Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1degltdimlem Structured version   Visualization version   GIF version

Theorem ply1degltdimlem 33618
Description: Lemma for ply1degltdim 33619. (Contributed by Thierry Arnoux, 20-Feb-2025.)
Hypotheses
Ref Expression
ply1degltdim.p 𝑃 = (Poly1𝑅)
ply1degltdim.d 𝐷 = (deg1𝑅)
ply1degltdim.s 𝑆 = (𝐷 “ (-∞[,)𝑁))
ply1degltdim.n (𝜑𝑁 ∈ ℕ0)
ply1degltdim.r (𝜑𝑅 ∈ DivRing)
ply1degltdim.e 𝐸 = (𝑃s 𝑆)
ply1degltdimlem.f 𝐹 = (𝑛 ∈ (0..^𝑁) ↦ (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)))
Assertion
Ref Expression
ply1degltdimlem (𝜑 → ran 𝐹 ∈ (LBasis‘𝐸))
Distinct variable groups:   𝑛,𝐸   𝑛,𝐹   𝑛,𝑁   𝑃,𝑛   𝑅,𝑛   𝑆,𝑛   𝜑,𝑛
Allowed substitution hint:   𝐷(𝑛)

Proof of Theorem ply1degltdimlem
Dummy variables 𝑎 𝑖 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ply1degltdim.p . . . . . 6 𝑃 = (Poly1𝑅)
2 eqid 2729 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
3 ply1degltdim.n . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
43ad3antrrr 730 . . . . . 6 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑁 ∈ ℕ0)
5 ply1degltdim.r . . . . . . . 8 (𝜑𝑅 ∈ DivRing)
65drngringd 20646 . . . . . . 7 (𝜑𝑅 ∈ Ring)
76ad3antrrr 730 . . . . . 6 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑅 ∈ Ring)
8 ply1degltdimlem.f . . . . . 6 𝐹 = (𝑛 ∈ (0..^𝑁) ↦ (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)))
9 eqid 2729 . . . . . 6 (0g𝑅) = (0g𝑅)
10 eqid 2729 . . . . . 6 (0g𝑃) = (0g𝑃)
11 elmapi 8822 . . . . . . . . 9 (𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁)) → 𝑎:(0..^𝑁)⟶(Base‘(Scalar‘𝑃)))
1211adantl 481 . . . . . . . 8 ((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) → 𝑎:(0..^𝑁)⟶(Base‘(Scalar‘𝑃)))
131ply1sca 22137 . . . . . . . . . . . 12 (𝑅 ∈ DivRing → 𝑅 = (Scalar‘𝑃))
145, 13syl 17 . . . . . . . . . . 11 (𝜑𝑅 = (Scalar‘𝑃))
1514fveq2d 6862 . . . . . . . . . 10 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
1615adantr 480 . . . . . . . . 9 ((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
1716feq3d 6673 . . . . . . . 8 ((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) → (𝑎:(0..^𝑁)⟶(Base‘𝑅) ↔ 𝑎:(0..^𝑁)⟶(Base‘(Scalar‘𝑃))))
1812, 17mpbird 257 . . . . . . 7 ((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) → 𝑎:(0..^𝑁)⟶(Base‘𝑅))
1918ad2antrr 726 . . . . . 6 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑎:(0..^𝑁)⟶(Base‘𝑅))
20 simpr 484 . . . . . . 7 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸))
21 ovexd 7422 . . . . . . . 8 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → (0..^𝑁) ∈ V)
221, 5ply1lvec 33528 . . . . . . . . . . . 12 (𝜑𝑃 ∈ LVec)
2322lveclmodd 21014 . . . . . . . . . . 11 (𝜑𝑃 ∈ LMod)
24 ply1degltdim.d . . . . . . . . . . . 12 𝐷 = (deg1𝑅)
25 ply1degltdim.s . . . . . . . . . . . 12 𝑆 = (𝐷 “ (-∞[,)𝑁))
261, 24, 25, 3, 6ply1degltlss 33562 . . . . . . . . . . 11 (𝜑𝑆 ∈ (LSubSp‘𝑃))
27 eqid 2729 . . . . . . . . . . . 12 (LSubSp‘𝑃) = (LSubSp‘𝑃)
2827lsssubg 20863 . . . . . . . . . . 11 ((𝑃 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑃)) → 𝑆 ∈ (SubGrp‘𝑃))
2923, 26, 28syl2anc 584 . . . . . . . . . 10 (𝜑𝑆 ∈ (SubGrp‘𝑃))
30 subgsubm 19080 . . . . . . . . . 10 (𝑆 ∈ (SubGrp‘𝑃) → 𝑆 ∈ (SubMnd‘𝑃))
3129, 30syl 17 . . . . . . . . 9 (𝜑𝑆 ∈ (SubMnd‘𝑃))
3231ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑆 ∈ (SubMnd‘𝑃))
33 eqid 2729 . . . . . . . . . . . . . . 15 (Base‘𝑃) = (Base‘𝑃)
3424, 1, 33deg1xrf 25986 . . . . . . . . . . . . . 14 𝐷:(Base‘𝑃)⟶ℝ*
35 ffn 6688 . . . . . . . . . . . . . 14 (𝐷:(Base‘𝑃)⟶ℝ*𝐷 Fn (Base‘𝑃))
3634, 35mp1i 13 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝐷 Fn (Base‘𝑃))
37 eqid 2729 . . . . . . . . . . . . . 14 (Scalar‘𝑃) = (Scalar‘𝑃)
38 eqid 2729 . . . . . . . . . . . . . 14 ( ·𝑠𝑃) = ( ·𝑠𝑃)
39 eqid 2729 . . . . . . . . . . . . . 14 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
4023ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑃 ∈ LMod)
41 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑘 ∈ (Base‘(Scalar‘𝑃)))
4233, 27lssss 20842 . . . . . . . . . . . . . . . . . . 19 (𝑆 ∈ (LSubSp‘𝑃) → 𝑆 ⊆ (Base‘𝑃))
4326, 42syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑆 ⊆ (Base‘𝑃))
44 ply1degltdim.e . . . . . . . . . . . . . . . . . . 19 𝐸 = (𝑃s 𝑆)
4544, 33ressbas2 17208 . . . . . . . . . . . . . . . . . 18 (𝑆 ⊆ (Base‘𝑃) → 𝑆 = (Base‘𝐸))
