Step | Hyp | Ref
| Expression |
1 | | ply1degltdim.p |
. . . . . 6
⊢ 𝑃 = (Poly1‘𝑅) |
2 | | eqid 2732 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
3 | | ply1degltdim.n |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
4 | 3 | ad3antrrr 728 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎 ∘f (
·𝑠 ‘𝑃)𝐹)) = (0g‘𝐸)) → 𝑁 ∈
ℕ0) |
5 | | ply1degltdim.r |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ DivRing) |
6 | 5 | drngringd 20315 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Ring) |
7 | 6 | ad3antrrr 728 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎 ∘f (
·𝑠 ‘𝑃)𝐹)) = (0g‘𝐸)) → 𝑅 ∈ Ring) |
8 | | ply1degltdimlem.f |
. . . . . 6
⊢ 𝐹 = (𝑛 ∈ (0..^𝑁) ↦ (𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))) |
9 | | eqid 2732 |
. . . . . 6
⊢
(0g‘𝑅) = (0g‘𝑅) |
10 | | eqid 2732 |
. . . . . 6
⊢
(0g‘𝑃) = (0g‘𝑃) |
11 | | elmapi 8839 |
. . . . . . . . 9
⊢ (𝑎 ∈
((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁)) → 𝑎:(0..^𝑁)⟶(Base‘(Scalar‘𝑃))) |
12 | 11 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) → 𝑎:(0..^𝑁)⟶(Base‘(Scalar‘𝑃))) |
13 | 1 | ply1sca 21766 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ DivRing → 𝑅 = (Scalar‘𝑃)) |
14 | 5, 13 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 = (Scalar‘𝑃)) |
15 | 14 | fveq2d 6892 |
. . . . . . . . . 10
⊢ (𝜑 → (Base‘𝑅) =
(Base‘(Scalar‘𝑃))) |
16 | 15 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) → (Base‘𝑅) =
(Base‘(Scalar‘𝑃))) |
17 | 16 | feq3d 6701 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) → (𝑎:(0..^𝑁)⟶(Base‘𝑅) ↔ 𝑎:(0..^𝑁)⟶(Base‘(Scalar‘𝑃)))) |
18 | 12, 17 | mpbird 256 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) → 𝑎:(0..^𝑁)⟶(Base‘𝑅)) |
19 | 18 | ad2antrr 724 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎 ∘f (
·𝑠 ‘𝑃)𝐹)) = (0g‘𝐸)) → 𝑎:(0..^𝑁)⟶(Base‘𝑅)) |
20 | | simpr 485 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎 ∘f (
·𝑠 ‘𝑃)𝐹)) = (0g‘𝐸)) → (𝐸 Σg (𝑎 ∘f (
·𝑠 ‘𝑃)𝐹)) = (0g‘𝐸)) |
21 | | ovexd 7440 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎 ∘f (
·𝑠 ‘𝑃)𝐹)) = (0g‘𝐸)) → (0..^𝑁) ∈ V) |
22 | 1, 5 | ply1lvec 32626 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑃 ∈ LVec) |
23 | 22 | lveclmodd 20710 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑃 ∈ LMod) |
24 | | ply1degltdim.d |
. . . . . . . . . . . 12
⊢ 𝐷 = ( deg1
‘𝑅) |
25 | | ply1degltdim.s |
. . . . . . . . . . . 12
⊢ 𝑆 = (◡𝐷 “ (-∞[,)𝑁)) |
26 | 1, 24, 25, 3, 6 | ply1degltlss 32655 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 ∈ (LSubSp‘𝑃)) |
27 | | eqid 2732 |
. . . . . . . . . . . 12
⊢
(LSubSp‘𝑃) =
(LSubSp‘𝑃) |
28 | 27 | lsssubg 20560 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑃)) → 𝑆 ∈ (SubGrp‘𝑃)) |
29 | 23, 26, 28 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝑃)) |
30 | | subgsubm 19022 |
. . . . . . . . . 10
⊢ (𝑆 ∈ (SubGrp‘𝑃) → 𝑆 ∈ (SubMnd‘𝑃)) |
31 | 29, 30 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝑃)) |
32 | 31 | ad3antrrr 728 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎 ∘f (
·𝑠 ‘𝑃)𝐹)) = (0g‘𝐸)) → 𝑆 ∈ (SubMnd‘𝑃)) |
33 | | eqid 2732 |
. . . . . . . . . . . . . . 15
⊢
(Base‘𝑃) =
(Base‘𝑃) |
34 | 24, 1, 33 | deg1xrf 25590 |
. . . . . . . . . . . . . 14
⊢ 𝐷:(Base‘𝑃)⟶ℝ* |
35 | | ffn 6714 |
. . . . . . . . . . . . . 14
⊢ (𝐷:(Base‘𝑃)⟶ℝ* → 𝐷 Fn (Base‘𝑃)) |
36 | 34, 35 | mp1i 13 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝐷 Fn (Base‘𝑃)) |
37 | 23 | ad2antrr 724 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑃 ∈ LMod) |
38 | | simplr 767 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑘 ∈ (Base‘(Scalar‘𝑃))) |
39 | 33, 27 | lssss 20539 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑆 ∈ (LSubSp‘𝑃) → 𝑆 ⊆ (Base‘𝑃)) |
40 | 26, 39 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑃)) |
41 | | ply1degltdim.e |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐸 = (𝑃 ↾s 𝑆) |
42 | 41, 33 | ressbas2 17178 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑆 ⊆ (Base‘𝑃) → 𝑆 = (Base‘𝐸)) |
43 | 40, 42 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑆 = (Base‘𝐸)) |
44 | 43, 40 | eqsstrrd 4020 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (Base‘𝐸) ⊆ (Base‘𝑃)) |
45 | 44 | sselda 3981 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑥 ∈ (Base‘𝑃)) |
46 | 45 | adantlr 713 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑥 ∈ (Base‘𝑃)) |
47 | | eqid 2732 |
. . . . . . . . . . . . . . 15
⊢
(Scalar‘𝑃) =
(Scalar‘𝑃) |
48 | | eqid 2732 |
. . . . . . . . . . . . . . 15
⊢ (
·𝑠 ‘𝑃) = ( ·𝑠
‘𝑃) |
49 | | eqid 2732 |
. . . . . . . . . . . . . . 15
⊢
(Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) |
50 | 33, 47, 48, 49 | lmodvscl 20481 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ∈ LMod ∧ 𝑘 ∈
(Base‘(Scalar‘𝑃)) ∧ 𝑥 ∈ (Base‘𝑃)) → (𝑘( ·𝑠
‘𝑃)𝑥) ∈ (Base‘𝑃)) |
51 | 37, 38, 46, 50 | syl3anc 1371 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝑘( ·𝑠
‘𝑃)𝑥) ∈ (Base‘𝑃)) |
52 | | mnfxr 11267 |
. . . . . . . . . . . . . . 15
⊢ -∞
∈ ℝ* |
