Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1degltdimlem Structured version   Visualization version   GIF version

Theorem ply1degltdimlem 33635
Description: Lemma for ply1degltdim 33636. (Contributed by Thierry Arnoux, 20-Feb-2025.)
Hypotheses
Ref Expression
ply1degltdim.p 𝑃 = (Poly1𝑅)
ply1degltdim.d 𝐷 = (deg1𝑅)
ply1degltdim.s 𝑆 = (𝐷 “ (-∞[,)𝑁))
ply1degltdim.n (𝜑𝑁 ∈ ℕ0)
ply1degltdim.r (𝜑𝑅 ∈ DivRing)
ply1degltdim.e 𝐸 = (𝑃s 𝑆)
ply1degltdimlem.f 𝐹 = (𝑛 ∈ (0..^𝑁) ↦ (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)))
Assertion
Ref Expression
ply1degltdimlem (𝜑 → ran 𝐹 ∈ (LBasis‘𝐸))
Distinct variable groups:   𝑛,𝐸   𝑛,𝐹   𝑛,𝑁   𝑃,𝑛   𝑅,𝑛   𝑆,𝑛   𝜑,𝑛
Allowed substitution hint:   𝐷(𝑛)

Proof of Theorem ply1degltdimlem
Dummy variables 𝑎 𝑖 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ply1degltdim.p . . . . . 6 𝑃 = (Poly1𝑅)
2 eqid 2731 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
3 ply1degltdim.n . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
43ad3antrrr 730 . . . . . 6 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑁 ∈ ℕ0)
5 ply1degltdim.r . . . . . . . 8 (𝜑𝑅 ∈ DivRing)
65drngringd 20652 . . . . . . 7 (𝜑𝑅 ∈ Ring)
76ad3antrrr 730 . . . . . 6 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑅 ∈ Ring)
8 ply1degltdimlem.f . . . . . 6 𝐹 = (𝑛 ∈ (0..^𝑁) ↦ (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)))
9 eqid 2731 . . . . . 6 (0g𝑅) = (0g𝑅)
10 eqid 2731 . . . . . 6 (0g𝑃) = (0g𝑃)
11 elmapi 8773 . . . . . . . . 9 (𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁)) → 𝑎:(0..^𝑁)⟶(Base‘(Scalar‘𝑃)))
1211adantl 481 . . . . . . . 8 ((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) → 𝑎:(0..^𝑁)⟶(Base‘(Scalar‘𝑃)))
131ply1sca 22165 . . . . . . . . . . . 12 (𝑅 ∈ DivRing → 𝑅 = (Scalar‘𝑃))
145, 13syl 17 . . . . . . . . . . 11 (𝜑𝑅 = (Scalar‘𝑃))
1514fveq2d 6826 . . . . . . . . . 10 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
1615adantr 480 . . . . . . . . 9 ((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
1716feq3d 6636 . . . . . . . 8 ((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) → (𝑎:(0..^𝑁)⟶(Base‘𝑅) ↔ 𝑎:(0..^𝑁)⟶(Base‘(Scalar‘𝑃))))
1812, 17mpbird 257 . . . . . . 7 ((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) → 𝑎:(0..^𝑁)⟶(Base‘𝑅))
1918ad2antrr 726 . . . . . 6 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑎:(0..^𝑁)⟶(Base‘𝑅))
20 simpr 484 . . . . . . 7 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸))
21 ovexd 7381 . . . . . . . 8 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → (0..^𝑁) ∈ V)
221, 5ply1lvec 33522 . . . . . . . . . . . 12 (𝜑𝑃 ∈ LVec)
2322lveclmodd 21041 . . . . . . . . . . 11 (𝜑𝑃 ∈ LMod)
24 ply1degltdim.d . . . . . . . . . . . 12 𝐷 = (deg1𝑅)
25 ply1degltdim.s . . . . . . . . . . . 12 𝑆 = (𝐷 “ (-∞[,)𝑁))
261, 24, 25, 3, 6ply1degltlss 33557 . . . . . . . . . . 11 (𝜑𝑆 ∈ (LSubSp‘𝑃))
27 eqid 2731 . . . . . . . . . . . 12 (LSubSp‘𝑃) = (LSubSp‘𝑃)
2827lsssubg 20890 . . . . . . . . . . 11 ((𝑃 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑃)) → 𝑆 ∈ (SubGrp‘𝑃))
2923, 26, 28syl2anc 584 . . . . . . . . . 10 (𝜑𝑆 ∈ (SubGrp‘𝑃))
30 subgsubm 19061 . . . . . . . . . 10 (𝑆 ∈ (SubGrp‘𝑃) → 𝑆 ∈ (SubMnd‘𝑃))
3129, 30syl 17 . . . . . . . . 9 (𝜑𝑆 ∈ (SubMnd‘𝑃))
3231ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑆 ∈ (SubMnd‘𝑃))
33 eqid 2731 . . . . . . . . . . . . . . 15 (Base‘𝑃) = (Base‘𝑃)
3424, 1, 33deg1xrf 26013 . . . . . . . . . . . . . 14 𝐷:(Base‘𝑃)⟶ℝ*
35 ffn 6651 . . . . . . . . . . . . . 14 (𝐷:(Base‘𝑃)⟶ℝ*𝐷 Fn (Base‘𝑃))
3634, 35mp1i 13 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝐷 Fn (Base‘𝑃))
37 eqid 2731 . . . . . . . . . . . . . 14 (Scalar‘𝑃) = (Scalar‘𝑃)
38 eqid 2731 . . . . . . . . . . . . . 14 ( ·𝑠𝑃) = ( ·𝑠𝑃)
39 eqid 2731 . . . . . . . . . . . . . 14 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
4023ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑃 ∈ LMod)
41 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑘 ∈ (Base‘(Scalar‘𝑃)))
4233, 27lssss 20869 . . . . . . . . . . . . . . . . . . 19 (𝑆 ∈ (LSubSp‘𝑃) → 𝑆 ⊆ (Base‘𝑃))
4326, 42syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑆 ⊆ (Base‘𝑃))
44 ply1degltdim.e . . . . . . . . . . . . . . . . . . 19 𝐸 = (𝑃s 𝑆)
4544, 33ressbas2 17149 . . . . . . . . . . . . . . . . . 18 (𝑆 ⊆ (Base‘𝑃) → 𝑆 = (Base‘𝐸))
4643, 45syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑆 = (Base‘𝐸))