4643, 45syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑆 = (Base‘𝐸))
4746, 43eqsstrrd 3982 . . . . . . . . . . . . . . . 16 (𝜑 → (Base‘𝐸) ⊆ (Base‘𝑃))
4847sselda 3946 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝐸)) → 𝑥 ∈ (Base‘𝑃))
4948adantlr 715 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑥 ∈ (Base‘𝑃))
5033, 37, 38, 39, 40, 41, 49lmodvscld 20785 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝑘( ·𝑠𝑃)𝑥) ∈ (Base‘𝑃))
51 mnfxr 11231 . . . . . . . . . . . . . . 15 -∞ ∈ ℝ*
5251a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → -∞ ∈ ℝ*)
533nn0red 12504 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℝ)
5453rexrd 11224 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℝ*)
5554ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑁 ∈ ℝ*)
5634a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝐷:(Base‘𝑃)⟶ℝ*)
5756, 50ffvelcdmd 7057 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝐷‘(𝑘( ·𝑠𝑃)𝑥)) ∈ ℝ*)
5857mnfled 13096 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → -∞ ≤ (𝐷‘(𝑘( ·𝑠𝑃)𝑥)))
5956, 49ffvelcdmd 7057 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝐷𝑥) ∈ ℝ*)
606ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑅 ∈ Ring)
6115ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
6241, 61eleqtrrd 2831 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑘 ∈ (Base‘𝑅))
631, 24, 60, 33, 2, 38, 62, 49deg1vscale 26009 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝐷‘(𝑘( ·𝑠𝑃)𝑥)) ≤ (𝐷𝑥))
64 simpll 766 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝜑)
65 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑥 ∈ (Base‘𝐸))
6646ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑆 = (Base‘𝐸))
6765, 66eleqtrrd 2831 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑥𝑆)
6851a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑆) → -∞ ∈ ℝ*)
6954adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑆) → 𝑁 ∈ ℝ*)
7034, 35mp1i 13 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝑆) → 𝐷 Fn (Base‘𝑃))
71 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝑆) → 𝑥𝑆)
7271, 25eleqtrdi 2838 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝑆) → 𝑥 ∈ (𝐷 “ (-∞[,)𝑁)))
73 elpreima 7030 . . . . . . . . . . . . . . . . . . 19 (𝐷 Fn (Base‘𝑃) → (𝑥 ∈ (𝐷 “ (-∞[,)𝑁)) ↔ (𝑥 ∈ (Base‘𝑃) ∧ (𝐷𝑥) ∈ (-∞[,)𝑁))))
7473simplbda 499 . . . . . . . . . . . . . . . . . 18 ((𝐷 Fn (Base‘𝑃) ∧ 𝑥 ∈ (𝐷 “ (-∞[,)𝑁))) → (𝐷𝑥) ∈ (-∞[,)𝑁))
7570, 72, 74syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑆) → (𝐷𝑥) ∈ (-∞[,)𝑁))
76 elico1 13349 . . . . . . . . . . . . . . . . . . 19 ((-∞ ∈ ℝ*𝑁 ∈ ℝ*) → ((𝐷𝑥) ∈ (-∞[,)𝑁) ↔ ((𝐷𝑥) ∈ ℝ* ∧ -∞ ≤ (𝐷𝑥) ∧ (𝐷𝑥) < 𝑁)))
7776biimpa 476 . . . . . . . . . . . . . . . . . 18 (((-∞ ∈ ℝ*𝑁 ∈ ℝ*) ∧ (𝐷𝑥) ∈ (-∞[,)𝑁)) → ((𝐷𝑥) ∈ ℝ* ∧ -∞ ≤ (𝐷𝑥) ∧ (𝐷𝑥) < 𝑁))
7877simp3d 1144 . . . . . . . . . . . . . . . . 17 (((-∞ ∈ ℝ*𝑁 ∈ ℝ*) ∧ (𝐷𝑥) ∈ (-∞[,)𝑁)) → (𝐷𝑥) < 𝑁)
7968, 69, 75, 78syl21anc 837 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑆) → (𝐷𝑥) < 𝑁)
8064, 67, 79syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝐷𝑥) < 𝑁)
8157, 59, 55, 63, 80xrlelttrd 13120 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝐷‘(𝑘( ·𝑠𝑃)𝑥)) < 𝑁)
8252, 55, 57, 58, 81elicod 13356 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝐷‘(𝑘( ·𝑠𝑃)𝑥)) ∈ (-∞[,)𝑁))
8336, 50, 82elpreimad 7031 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝑘( ·𝑠𝑃)𝑥) ∈ (𝐷 “ (-∞[,)𝑁)))
8483, 25eleqtrrdi 2839 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝑘( ·𝑠𝑃)𝑥) ∈ 𝑆)
8584anasss 466 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑥 ∈ (Base‘𝐸))) → (𝑘( ·𝑠𝑃)𝑥) ∈ 𝑆)
8685ad5ant15 758 . . . . . . . . 9 (((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑥 ∈ (Base‘𝐸))) → (𝑘( ·𝑠𝑃)𝑥) ∈ 𝑆)
8712ad2antrr 726 . . . . . . . . 9 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑎:(0..^𝑁)⟶(Base‘(Scalar‘𝑃)))
8834, 35mp1i 13 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (0..^𝑁)) → 𝐷 Fn (Base‘𝑃))
89 eqid 2729 . . . . . . . . . . . . . . . 16 (mulGrp‘𝑃) = (mulGrp‘𝑃)
9089, 33mgpbas 20054 . . . . . . . . . . . . . . 15 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
91 eqid 2729 . . . . . . . . . . . . . . 15 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
921ply1ring 22132 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
9389ringmgp 20148 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