53 | 52 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → -∞ ∈
ℝ*) |
54 | 3 | nn0red 12529 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑁 ∈ ℝ) |
55 | 54 | rexrd 11260 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑁 ∈
ℝ*) |
56 | 55 | ad2antrr 724 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑁 ∈
ℝ*) |
57 | 34 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝐷:(Base‘𝑃)⟶ℝ*) |
58 | 57, 51 | ffvelcdmd 7084 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝐷‘(𝑘( ·𝑠
‘𝑃)𝑥)) ∈
ℝ*) |
59 | 58 | mnfled 13111 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → -∞ ≤ (𝐷‘(𝑘( ·𝑠
‘𝑃)𝑥))) |
60 | 57, 46 | ffvelcdmd 7084 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝐷‘𝑥) ∈
ℝ*) |
61 | 6 | ad2antrr 724 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑅 ∈ Ring) |
62 | 15 | ad2antrr 724 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (Base‘𝑅) = (Base‘(Scalar‘𝑃))) |
63 | 38, 62 | eleqtrrd 2836 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑘 ∈ (Base‘𝑅)) |
64 | 1, 24, 61, 33, 2, 48, 63, 46 | deg1vscale 25613 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝐷‘(𝑘( ·𝑠
‘𝑃)𝑥)) ≤ (𝐷‘𝑥)) |
65 | | simpll 765 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝜑) |
66 | | simpr 485 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑥 ∈ (Base‘𝐸)) |
67 | 43 | ad2antrr 724 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑆 = (Base‘𝐸)) |
68 | 66, 67 | eleqtrrd 2836 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑥 ∈ 𝑆) |
69 | 52 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → -∞ ∈
ℝ*) |
70 | 55 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑁 ∈
ℝ*) |
71 | 34, 35 | mp1i 13 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐷 Fn (Base‘𝑃)) |
72 | | simpr 485 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) |
73 | 72, 25 | eleqtrdi 2843 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ (◡𝐷 “ (-∞[,)𝑁))) |
74 | | elpreima 7056 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐷 Fn (Base‘𝑃) → (𝑥 ∈ (◡𝐷 “ (-∞[,)𝑁)) ↔ (𝑥 ∈ (Base‘𝑃) ∧ (𝐷‘𝑥) ∈ (-∞[,)𝑁)))) |
75 | 74 | simplbda 500 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐷 Fn (Base‘𝑃) ∧ 𝑥 ∈ (◡𝐷 “ (-∞[,)𝑁))) → (𝐷‘𝑥) ∈ (-∞[,)𝑁)) |
76 | 71, 73, 75 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝐷‘𝑥) ∈ (-∞[,)𝑁)) |
77 | | elico1 13363 |
. . . . . . . . . . . . . . . . . . 19
⊢
((-∞ ∈ ℝ* ∧ 𝑁 ∈ ℝ*) → ((𝐷‘𝑥) ∈ (-∞[,)𝑁) ↔ ((𝐷‘𝑥) ∈ ℝ* ∧ -∞
≤ (𝐷‘𝑥) ∧ (𝐷‘𝑥) < 𝑁))) |
78 | 77 | biimpa 477 |
. . . . . . . . . . . . . . . . . 18
⊢
(((-∞ ∈ ℝ* ∧ 𝑁 ∈ ℝ*) ∧ (𝐷‘𝑥) ∈ (-∞[,)𝑁)) → ((𝐷‘𝑥) ∈ ℝ* ∧ -∞
≤ (𝐷‘𝑥) ∧ (𝐷‘𝑥) < 𝑁)) |
79 | 78 | simp3d 1144 |
. . . . . . . . . . . . . . . . 17
⊢
(((-∞ ∈ ℝ* ∧ 𝑁 ∈ ℝ*) ∧ (𝐷‘𝑥) ∈ (-∞[,)𝑁)) → (𝐷‘𝑥) < 𝑁) |
80 | 69, 70, 76, 79 | syl21anc 836 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝐷‘𝑥) < 𝑁) |
81 | 65, 68, 80 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝐷‘𝑥) < 𝑁) |
82 | 58, 60, 56, 64, 81 | xrlelttrd 13135 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝐷‘(𝑘( ·𝑠
‘𝑃)𝑥)) < 𝑁) |
83 | 53, 56, 58, 59, 82 | elicod 13370 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝐷‘(𝑘( ·𝑠
‘𝑃)𝑥)) ∈ (-∞[,)𝑁)) |
84 | 36, 51, 83 | elpreimad 7057 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝑘( ·𝑠
‘𝑃)𝑥) ∈ (◡𝐷 “ (-∞[,)𝑁))) |
85 | 84, 25 | eleqtrrdi 2844 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝑘( ·𝑠
‘𝑃)𝑥) ∈ 𝑆) |
86 | 85 | anasss 467 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑥 ∈ (Base‘𝐸))) → (𝑘( ·𝑠
‘𝑃)𝑥) ∈ 𝑆) |
87 | 86 | ad5ant15 757 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑎 ∈
((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎 ∘f (
·𝑠 ‘𝑃)𝐹)) = (0g‘𝐸)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑥 ∈ (Base‘𝐸))) → (𝑘( ·𝑠
‘𝑃)𝑥) ∈ 𝑆) |
88 | 12 | ad2antrr 724 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎 ∘f (
·𝑠 ‘𝑃)𝐹)) = (0g‘𝐸)) → 𝑎:(0..^𝑁)⟶(Base‘(Scalar‘𝑃))) |
89 | 34, 35 | mp1i 13 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑁)) → 𝐷 Fn (Base‘𝑃)) |
90 | | eqid 2732 |
. . . . . . . . . . . . . . . 16
⊢
(mulGrp‘𝑃) =
(mulGrp‘𝑃) |
91 | 90, 33 | mgpbas 19987 |
. . . . . . . . . . . . . . 15
⊢
(Base‘𝑃) =
(Base‘(mulGrp‘𝑃)) |
92 | | eqid 2732 |
. . . . . . . . . . . . . . 15
⊢
(.g‘(mulGrp‘𝑃)) =
(.g‘(mulGrp‘𝑃)) |
93 | 1 | ply1ring 21761 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
94 | 90 | ringmgp 20055 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑃 ∈ Ring →
(mulGrp‘𝑃) ∈
Mnd) |
95 | 6, 93, 94 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (mulGrp‘𝑃) ∈ Mnd) |
96 | 95 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑁)) → (mulGrp‘𝑃) ∈ Mnd) |
97 | | elfzonn0 13673 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ (0..^𝑁) → 𝑛 ∈ ℕ0) |
98 | 97 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑁)) → 𝑛 ∈ ℕ0) |
99 | | eqid 2732 |
. . . . . . . . . . . . . . . . . 18
⊢
(var1‘𝑅) = (var1‘𝑅) |
100 | 99, 1, 33 | vr1cl 21732 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ Ring →
(var1‘𝑅)
∈ (Base‘𝑃)) |
