ffund 6725 . . . . . . . . 9 ((𝜑𝑥𝑆) → Fun (coe1𝑥))
178 fzofi 13971 . . . . . . . . . 10 (0..^𝑁) ∈ Fin
179178a1i 11 . . . . . . . . 9 ((𝜑𝑥𝑆) → (0..^𝑁) ∈ Fin)
180 fvexd 6909 . . . . . . . . 9 ((𝜑𝑥𝑆) → (0g‘(Scalar‘𝑃)) ∈ V)
181177, 179, 180resfifsupp 9420 . . . . . . . 8 ((𝜑𝑥𝑆) → ((coe1𝑥) ↾ (0..^𝑁)) finSupp (0g‘(Scalar‘𝑃)))
182 ringcmn 20222 . . . . . . . . . . . 12 (𝑃 ∈ Ring → 𝑃 ∈ CMnd)
1836, 92, 1823syl 18 . . . . . . . . . . 11 (𝜑𝑃 ∈ CMnd)
184183adantr 479 . . . . . . . . . 10 ((𝜑𝑥𝑆) → 𝑃 ∈ CMnd)
185 nn0ex 12508 . . . . . . . . . . 11 0 ∈ V
186185a1i 11 . . . . . . . . . 10 ((𝜑𝑥𝑆) → ℕ0 ∈ V)
18723ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑖 ∈ ℕ0) → 𝑃 ∈ LMod)
188172ffvelcdmda 7091 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑖 ∈ ℕ0) → ((coe1𝑥)‘𝑖) ∈ (Base‘(Scalar‘𝑃)))
1896ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑖 ∈ ℕ0) → 𝑅 ∈ Ring)
190189, 92, 933syl 18 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑖 ∈ ℕ0) → (mulGrp‘𝑃) ∈ Mnd)
191 simpr 483 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
192189, 99syl 17 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑖 ∈ ℕ0) → (var1𝑅) ∈ (Base‘𝑃))
19390, 91, 190, 191, 192mulgnn0cld 19054 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑖 ∈ ℕ0) → (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃))
19433, 37, 38, 39, 187, 188, 193lmodvscld 20766 . . . . . . . . . . 11 (((𝜑𝑥𝑆) ∧ 𝑖 ∈ ℕ0) → (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ (Base‘𝑃))
195 eqid 2725 . . . . . . . . . . 11 (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) = (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))
196194, 195fmptd 7121 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))):ℕ0⟶(Base‘𝑃))
197 nfv 1909 . . . . . . . . . . . 12 𝑖(𝜑𝑥𝑆)
198197, 194, 195fnmptd 6695 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) Fn ℕ0)
199 fveq2 6894 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → ((coe1𝑥)‘𝑖) = ((coe1𝑥)‘𝑗))
200 oveq1 7424 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑗(.g‘(mulGrp‘𝑃))(var1𝑅)))
201199, 200oveq12d 7435 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))) = (((coe1𝑥)‘𝑗)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))))
202 simplr 767 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → 𝑗 ∈ ℕ0)
203 ovexd 7452 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (((coe1𝑥)‘𝑗)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ V)
204195, 201, 202, 203fvmptd3 7025 . . . . . . . . . . . 12 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝑗) = (((coe1𝑥)‘𝑗)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))))
205166ad2antrr 724 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → 𝑥 ∈ (Base‘𝑃))
206 icossxr 13441 . . . . . . . . . . . . . . . . 17 (-∞[,)𝑁) ⊆ ℝ*
207206, 75sselid 3975 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑆) → (𝐷𝑥) ∈ ℝ*)
208207ad2antrr 724 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (𝐷𝑥) ∈ ℝ*)
20954ad3antrrr 728 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → 𝑁 ∈ ℝ*)
210202nn0red 12563 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → 𝑗 ∈ ℝ)
211210rexrd 11294 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → 𝑗 ∈ ℝ*)
21279ad2antrr 724 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (𝐷𝑥) < 𝑁)