946, 92, 933syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (mulGrp‘𝑃) ∈ Mnd)
9594adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑁)) → (mulGrp‘𝑃) ∈ Mnd)
96 elfzonn0 13668 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (0..^𝑁) → 𝑛 ∈ ℕ0)
9796adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑁)) → 𝑛 ∈ ℕ0)
98 eqid 2729 . . . . . . . . . . . . . . . . . 18 (var1𝑅) = (var1𝑅)
9998, 1, 33vr1cl 22102 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Ring → (var1𝑅) ∈ (Base‘𝑃))
1006, 99syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (var1𝑅) ∈ (Base‘𝑃))
101100adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑁)) → (var1𝑅) ∈ (Base‘𝑃))
10290, 91, 95, 97, 101mulgnn0cld 19027 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃))
10351a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑁)) → -∞ ∈ ℝ*)
10454adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑁)) → 𝑁 ∈ ℝ*)
10524, 1, 33deg1xrcl 25987 . . . . . . . . . . . . . . . 16 ((𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ ℝ*)
106102, 105syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ ℝ*)
107106mnfled 13096 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑁)) → -∞ ≤ (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))))
10896nn0red 12504 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (0..^𝑁) → 𝑛 ∈ ℝ)
109108rexrd 11224 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (0..^𝑁) → 𝑛 ∈ ℝ*)
110109adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑁)) → 𝑛 ∈ ℝ*)
11124, 1, 98, 89, 91deg1pwle 26025 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝑛 ∈ ℕ0) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))) ≤ 𝑛)
1126, 96, 111syl2an 596 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))) ≤ 𝑛)
113 elfzolt2 13629 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (0..^𝑁) → 𝑛 < 𝑁)
114113adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑁)) → 𝑛 < 𝑁)
115106, 110, 104, 112, 114xrlelttrd 13120 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))) < 𝑁)
116103, 104, 106, 107, 115elicod 13356 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ (-∞[,)𝑁))
11788, 102, 116elpreimad 7031 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (𝐷 “ (-∞[,)𝑁)))
118117, 25eleqtrrdi 2839 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ 𝑆)
11946adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑁)) → 𝑆 = (Base‘𝐸))
120118, 119eleqtrd 2830 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝐸))
121120, 8fmptd 7086 . . . . . . . . . 10 (𝜑𝐹:(0..^𝑁)⟶(Base‘𝐸))
122121ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝐹:(0..^𝑁)⟶(Base‘𝐸))
123 inidm 4190 . . . . . . . . 9 ((0..^𝑁) ∩ (0..^𝑁)) = (0..^𝑁)
12486, 87, 122, 21, 21, 123off 7671 . . . . . . . 8 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → (𝑎f ( ·𝑠𝑃)𝐹):(0..^𝑁)⟶𝑆)
12521, 32, 124, 44gsumsubm 18762 . . . . . . 7 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → (𝑃 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)))
126 ringmnd 20152 . . . . . . . . . 10 (𝑃 ∈ Ring → 𝑃 ∈ Mnd)
1276, 92, 1263syl 18 . . . . . . . . 9 (𝜑𝑃 ∈ Mnd)
12834, 35mp1i 13 . . . . . . . . . . 11 (𝜑𝐷 Fn (Base‘𝑃))
12933, 10mndidcl 18676 . . . . . . . . . . . 12 (𝑃 ∈ Mnd → (0g𝑃) ∈ (Base‘𝑃))
130127, 129syl 17 . . . . . . . . . . 11 (𝜑 → (0g𝑃) ∈ (Base‘𝑃))
13151a1i 11 . . . . . . . . . . . 12 (𝜑 → -∞ ∈ ℝ*)
13224, 1, 33deg1xrcl 25987 . . . . . . . . . . . . 13 ((0g𝑃) ∈ (Base‘𝑃) → (𝐷‘(0g𝑃)) ∈ ℝ*)
133130, 132syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐷‘(0g𝑃)) ∈ ℝ*)
134133mnfled 13096 . . . . . . . . . . . 12 (𝜑 → -∞ ≤ (𝐷‘(0g𝑃)))
13524, 1, 10deg1z 25992 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → (𝐷‘(0g𝑃)) = -∞)
1366, 135syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐷‘(0g𝑃)) = -∞)
13753mnfltd 13084 . . . . . . . . . . . . 13 (𝜑 → -∞ < 𝑁)
138136, 137eqbrtrd 5129 . . . . . . . . . . . 12 (𝜑 → (𝐷‘(0g𝑃)) < 𝑁)
139131, 54, 133, 134, 138elicod 13356 . . . . . . . . . . 11 (𝜑 → (𝐷‘(0g𝑃)) ∈ (-∞[,)𝑁))
140128, 130, 139elpreimad 7031 . . . . . . . . . 10 (𝜑 → (0g𝑃) ∈ (𝐷 “ (-∞[,)𝑁)))
141140, 25eleqtrrdi 2839 . . . . . . . . 9 (𝜑 → (0g𝑃) ∈ 𝑆)
14244, 33, 10ress0g 18689 . . . . . . . . 9 ((𝑃 ∈ Mnd ∧ (0g𝑃) ∈ 𝑆𝑆 ⊆ (Base‘𝑃)) → (0g𝑃) = (0g𝐸))
143127, 141, 43, 142syl3anc 1373 . . . . . . . 8 (𝜑 → (0g𝑃) = (0g𝐸))