101 | 6, 100 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 →
(var1‘𝑅)
∈ (Base‘𝑃)) |
102 | 101 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑁)) → (var1‘𝑅) ∈ (Base‘𝑃)) |
103 | 91, 92, 96, 98, 102 | mulgnn0cld 18969 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑁)) → (𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)) ∈ (Base‘𝑃)) |
104 | 52 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑁)) → -∞ ∈
ℝ*) |
105 | 55 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑁)) → 𝑁 ∈
ℝ*) |
106 | 24, 1, 33 | deg1xrcl 25591 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)) ∈ (Base‘𝑃) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))) ∈
ℝ*) |
107 | 103, 106 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑁)) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))) ∈
ℝ*) |
108 | 107 | mnfled 13111 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑁)) → -∞ ≤ (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) |
109 | 97 | nn0red 12529 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ (0..^𝑁) → 𝑛 ∈ ℝ) |
110 | 109 | rexrd 11260 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ (0..^𝑁) → 𝑛 ∈ ℝ*) |
111 | 110 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑁)) → 𝑛 ∈ ℝ*) |
112 | 24, 1, 99, 90, 92 | deg1pwle 25628 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ Ring ∧ 𝑛 ∈ ℕ0)
→ (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))) ≤ 𝑛) |
113 | 6, 97, 112 | syl2an 596 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑁)) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))) ≤ 𝑛) |
114 | | elfzolt2 13637 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ (0..^𝑁) → 𝑛 < 𝑁) |
115 | 114 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑁)) → 𝑛 < 𝑁) |
116 | 107, 111,
105, 113, 115 | xrlelttrd 13135 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑁)) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))) < 𝑁) |
117 | 104, 105,
107, 108, 116 | elicod 13370 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑁)) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))) ∈ (-∞[,)𝑁)) |
118 | 89, 103, 117 | elpreimad 7057 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑁)) → (𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)) ∈ (◡𝐷 “ (-∞[,)𝑁))) |
119 | 118, 25 | eleqtrrdi 2844 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑁)) → (𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)) ∈ 𝑆) |
120 | 43 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑁)) → 𝑆 = (Base‘𝐸)) |
121 | 119, 120 | eleqtrd 2835 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑁)) → (𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)) ∈ (Base‘𝐸)) |
122 | 121, 8 | fmptd 7110 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:(0..^𝑁)⟶(Base‘𝐸)) |
123 | 122 | ad3antrrr 728 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎 ∘f (
·𝑠 ‘𝑃)𝐹)) = (0g‘𝐸)) → 𝐹:(0..^𝑁)⟶(Base‘𝐸)) |
124 | | inidm 4217 |
. . . . . . . . 9
⊢
((0..^𝑁) ∩
(0..^𝑁)) = (0..^𝑁) |
125 | 87, 88, 123, 21, 21, 124 | off 7684 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎 ∘f (
·𝑠 ‘𝑃)𝐹)) = (0g‘𝐸)) → (𝑎 ∘f (
·𝑠 ‘𝑃)𝐹):(0..^𝑁)⟶𝑆) |
126 | 21, 32, 125, 41 | gsumsubm 18712 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎 ∘f (
·𝑠 ‘𝑃)𝐹)) = (0g‘𝐸)) → (𝑃 Σg (𝑎 ∘f (
·𝑠 ‘𝑃)𝐹)) = (𝐸 Σg (𝑎 ∘f (
·𝑠 ‘𝑃)𝐹))) |
127 | | ringmnd 20059 |
. . . . . . . . . 10
⊢ (𝑃 ∈ Ring → 𝑃 ∈ Mnd) |
128 | 6, 93, 127 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 ∈ Mnd) |
129 | 34, 35 | mp1i 13 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐷 Fn (Base‘𝑃)) |
130 | 33, 10 | mndidcl 18636 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ Mnd →
(0g‘𝑃)
∈ (Base‘𝑃)) |
131 | 128, 130 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (0g‘𝑃) ∈ (Base‘𝑃)) |
132 | 52 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → -∞ ∈
ℝ*) |
133 | 24, 1, 33 | deg1xrcl 25591 |
. . . . . . . . . . . . 13
⊢
((0g‘𝑃) ∈ (Base‘𝑃) → (𝐷‘(0g‘𝑃)) ∈
ℝ*) |
134 | 131, 133 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐷‘(0g‘𝑃)) ∈
ℝ*) |
135 | 134 | mnfled 13111 |
. . . . . . . . . . . 12
⊢ (𝜑 → -∞ ≤ (𝐷‘(0g‘𝑃))) |
136 | 24, 1, 10 | deg1z 25596 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ Ring → (𝐷‘(0g‘𝑃)) = -∞) |
137 | 6, 136 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐷‘(0g‘𝑃)) = -∞) |
138 | 54 | mnfltd 13100 |
. . . . . . . . . . . . 13
⊢ (𝜑 → -∞ < 𝑁) |
139 | 137, 138 | eqbrtrd 5169 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐷‘(0g‘𝑃)) < 𝑁) |
140 | 132, 55, 134, 135, 139 | elicod 13370 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐷‘(0g‘𝑃)) ∈ (-∞[,)𝑁)) |
141 | 129, 131,
140 | elpreimad 7057 |
. . . . . . . . . 10
⊢ (𝜑 → (0g‘𝑃) ∈ (◡𝐷 “ (-∞[,)𝑁))) |
142 | 141, 25 | eleqtrrdi 2844 |
. . . . . . . . 9
⊢ (𝜑 → (0g‘𝑃) ∈ 𝑆) |
143 | 41, 33, 10 | ress0g 18649 |
. . . . . . . . 9
⊢ ((𝑃 ∈ Mnd ∧
(0g‘𝑃)
∈ 𝑆 ∧ 𝑆 ⊆ (Base‘𝑃)) →
(0g‘𝑃) =
(0g‘𝐸)) |
144 | 128, 142,
40, 143 | syl3anc 1371 |
. . . . . . . 8
⊢ (𝜑 → (0g‘𝑃) = (0g‘𝐸)) |