4746, 43eqsstrrd 3965 . . . . . . . . . . . . . . . 16 (𝜑 → (Base‘𝐸) ⊆ (Base‘𝑃))
4847sselda 3929 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝐸)) → 𝑥 ∈ (Base‘𝑃))
4948adantlr 715 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑥 ∈ (Base‘𝑃))
5033, 37, 38, 39, 40, 41, 49lmodvscld 20812 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝑘( ·𝑠𝑃)𝑥) ∈ (Base‘𝑃))
51 mnfxr 11169 . . . . . . . . . . . . . . 15 -∞ ∈ ℝ*
5251a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → -∞ ∈ ℝ*)
533nn0red 12443 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℝ)
5453rexrd 11162 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℝ*)
5554ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑁 ∈ ℝ*)
5634a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝐷:(Base‘𝑃)⟶ℝ*)
5756, 50ffvelcdmd 7018 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝐷‘(𝑘( ·𝑠𝑃)𝑥)) ∈ ℝ*)
5857mnfled 13035 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → -∞ ≤ (𝐷‘(𝑘( ·𝑠𝑃)𝑥)))
5956, 49ffvelcdmd 7018 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝐷𝑥) ∈ ℝ*)
606ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑅 ∈ Ring)
6115ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
6241, 61eleqtrrd 2834 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑘 ∈ (Base‘𝑅))
631, 24, 60, 33, 2, 38, 62, 49deg1vscale 26036 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝐷‘(𝑘( ·𝑠𝑃)𝑥)) ≤ (𝐷𝑥))
64 simpll 766 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝜑)
65 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑥 ∈ (Base‘𝐸))
6646ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑆 = (Base‘𝐸))
6765, 66eleqtrrd 2834 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑥𝑆)
6851a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑆) → -∞ ∈ ℝ*)
6954adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑆) → 𝑁 ∈ ℝ*)
7034, 35mp1i 13 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝑆) → 𝐷 Fn (Base‘𝑃))
71 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝑆) → 𝑥𝑆)
7271, 25eleqtrdi 2841 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝑆) → 𝑥 ∈ (𝐷 “ (-∞[,)𝑁)))
73 elpreima 6991 . . . . . . . . . . . . . . . . . . 19 (𝐷 Fn (Base‘𝑃) → (𝑥 ∈ (𝐷 “ (-∞[,)𝑁)) ↔ (𝑥 ∈ (Base‘𝑃) ∧ (𝐷𝑥) ∈ (-∞[,)𝑁))))
7473simplbda 499 . . . . . . . . . . . . . . . . . 18 ((𝐷 Fn (Base‘𝑃) ∧ 𝑥 ∈ (𝐷 “ (-∞[,)𝑁))) → (𝐷𝑥) ∈ (-∞[,)𝑁))
7570, 72, 74syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑆) → (𝐷𝑥) ∈ (-∞[,)𝑁))
76 elico1 13288 . . . . . . . . . . . . . . . . . . 19 ((-∞ ∈ ℝ*𝑁 ∈ ℝ*) → ((𝐷𝑥) ∈ (-∞[,)𝑁) ↔ ((𝐷𝑥) ∈ ℝ* ∧ -∞ ≤ (𝐷𝑥) ∧ (𝐷𝑥) < 𝑁)))
7776biimpa 476 . . . . . . . . . . . . . . . . . 18 (((-∞ ∈ ℝ*𝑁 ∈ ℝ*) ∧ (𝐷𝑥) ∈ (-∞[,)𝑁)) → ((𝐷𝑥) ∈ ℝ* ∧ -∞ ≤ (𝐷𝑥) ∧ (𝐷𝑥) < 𝑁))
7877simp3d 1144 . . . . . . . . . . . . . . . . 17 (((-∞ ∈ ℝ*𝑁 ∈ ℝ*) ∧ (𝐷𝑥) ∈ (-∞[,)𝑁)) → (𝐷𝑥) < 𝑁)
7968, 69, 75, 78syl21anc 837 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑆) → (𝐷𝑥) < 𝑁)
8064, 67, 79syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝐷𝑥) < 𝑁)
8157, 59, 55, 63, 80xrlelttrd 13059 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝐷‘(𝑘( ·𝑠𝑃)𝑥)) < 𝑁)
8252, 55, 57, 58, 81elicod 13295 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝐷‘(𝑘( ·𝑠𝑃)𝑥)) ∈ (-∞[,)𝑁))
8336, 50, 82elpreimad 6992 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝑘( ·𝑠𝑃)𝑥) ∈ (𝐷 “ (-∞[,)𝑁)))
8483, 25eleqtrrdi 2842 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝑘( ·𝑠𝑃)𝑥) ∈ 𝑆)
8584anasss 466 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑥 ∈ (Base‘𝐸))) → (𝑘( ·𝑠𝑃)𝑥) ∈ 𝑆)
8685ad5ant15 758 . . . . . . . . 9 (((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑥 ∈ (Base‘𝐸))) → (𝑘( ·𝑠𝑃)𝑥) ∈ 𝑆)
8712ad2antrr 726 . . . . . . . . 9 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑎:(0..^𝑁)⟶(Base‘(Scalar‘𝑃)))
8834, 35mp1i 13 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (0..^𝑁)) → 𝐷 Fn (Base‘𝑃))
89 eqid 2731 . . . . . . . . . . . . . . . 16 (mulGrp‘𝑃) = (mulGrp‘𝑃)
9089, 33mgpbas 20063 . . . . . . . . . . . . . . 15 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
91 eqid 2731 . . . . . . . . . . . . . . 15 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
921ply1ring 22160 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
9389ringmgp 20157 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