144143ad3antrrr 730 . . . . . . 7 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → (0g𝑃) = (0g𝐸))
14520, 125, 1443eqtr4d 2774 . . . . . 6 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → (𝑃 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝑃))
1461, 2, 4, 7, 8, 9, 10, 19, 145ply1gsumz 33564 . . . . 5 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑎 = ((0..^𝑁) × {(0g𝑅)}))
14714fveq2d 6862 . . . . . . . 8 (𝜑 → (0g𝑅) = (0g‘(Scalar‘𝑃)))
148147sneqd 4601 . . . . . . 7 (𝜑 → {(0g𝑅)} = {(0g‘(Scalar‘𝑃))})
149148xpeq2d 5668 . . . . . 6 (𝜑 → ((0..^𝑁) × {(0g𝑅)}) = ((0..^𝑁) × {(0g‘(Scalar‘𝑃))}))
150149ad3antrrr 730 . . . . 5 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → ((0..^𝑁) × {(0g𝑅)}) = ((0..^𝑁) × {(0g‘(Scalar‘𝑃))}))
151146, 150eqtrd 2764 . . . 4 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑎 = ((0..^𝑁) × {(0g‘(Scalar‘𝑃))}))
152151expl 457 . . 3 ((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) → ((𝑎 finSupp (0g‘(Scalar‘𝑃)) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑎 = ((0..^𝑁) × {(0g‘(Scalar‘𝑃))})))
153152ralrimiva 3125 . 2 (𝜑 → ∀𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))((𝑎 finSupp (0g‘(Scalar‘𝑃)) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑎 = ((0..^𝑁) × {(0g‘(Scalar‘𝑃))})))
154118, 8fmptd 7086 . . . . . 6 (𝜑𝐹:(0..^𝑁)⟶𝑆)
155154frnd 6696 . . . . 5 (𝜑 → ran 𝐹𝑆)
156 eqid 2729 . . . . . 6 (LSpan‘𝑃) = (LSpan‘𝑃)
15727, 156lspssp 20894 . . . . 5 ((𝑃 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑃) ∧ ran 𝐹𝑆) → ((LSpan‘𝑃)‘ran 𝐹) ⊆ 𝑆)
15823, 26, 155, 157syl3anc 1373 . . . 4 (𝜑 → ((LSpan‘𝑃)‘ran 𝐹) ⊆ 𝑆)
159 breq1 5110 . . . . . . . 8 (𝑎 = ((coe1𝑥) ↾ (0..^𝑁)) → (𝑎 finSupp (0g‘(Scalar‘𝑃)) ↔ ((coe1𝑥) ↾ (0..^𝑁)) finSupp (0g‘(Scalar‘𝑃))))
160 oveq1 7394 . . . . . . . . . 10 (𝑎 = ((coe1𝑥) ↾ (0..^𝑁)) → (𝑎f ( ·𝑠𝑃)𝐹) = (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹))
161160oveq2d 7403 . . . . . . . . 9 (𝑎 = ((coe1𝑥) ↾ (0..^𝑁)) → (𝑃 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (𝑃 Σg (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹)))
162161eqeq2d 2740 . . . . . . . 8 (𝑎 = ((coe1𝑥) ↾ (0..^𝑁)) → (𝑥 = (𝑃 Σg (𝑎f ( ·𝑠𝑃)𝐹)) ↔ 𝑥 = (𝑃 Σg (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹))))
163159, 162anbi12d 632 . . . . . . 7 (𝑎 = ((coe1𝑥) ↾ (0..^𝑁)) → ((𝑎 finSupp (0g‘(Scalar‘𝑃)) ∧ 𝑥 = (𝑃 Σg (𝑎f ( ·𝑠𝑃)𝐹))) ↔ (((coe1𝑥) ↾ (0..^𝑁)) finSupp (0g‘(Scalar‘𝑃)) ∧ 𝑥 = (𝑃 Σg (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹)))))
164 fvexd 6873 . . . . . . . 8 ((𝜑𝑥𝑆) → (Base‘(Scalar‘𝑃)) ∈ V)
165 ovexd 7422 . . . . . . . 8 ((𝜑𝑥𝑆) → (0..^𝑁) ∈ V)
16643sselda 3946 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → 𝑥 ∈ (Base‘𝑃))
167 eqid 2729 . . . . . . . . . . . 12 (coe1𝑥) = (coe1𝑥)
168167, 33, 1, 2coe1f 22096 . . . . . . . . . . 11 (𝑥 ∈ (Base‘𝑃) → (coe1𝑥):ℕ0⟶(Base‘𝑅))
169166, 168syl 17 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (coe1𝑥):ℕ0⟶(Base‘𝑅))
17015adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
171170feq3d 6673 . . . . . . . . . 10 ((𝜑𝑥𝑆) → ((coe1𝑥):ℕ0⟶(Base‘𝑅) ↔ (coe1𝑥):ℕ0⟶(Base‘(Scalar‘𝑃))))
172169, 171mpbid 232 . . . . . . . . 9 ((𝜑𝑥𝑆) → (coe1𝑥):ℕ0⟶(Base‘(Scalar‘𝑃)))
173 fzo0ssnn0 13707 . . . . . . . . . 10 (0..^𝑁) ⊆ ℕ0
174173a1i 11 . . . . . . . . 9 ((𝜑𝑥𝑆) → (0..^𝑁) ⊆ ℕ0)
175172, 174fssresd 6727 . . . . . . . 8 ((𝜑𝑥𝑆) → ((coe1𝑥) ↾ (0..^𝑁)):(0..^𝑁)⟶(Base‘(Scalar‘𝑃)))
176164, 165, 175elmapdd 8814 . . . . . . 7 ((𝜑𝑥𝑆) → ((coe1𝑥) ↾ (0..^𝑁)) ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁)))
177169ffund 6692 . . . . . . . . 9 ((𝜑𝑥𝑆) → Fun (coe1𝑥))
178 fzofi 13939 . . . . . . . . . 10 (0..^𝑁) ∈ Fin
179178a1i 11 . . . . . . . . 9 ((𝜑𝑥𝑆) → (0..^𝑁) ∈ Fin)
180 fvexd 6873 . . . . . . . . 9 ((𝜑𝑥𝑆) → (0g‘(Scalar‘𝑃)) ∈ V)
181177, 179, 180resfifsupp 9348 . . . . . . . 8 ((𝜑𝑥𝑆) → ((coe1𝑥) ↾ (0..^𝑁)) finSupp (0g‘(Scalar‘𝑃)))
182 ringcmn 20191 . . . . . . . . . . . 12 (𝑃 ∈ Ring → 𝑃 ∈ CMnd)
1836, 92, 1823syl 18 . . . . . . . . . . 11 (𝜑𝑃 ∈ CMnd)
184183adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝑆) → 𝑃 ∈ CMnd)
185 nn0ex 12448 . . . . . . . . . . 11 0 ∈ V
186185a1i 11 . . . . . . . . . 10 ((𝜑𝑥𝑆) → ℕ0 ∈ V)
18723ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑖 ∈ ℕ0) → 𝑃 ∈ LMod)
188172ffvelcdmda 7056 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑖 ∈ ℕ0) → ((coe1𝑥)‘𝑖) ∈ (Base‘(Scalar‘𝑃)))
1896ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑖 ∈ ℕ0) → 𝑅 ∈ Ring)