213 simpr 483 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → 𝑁𝑗)
214208, 209, 211, 212, 213xrltletrd 13172 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (𝐷𝑥) < 𝑗)
21524, 1, 33, 9, 167deg1lt 26063 . . . . . . . . . . . . . 14 ((𝑥 ∈ (Base‘𝑃) ∧ 𝑗 ∈ ℕ0 ∧ (𝐷𝑥) < 𝑗) → ((coe1𝑥)‘𝑗) = (0g𝑅))
216205, 202, 214, 215syl3anc 1368 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → ((coe1𝑥)‘𝑗) = (0g𝑅))
217216oveq1d 7432 . . . . . . . . . . . 12 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (((coe1𝑥)‘𝑗)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))) = ((0g𝑅)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))))
218147ad3antrrr 728 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (0g𝑅) = (0g‘(Scalar‘𝑃)))
219218oveq1d 7432 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → ((0g𝑅)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))) = ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))))
22023ad3antrrr 728 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → 𝑃 ∈ LMod)
22194ad3antrrr 728 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (mulGrp‘𝑃) ∈ Mnd)
222100ad3antrrr 728 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (var1𝑅) ∈ (Base‘𝑃))
22390, 91, 221, 202, 222mulgnn0cld 19054 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (𝑗(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃))
224 eqid 2725 . . . . . . . . . . . . . . 15 (0g‘(Scalar‘𝑃)) = (0g‘(Scalar‘𝑃))
22533, 37, 38, 224, 10lmod0vs 20782 . . . . . . . . . . . . . 14 ((𝑃 ∈ LMod ∧ (𝑗(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃)) → ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃))
226220, 223, 225syl2anc 582 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃))
227219, 226eqtrd 2765 . . . . . . . . . . . 12 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → ((0g𝑅)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃))
228204, 217, 2273eqtrd 2769 . . . . . . . . . . 11 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝑗) = (0g𝑃))
2293nn0zd 12614 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
230229adantr 479 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → 𝑁 ∈ ℤ)
231198, 228, 230suppssnn0 32631 . . . . . . . . . 10 ((𝜑𝑥𝑆) → ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) supp (0g𝑃)) ⊆ (0..^𝑁))
232186mptexd 7234 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ∈ V)
233198fnfund 6654 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → Fun (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))))
234 fvexd 6909 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (0g𝑃) ∈ V)
235 suppssfifsupp 9403 . . . . . . . . . . 11 ((((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ∈ V ∧ Fun (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ∧ (0g𝑃) ∈ V) ∧ ((0..^𝑁) ∈ Fin ∧ ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) supp (0g𝑃)) ⊆ (0..^𝑁))) → (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) finSupp (0g𝑃))
236232, 233, 234, 179, 231, 235syl32anc 1375 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) finSupp (0g𝑃))
23733, 10, 184, 186, 196, 231, 236gsumres 19872 . . . . . . . . 9 ((𝜑𝑥𝑆) → (𝑃 Σg ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ↾ (0..^𝑁))) = (𝑃 Σg (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))))