946, 92, 933syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (mulGrp‘𝑃) ∈ Mnd)
9594adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑁)) → (mulGrp‘𝑃) ∈ Mnd)
96 elfzonn0 13607 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (0..^𝑁) → 𝑛 ∈ ℕ0)
9796adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑁)) → 𝑛 ∈ ℕ0)
98 eqid 2731 . . . . . . . . . . . . . . . . . 18 (var1𝑅) = (var1𝑅)
9998, 1, 33vr1cl 22130 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Ring → (var1𝑅) ∈ (Base‘𝑃))
1006, 99syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (var1𝑅) ∈ (Base‘𝑃))
101100adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑁)) → (var1𝑅) ∈ (Base‘𝑃))
10290, 91, 95, 97, 101mulgnn0cld 19008 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃))
10351a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑁)) → -∞ ∈ ℝ*)
10454adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑁)) → 𝑁 ∈ ℝ*)
10524, 1, 33deg1xrcl 26014 . . . . . . . . . . . . . . . 16 ((𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ ℝ*)
106102, 105syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ ℝ*)
107106mnfled 13035 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑁)) → -∞ ≤ (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))))
10896nn0red 12443 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (0..^𝑁) → 𝑛 ∈ ℝ)
109108rexrd 11162 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (0..^𝑁) → 𝑛 ∈ ℝ*)
110109adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑁)) → 𝑛 ∈ ℝ*)
11124, 1, 98, 89, 91deg1pwle 26052 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝑛 ∈ ℕ0) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))) ≤ 𝑛)
1126, 96, 111syl2an 596 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))) ≤ 𝑛)
113 elfzolt2 13568 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (0..^𝑁) → 𝑛 < 𝑁)
114113adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑁)) → 𝑛 < 𝑁)
115106, 110, 104, 112, 114xrlelttrd 13059 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))) < 𝑁)
116103, 104, 106, 107, 115elicod 13295 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ (-∞[,)𝑁))
11788, 102, 116elpreimad 6992 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (𝐷 “ (-∞[,)𝑁)))
118117, 25eleqtrrdi 2842 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ 𝑆)
11946adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑁)) → 𝑆 = (Base‘𝐸))
120118, 119eleqtrd 2833 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝐸))
121120, 8fmptd 7047 . . . . . . . . . 10 (𝜑𝐹:(0..^𝑁)⟶(Base‘𝐸))
122121ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝐹:(0..^𝑁)⟶(Base‘𝐸))
123 inidm 4174 . . . . . . . . 9 ((0..^𝑁) ∩ (0..^𝑁)) = (0..^𝑁)
12486, 87, 122, 21, 21, 123off 7628 . . . . . . . 8 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → (𝑎f ( ·𝑠𝑃)𝐹):(0..^𝑁)⟶𝑆)
12521, 32, 124, 44gsumsubm 18743 . . . . . . 7 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → (𝑃 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)))
126 ringmnd 20161 . . . . . . . . . 10 (𝑃 ∈ Ring → 𝑃 ∈ Mnd)
1276, 92, 1263syl 18 . . . . . . . . 9 (𝜑𝑃 ∈ Mnd)
12834, 35mp1i 13 . . . . . . . . . . 11 (𝜑𝐷 Fn (Base‘𝑃))
12933, 10mndidcl 18657 . . . . . . . . . . . 12 (𝑃 ∈ Mnd → (0g𝑃) ∈ (Base‘𝑃))
130127, 129syl 17 . . . . . . . . . . 11 (𝜑 → (0g𝑃) ∈ (Base‘𝑃))
13151a1i 11 . . . . . . . . . . . 12 (𝜑 → -∞ ∈ ℝ*)
13224, 1, 33deg1xrcl 26014 . . . . . . . . . . . . 13 ((0g𝑃) ∈ (Base‘𝑃) → (𝐷‘(0g𝑃)) ∈ ℝ*)
133130, 132syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐷‘(0g𝑃)) ∈ ℝ*)
134133mnfled 13035 . . . . . . . . . . . 12 (𝜑 → -∞ ≤ (𝐷‘(0g𝑃)))
13524, 1, 10deg1z 26019 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → (𝐷‘(0g𝑃)) = -∞)
1366, 135syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐷‘(0g𝑃)) = -∞)
13753mnfltd 13023 . . . . . . . . . . . . 13 (𝜑 → -∞ < 𝑁)
138136, 137eqbrtrd 5111 . . . . . . . . . . . 12 (𝜑 → (𝐷‘(0g𝑃)) < 𝑁)
139131, 54, 133, 134, 138elicod 13295 . . . . . . . . . . 11 (𝜑 → (𝐷‘(0g𝑃)) ∈ (-∞[,)𝑁))
140128, 130, 139elpreimad 6992 . . . . . . . . . 10 (𝜑 → (0g𝑃) ∈ (𝐷 “ (-∞[,)𝑁)))
141140, 25eleqtrrdi 2842 . . . . . . . . 9 (𝜑 → (0g𝑃) ∈ 𝑆)
14244, 33, 10ress0g 18670 . . . . . . . . 9 ((𝑃 ∈ Mnd ∧ (0g𝑃) ∈ 𝑆𝑆 ⊆ (Base‘𝑃)) → (0g𝑃) = (0g𝐸))
143127, 141, 43, 142syl3anc 1373 . . . . . . . 8 (𝜑 → (0g𝑃) = (0g𝐸))
144143ad3antrrr 730 . . . . . . 7 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → (0g𝑃) = (0g𝐸))