145 | 144 | ad3antrrr 728 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎 ∘f (
·𝑠 ‘𝑃)𝐹)) = (0g‘𝐸)) → (0g‘𝑃) = (0g‘𝐸)) |
146 | 20, 126, 145 | 3eqtr4d 2782 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎 ∘f (
·𝑠 ‘𝑃)𝐹)) = (0g‘𝐸)) → (𝑃 Σg (𝑎 ∘f (
·𝑠 ‘𝑃)𝐹)) = (0g‘𝑃)) |
147 | 1, 2, 4, 7, 8, 9, 10, 19, 146 | ply1gsumz 32657 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎 ∘f (
·𝑠 ‘𝑃)𝐹)) = (0g‘𝐸)) → 𝑎 = ((0..^𝑁) × {(0g‘𝑅)})) |
148 | 14 | fveq2d 6892 |
. . . . . . . 8
⊢ (𝜑 → (0g‘𝑅) =
(0g‘(Scalar‘𝑃))) |
149 | 148 | sneqd 4639 |
. . . . . . 7
⊢ (𝜑 →
{(0g‘𝑅)} =
{(0g‘(Scalar‘𝑃))}) |
150 | 149 | xpeq2d 5705 |
. . . . . 6
⊢ (𝜑 → ((0..^𝑁) × {(0g‘𝑅)}) = ((0..^𝑁) ×
{(0g‘(Scalar‘𝑃))})) |
151 | 150 | ad3antrrr 728 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎 ∘f (
·𝑠 ‘𝑃)𝐹)) = (0g‘𝐸)) → ((0..^𝑁) × {(0g‘𝑅)}) = ((0..^𝑁) ×
{(0g‘(Scalar‘𝑃))})) |
152 | 147, 151 | eqtrd 2772 |
. . . 4
⊢ ((((𝜑 ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎 ∘f (
·𝑠 ‘𝑃)𝐹)) = (0g‘𝐸)) → 𝑎 = ((0..^𝑁) ×
{(0g‘(Scalar‘𝑃))})) |
153 | 152 | expl 458 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) → ((𝑎 finSupp
(0g‘(Scalar‘𝑃)) ∧ (𝐸 Σg (𝑎 ∘f (
·𝑠 ‘𝑃)𝐹)) = (0g‘𝐸)) → 𝑎 = ((0..^𝑁) ×
{(0g‘(Scalar‘𝑃))}))) |
154 | 153 | ralrimiva 3146 |
. 2
⊢ (𝜑 → ∀𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))((𝑎 finSupp
(0g‘(Scalar‘𝑃)) ∧ (𝐸 Σg (𝑎 ∘f (
·𝑠 ‘𝑃)𝐹)) = (0g‘𝐸)) → 𝑎 = ((0..^𝑁) ×
{(0g‘(Scalar‘𝑃))}))) |
155 | 119, 8 | fmptd 7110 |
. . . . . 6
⊢ (𝜑 → 𝐹:(0..^𝑁)⟶𝑆) |
156 | 155 | frnd 6722 |
. . . . 5
⊢ (𝜑 → ran 𝐹 ⊆ 𝑆) |
157 | | eqid 2732 |
. . . . . 6
⊢
(LSpan‘𝑃) =
(LSpan‘𝑃) |
158 | 27, 157 | lspssp 20591 |
. . . . 5
⊢ ((𝑃 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑃) ∧ ran 𝐹 ⊆ 𝑆) → ((LSpan‘𝑃)‘ran 𝐹) ⊆ 𝑆) |
159 | 23, 26, 156, 158 | syl3anc 1371 |
. . . 4
⊢ (𝜑 → ((LSpan‘𝑃)‘ran 𝐹) ⊆ 𝑆) |
160 | | fvexd 6903 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (Base‘(Scalar‘𝑃)) ∈ V) |
161 | | ovexd 7440 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (0..^𝑁) ∈ V) |
162 | 40 | sselda 3981 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ (Base‘𝑃)) |
163 | | eqid 2732 |
. . . . . . . . . . . 12
⊢
(coe1‘𝑥) = (coe1‘𝑥) |
164 | 163, 33, 1, 2 | coe1f 21726 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (Base‘𝑃) →
(coe1‘𝑥):ℕ0⟶(Base‘𝑅)) |
165 | 162, 164 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (coe1‘𝑥):ℕ0⟶(Base‘𝑅)) |
166 | 15 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (Base‘𝑅) = (Base‘(Scalar‘𝑃))) |
167 | 166 | feq3d 6701 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ((coe1‘𝑥):ℕ0⟶(Base‘𝑅) ↔
(coe1‘𝑥):ℕ0⟶(Base‘(Scalar‘𝑃)))) |
168 | 165, 167 | mpbid 231 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (coe1‘𝑥):ℕ0⟶(Base‘(Scalar‘𝑃))) |
169 | | fzo0ssnn0 13709 |
. . . . . . . . . 10
⊢
(0..^𝑁) ⊆
ℕ0 |
170 | 169 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (0..^𝑁) ⊆
ℕ0) |
171 | 168, 170 | fssresd 6755 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ((coe1‘𝑥) ↾ (0..^𝑁)):(0..^𝑁)⟶(Base‘(Scalar‘𝑃))) |
172 | | elmapg 8829 |
. . . . . . . . 9
⊢
(((Base‘(Scalar‘𝑃)) ∈ V ∧ (0..^𝑁) ∈ V) →
(((coe1‘𝑥)
↾ (0..^𝑁)) ∈
((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁)) ↔ ((coe1‘𝑥) ↾ (0..^𝑁)):(0..^𝑁)⟶(Base‘(Scalar‘𝑃)))) |
173 | 172 | biimpar 478 |
. . . . . . . 8
⊢
((((Base‘(Scalar‘𝑃)) ∈ V ∧ (0..^𝑁) ∈ V) ∧
((coe1‘𝑥)
↾ (0..^𝑁)):(0..^𝑁)⟶(Base‘(Scalar‘𝑃))) →
((coe1‘𝑥)
↾ (0..^𝑁)) ∈
((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) |
174 | 160, 161,
171, 173 | syl21anc 836 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ((coe1‘𝑥) ↾ (0..^𝑁)) ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) |
175 | | breq1 5150 |
. . . . . . . . 9
⊢ (𝑎 = ((coe1‘𝑥) ↾ (0..^𝑁)) → (𝑎 finSupp
(0g‘(Scalar‘𝑃)) ↔ ((coe1‘𝑥) ↾ (0..^𝑁)) finSupp
(0g‘(Scalar‘𝑃)))) |
176 | | oveq1 7412 |
. . . . . . . . . . 11
⊢ (𝑎 = ((coe1‘𝑥) ↾ (0..^𝑁)) → (𝑎 ∘f (
·𝑠 ‘𝑃)𝐹) = (((coe1‘𝑥) ↾ (0..^𝑁)) ∘f (
·𝑠 ‘𝑃)𝐹)) |
177 | 176 | oveq2d 7421 |
. . . . . . . . . 10
⊢ (𝑎 = ((coe1‘𝑥) ↾ (0..^𝑁)) → (𝑃 Σg (𝑎 ∘f (
·𝑠 ‘𝑃)𝐹)) = (𝑃 Σg
(((coe1‘𝑥)
↾ (0..^𝑁))
∘f ( ·𝑠 ‘𝑃)𝐹))) |
178 | 177 | eqeq2d 2743 |
. . . . . . . . 9
⊢ (𝑎 = ((coe1‘𝑥) ↾ (0..^𝑁)) → (𝑥 = (𝑃 Σg (𝑎 ∘f (
·𝑠 ‘𝑃)𝐹)) ↔ 𝑥 = (𝑃 Σg
(((coe1‘𝑥)
↾ (0..^𝑁))
∘f ( ·𝑠 ‘𝑃)𝐹)))) |
179 | 175, 178 | anbi12d 631 |
. . . . . . . 8
⊢ (𝑎 = ((coe1‘𝑥) ↾ (0..^𝑁)) → ((𝑎 finSupp
(0g‘(Scalar‘𝑃)) ∧ 𝑥 = (𝑃 Σg (𝑎 ∘f (
·𝑠 ‘𝑃)𝐹))) ↔ (((coe1‘𝑥) ↾ (0..^𝑁)) finSupp
(0g‘(Scalar‘𝑃)) ∧ 𝑥 = (𝑃 Σg
(((coe1‘𝑥)
↾ (0..^𝑁))
∘f ( ·𝑠 ‘𝑃)𝐹))))) |
180 | 179 | adantl 482 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑎 = ((coe1‘𝑥) ↾ (0..^𝑁))) → ((𝑎 finSupp
(0g‘(Scalar‘𝑃)) ∧ 𝑥 = (𝑃 Σg (𝑎 ∘f (
·𝑠 ‘𝑃)𝐹))) ↔ (((coe1‘𝑥) ↾ (0..^𝑁)) finSupp
(0g‘(Scalar‘𝑃)) ∧ 𝑥 = (𝑃 Σg
(((coe1‘𝑥)
↾ (0..^𝑁))
∘f ( ·𝑠 ‘𝑃)𝐹))))) |
181 | 165 | ffund 6718 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → Fun (coe1‘𝑥)) |
182 | | fzofi 13935 |
. . . . . . . . . 10
⊢
(0..^𝑁) ∈
Fin |
183 | 182 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (0..^𝑁) ∈ Fin) |