238 fvexd 6909 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → (coe1𝑥) ∈ V)
239 ovexd 7452 . . . . . . . . . . . . . 14 (𝜑 → (0..^𝑁) ∈ V)
240154, 239fexd 7237 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ V)
241240adantr 479 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → 𝐹 ∈ V)
242 offres 7986 . . . . . . . . . . . 12 (((coe1𝑥) ∈ V ∧ 𝐹 ∈ V) → (((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹) ↾ (0..^𝑁)) = (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)(𝐹 ↾ (0..^𝑁))))
243238, 241, 242syl2anc 582 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹) ↾ (0..^𝑁)) = (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)(𝐹 ↾ (0..^𝑁))))
244169ffnd 6722 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑆) → (coe1𝑥) Fn ℕ0)
245154ffnd 6722 . . . . . . . . . . . . . . . 16 (𝜑𝐹 Fn (0..^𝑁))
246245adantr 479 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑆) → 𝐹 Fn (0..^𝑁))
247 sseqin2 4214 . . . . . . . . . . . . . . . 16 ((0..^𝑁) ⊆ ℕ0 ↔ (ℕ0 ∩ (0..^𝑁)) = (0..^𝑁))
248173, 247mpbi 229 . . . . . . . . . . . . . . 15 (ℕ0 ∩ (0..^𝑁)) = (0..^𝑁)
249 eqidd 2726 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) → ((coe1𝑥)‘𝑗) = ((coe1𝑥)‘𝑗))
250 oveq1 7424 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗 → (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑗(.g‘(mulGrp‘𝑃))(var1𝑅)))
251 simpr 483 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ (0..^𝑁))
252 ovexd 7452 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → (𝑗(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ V)
2538, 250, 251, 252fvmptd3 7025 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → (𝐹𝑗) = (𝑗(.g‘(mulGrp‘𝑃))(var1𝑅)))
254244, 246, 186, 165, 248, 249, 253ofval 7694 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → (((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹)‘𝑗) = (((coe1𝑥)‘𝑗)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))))
255173, 251sselid 3975 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ ℕ0)
256 ovexd 7452 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → (((coe1𝑥)‘𝑗)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ V)
257195, 201, 255, 256fvmptd3 7025 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝑗) = (((coe1𝑥)‘𝑗)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))))
258254, 257eqtr4d 2768 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → (((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹)‘𝑗) = ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝑗))
259258ralrimiva 3136 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → ∀𝑗 ∈ (0..^𝑁)(((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹)‘𝑗) = ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝑗))
260244, 246, 186, 165, 248offn 7696 . . . . . . . . . . . . 13 ((𝜑𝑥𝑆) → ((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹) Fn (0..^𝑁))
261 ssidd 4001 . . . . . . . . . . . . 13 ((𝜑𝑥𝑆) → (0..^𝑁) ⊆ (0..^𝑁))
262 fvreseq0 7044 . . . . . . . . . . . . 13 (((((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹) Fn (0..^𝑁) ∧ (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) Fn ℕ0) ∧ ((0..^𝑁) ⊆ (0..^𝑁) ∧ (0..^𝑁) ⊆ ℕ0)) → ((((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹) ↾ (0..^𝑁)) = ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ↾ (0..^𝑁)) ↔ ∀𝑗 ∈ (0..^𝑁)(((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹)‘𝑗) = ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝑗)))