190189, 92, 933syl 18 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑖 ∈ ℕ0) → (mulGrp‘𝑃) ∈ Mnd)
191 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
192189, 99syl 17 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑖 ∈ ℕ0) → (var1𝑅) ∈ (Base‘𝑃))
19390, 91, 190, 191, 192mulgnn0cld 19027 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑖 ∈ ℕ0) → (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃))
19433, 37, 38, 39, 187, 188, 193lmodvscld 20785 . . . . . . . . . . 11 (((𝜑𝑥𝑆) ∧ 𝑖 ∈ ℕ0) → (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ (Base‘𝑃))
195 eqid 2729 . . . . . . . . . . 11 (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) = (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))
196194, 195fmptd 7086 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))):ℕ0⟶(Base‘𝑃))
197 nfv 1914 . . . . . . . . . . . 12 𝑖(𝜑𝑥𝑆)
198197, 194, 195fnmptd 6659 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) Fn ℕ0)
199 fveq2 6858 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → ((coe1𝑥)‘𝑖) = ((coe1𝑥)‘𝑗))
200 oveq1 7394 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑗(.g‘(mulGrp‘𝑃))(var1𝑅)))
201199, 200oveq12d 7405 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))) = (((coe1𝑥)‘𝑗)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))))
202 simplr 768 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → 𝑗 ∈ ℕ0)
203 ovexd 7422 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (((coe1𝑥)‘𝑗)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ V)
204195, 201, 202, 203fvmptd3 6991 . . . . . . . . . . . 12 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝑗) = (((coe1𝑥)‘𝑗)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))))
205166ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → 𝑥 ∈ (Base‘𝑃))
206 icossxr 13393 . . . . . . . . . . . . . . . . 17 (-∞[,)𝑁) ⊆ ℝ*
207206, 75sselid 3944 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑆) → (𝐷𝑥) ∈ ℝ*)
208207ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (𝐷𝑥) ∈ ℝ*)
20954ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → 𝑁 ∈ ℝ*)
210202nn0red 12504 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → 𝑗 ∈ ℝ)
211210rexrd 11224 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → 𝑗 ∈ ℝ*)
21279ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (𝐷𝑥) < 𝑁)
213 simpr 484 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → 𝑁𝑗)
214208, 209, 211, 212, 213xrltletrd 13121 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (𝐷𝑥) < 𝑗)
21524, 1, 33, 9, 167deg1lt 26002 . . . . . . . . . . . . . 14 ((𝑥 ∈ (Base‘𝑃) ∧ 𝑗 ∈ ℕ0 ∧ (𝐷𝑥) < 𝑗) → ((coe1𝑥)‘𝑗) = (0g𝑅))
216205, 202, 214, 215syl3anc 1373 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → ((coe1𝑥)‘𝑗) = (0g𝑅))
217216oveq1d 7402 . . . . . . . . . . . 12 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (((coe1𝑥)‘𝑗)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))) = ((0g𝑅)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))))
218147ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (0g𝑅) = (0g‘(Scalar‘𝑃)))
219218oveq1d 7402 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → ((0g𝑅)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))) = ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))))
22023ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → 𝑃 ∈ LMod)
22194ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (mulGrp‘𝑃) ∈ Mnd)
222100ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (var1𝑅) ∈ (Base‘𝑃))
22390, 91, 221, 202, 222mulgnn0cld 19027 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (𝑗(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃))
224 eqid 2729 . . . . . . . . . . . . . . 15 (0g‘(Scalar‘𝑃)) = (0g‘(Scalar‘𝑃))
22533, 37, 38, 224, 10lmod0vs 20801 . . . . . . . . . . . . . 14 ((𝑃 ∈ LMod ∧ (𝑗(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃)) → ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃))
226220, 223, 225syl2anc 584 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃))
227219, 226eqtrd 2764 . . . . . . . . . . . 12 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → ((0g𝑅)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃))
228204, 217, 2273eqtrd 2768 . . . . . . . . . . 11 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝑗) = (0g𝑃))