14520, 125, 1443eqtr4d 2776 . . . . . 6 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → (𝑃 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝑃))
1461, 2, 4, 7, 8, 9, 10, 19, 145ply1gsumz 33559 . . . . 5 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑎 = ((0..^𝑁) × {(0g𝑅)}))
14714fveq2d 6826 . . . . . . . 8 (𝜑 → (0g𝑅) = (0g‘(Scalar‘𝑃)))
148147sneqd 4585 . . . . . . 7 (𝜑 → {(0g𝑅)} = {(0g‘(Scalar‘𝑃))})
149148xpeq2d 5644 . . . . . 6 (𝜑 → ((0..^𝑁) × {(0g𝑅)}) = ((0..^𝑁) × {(0g‘(Scalar‘𝑃))}))
150149ad3antrrr 730 . . . . 5 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → ((0..^𝑁) × {(0g𝑅)}) = ((0..^𝑁) × {(0g‘(Scalar‘𝑃))}))
151146, 150eqtrd 2766 . . . 4 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑎 = ((0..^𝑁) × {(0g‘(Scalar‘𝑃))}))
152151expl 457 . . 3 ((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) → ((𝑎 finSupp (0g‘(Scalar‘𝑃)) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑎 = ((0..^𝑁) × {(0g‘(Scalar‘𝑃))})))
153152ralrimiva 3124 . 2 (𝜑 → ∀𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))((𝑎 finSupp (0g‘(Scalar‘𝑃)) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑎 = ((0..^𝑁) × {(0g‘(Scalar‘𝑃))})))
154118, 8fmptd 7047 . . . . . 6 (𝜑𝐹:(0..^𝑁)⟶𝑆)
155154frnd 6659 . . . . 5 (𝜑 → ran 𝐹𝑆)
156 eqid 2731 . . . . . 6 (LSpan‘𝑃) = (LSpan‘𝑃)
15727, 156lspssp 20921 . . . . 5 ((𝑃 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑃) ∧ ran 𝐹𝑆) → ((LSpan‘𝑃)‘ran 𝐹) ⊆ 𝑆)
15823, 26, 155, 157syl3anc 1373 . . . 4 (𝜑 → ((LSpan‘𝑃)‘ran 𝐹) ⊆ 𝑆)
159 breq1 5092 . . . . . . . 8 (𝑎 = ((coe1𝑥) ↾ (0..^𝑁)) → (𝑎 finSupp (0g‘(Scalar‘𝑃)) ↔ ((coe1𝑥) ↾ (0..^𝑁)) finSupp (0g‘(Scalar‘𝑃))))
160 oveq1 7353 . . . . . . . . . 10 (𝑎 = ((coe1𝑥) ↾ (0..^𝑁)) → (𝑎f ( ·𝑠𝑃)𝐹) = (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹))
161160oveq2d 7362 . . . . . . . . 9 (𝑎 = ((coe1𝑥) ↾ (0..^𝑁)) → (𝑃 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (𝑃 Σg (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹)))
162161eqeq2d 2742 . . . . . . . 8 (𝑎 = ((coe1𝑥) ↾ (0..^𝑁)) → (𝑥 = (𝑃 Σg (𝑎f ( ·𝑠𝑃)𝐹)) ↔ 𝑥 = (𝑃 Σg (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹))))
163159, 162anbi12d 632 . . . . . . 7 (𝑎 = ((coe1𝑥) ↾ (0..^𝑁)) → ((𝑎 finSupp (0g‘(Scalar‘𝑃)) ∧ 𝑥 = (𝑃 Σg (𝑎f ( ·𝑠𝑃)𝐹))) ↔ (((coe1𝑥) ↾ (0..^𝑁)) finSupp (0g‘(Scalar‘𝑃)) ∧ 𝑥 = (𝑃 Σg (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹)))))
164 fvexd 6837 . . . . . . . 8 ((𝜑𝑥𝑆) → (Base‘(Scalar‘𝑃)) ∈ V)
165 ovexd 7381 . . . . . . . 8 ((𝜑𝑥𝑆) → (0..^𝑁) ∈ V)
16643sselda 3929 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → 𝑥 ∈ (Base‘𝑃))
167 eqid 2731 . . . . . . . . . . . 12 (coe1𝑥) = (coe1𝑥)
168167, 33, 1, 2coe1f 22124 . . . . . . . . . . 11 (𝑥 ∈ (Base‘𝑃) → (coe1𝑥):ℕ0⟶(Base‘𝑅))
169166, 168syl 17 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (coe1𝑥):ℕ0⟶(Base‘𝑅))
17015adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
171170feq3d 6636 . . . . . . . . . 10 ((𝜑𝑥𝑆) → ((coe1𝑥):ℕ0⟶(Base‘𝑅) ↔ (coe1𝑥):ℕ0⟶(Base‘(Scalar‘𝑃))))
172169, 171mpbid 232 . . . . . . . . 9 ((𝜑𝑥𝑆) → (coe1𝑥):ℕ0⟶(Base‘(Scalar‘𝑃)))
173 fzo0ssnn0 13646 . . . . . . . . . 10 (0..^𝑁) ⊆ ℕ0
174173a1i 11 . . . . . . . . 9 ((𝜑𝑥𝑆) → (0..^𝑁) ⊆ ℕ0)
175172, 174fssresd 6690 . . . . . . . 8 ((𝜑𝑥𝑆) → ((coe1𝑥) ↾ (0..^𝑁)):(0..^𝑁)⟶(Base‘(Scalar‘𝑃)))
176164, 165, 175elmapdd 8765 . . . . . . 7 ((𝜑𝑥𝑆) → ((coe1𝑥) ↾ (0..^𝑁)) ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁)))
177169ffund 6655 . . . . . . . . 9 ((𝜑𝑥𝑆) → Fun (coe1𝑥))
178 fzofi 13881 . . . . . . . . . 10 (0..^𝑁) ∈ Fin
179178a1i 11 . . . . . . . . 9 ((𝜑𝑥𝑆) → (0..^𝑁) ∈ Fin)
180 fvexd 6837 . . . . . . . . 9 ((𝜑𝑥𝑆) → (0g‘(Scalar‘𝑃)) ∈ V)
181177, 179, 180resfifsupp 9281 . . . . . . . 8 ((𝜑𝑥𝑆) → ((coe1𝑥) ↾ (0..^𝑁)) finSupp (0g‘(Scalar‘𝑃)))
182 ringcmn 20200 . . . . . . . . . . . 12 (𝑃 ∈ Ring → 𝑃 ∈ CMnd)
1836, 92, 1823syl 18 . . . . . . . . . . 11 (𝜑𝑃 ∈ CMnd)
184183adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝑆) → 𝑃 ∈ CMnd)
185 nn0ex 12387 . . . . . . . . . . 11 0 ∈ V
186185a1i 11 . . . . . . . . . 10 ((𝜑𝑥𝑆) → ℕ0 ∈ V)
18723ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑖 ∈ ℕ0) → 𝑃 ∈ LMod)
188172ffvelcdmda 7017 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑖 ∈ ℕ0) → ((coe1𝑥)‘𝑖) ∈ (Base‘(Scalar‘𝑃)))
1896ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑖 ∈ ℕ0) → 𝑅 ∈ Ring)