184 | | fvexd 6903 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) →
(0g‘(Scalar‘𝑃)) ∈ V) |
185 | 181, 183,
184 | resfifsupp 9388 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ((coe1‘𝑥) ↾ (0..^𝑁)) finSupp
(0g‘(Scalar‘𝑃))) |
186 | | ringcmn 20092 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ Ring → 𝑃 ∈ CMnd) |
187 | 6, 93, 186 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑃 ∈ CMnd) |
188 | 187 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑃 ∈ CMnd) |
189 | | nn0ex 12474 |
. . . . . . . . . . 11
⊢
ℕ0 ∈ V |
190 | 189 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ℕ0 ∈
V) |
191 | 23 | ad2antrr 724 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) → 𝑃 ∈ LMod) |
192 | 168 | ffvelcdmda 7083 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) →
((coe1‘𝑥)‘𝑖) ∈ (Base‘(Scalar‘𝑃))) |
193 | 6 | ad2antrr 724 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) → 𝑅 ∈ Ring) |
194 | 193, 93, 94 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) →
(mulGrp‘𝑃) ∈
Mnd) |
195 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈
ℕ0) |
196 | 193, 100 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) →
(var1‘𝑅)
∈ (Base‘𝑃)) |
197 | 91, 92, 194, 195, 196 | mulgnn0cld 18969 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) → (𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅)) ∈ (Base‘𝑃)) |
198 | 33, 47, 48, 49 | lmodvscl 20481 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ LMod ∧
((coe1‘𝑥)‘𝑖) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅)) ∈ (Base‘𝑃)) →
(((coe1‘𝑥)‘𝑖)( ·𝑠
‘𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅))) ∈ (Base‘𝑃)) |
199 | 191, 192,
197, 198 | syl3anc 1371 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) →
(((coe1‘𝑥)‘𝑖)( ·𝑠
‘𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅))) ∈ (Base‘𝑃)) |
200 | | eqid 2732 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ ℕ0
↦ (((coe1‘𝑥)‘𝑖)( ·𝑠
‘𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) = (𝑖 ∈ ℕ0 ↦
(((coe1‘𝑥)‘𝑖)( ·𝑠
‘𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) |
201 | 199, 200 | fmptd 7110 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑖 ∈ ℕ0 ↦
(((coe1‘𝑥)‘𝑖)( ·𝑠
‘𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅)))):ℕ0⟶(Base‘𝑃)) |
202 | | nfv 1917 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖(𝜑 ∧ 𝑥 ∈ 𝑆) |
203 | 202, 199,
200 | fnmptd 6688 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑖 ∈ ℕ0 ↦
(((coe1‘𝑥)‘𝑖)( ·𝑠
‘𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) Fn
ℕ0) |
204 | | fveq2 6888 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑗 → ((coe1‘𝑥)‘𝑖) = ((coe1‘𝑥)‘𝑗)) |
205 | | oveq1 7412 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑗 → (𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅)) = (𝑗(.g‘(mulGrp‘𝑃))(var1‘𝑅))) |
206 | 204, 205 | oveq12d 7423 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑗 → (((coe1‘𝑥)‘𝑖)( ·𝑠
‘𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅))) =
(((coe1‘𝑥)‘𝑗)( ·𝑠
‘𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) |
207 | | simplr 767 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁 ≤ 𝑗) → 𝑗 ∈ ℕ0) |
208 | | ovexd 7440 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁 ≤ 𝑗) → (((coe1‘𝑥)‘𝑗)( ·𝑠
‘𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1‘𝑅))) ∈ V) |
209 | 200, 206,
207, 208 | fvmptd3 7018 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁 ≤ 𝑗) → ((𝑖 ∈ ℕ0 ↦
(((coe1‘𝑥)‘𝑖)( ·𝑠
‘𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅))))‘𝑗) = (((coe1‘𝑥)‘𝑗)( ·𝑠
‘𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) |
210 | 162 | ad2antrr 724 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁 ≤ 𝑗) → 𝑥 ∈ (Base‘𝑃)) |
211 | | icossxr 13405 |
. . . . . . . . . . . . . . . . 17
⊢
(-∞[,)𝑁)
⊆ ℝ* |
212 | 211, 76 | sselid 3979 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝐷‘𝑥) ∈
ℝ*) |
213 | 212 | ad2antrr 724 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁 ≤ 𝑗) → (𝐷‘𝑥) ∈
ℝ*) |
214 | 55 | ad3antrrr 728 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁 ≤ 𝑗) → 𝑁 ∈
ℝ*) |
215 | 207 | nn0red 12529 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁 ≤ 𝑗) → 𝑗 ∈ ℝ) |
216 | 215 | rexrd 11260 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁 ≤ 𝑗) → 𝑗 ∈ ℝ*) |
217 | 80 | ad2antrr 724 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁 ≤ 𝑗) → (𝐷‘𝑥) < 𝑁) |
218 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁 ≤ 𝑗) → 𝑁 ≤ 𝑗) |
219 | 213, 214,
216, 217, 218 | xrltletrd 13136 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁 ≤ 𝑗) → (𝐷‘𝑥) < 𝑗) |
220 | 24, 1, 33, 9, 163 | deg1lt 25606 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ (Base‘𝑃) ∧ 𝑗 ∈ ℕ0 ∧ (𝐷‘𝑥) < 𝑗) → ((coe1‘𝑥)‘𝑗) = (0g‘𝑅)) |
221 | 210, 207,
219, 220 | syl3anc 1371 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁 ≤ 𝑗) → ((coe1‘𝑥)‘𝑗) = (0g‘𝑅)) |
222 | 221 | oveq1d 7420 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁 ≤ 𝑗) → (((coe1‘𝑥)‘𝑗)( ·𝑠
‘𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1‘𝑅))) =