2293nn0zd 12555 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
230229adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → 𝑁 ∈ ℤ)
231198, 228, 230suppssnn0 32730 . . . . . . . . . 10 ((𝜑𝑥𝑆) → ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) supp (0g𝑃)) ⊆ (0..^𝑁))
232186mptexd 7198 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ∈ V)
233198fnfund 6619 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → Fun (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))))
234 fvexd 6873 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (0g𝑃) ∈ V)
235 suppssfifsupp 9331 . . . . . . . . . . 11 ((((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ∈ V ∧ Fun (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ∧ (0g𝑃) ∈ V) ∧ ((0..^𝑁) ∈ Fin ∧ ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) supp (0g𝑃)) ⊆ (0..^𝑁))) → (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) finSupp (0g𝑃))
236232, 233, 234, 179, 231, 235syl32anc 1380 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) finSupp (0g𝑃))
23733, 10, 184, 186, 196, 231, 236gsumres 19843 . . . . . . . . 9 ((𝜑𝑥𝑆) → (𝑃 Σg ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ↾ (0..^𝑁))) = (𝑃 Σg (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))))
238 fvexd 6873 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → (coe1𝑥) ∈ V)
239 ovexd 7422 . . . . . . . . . . . . . 14 (𝜑 → (0..^𝑁) ∈ V)
240154, 239fexd 7201 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ V)
241240adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → 𝐹 ∈ V)
242 offres 7962 . . . . . . . . . . . 12 (((coe1𝑥) ∈ V ∧ 𝐹 ∈ V) → (((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹) ↾ (0..^𝑁)) = (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)(𝐹 ↾ (0..^𝑁))))
243238, 241, 242syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹) ↾ (0..^𝑁)) = (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)(𝐹 ↾ (0..^𝑁))))
244169ffnd 6689 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑆) → (coe1𝑥) Fn ℕ0)
245154ffnd 6689 . . . . . . . . . . . . . . . 16 (𝜑𝐹 Fn (0..^𝑁))
246245adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑆) → 𝐹 Fn (0..^𝑁))
247 sseqin2 4186 . . . . . . . . . . . . . . . 16 ((0..^𝑁) ⊆ ℕ0 ↔ (ℕ0 ∩ (0..^𝑁)) = (0..^𝑁))
248173, 247mpbi 230 . . . . . . . . . . . . . . 15 (ℕ0 ∩ (0..^𝑁)) = (0..^𝑁)
249 eqidd 2730 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) → ((coe1𝑥)‘𝑗) = ((coe1𝑥)‘𝑗))
250 oveq1 7394 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗 → (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑗(.g‘(mulGrp‘𝑃))(var1𝑅)))
251 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ (0..^𝑁))
252 ovexd 7422 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → (𝑗(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ V)
2538, 250, 251, 252fvmptd3 6991 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → (𝐹𝑗) = (𝑗(.g‘(mulGrp‘𝑃))(var1𝑅)))
254244, 246, 186, 165, 248, 249, 253ofval 7664 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → (((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹)‘𝑗) = (((coe1𝑥)‘𝑗)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))))
255173, 251sselid 3944 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ ℕ0)
256 ovexd 7422 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → (((coe1𝑥)‘𝑗)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ V)
257195, 201, 255, 256fvmptd3 6991 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝑗) = (((coe1𝑥)‘𝑗)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))))
258254, 257eqtr4d 2767 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → (((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹)‘𝑗) = ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝑗))
259258ralrimiva 3125 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → ∀𝑗 ∈ (0..^𝑁)(((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹)‘𝑗) = ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝑗))
260244, 246, 186, 165, 248offn 7666 . . . . . . . . . . . . 13 ((𝜑𝑥𝑆) → ((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹) Fn (0..^𝑁))
261 ssidd 3970 . . . . . . . . . . . . 13 ((𝜑𝑥𝑆) → (0..^𝑁) ⊆ (0..^𝑁))