263260, 198, 261, 174, 262syl22anc 837 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → ((((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹) ↾ (0..^𝑁)) = ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ↾ (0..^𝑁)) ↔ ∀𝑗 ∈ (0..^𝑁)(((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹)‘𝑗) = ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝑗)))
264259, 263mpbird 256 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹) ↾ (0..^𝑁)) = ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ↾ (0..^𝑁)))
265 fnresdm 6673 . . . . . . . . . . . . . 14 (𝐹 Fn (0..^𝑁) → (𝐹 ↾ (0..^𝑁)) = 𝐹)
266245, 265syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐹 ↾ (0..^𝑁)) = 𝐹)
267266adantr 479 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → (𝐹 ↾ (0..^𝑁)) = 𝐹)
268267oveq2d 7433 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)(𝐹 ↾ (0..^𝑁))) = (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹))
269243, 264, 2683eqtr3rd 2774 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹) = ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ↾ (0..^𝑁)))
270269oveq2d 7433 . . . . . . . . 9 ((𝜑𝑥𝑆) → (𝑃 Σg (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹)) = (𝑃 Σg ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ↾ (0..^𝑁))))
2716adantr 479 . . . . . . . . . 10 ((𝜑𝑥𝑆) → 𝑅 ∈ Ring)
2721, 98, 33, 38, 89, 91, 167ply1coe 22226 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑃)) → 𝑥 = (𝑃 Σg (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))))
273271, 166, 272syl2anc 582 . . . . . . . . 9 ((𝜑𝑥𝑆) → 𝑥 = (𝑃 Σg (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))))
274237, 270, 2733eqtr4rd 2776 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝑥 = (𝑃 Σg (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹)))
275181, 274jca 510 . . . . . . 7 ((𝜑𝑥𝑆) → (((coe1𝑥) ↾ (0..^𝑁)) finSupp (0g‘(Scalar‘𝑃)) ∧ 𝑥 = (𝑃 Σg (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹))))
276163, 176, 275rspcedvdw 3610 . . . . . 6 ((𝜑𝑥𝑆) → ∃𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))(𝑎 finSupp (0g‘(Scalar‘𝑃)) ∧ 𝑥 = (𝑃 Σg (𝑎f ( ·𝑠𝑃)𝐹))))
277102, 8fmptd 7121 . . . . . . . 8 (𝜑𝐹:(0..^𝑁)⟶(Base‘𝑃))
278156, 33, 39, 37, 224, 38, 277, 23, 239ellspd 21740 . . . . . . 7 (𝜑 → (𝑥 ∈ ((LSpan‘𝑃)‘(𝐹 “ (0..^𝑁))) ↔ ∃𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))(𝑎 finSupp (0g‘(Scalar‘𝑃)) ∧ 𝑥 = (𝑃 Σg (𝑎f ( ·𝑠𝑃)𝐹)))))
279278adantr 479 . . . . . 6 ((𝜑𝑥𝑆) → (𝑥 ∈ ((LSpan‘𝑃)‘(𝐹 “ (0..^𝑁))) ↔ ∃𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))(𝑎 finSupp (0g‘(Scalar‘𝑃)) ∧ 𝑥 = (𝑃 Σg (𝑎f ( ·𝑠𝑃)𝐹)))))
280276, 279mpbird 256 . . . . 5 ((𝜑𝑥𝑆) → 𝑥 ∈ ((LSpan‘𝑃)‘(𝐹 “ (0..^𝑁))))
281 imadmrn 6073 . . . . . . . 8 (𝐹 “ dom 𝐹) = ran 𝐹
282154fdmd 6731 . . . . . . . . 9 (𝜑 → dom 𝐹 = (0..^𝑁))
283282imaeq2d 6063 . . . . . . . 8 (𝜑 → (𝐹 “ dom 𝐹) = (𝐹 “ (0..^𝑁)))
284281, 283eqtr3id 2779 . . . . . . 7 (𝜑 → ran 𝐹 = (𝐹 “ (0..^𝑁)))
285284fveq2d 6898 . . . . . 6 (𝜑 → ((LSpan‘𝑃)‘ran 𝐹) = ((LSpan‘𝑃)‘(𝐹 “ (0..^𝑁))))
286285adantr 479 . . . . 5 ((𝜑𝑥𝑆) → ((LSpan‘𝑃)‘ran 𝐹) = ((LSpan‘𝑃)‘(𝐹 “ (0..^𝑁))))