((0g‘𝑅)(
·𝑠 ‘𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) |
223 | 148 | ad3antrrr 728 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁 ≤ 𝑗) → (0g‘𝑅) =
(0g‘(Scalar‘𝑃))) |
224 | 223 | oveq1d 7420 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁 ≤ 𝑗) → ((0g‘𝑅)(
·𝑠 ‘𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1‘𝑅))) =
((0g‘(Scalar‘𝑃))( ·𝑠
‘𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) |
225 | 23 | ad3antrrr 728 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁 ≤ 𝑗) → 𝑃 ∈ LMod) |
226 | 95 | ad3antrrr 728 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁 ≤ 𝑗) → (mulGrp‘𝑃) ∈ Mnd) |
227 | 101 | ad3antrrr 728 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁 ≤ 𝑗) → (var1‘𝑅) ∈ (Base‘𝑃)) |
228 | 91, 92, 226, 207, 227 | mulgnn0cld 18969 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁 ≤ 𝑗) → (𝑗(.g‘(mulGrp‘𝑃))(var1‘𝑅)) ∈ (Base‘𝑃)) |
229 | | eqid 2732 |
. . . . . . . . . . . . . . 15
⊢
(0g‘(Scalar‘𝑃)) =
(0g‘(Scalar‘𝑃)) |
230 | 33, 47, 48, 229, 10 | lmod0vs 20497 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ∈ LMod ∧ (𝑗(.g‘(mulGrp‘𝑃))(var1‘𝑅)) ∈ (Base‘𝑃)) →
((0g‘(Scalar‘𝑃))( ·𝑠
‘𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1‘𝑅))) = (0g‘𝑃)) |
231 | 225, 228,
230 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁 ≤ 𝑗) →
((0g‘(Scalar‘𝑃))( ·𝑠
‘𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1‘𝑅))) = (0g‘𝑃)) |
232 | 224, 231 | eqtrd 2772 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁 ≤ 𝑗) → ((0g‘𝑅)(
·𝑠 ‘𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1‘𝑅))) = (0g‘𝑃)) |
233 | 209, 222,
232 | 3eqtrd 2776 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁 ≤ 𝑗) → ((𝑖 ∈ ℕ0 ↦
(((coe1‘𝑥)‘𝑖)( ·𝑠
‘𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅))))‘𝑗) = (0g‘𝑃)) |
234 | 3 | nn0zd 12580 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈ ℤ) |
235 | 234 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑁 ∈ ℤ) |
236 | 203, 233,
235 | suppssnn0 32004 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ((𝑖 ∈ ℕ0 ↦
(((coe1‘𝑥)‘𝑖)( ·𝑠
‘𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) supp
(0g‘𝑃))
⊆ (0..^𝑁)) |
237 | 190 | mptexd 7222 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑖 ∈ ℕ0 ↦
(((coe1‘𝑥)‘𝑖)( ·𝑠
‘𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) ∈ V) |
238 | 203 | fnfund 6647 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → Fun (𝑖 ∈ ℕ0 ↦
(((coe1‘𝑥)‘𝑖)( ·𝑠
‘𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅))))) |
239 | | fvexd 6903 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (0g‘𝑃) ∈ V) |
240 | | suppssfifsupp 9374 |
. . . . . . . . . . 11
⊢ ((((𝑖 ∈ ℕ0
↦ (((coe1‘𝑥)‘𝑖)( ·𝑠
‘𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) ∈ V ∧ Fun (𝑖 ∈ ℕ0
↦ (((coe1‘𝑥)‘𝑖)( ·𝑠
‘𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) ∧
(0g‘𝑃)
∈ V) ∧ ((0..^𝑁)
∈ Fin ∧ ((𝑖 ∈
ℕ0 ↦ (((coe1‘𝑥)‘𝑖)( ·𝑠
‘𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) supp
(0g‘𝑃))
⊆ (0..^𝑁))) →
(𝑖 ∈
ℕ0 ↦ (((coe1‘𝑥)‘𝑖)( ·𝑠
‘𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) finSupp
(0g‘𝑃)) |
241 | 237, 238,
239, 183, 236, 240 | syl32anc 1378 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑖 ∈ ℕ0 ↦
(((coe1‘𝑥)‘𝑖)( ·𝑠
‘𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) finSupp
(0g‘𝑃)) |
242 | 33, 10, 188, 190, 201, 236, 241 | gsumres 19775 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑃 Σg ((𝑖 ∈ ℕ0
↦ (((coe1‘𝑥)‘𝑖)( ·𝑠
‘𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) ↾ (0..^𝑁))) = (𝑃 Σg (𝑖 ∈ ℕ0
↦ (((coe1‘𝑥)‘𝑖)( ·𝑠
‘𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))) |
243 | | fvexd 6903 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (coe1‘𝑥) ∈ V) |
244 | | ovexd 7440 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (0..^𝑁) ∈ V) |
245 | 155, 244 | fexd 7225 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 ∈ V) |
246 | 245 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐹 ∈ V) |
247 | | offres 7966 |
. . . . . . . . . . . 12
⊢
(((coe1‘𝑥) ∈ V ∧ 𝐹 ∈ V) →
(((coe1‘𝑥)
∘f ( ·𝑠 ‘𝑃)𝐹) ↾ (0..^𝑁)) = (((coe1‘𝑥) ↾ (0..^𝑁)) ∘f (
·𝑠 ‘𝑃)(𝐹 ↾ (0..^𝑁)))) |
248 | 243, 246,
247 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (((coe1‘𝑥) ∘f (
·𝑠 ‘𝑃)𝐹) ↾ (0..^𝑁)) = (((coe1‘𝑥) ↾ (0..^𝑁)) ∘f (
·𝑠 ‘𝑃)(𝐹 ↾ (0..^𝑁)))) |
249 | 165 | ffnd 6715 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (coe1‘𝑥) Fn
ℕ0) |
250 | 155 | ffnd 6715 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐹 Fn (0..^𝑁)) |
251 | 250 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐹 Fn (0..^𝑁)) |
252 | | sseqin2 4214 |
. . . . . . . . . . . . . . . 16
⊢
((0..^𝑁) ⊆
ℕ0 ↔ (ℕ0 ∩ (0..^𝑁)) = (0..^𝑁)) |
253 | 169, 252 | mpbi 229 |
. . . . . . . . . . . . . . 15
⊢
(ℕ0 ∩ (0..^𝑁)) = (0..^𝑁) |
254 | | eqidd 2733 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑗 ∈ ℕ0) →
((coe1‘𝑥)‘𝑗) = ((coe1‘𝑥)‘𝑗)) |
255 | | oveq1 7412 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑗 → (𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)) = (𝑗(.g‘(mulGrp‘𝑃))(var1‘𝑅))) |