262 fvreseq0 7010 . . . . . . . . . . . . 13 (((((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹) Fn (0..^𝑁) ∧ (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) Fn ℕ0) ∧ ((0..^𝑁) ⊆ (0..^𝑁) ∧ (0..^𝑁) ⊆ ℕ0)) → ((((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹) ↾ (0..^𝑁)) = ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ↾ (0..^𝑁)) ↔ ∀𝑗 ∈ (0..^𝑁)(((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹)‘𝑗) = ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝑗)))
263260, 198, 261, 174, 262syl22anc 838 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → ((((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹) ↾ (0..^𝑁)) = ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ↾ (0..^𝑁)) ↔ ∀𝑗 ∈ (0..^𝑁)(((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹)‘𝑗) = ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝑗)))
264259, 263mpbird 257 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹) ↾ (0..^𝑁)) = ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ↾ (0..^𝑁)))
265 fnresdm 6637 . . . . . . . . . . . . . 14 (𝐹 Fn (0..^𝑁) → (𝐹 ↾ (0..^𝑁)) = 𝐹)
266245, 265syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐹 ↾ (0..^𝑁)) = 𝐹)
267266adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → (𝐹 ↾ (0..^𝑁)) = 𝐹)
268267oveq2d 7403 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)(𝐹 ↾ (0..^𝑁))) = (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹))
269243, 264, 2683eqtr3rd 2773 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹) = ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ↾ (0..^𝑁)))
270269oveq2d 7403 . . . . . . . . 9 ((𝜑𝑥𝑆) → (𝑃 Σg (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹)) = (𝑃 Σg ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ↾ (0..^𝑁))))
2716adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝑆) → 𝑅 ∈ Ring)
2721, 98, 33, 38, 89, 91, 167ply1coe 22185 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑃)) → 𝑥 = (𝑃 Σg (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))))
273271, 166, 272syl2anc 584 . . . . . . . . 9 ((𝜑𝑥𝑆) → 𝑥 = (𝑃 Σg (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))))
274237, 270, 2733eqtr4rd 2775 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝑥 = (𝑃 Σg (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹)))
275181, 274jca 511 . . . . . . 7 ((𝜑𝑥𝑆) → (((coe1𝑥) ↾ (0..^𝑁)) finSupp (0g‘(Scalar‘𝑃)) ∧ 𝑥 = (𝑃 Σg (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹))))
276163, 176, 275rspcedvdw 3591 . . . . . 6 ((𝜑𝑥𝑆) → ∃𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))(𝑎 finSupp (0g‘(Scalar‘𝑃)) ∧ 𝑥 = (𝑃 Σg (𝑎f ( ·𝑠𝑃)𝐹))))
277102, 8fmptd 7086 . . . . . . . 8 (𝜑𝐹:(0..^𝑁)⟶(Base‘𝑃))
278156, 33, 39, 37, 224, 38, 277, 23, 239ellspd 21711 . . . . . . 7 (𝜑 → (𝑥 ∈ ((LSpan‘𝑃)‘(𝐹 “ (0..^𝑁))) ↔ ∃𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))(𝑎 finSupp (0g‘(Scalar‘𝑃)) ∧ 𝑥 = (𝑃 Σg (𝑎f ( ·𝑠𝑃)𝐹)))))
279278adantr 480 . . . . . 6 ((𝜑𝑥𝑆) → (𝑥 ∈ ((LSpan‘𝑃)‘(𝐹 “ (0..^𝑁))) ↔ ∃𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))(𝑎 finSupp (0g‘(Scalar‘𝑃)) ∧ 𝑥 = (𝑃 Σg (𝑎f ( ·𝑠𝑃)𝐹)))))
280276, 279mpbird 257 . . . . 5 ((𝜑𝑥𝑆) → 𝑥 ∈ ((LSpan‘𝑃)‘(𝐹 “ (0..^𝑁))))
281 imadmrn 6041 . . . . . . . 8 (𝐹 “ dom 𝐹) = ran 𝐹
282154fdmd 6698 . . . . . . . . 9 (𝜑 → dom 𝐹 = (0..^𝑁))
283282imaeq2d 6031 . . . . . . . 8 (𝜑 → (𝐹 “ dom 𝐹) = (𝐹 “ (0..^𝑁)))
284281, 283eqtr3id 2778 . . . . . . 7 (𝜑 → ran 𝐹 = (𝐹 “ (0..^𝑁)))
285284fveq2d 6862 . . . . . 6 (𝜑 → ((LSpan‘𝑃)‘ran 𝐹) = ((LSpan‘𝑃)‘(𝐹 “ (0..^𝑁))))
286285adantr 480 . . . . 5 ((𝜑𝑥𝑆) → ((LSpan‘𝑃)‘ran 𝐹) = ((LSpan‘𝑃)‘(𝐹 “ (0..^𝑁))))
287280, 286eleqtrrd 2831 . . . 4 ((𝜑𝑥𝑆) → 𝑥 ∈ ((LSpan‘𝑃)‘ran 𝐹))
288158, 287eqelssd 3968 . . 3 (𝜑 → ((LSpan‘𝑃)‘ran 𝐹) = 𝑆)
289 eqid 2729 . . . . . 6 (LSpan‘𝐸) = (LSpan‘𝐸)
29044, 156, 289, 27lsslsp 20921 . . . . 5 ((𝑃 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑃) ∧ ran 𝐹𝑆) → ((LSpan‘𝐸)‘ran 𝐹) = ((LSpan‘𝑃)‘ran 𝐹))
291290eqcomd 2735 . . . 4 ((𝑃 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑃) ∧ ran 𝐹𝑆) → ((LSpan‘𝑃)‘ran 𝐹) = ((LSpan‘𝐸)‘ran 𝐹))
29223, 26, 155, 291syl3anc 1373 . . 3 (𝜑 → ((LSpan‘𝑃)‘ran 𝐹) = ((LSpan‘𝐸)‘ran 𝐹))
293288, 292, 463eqtr3d 2772 . 2 (𝜑 → ((LSpan‘𝐸)‘ran 𝐹) = (Base‘𝐸))
294 eqid 2729 . . 3 (Base‘𝐸) = (Base‘𝐸)
29524fvexi 6872 . . . . . . 7 𝐷 ∈ V
296 cnvexg 7900 . . . . . . 7 (𝐷 ∈ V → 𝐷 ∈ V)
297 imaexg 7889 . . . . . . 7 (𝐷 ∈ V → (𝐷 “ (-∞[,)𝑁)) ∈ V)
298295, 296, 297mp2b 10 . . . . . 6 (𝐷 “ (-∞[,)𝑁)) ∈ V
29925, 298eqeltri 2824 . . . . 5 𝑆 ∈ V
30044, 37resssca 17306 . . . . 5 (𝑆 ∈ V → (Scalar‘𝑃) = (Scalar‘𝐸))