190189, 92, 933syl 18 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑖 ∈ ℕ0) → (mulGrp‘𝑃) ∈ Mnd)
191 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
192189, 99syl 17 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑖 ∈ ℕ0) → (var1𝑅) ∈ (Base‘𝑃))
19390, 91, 190, 191, 192mulgnn0cld 19008 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑖 ∈ ℕ0) → (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃))
19433, 37, 38, 39, 187, 188, 193lmodvscld 20812 . . . . . . . . . . 11 (((𝜑𝑥𝑆) ∧ 𝑖 ∈ ℕ0) → (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ (Base‘𝑃))
195 eqid 2731 . . . . . . . . . . 11 (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) = (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))
196194, 195fmptd 7047 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))):ℕ0⟶(Base‘𝑃))
197 nfv 1915 . . . . . . . . . . . 12 𝑖(𝜑𝑥𝑆)
198197, 194, 195fnmptd 6622 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) Fn ℕ0)
199 fveq2 6822 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → ((coe1𝑥)‘𝑖) = ((coe1𝑥)‘𝑗))
200 oveq1 7353 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑗(.g‘(mulGrp‘𝑃))(var1𝑅)))
201199, 200oveq12d 7364 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))) = (((coe1𝑥)‘𝑗)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))))
202 simplr 768 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → 𝑗 ∈ ℕ0)
203 ovexd 7381 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (((coe1𝑥)‘𝑗)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ V)
204195, 201, 202, 203fvmptd3 6952 . . . . . . . . . . . 12 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝑗) = (((coe1𝑥)‘𝑗)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))))
205166ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → 𝑥 ∈ (Base‘𝑃))
206 icossxr 13332 . . . . . . . . . . . . . . . . 17 (-∞[,)𝑁) ⊆ ℝ*
207206, 75sselid 3927 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑆) → (𝐷𝑥) ∈ ℝ*)
208207ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (𝐷𝑥) ∈ ℝ*)
20954ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → 𝑁 ∈ ℝ*)
210202nn0red 12443 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → 𝑗 ∈ ℝ)
211210rexrd 11162 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → 𝑗 ∈ ℝ*)
21279ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (𝐷𝑥) < 𝑁)
213 simpr 484 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → 𝑁𝑗)
214208, 209, 211, 212, 213xrltletrd 13060 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (𝐷𝑥) < 𝑗)
21524, 1, 33, 9, 167deg1lt 26029 . . . . . . . . . . . . . 14 ((𝑥 ∈ (Base‘𝑃) ∧ 𝑗 ∈ ℕ0 ∧ (𝐷𝑥) < 𝑗) → ((coe1𝑥)‘𝑗) = (0g𝑅))
216205, 202, 214, 215syl3anc 1373 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → ((coe1𝑥)‘𝑗) = (0g𝑅))
217216oveq1d 7361 . . . . . . . . . . . 12 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (((coe1𝑥)‘𝑗)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))) = ((0g𝑅)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))))
218147ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (0g𝑅) = (0g‘(Scalar‘𝑃)))
219218oveq1d 7361 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → ((0g𝑅)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))) = ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))))
22023ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → 𝑃 ∈ LMod)
22194ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (mulGrp‘𝑃) ∈ Mnd)
222100ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (var1𝑅) ∈ (Base‘𝑃))
22390, 91, 221, 202, 222mulgnn0cld 19008 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (𝑗(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃))
224 eqid 2731 . . . . . . . . . . . . . . 15 (0g‘(Scalar‘𝑃)) = (0g‘(Scalar‘𝑃))
22533, 37, 38, 224, 10lmod0vs 20828 . . . . . . . . . . . . . 14 ((𝑃 ∈ LMod ∧ (𝑗(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃)) → ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃))
226220, 223, 225syl2anc 584 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃))
227219, 226eqtrd 2766 . . . . . . . . . . . 12 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → ((0g𝑅)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃))
228204, 217, 2273eqtrd 2770 . . . . . . . . . . 11 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝑗) = (0g𝑃))
2293nn0zd 12494 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