287280, 286eleqtrrd 2828 . . . 4 ((𝜑𝑥𝑆) → 𝑥 ∈ ((LSpan‘𝑃)‘ran 𝐹))
288158, 287eqelssd 3999 . . 3 (𝜑 → ((LSpan‘𝑃)‘ran 𝐹) = 𝑆)
289 eqid 2725 . . . . . 6 (LSpan‘𝐸) = (LSpan‘𝐸)
29044, 156, 289, 27lsslsp 20903 . . . . 5 ((𝑃 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑃) ∧ ran 𝐹𝑆) → ((LSpan‘𝐸)‘ran 𝐹) = ((LSpan‘𝑃)‘ran 𝐹))
291290eqcomd 2731 . . . 4 ((𝑃 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑃) ∧ ran 𝐹𝑆) → ((LSpan‘𝑃)‘ran 𝐹) = ((LSpan‘𝐸)‘ran 𝐹))
29223, 26, 155, 291syl3anc 1368 . . 3 (𝜑 → ((LSpan‘𝑃)‘ran 𝐹) = ((LSpan‘𝐸)‘ran 𝐹))
293288, 292, 463eqtr3d 2773 . 2 (𝜑 → ((LSpan‘𝐸)‘ran 𝐹) = (Base‘𝐸))
294 eqid 2725 . . 3 (Base‘𝐸) = (Base‘𝐸)
29524fvexi 6908 . . . . . . 7 𝐷 ∈ V
296 cnvexg 7930 . . . . . . 7 (𝐷 ∈ V → 𝐷 ∈ V)
297 imaexg 7919 . . . . . . 7 (𝐷 ∈ V → (𝐷 “ (-∞[,)𝑁)) ∈ V)
298295, 296, 297mp2b 10 . . . . . 6 (𝐷 “ (-∞[,)𝑁)) ∈ V
29925, 298eqeltri 2821 . . . . 5 𝑆 ∈ V
30044, 37resssca 17323 . . . . 5 (𝑆 ∈ V → (Scalar‘𝑃) = (Scalar‘𝐸))
301299, 300ax-mp 5 . . . 4 (Scalar‘𝑃) = (Scalar‘𝐸)
302301fveq2i 6897 . . 3 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝐸))
303 eqid 2725 . . 3 (Scalar‘𝐸) = (Scalar‘𝐸)
30444, 38ressvsca 17324 . . . 4 (𝑆 ∈ V → ( ·𝑠𝑃) = ( ·𝑠𝐸))
305299, 304ax-mp 5 . . 3 ( ·𝑠𝑃) = ( ·𝑠𝐸)
306 eqid 2725 . . 3 (0g𝐸) = (0g𝐸)
307301fveq2i 6897 . . 3 (0g‘(Scalar‘𝑃)) = (0g‘(Scalar‘𝐸))
308 eqid 2725 . . 3 (LBasis‘𝐸) = (LBasis‘𝐸)
30944, 27lsslvec 20998 . . . . 5 ((𝑃 ∈ LVec ∧ 𝑆 ∈ (LSubSp‘𝑃)) → 𝐸 ∈ LVec)
31022, 26, 309syl2anc 582 . . . 4 (𝜑𝐸 ∈ LVec)
311310lveclmodd 20996 . . 3 (𝜑𝐸 ∈ LMod)
31214, 5eqeltrrd 2826 . . . . 5 (𝜑 → (Scalar‘𝑃) ∈ DivRing)
313 drngnzr 20648 . . . . 5 ((Scalar‘𝑃) ∈ DivRing → (Scalar‘𝑃) ∈ NzRing)
314312, 313syl 17 . . . 4 (𝜑 → (Scalar‘𝑃) ∈ NzRing)
315301, 314eqeltrrid 2830 . . 3 (𝜑 → (Scalar‘𝐸) ∈ NzRing)
316120ralrimiva 3136 . . . 4 (𝜑 → ∀𝑛 ∈ (0..^𝑁)(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝐸))
317 drngnzr 20648 . . . . . . . . . 10 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
3185, 317syl 17 . . . . . . . . 9 (𝜑𝑅 ∈ NzRing)
319318ad2antrr 724 . . . . . . . 8 (((𝜑𝑛 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑅 ∈ NzRing)
32097adantr 479 . . . . . . . 8 (((𝜑𝑛 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑛 ∈ ℕ0)
321 elfzonn0 13709 . . . . . . . . 9 (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ ℕ0)
322321adantl 480 . . . . . . . 8 (((𝜑𝑛 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ ℕ0)
3231, 98, 91, 319, 320, 322ply1moneq 33334 . . . . . . 7 (((𝜑𝑛 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) ↔ 𝑛 = 𝑖))
324323biimpd 228 . . . . . 6 (((𝜑𝑛 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) → 𝑛 = 𝑖))
325324anasss 465 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (0..^𝑁) ∧ 𝑖 ∈ (0..^𝑁))) → ((𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) → 𝑛 = 𝑖))
326325ralrimivva 3191 . . . 4 (𝜑 → ∀𝑛 ∈ (0..^𝑁)∀𝑖 ∈ (0..^𝑁)((𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) → 𝑛 = 𝑖))
327 oveq1 7424 . . . . 5 (𝑛 = 𝑖 → (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))
3288, 327f1mpt 7269 . . . 4 (𝐹:(0..^𝑁)–1-1→(Base‘𝐸) ↔ (∀𝑛 ∈ (0..^𝑁)(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝐸) ∧ ∀𝑛 ∈ (0..^𝑁)∀𝑖 ∈ (0..^𝑁)((𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) → 𝑛 = 𝑖)))