256 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ (0..^𝑁)) |
257 | | ovexd 7440 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → (𝑗(.g‘(mulGrp‘𝑃))(var1‘𝑅)) ∈ V) |
258 | 8, 255, 256, 257 | fvmptd3 7018 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → (𝐹‘𝑗) = (𝑗(.g‘(mulGrp‘𝑃))(var1‘𝑅))) |
259 | 249, 251,
190, 161, 253, 254, 258 | ofval 7677 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → (((coe1‘𝑥) ∘f (
·𝑠 ‘𝑃)𝐹)‘𝑗) = (((coe1‘𝑥)‘𝑗)( ·𝑠
‘𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) |
260 | 169, 256 | sselid 3979 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ ℕ0) |
261 | | ovexd 7440 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → (((coe1‘𝑥)‘𝑗)( ·𝑠
‘𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1‘𝑅))) ∈ V) |
262 | 200, 206,
260, 261 | fvmptd3 7018 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑖 ∈ ℕ0 ↦
(((coe1‘𝑥)‘𝑖)( ·𝑠
‘𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅))))‘𝑗) = (((coe1‘𝑥)‘𝑗)( ·𝑠
‘𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) |
263 | 259, 262 | eqtr4d 2775 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → (((coe1‘𝑥) ∘f (
·𝑠 ‘𝑃)𝐹)‘𝑗) = ((𝑖 ∈ ℕ0 ↦
(((coe1‘𝑥)‘𝑖)( ·𝑠
‘𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅))))‘𝑗)) |
264 | 263 | ralrimiva 3146 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ∀𝑗 ∈ (0..^𝑁)(((coe1‘𝑥) ∘f (
·𝑠 ‘𝑃)𝐹)‘𝑗) = ((𝑖 ∈ ℕ0 ↦
(((coe1‘𝑥)‘𝑖)( ·𝑠
‘𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅))))‘𝑗)) |
265 | 249, 251,
190, 161, 253 | offn 7679 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ((coe1‘𝑥) ∘f (
·𝑠 ‘𝑃)𝐹) Fn (0..^𝑁)) |
266 | | ssidd 4004 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (0..^𝑁) ⊆ (0..^𝑁)) |
267 | | fvreseq0 7036 |
. . . . . . . . . . . . 13
⊢
(((((coe1‘𝑥) ∘f (
·𝑠 ‘𝑃)𝐹) Fn (0..^𝑁) ∧ (𝑖 ∈ ℕ0 ↦
(((coe1‘𝑥)‘𝑖)( ·𝑠
‘𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) Fn ℕ0)
∧ ((0..^𝑁) ⊆
(0..^𝑁) ∧ (0..^𝑁) ⊆ ℕ0))
→ ((((coe1‘𝑥) ∘f (
·𝑠 ‘𝑃)𝐹) ↾ (0..^𝑁)) = ((𝑖 ∈ ℕ0 ↦
(((coe1‘𝑥)‘𝑖)( ·𝑠
‘𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) ↾ (0..^𝑁)) ↔ ∀𝑗 ∈ (0..^𝑁)(((coe1‘𝑥) ∘f (
·𝑠 ‘𝑃)𝐹)‘𝑗) = ((𝑖 ∈ ℕ0 ↦
(((coe1‘𝑥)‘𝑖)( ·𝑠
‘𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅))))‘𝑗))) |
268 | 265, 203,
266, 170, 267 | syl22anc 837 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ((((coe1‘𝑥) ∘f (
·𝑠 ‘𝑃)𝐹) ↾ (0..^𝑁)) = ((𝑖 ∈ ℕ0 ↦
(((coe1‘𝑥)‘𝑖)( ·𝑠
‘𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) ↾ (0..^𝑁)) ↔ ∀𝑗 ∈ (0..^𝑁)(((coe1‘𝑥) ∘f (
·𝑠 ‘𝑃)𝐹)‘𝑗) = ((𝑖 ∈ ℕ0 ↦
(((coe1‘𝑥)‘𝑖)( ·𝑠
‘𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅))))‘𝑗))) |
269 | 264, 268 | mpbird 256 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (((coe1‘𝑥) ∘f (
·𝑠 ‘𝑃)𝐹) ↾ (0..^𝑁)) = ((𝑖 ∈ ℕ0 ↦
(((coe1‘𝑥)‘𝑖)( ·𝑠
‘𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) ↾ (0..^𝑁))) |
270 | | fnresdm 6666 |
. . . . . . . . . . . . . 14
⊢ (𝐹 Fn (0..^𝑁) → (𝐹 ↾ (0..^𝑁)) = 𝐹) |
271 | 250, 270 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹 ↾ (0..^𝑁)) = 𝐹) |
272 | 271 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝐹 ↾ (0..^𝑁)) = 𝐹) |
273 | 272 | oveq2d 7421 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (((coe1‘𝑥) ↾ (0..^𝑁)) ∘f (
·𝑠 ‘𝑃)(𝐹 ↾ (0..^𝑁))) = (((coe1‘𝑥) ↾ (0..^𝑁)) ∘f (
·𝑠 ‘𝑃)𝐹)) |
274 | 248, 269,
273 | 3eqtr3rd 2781 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (((coe1‘𝑥) ↾ (0..^𝑁)) ∘f (
·𝑠 ‘𝑃)𝐹) = ((𝑖 ∈ ℕ0 ↦
(((coe1‘𝑥)‘𝑖)( ·𝑠
‘𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) ↾ (0..^𝑁))) |
275 | 274 | oveq2d 7421 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑃 Σg
(((coe1‘𝑥)
↾ (0..^𝑁))
∘f ( ·𝑠 ‘𝑃)𝐹)) = (𝑃 Σg ((𝑖 ∈ ℕ0
↦ (((coe1‘𝑥)‘𝑖)( ·𝑠
‘𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅)))) ↾ (0..^𝑁)))) |
276 | 6 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑅 ∈ Ring) |
277 | 1, 99, 33, 48, 90, 92, 163 | ply1coe 21811 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑃)) → 𝑥 = (𝑃 Σg (𝑖 ∈ ℕ0
↦ (((coe1‘𝑥)‘𝑖)( ·𝑠
‘𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))) |
278 | 276, 162,
277 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 = (𝑃 Σg (𝑖 ∈ ℕ0
↦ (((coe1‘𝑥)‘𝑖)( ·𝑠
‘𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))) |
279 | 242, 275,
278 | 3eqtr4rd 2783 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 = (𝑃 Σg
(((coe1‘𝑥)
↾ (0..^𝑁))
∘f ( ·𝑠 ‘𝑃)𝐹))) |
280 | 185, 279 | jca 512 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (((coe1‘𝑥) ↾ (0..^𝑁)) finSupp
(0g‘(Scalar‘𝑃)) ∧ 𝑥 = (𝑃 Σg
(((coe1‘𝑥)
↾ (0..^𝑁))
∘f ( ·𝑠 ‘𝑃)𝐹)))) |
281 | 174, 180,
280 | rspcedvd 3614 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ∃𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))(𝑎 finSupp
(0g‘(Scalar‘𝑃)) ∧ 𝑥 = (𝑃 Σg (𝑎 ∘f (
·𝑠 ‘𝑃)𝐹)))) |
282 | 103, 8 | fmptd 7110 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:(0..^𝑁)⟶(Base‘𝑃)) |
283 | 157, 33, 49, 47, 229, 48, 282, 23, 244 | ellspd 21348 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ ((LSpan‘𝑃)‘(𝐹 “ (0..^𝑁))) ↔ ∃𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))(𝑎 finSupp