230229adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → 𝑁 ∈ ℤ)
231198, 228, 230suppssnn0 32787 . . . . . . . . . 10 ((𝜑𝑥𝑆) → ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) supp (0g𝑃)) ⊆ (0..^𝑁))
232186mptexd 7158 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ∈ V)
233198fnfund 6582 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → Fun (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))))
234 fvexd 6837 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (0g𝑃) ∈ V)
235 suppssfifsupp 9264 . . . . . . . . . . 11 ((((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ∈ V ∧ Fun (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ∧ (0g𝑃) ∈ V) ∧ ((0..^𝑁) ∈ Fin ∧ ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) supp (0g𝑃)) ⊆ (0..^𝑁))) → (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) finSupp (0g𝑃))
236232, 233, 234, 179, 231, 235syl32anc 1380 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) finSupp (0g𝑃))
23733, 10, 184, 186, 196, 231, 236gsumres 19825 . . . . . . . . 9 ((𝜑𝑥𝑆) → (𝑃 Σg ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ↾ (0..^𝑁))) = (𝑃 Σg (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))))
238 fvexd 6837 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → (coe1𝑥) ∈ V)
239 ovexd 7381 . . . . . . . . . . . . . 14 (𝜑 → (0..^𝑁) ∈ V)
240154, 239fexd 7161 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ V)
241240adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → 𝐹 ∈ V)
242 offres 7915 . . . . . . . . . . . 12 (((coe1𝑥) ∈ V ∧ 𝐹 ∈ V) → (((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹) ↾ (0..^𝑁)) = (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)(𝐹 ↾ (0..^𝑁))))
243238, 241, 242syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹) ↾ (0..^𝑁)) = (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)(𝐹 ↾ (0..^𝑁))))
244169ffnd 6652 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑆) → (coe1𝑥) Fn ℕ0)
245154ffnd 6652 . . . . . . . . . . . . . . . 16 (𝜑𝐹 Fn (0..^𝑁))
246245adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑆) → 𝐹 Fn (0..^𝑁))
247 sseqin2 4170 . . . . . . . . . . . . . . . 16 ((0..^𝑁) ⊆ ℕ0 ↔ (ℕ0 ∩ (0..^𝑁)) = (0..^𝑁))
248173, 247mpbi 230 . . . . . . . . . . . . . . 15 (ℕ0 ∩ (0..^𝑁)) = (0..^𝑁)
249 eqidd 2732 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) → ((coe1𝑥)‘𝑗) = ((coe1𝑥)‘𝑗))
250 oveq1 7353 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗 → (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑗(.g‘(mulGrp‘𝑃))(var1𝑅)))
251 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ (0..^𝑁))
252 ovexd 7381 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → (𝑗(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ V)
2538, 250, 251, 252fvmptd3 6952 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → (𝐹𝑗) = (𝑗(.g‘(mulGrp‘𝑃))(var1𝑅)))
254244, 246, 186, 165, 248, 249, 253ofval 7621 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → (((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹)‘𝑗) = (((coe1𝑥)‘𝑗)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))))
255173, 251sselid 3927 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ ℕ0)
256 ovexd 7381 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → (((coe1𝑥)‘𝑗)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ V)
257195, 201, 255, 256fvmptd3 6952 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝑗) = (((coe1𝑥)‘𝑗)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))))
258254, 257eqtr4d 2769 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → (((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹)‘𝑗) = ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝑗))
259258ralrimiva 3124 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → ∀𝑗 ∈ (0..^𝑁)(((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹)‘𝑗) = ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝑗))
260244, 246, 186, 165, 248offn 7623 . . . . . . . . . . . . 13 ((𝜑𝑥𝑆) → ((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹) Fn (0..^𝑁))
261 ssidd 3953 . . . . . . . . . . . . 13 ((𝜑𝑥𝑆) → (0..^𝑁) ⊆ (0..^𝑁))
262 fvreseq0 6971 . . . . . . . . . . . . 13 (((((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹) Fn (0..^𝑁) ∧ (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) Fn ℕ0) ∧ ((0..^𝑁) ⊆ (0..^𝑁) ∧ (0..^𝑁) ⊆ ℕ0)) → ((((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹) ↾ (0..^𝑁)) = ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ↾ (0..^𝑁)) ↔ ∀𝑗 ∈ (0..^𝑁)(((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹)‘𝑗) = ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝑗)))