301299, 300ax-mp 5 . . . 4 (Scalar‘𝑃) = (Scalar‘𝐸)
302301fveq2i 6861 . . 3 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝐸))
303 eqid 2729 . . 3 (Scalar‘𝐸) = (Scalar‘𝐸)
30444, 38ressvsca 17307 . . . 4 (𝑆 ∈ V → ( ·𝑠𝑃) = ( ·𝑠𝐸))
305299, 304ax-mp 5 . . 3 ( ·𝑠𝑃) = ( ·𝑠𝐸)
306 eqid 2729 . . 3 (0g𝐸) = (0g𝐸)
307301fveq2i 6861 . . 3 (0g‘(Scalar‘𝑃)) = (0g‘(Scalar‘𝐸))
308 eqid 2729 . . 3 (LBasis‘𝐸) = (LBasis‘𝐸)
30944, 27lsslvec 21016 . . . . 5 ((𝑃 ∈ LVec ∧ 𝑆 ∈ (LSubSp‘𝑃)) → 𝐸 ∈ LVec)
31022, 26, 309syl2anc 584 . . . 4 (𝜑𝐸 ∈ LVec)
311310lveclmodd 21014 . . 3 (𝜑𝐸 ∈ LMod)
31214, 5eqeltrrd 2829 . . . . 5 (𝜑 → (Scalar‘𝑃) ∈ DivRing)
313 drngnzr 20657 . . . . 5 ((Scalar‘𝑃) ∈ DivRing → (Scalar‘𝑃) ∈ NzRing)
314312, 313syl 17 . . . 4 (𝜑 → (Scalar‘𝑃) ∈ NzRing)
315301, 314eqeltrrid 2833 . . 3 (𝜑 → (Scalar‘𝐸) ∈ NzRing)
316120ralrimiva 3125 . . . 4 (𝜑 → ∀𝑛 ∈ (0..^𝑁)(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝐸))
317 drngnzr 20657 . . . . . . . . . 10 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
3185, 317syl 17 . . . . . . . . 9 (𝜑𝑅 ∈ NzRing)
319318ad2antrr 726 . . . . . . . 8 (((𝜑𝑛 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑅 ∈ NzRing)
32097adantr 480 . . . . . . . 8 (((𝜑𝑛 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑛 ∈ ℕ0)
321 elfzonn0 13668 . . . . . . . . 9 (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ ℕ0)
322321adantl 481 . . . . . . . 8 (((𝜑𝑛 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ ℕ0)
3231, 98, 91, 319, 320, 322ply1moneq 33555 . . . . . . 7 (((𝜑𝑛 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) ↔ 𝑛 = 𝑖))
324323biimpd 229 . . . . . 6 (((𝜑𝑛 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) → 𝑛 = 𝑖))
325324anasss 466 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (0..^𝑁) ∧ 𝑖 ∈ (0..^𝑁))) → ((𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) → 𝑛 = 𝑖))
326325ralrimivva 3180 . . . 4 (𝜑 → ∀𝑛 ∈ (0..^𝑁)∀𝑖 ∈ (0..^𝑁)((𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) → 𝑛 = 𝑖))
327 oveq1 7394 . . . . 5 (𝑛 = 𝑖 → (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))
3288, 327f1mpt 7236 . . . 4 (𝐹:(0..^𝑁)–1-1→(Base‘𝐸) ↔ (∀𝑛 ∈ (0..^𝑁)(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝐸) ∧ ∀𝑛 ∈ (0..^𝑁)∀𝑖 ∈ (0..^𝑁)((𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) → 𝑛 = 𝑖)))
329316, 326, 328sylanbrc 583 . . 3 (𝜑𝐹:(0..^𝑁)–1-1→(Base‘𝐸))
330294, 302, 303, 305, 306, 307, 308, 289, 311, 315, 239, 329islbs5 33351 . 2 (𝜑 → (ran 𝐹 ∈ (LBasis‘𝐸) ↔ (∀𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))((𝑎 finSupp (0g‘(Scalar‘𝑃)) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑎 = ((0..^𝑁) × {(0g‘(Scalar‘𝑃))})) ∧ ((LSpan‘𝐸)‘ran 𝐹) = (Base‘𝐸))))
331153, 293, 330mpbir2and 713 1 (𝜑 → ran 𝐹 ∈ (LBasis‘𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3447  cin 3913  wss 3914  {csn 4589   class class class wbr 5107  cmpt 5188   × cxp 5636  ccnv 5637  dom cdm 5638  ran crn 5639  cres 5640  cima 5641  Fun wfun 6505   Fn wfn 6506  wf 6507  1-1wf1 6508  cfv 6511  (class class class)co 7387  f cof 7651   supp csupp 8139  m cmap 8799  Fincfn 8918   finSupp cfsupp 9312  0cc0 11068  -∞cmnf 11206  *cxr 11207   < clt 11208  cle 11209  0cn0 12442  cz 12529  [,)cico 13308  ..^cfzo 13615  Basecbs 17179  s cress 17200  Scalarcsca 17223   ·𝑠 cvsca 17224  0gc0g 17402   Σg cgsu 17403  Mndcmnd 18661  SubMndcsubmnd 18709  .gcmg 18999  SubGrpcsubg 19052  CMndccmn 19710  mulGrpcmgp 20049  Ringcrg 20142  NzRingcnzr 20421  DivRingcdr 20638  LModclmod 20766  LSubSpclss 20837  LSpanclspn 20877  LBasisclbs 20981  LVecclvec 21009  var1cv1 22060  Poly1cpl1 22061  coe1cco1 22062  deg1cdg1 25959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-ico 13312  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-srg 20096  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-nzr 20422  df-subrng 20455  df-subrg 20479  df-drng 20640  df-lmod 20768  df-lss 20838  df-lsp 20878  df-lmhm 20929  df-lbs 20982  df-lvec 21010  df-sra 21080  df-rgmod 21081  df-cnfld 21265  df-dsmm 21641  df-frlm 21656  df-uvc 21692  df-lindf 21715  df-linds 21716  df-psr 21818  df-mvr 21819  df-mpl 21820  df-opsr 21822  df-psr1 22064  df-vr1 22065  df-ply1 22066  df-coe1 22067  df-mdeg 25960  df-deg1 25961
This theorem is referenced by:  ply1degltdim  33619
  Copyright terms: Public domain W3C validator