(0g‘(Scalar‘𝑃)) ∧ 𝑥 = (𝑃 Σg (𝑎 ∘f (
·𝑠 ‘𝑃)𝐹))))) |
284 | 283 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥 ∈ ((LSpan‘𝑃)‘(𝐹 “ (0..^𝑁))) ↔ ∃𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))(𝑎 finSupp
(0g‘(Scalar‘𝑃)) ∧ 𝑥 = (𝑃 Σg (𝑎 ∘f (
·𝑠 ‘𝑃)𝐹))))) |
285 | 281, 284 | mpbird 256 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ ((LSpan‘𝑃)‘(𝐹 “ (0..^𝑁)))) |
286 | | imadmrn 6067 |
. . . . . . . 8
⊢ (𝐹 “ dom 𝐹) = ran 𝐹 |
287 | 155 | fdmd 6725 |
. . . . . . . . 9
⊢ (𝜑 → dom 𝐹 = (0..^𝑁)) |
288 | 287 | imaeq2d 6057 |
. . . . . . . 8
⊢ (𝜑 → (𝐹 “ dom 𝐹) = (𝐹 “ (0..^𝑁))) |
289 | 286, 288 | eqtr3id 2786 |
. . . . . . 7
⊢ (𝜑 → ran 𝐹 = (𝐹 “ (0..^𝑁))) |
290 | 289 | fveq2d 6892 |
. . . . . 6
⊢ (𝜑 → ((LSpan‘𝑃)‘ran 𝐹) = ((LSpan‘𝑃)‘(𝐹 “ (0..^𝑁)))) |
291 | 290 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ((LSpan‘𝑃)‘ran 𝐹) = ((LSpan‘𝑃)‘(𝐹 “ (0..^𝑁)))) |
292 | 285, 291 | eleqtrrd 2836 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ ((LSpan‘𝑃)‘ran 𝐹)) |
293 | 159, 292 | eqelssd 4002 |
. . 3
⊢ (𝜑 → ((LSpan‘𝑃)‘ran 𝐹) = 𝑆) |
294 | | eqid 2732 |
. . . . 5
⊢
(LSpan‘𝐸) =
(LSpan‘𝐸) |
295 | 41, 157, 294, 27 | lsslsp 20618 |
. . . 4
⊢ ((𝑃 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑃) ∧ ran 𝐹 ⊆ 𝑆) → ((LSpan‘𝑃)‘ran 𝐹) = ((LSpan‘𝐸)‘ran 𝐹)) |
296 | 23, 26, 156, 295 | syl3anc 1371 |
. . 3
⊢ (𝜑 → ((LSpan‘𝑃)‘ran 𝐹) = ((LSpan‘𝐸)‘ran 𝐹)) |
297 | 293, 296,
43 | 3eqtr3d 2780 |
. 2
⊢ (𝜑 → ((LSpan‘𝐸)‘ran 𝐹) = (Base‘𝐸)) |
298 | | eqid 2732 |
. . 3
⊢
(Base‘𝐸) =
(Base‘𝐸) |
299 | 24 | fvexi 6902 |
. . . . . . 7
⊢ 𝐷 ∈ V |
300 | | cnvexg 7911 |
. . . . . . 7
⊢ (𝐷 ∈ V → ◡𝐷 ∈ V) |
301 | | imaexg 7902 |
. . . . . . 7
⊢ (◡𝐷 ∈ V → (◡𝐷 “ (-∞[,)𝑁)) ∈ V) |
302 | 299, 300,
301 | mp2b 10 |
. . . . . 6
⊢ (◡𝐷 “ (-∞[,)𝑁)) ∈ V |
303 | 25, 302 | eqeltri 2829 |
. . . . 5
⊢ 𝑆 ∈ V |
304 | 41, 47 | resssca 17284 |
. . . . 5
⊢ (𝑆 ∈ V →
(Scalar‘𝑃) =
(Scalar‘𝐸)) |
305 | 303, 304 | ax-mp 5 |
. . . 4
⊢
(Scalar‘𝑃) =
(Scalar‘𝐸) |
306 | 305 | fveq2i 6891 |
. . 3
⊢
(Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝐸)) |
307 | | eqid 2732 |
. . 3
⊢
(Scalar‘𝐸) =
(Scalar‘𝐸) |
308 | 41, 48 | ressvsca 17285 |
. . . 4
⊢ (𝑆 ∈ V → (
·𝑠 ‘𝑃) = ( ·𝑠
‘𝐸)) |
309 | 303, 308 | ax-mp 5 |
. . 3
⊢ (
·𝑠 ‘𝑃) = ( ·𝑠
‘𝐸) |
310 | | eqid 2732 |
. . 3
⊢
(0g‘𝐸) = (0g‘𝐸) |
311 | 305 | fveq2i 6891 |
. . 3
⊢
(0g‘(Scalar‘𝑃)) =
(0g‘(Scalar‘𝐸)) |
312 | | eqid 2732 |
. . 3
⊢
(LBasis‘𝐸) =
(LBasis‘𝐸) |
313 | 41, 27 | lsslvec 20711 |
. . . . 5
⊢ ((𝑃 ∈ LVec ∧ 𝑆 ∈ (LSubSp‘𝑃)) → 𝐸 ∈ LVec) |
314 | 22, 26, 313 | syl2anc 584 |
. . . 4
⊢ (𝜑 → 𝐸 ∈ LVec) |
315 | 314 | lveclmodd 20710 |
. . 3
⊢ (𝜑 → 𝐸 ∈ LMod) |
316 | 14, 5 | eqeltrrd 2834 |
. . . . 5
⊢ (𝜑 → (Scalar‘𝑃) ∈
DivRing) |
317 | | drngnzr 20327 |
. . . . 5
⊢
((Scalar‘𝑃)
∈ DivRing → (Scalar‘𝑃) ∈ NzRing) |
318 | 316, 317 | syl 17 |
. . . 4
⊢ (𝜑 → (Scalar‘𝑃) ∈
NzRing) |
319 | 305, 318 | eqeltrrid 2838 |
. . 3
⊢ (𝜑 → (Scalar‘𝐸) ∈
NzRing) |
320 | 121 | ralrimiva 3146 |
. . . 4
⊢ (𝜑 → ∀𝑛 ∈ (0..^𝑁)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)) ∈ (Base‘𝐸)) |
321 | | drngnzr 20327 |
. . . . . . . . . 10
⊢ (𝑅 ∈ DivRing → 𝑅 ∈ NzRing) |
322 | 5, 321 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ NzRing) |
323 | 322 | ad2antrr 724 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑅 ∈ NzRing) |
324 | 98 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑛 ∈ ℕ0) |
325 | | elfzonn0 13673 |
. . . . . . . . 9
⊢ (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ ℕ0) |
326 | 325 | adantl 482 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ ℕ0) |
327 | 1, 99, 92, 323, 324, 326 | ply1moneq 32653 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅)) ↔ 𝑛 = 𝑖)) |
328 | 327 | biimpd 228 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅)) → 𝑛 = 𝑖)) |
329 | 328 | anasss 467 |
. . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ (0..^𝑁) ∧ 𝑖 ∈ (0..^𝑁))) → ((𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅)) → 𝑛 = 𝑖)) |
330 | 329 | ralrimivva 3200 |
. . . 4
⊢ (𝜑 → ∀𝑛 ∈ (0..^𝑁)∀𝑖 ∈ (0..^𝑁)((𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅)) → 𝑛 = 𝑖)) |
331 | | oveq1 7412 |
. . . . 5
⊢ (𝑛 = 𝑖 → (𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅))) |
332 | 8, 331 | f1mpt 7256 |
. . . 4
⊢ (𝐹:(0..^𝑁)–1-1→(Base‘𝐸) ↔ (∀𝑛 ∈ (0..^𝑁)(𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)) ∈ (Base‘𝐸) ∧ ∀𝑛 ∈ (0..^𝑁)∀𝑖 ∈ (0..^𝑁)((𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅)) → 𝑛 = 𝑖))) |
333 | 320, 330,
332 | sylanbrc 583 |
. . 3
⊢ (𝜑 → 𝐹:(0..^𝑁)–1-1→(Base‘𝐸)) |
334 | 298, 306,
307, 309, 310, 311, 312, 294, 315, 319, 244, 333 | islbs5 32484 |
. 2
⊢ (𝜑 → (ran 𝐹 ∈ (LBasis‘𝐸) ↔ (∀𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))((𝑎 finSupp
(0g‘(Scalar‘𝑃)) ∧ (𝐸 Σg (𝑎 ∘f (
·𝑠 ‘𝑃)𝐹)) = (0g‘𝐸)) → 𝑎 = ((0..^𝑁) ×
{(0g‘(Scalar‘𝑃))})) ∧ ((LSpan‘𝐸)‘ran 𝐹) = (Base‘𝐸)))) |
335 | 154, 297,
334 | mpbir2and 711 |
1
⊢ (𝜑 → ran 𝐹 ∈ (LBasis‘𝐸)) |