263260, 198, 261, 174, 262syl22anc 838 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → ((((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹) ↾ (0..^𝑁)) = ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ↾ (0..^𝑁)) ↔ ∀𝑗 ∈ (0..^𝑁)(((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹)‘𝑗) = ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝑗)))
264259, 263mpbird 257 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹) ↾ (0..^𝑁)) = ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ↾ (0..^𝑁)))
265 fnresdm 6600 . . . . . . . . . . . . . 14 (𝐹 Fn (0..^𝑁) → (𝐹 ↾ (0..^𝑁)) = 𝐹)
266245, 265syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐹 ↾ (0..^𝑁)) = 𝐹)
267266adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → (𝐹 ↾ (0..^𝑁)) = 𝐹)
268267oveq2d 7362 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)(𝐹 ↾ (0..^𝑁))) = (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹))
269243, 264, 2683eqtr3rd 2775 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹) = ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ↾ (0..^𝑁)))
270269oveq2d 7362 . . . . . . . . 9 ((𝜑𝑥𝑆) → (𝑃 Σg (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹)) = (𝑃 Σg ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ↾ (0..^𝑁))))
2716adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝑆) → 𝑅 ∈ Ring)
2721, 98, 33, 38, 89, 91, 167ply1coe 22213 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑃)) → 𝑥 = (𝑃 Σg (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))))
273271, 166, 272syl2anc 584 . . . . . . . . 9 ((𝜑𝑥𝑆) → 𝑥 = (𝑃 Σg (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))))
274237, 270, 2733eqtr4rd 2777 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝑥 = (𝑃 Σg (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹)))
275181, 274jca 511 . . . . . . 7 ((𝜑𝑥𝑆) → (((coe1𝑥) ↾ (0..^𝑁)) finSupp (0g‘(Scalar‘𝑃)) ∧ 𝑥 = (𝑃 Σg (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹))))
276163, 176, 275rspcedvdw 3575 . . . . . 6 ((𝜑𝑥𝑆) → ∃𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))(𝑎 finSupp (0g‘(Scalar‘𝑃)) ∧ 𝑥 = (𝑃 Σg (𝑎f ( ·𝑠𝑃)𝐹))))
277102, 8fmptd 7047 . . . . . . . 8 (𝜑𝐹:(0..^𝑁)⟶(Base‘𝑃))
278156, 33, 39, 37, 224, 38, 277, 23, 239ellspd 21739 . . . . . . 7 (𝜑 → (𝑥 ∈ ((LSpan‘𝑃)‘(𝐹 “ (0..^𝑁))) ↔ ∃𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))(𝑎 finSupp (0g‘(Scalar‘𝑃)) ∧ 𝑥 = (𝑃 Σg (𝑎f ( ·𝑠𝑃)𝐹)))))
279278adantr 480 . . . . . 6 ((𝜑𝑥𝑆) → (𝑥 ∈ ((LSpan‘𝑃)‘(𝐹 “ (0..^𝑁))) ↔ ∃𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))(𝑎 finSupp (0g‘(Scalar‘𝑃)) ∧ 𝑥 = (𝑃 Σg (𝑎f ( ·𝑠𝑃)𝐹)))))
280276, 279mpbird 257 . . . . 5 ((𝜑𝑥𝑆) → 𝑥 ∈ ((LSpan‘𝑃)‘(𝐹 “ (0..^𝑁))))
281 imadmrn 6018 . . . . . . . 8 (𝐹 “ dom 𝐹) = ran 𝐹
282154fdmd 6661 . . . . . . . . 9 (𝜑 → dom 𝐹 = (0..^𝑁))
283282imaeq2d 6008 . . . . . . . 8 (𝜑 → (𝐹 “ dom 𝐹) = (𝐹 “ (0..^𝑁)))
284281, 283eqtr3id 2780 . . . . . . 7 (𝜑 → ran 𝐹 = (𝐹 “ (0..^𝑁)))
285284fveq2d 6826 . . . . . 6 (𝜑 → ((LSpan‘𝑃)‘ran 𝐹) = ((LSpan‘𝑃)‘(𝐹 “ (0..^𝑁))))
286285adantr 480 . . . . 5 ((𝜑𝑥𝑆) → ((LSpan‘𝑃)‘ran 𝐹) = ((LSpan‘𝑃)‘(𝐹 “ (0..^𝑁))))
287280, 286eleqtrrd 2834 . . . 4 ((𝜑𝑥𝑆) → 𝑥 ∈ ((LSpan‘𝑃)‘ran 𝐹))
288158, 287eqelssd 3951 . . 3 (𝜑 → ((LSpan‘𝑃)‘ran 𝐹) = 𝑆)
289 eqid 2731 . . . . . 6 (LSpan‘𝐸) = (LSpan‘𝐸)
29044, 156, 289, 27lsslsp 20948 . . . . 5 ((𝑃 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑃) ∧ ran 𝐹𝑆) → ((LSpan‘𝐸)‘ran 𝐹) = ((LSpan‘𝑃)‘ran 𝐹))
291290eqcomd 2737 . . . 4 ((𝑃 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑃) ∧ ran 𝐹𝑆) → ((LSpan‘𝑃)‘ran 𝐹) = ((LSpan‘𝐸)‘ran 𝐹))
29223, 26, 155, 291syl3anc 1373 . . 3 (𝜑 → ((LSpan‘𝑃)‘ran 𝐹) = ((LSpan‘𝐸)‘ran 𝐹))
293288, 292, 463eqtr3d 2774 . 2 (𝜑 → ((LSpan‘𝐸)‘ran 𝐹) = (Base‘𝐸))
294 eqid 2731 . . 3 (Base‘𝐸) = (Base‘𝐸)
29524fvexi 6836 . . . . . . 7 𝐷 ∈ V
296 cnvexg 7854 . . . . . . 7 (𝐷 ∈ V → 𝐷 ∈ V)
297 imaexg 7843 . . . . . . 7 (𝐷 ∈ V → (𝐷 “ (-∞[,)𝑁)) ∈ V)
298295, 296, 297mp2b 10 . . . . . 6 (𝐷 “ (-∞[,)𝑁)) ∈ V
29925, 298eqeltri 2827 . . . . 5 𝑆 ∈ V
30044, 37resssca 17247 . . . . 5 (𝑆 ∈ V → (Scalar‘𝑃) = (Scalar‘𝐸))
301299, 300ax-mp 5 . . . 4 (Scalar‘𝑃) = (Scalar‘𝐸)