329316, 326, 328sylanbrc 581 . . 3 (𝜑𝐹:(0..^𝑁)–1-1→(Base‘𝐸))
330294, 302, 303, 305, 306, 307, 308, 289, 311, 315, 239, 329islbs5 33157 . 2 (𝜑 → (ran 𝐹 ∈ (LBasis‘𝐸) ↔ (∀𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))((𝑎 finSupp (0g‘(Scalar‘𝑃)) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑎 = ((0..^𝑁) × {(0g‘(Scalar‘𝑃))})) ∧ ((LSpan‘𝐸)‘ran 𝐹) = (Base‘𝐸))))
331153, 293, 330mpbir2and 711 1 (𝜑 → ran 𝐹 ∈ (LBasis‘𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3051  wrex 3060  Vcvv 3463  cin 3944  wss 3945  {csn 4629   class class class wbr 5148  cmpt 5231   × cxp 5675  ccnv 5676  dom cdm 5677  ran crn 5678  cres 5679  cima 5680  Fun wfun 6541   Fn wfn 6542  wf 6543  1-1wf1 6544  cfv 6547  (class class class)co 7417  f cof 7681   supp csupp 8163  m cmap 8843  Fincfn 8962   finSupp cfsupp 9385  0cc0 11138  -∞cmnf 11276  *cxr 11277   < clt 11278  cle 11279  0cn0 12502  cz 12588  [,)cico 13358  ..^cfzo 13659  Basecbs 17179  s cress 17208  Scalarcsca 17235   ·𝑠 cvsca 17236  0gc0g 17420   Σg cgsu 17421  Mndcmnd 18693  SubMndcsubmnd 18738  .gcmg 19027  SubGrpcsubg 19079  CMndccmn 19739  mulGrpcmgp 20078  Ringcrg 20177  NzRingcnzr 20455  DivRingcdr 20628  LModclmod 20747  LSubSpclss 20819  LSpanclspn 20859  LBasisclbs 20963  LVecclvec 20991  var1cv1 22103  Poly1cpl1 22104  coe1cco1 22105   deg1 cdg1 26017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216  ax-addf 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-isom 6556  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-of 7683  df-ofr 7684  df-om 7870  df-1st 7992  df-2nd 7993  df-supp 8164  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8723  df-map 8845  df-pm 8846  df-ixp 8915  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-fsupp 9386  df-sup 9465  df-oi 9533  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-9 12312  df-n0 12503  df-z 12589  df-dec 12708  df-uz 12853  df-ico 13362  df-fz 13517  df-fzo 13660  df-seq 13999  df-hash 14322  df-struct 17115  df-sets 17132  df-slot 17150  df-ndx 17162  df-base 17180  df-ress 17209  df-plusg 17245  df-mulr 17246  df-starv 17247  df-sca 17248  df-vsca 17249  df-ip 17250  df-tset 17251  df-ple 17252  df-ds 17254  df-unif 17255  df-hom 17256  df-cco 17257  df-0g 17422  df-gsum 17423  df-prds 17428  df-pws 17430  df-mre 17565  df-mrc 17566  df-acs 17568  df-mgm 18599  df-sgrp 18678  df-mnd 18694  df-mhm 18739  df-submnd 18740  df-grp 18897  df-minusg 18898  df-sbg 18899  df-mulg 19028  df-subg 19082  df-ghm 19172  df-cntz 19272  df-cmn 19741  df-abl 19742  df-mgp 20079  df-rng 20097  df-ur 20126  df-srg 20131  df-ring 20179  df-cring 20180  df-oppr 20277  df-dvdsr 20300  df-unit 20301  df-nzr 20456  df-subrng 20487  df-subrg 20512  df-drng 20630  df-lmod 20749  df-lss 20820  df-lsp 20860  df-lmhm 20911  df-lbs 20964  df-lvec 20992  df-sra 21062  df-rgmod 21063  df-cnfld 21284  df-dsmm 21670  df-frlm 21685  df-uvc 21721  df-lindf 21744  df-linds 21745  df-psr 21846  df-mvr 21847  df-mpl 21848  df-opsr 21850  df-psr1 22107  df-vr1 22108  df-ply1 22109  df-coe1 22110  df-mdeg 26018  df-deg1 26019
This theorem is referenced by:  ply1degltdim  33391
  Copyright terms: Public domain W3C validator