302301fveq2i 6825 . . 3 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝐸))
303 eqid 2731 . . 3 (Scalar‘𝐸) = (Scalar‘𝐸)
30444, 38ressvsca 17248 . . . 4 (𝑆 ∈ V → ( ·𝑠𝑃) = ( ·𝑠𝐸))
305299, 304ax-mp 5 . . 3 ( ·𝑠𝑃) = ( ·𝑠𝐸)
306 eqid 2731 . . 3 (0g𝐸) = (0g𝐸)
307301fveq2i 6825 . . 3 (0g‘(Scalar‘𝑃)) = (0g‘(Scalar‘𝐸))
308 eqid 2731 . . 3 (LBasis‘𝐸) = (LBasis‘𝐸)
30944, 27lsslvec 21043 . . . . 5 ((𝑃 ∈ LVec ∧ 𝑆 ∈ (LSubSp‘𝑃)) → 𝐸 ∈ LVec)
31022, 26, 309syl2anc 584 . . . 4 (𝜑𝐸 ∈ LVec)
311310lveclmodd 21041 . . 3 (𝜑𝐸 ∈ LMod)
31214, 5eqeltrrd 2832 . . . . 5 (𝜑 → (Scalar‘𝑃) ∈ DivRing)
313 drngnzr 20663 . . . . 5 ((Scalar‘𝑃) ∈ DivRing → (Scalar‘𝑃) ∈ NzRing)
314312, 313syl 17 . . . 4 (𝜑 → (Scalar‘𝑃) ∈ NzRing)
315301, 314eqeltrrid 2836 . . 3 (𝜑 → (Scalar‘𝐸) ∈ NzRing)
316120ralrimiva 3124 . . . 4 (𝜑 → ∀𝑛 ∈ (0..^𝑁)(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝐸))
317 drngnzr 20663 . . . . . . . . . 10 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
3185, 317syl 17 . . . . . . . . 9 (𝜑𝑅 ∈ NzRing)
319318ad2antrr 726 . . . . . . . 8 (((𝜑𝑛 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑅 ∈ NzRing)
32097adantr 480 . . . . . . . 8 (((𝜑𝑛 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑛 ∈ ℕ0)
321 elfzonn0 13607 . . . . . . . . 9 (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ ℕ0)
322321adantl 481 . . . . . . . 8 (((𝜑𝑛 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ ℕ0)
3231, 98, 91, 319, 320, 322ply1moneq 33550 . . . . . . 7 (((𝜑𝑛 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) ↔ 𝑛 = 𝑖))
324323biimpd 229 . . . . . 6 (((𝜑𝑛 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) → 𝑛 = 𝑖))
325324anasss 466 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (0..^𝑁) ∧ 𝑖 ∈ (0..^𝑁))) → ((𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) → 𝑛 = 𝑖))
326325ralrimivva 3175 . . . 4 (𝜑 → ∀𝑛 ∈ (0..^𝑁)∀𝑖 ∈ (0..^𝑁)((𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) → 𝑛 = 𝑖))
327 oveq1 7353 . . . . 5 (𝑛 = 𝑖 → (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))
3288, 327f1mpt 7195 . . . 4 (𝐹:(0..^𝑁)–1-1→(Base‘𝐸) ↔ (∀𝑛 ∈ (0..^𝑁)(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝐸) ∧ ∀𝑛 ∈ (0..^𝑁)∀𝑖 ∈ (0..^𝑁)((𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) → 𝑛 = 𝑖)))
329316, 326, 328sylanbrc 583 . . 3 (𝜑𝐹:(0..^𝑁)–1-1→(Base‘𝐸))
330294, 302, 303, 305, 306, 307, 308, 289, 311, 315, 239, 329islbs5 33345 . 2 (𝜑 → (ran 𝐹 ∈ (LBasis‘𝐸) ↔ (∀𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))((𝑎 finSupp (0g‘(Scalar‘𝑃)) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑎 = ((0..^𝑁) × {(0g‘(Scalar‘𝑃))})) ∧ ((LSpan‘𝐸)‘ran 𝐹) = (Base‘𝐸))))
331153, 293, 330mpbir2and 713 1 (𝜑 → ran 𝐹 ∈ (LBasis‘𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  cin 3896  wss 3897  {csn 4573   class class class wbr 5089  cmpt 5170   × cxp 5612  ccnv 5613  dom cdm 5614  ran crn 5615  cres 5616  cima 5617  Fun wfun 6475   Fn wfn 6476  wf 6477  1-1wf1 6478  cfv 6481  (class class class)co 7346  f cof 7608   supp csupp 8090  m cmap 8750  Fincfn 8869   finSupp cfsupp 9245  0cc0 11006  -∞cmnf 11144  *cxr 11145   < clt 11146  cle 11147  0cn0 12381  cz 12468  [,)cico 13247  ..^cfzo 13554  Basecbs 17120  s cress 17141  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343   Σg cgsu 17344  Mndcmnd 18642  SubMndcsubmnd 18690  .gcmg 18980  SubGrpcsubg 19033  CMndccmn 19692  mulGrpcmgp 20058  Ringcrg 20151  NzRingcnzr 20427  DivRingcdr 20644  LModclmod 20793  LSubSpclss 20864  LSpanclspn 20904  LBasisclbs 21008  LVecclvec 21036  var1cv1 22088  Poly1cpl1 22089  coe1cco1 22090  deg1cdg1 25986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-ico 13251  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-ghm 19125  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-srg 20105  df-ring 20153  df-cring 20154  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-nzr 20428  df-subrng 20461  df-subrg 20485  df-drng 20646  df-lmod 20795  df-lss 20865  df-lsp 20905  df-lmhm 20956  df-lbs 21009  df-lvec 21037  df-sra 21107  df-rgmod 21108  df-cnfld 21292  df-dsmm 21669  df-frlm 21684  df-uvc 21720  df-lindf 21743  df-linds 21744  df-psr 21846  df-mvr 21847  df-mpl 21848  df-opsr 21850  df-psr1 22092  df-vr1 22093  df-ply1 22094  df-coe1 22095  df-mdeg 25987  df-deg1 25988
This theorem is referenced by:  ply1degltdim  33636
  Copyright terms: Public domain W3C validator