Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1degltdimlem Structured version   Visualization version   GIF version

Theorem ply1degltdimlem 33595
Description: Lemma for ply1degltdim 33596. (Contributed by Thierry Arnoux, 20-Feb-2025.)
Hypotheses
Ref Expression
ply1degltdim.p 𝑃 = (Poly1𝑅)
ply1degltdim.d 𝐷 = (deg1𝑅)
ply1degltdim.s 𝑆 = (𝐷 “ (-∞[,)𝑁))
ply1degltdim.n (𝜑𝑁 ∈ ℕ0)
ply1degltdim.r (𝜑𝑅 ∈ DivRing)
ply1degltdim.e 𝐸 = (𝑃s 𝑆)
ply1degltdimlem.f 𝐹 = (𝑛 ∈ (0..^𝑁) ↦ (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)))
Assertion
Ref Expression
ply1degltdimlem (𝜑 → ran 𝐹 ∈ (LBasis‘𝐸))
Distinct variable groups:   𝑛,𝐸   𝑛,𝐹   𝑛,𝑁   𝑃,𝑛   𝑅,𝑛   𝑆,𝑛   𝜑,𝑛
Allowed substitution hint:   𝐷(𝑛)

Proof of Theorem ply1degltdimlem
Dummy variables 𝑎 𝑖 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ply1degltdim.p . . . . . 6 𝑃 = (Poly1𝑅)
2 eqid 2729 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
3 ply1degltdim.n . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
43ad3antrrr 730 . . . . . 6 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑁 ∈ ℕ0)
5 ply1degltdim.r . . . . . . . 8 (𝜑𝑅 ∈ DivRing)
65drngringd 20622 . . . . . . 7 (𝜑𝑅 ∈ Ring)
76ad3antrrr 730 . . . . . 6 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑅 ∈ Ring)
8 ply1degltdimlem.f . . . . . 6 𝐹 = (𝑛 ∈ (0..^𝑁) ↦ (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)))
9 eqid 2729 . . . . . 6 (0g𝑅) = (0g𝑅)
10 eqid 2729 . . . . . 6 (0g𝑃) = (0g𝑃)
11 elmapi 8776 . . . . . . . . 9 (𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁)) → 𝑎:(0..^𝑁)⟶(Base‘(Scalar‘𝑃)))
1211adantl 481 . . . . . . . 8 ((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) → 𝑎:(0..^𝑁)⟶(Base‘(Scalar‘𝑃)))
131ply1sca 22135 . . . . . . . . . . . 12 (𝑅 ∈ DivRing → 𝑅 = (Scalar‘𝑃))
145, 13syl 17 . . . . . . . . . . 11 (𝜑𝑅 = (Scalar‘𝑃))
1514fveq2d 6826 . . . . . . . . . 10 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
1615adantr 480 . . . . . . . . 9 ((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
1716feq3d 6637 . . . . . . . 8 ((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) → (𝑎:(0..^𝑁)⟶(Base‘𝑅) ↔ 𝑎:(0..^𝑁)⟶(Base‘(Scalar‘𝑃))))
1812, 17mpbird 257 . . . . . . 7 ((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) → 𝑎:(0..^𝑁)⟶(Base‘𝑅))
1918ad2antrr 726 . . . . . 6 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑎:(0..^𝑁)⟶(Base‘𝑅))
20 simpr 484 . . . . . . 7 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸))
21 ovexd 7384 . . . . . . . 8 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → (0..^𝑁) ∈ V)
221, 5ply1lvec 33495 . . . . . . . . . . . 12 (𝜑𝑃 ∈ LVec)
2322lveclmodd 21011 . . . . . . . . . . 11 (𝜑𝑃 ∈ LMod)
24 ply1degltdim.d . . . . . . . . . . . 12 𝐷 = (deg1𝑅)
25 ply1degltdim.s . . . . . . . . . . . 12 𝑆 = (𝐷 “ (-∞[,)𝑁))
261, 24, 25, 3, 6ply1degltlss 33530 . . . . . . . . . . 11 (𝜑𝑆 ∈ (LSubSp‘𝑃))
27 eqid 2729 . . . . . . . . . . . 12 (LSubSp‘𝑃) = (LSubSp‘𝑃)
2827lsssubg 20860 . . . . . . . . . . 11 ((𝑃 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑃)) → 𝑆 ∈ (SubGrp‘𝑃))
2923, 26, 28syl2anc 584 . . . . . . . . . 10 (𝜑𝑆 ∈ (SubGrp‘𝑃))
30 subgsubm 19027 . . . . . . . . . 10 (𝑆 ∈ (SubGrp‘𝑃) → 𝑆 ∈ (SubMnd‘𝑃))
3129, 30syl 17 . . . . . . . . 9 (𝜑𝑆 ∈ (SubMnd‘𝑃))
3231ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑆 ∈ (SubMnd‘𝑃))
33 eqid 2729 . . . . . . . . . . . . . . 15 (Base‘𝑃) = (Base‘𝑃)
3424, 1, 33deg1xrf 25984 . . . . . . . . . . . . . 14 𝐷:(Base‘𝑃)⟶ℝ*
35 ffn 6652 . . . . . . . . . . . . . 14 (𝐷:(Base‘𝑃)⟶ℝ*𝐷 Fn (Base‘𝑃))
3634, 35mp1i 13 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝐷 Fn (Base‘𝑃))
37 eqid 2729 . . . . . . . . . . . . . 14 (Scalar‘𝑃) = (Scalar‘𝑃)
38 eqid 2729 . . . . . . . . . . . . . 14 ( ·𝑠𝑃) = ( ·𝑠𝑃)
39 eqid 2729 . . . . . . . . . . . . . 14 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
4023ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑃 ∈ LMod)
41 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑘 ∈ (Base‘(Scalar‘𝑃)))
4233, 27lssss 20839 . . . . . . . . . . . . . . . . . . 19 (𝑆 ∈ (LSubSp‘𝑃) → 𝑆 ⊆ (Base‘𝑃))
4326, 42syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑆 ⊆ (Base‘𝑃))
44 ply1degltdim.e . . . . . . . . . . . . . . . . . . 19 𝐸 = (𝑃s 𝑆)
4544, 33ressbas2 17149 . . . . . . . . . . . . . . . . . 18 (𝑆 ⊆ (Base‘𝑃) → 𝑆 = (Base‘𝐸))
4643, 45syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑆 = (Base‘𝐸))
4746, 43eqsstrrd 3971 . . . . . . . . . . . . . . . 16 (𝜑 → (Base‘𝐸) ⊆ (Base‘𝑃))
4847sselda 3935 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝐸)) → 𝑥 ∈ (Base‘𝑃))
4948adantlr 715 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑥 ∈ (Base‘𝑃))
5033, 37, 38, 39, 40, 41, 49lmodvscld 20782 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝑘( ·𝑠𝑃)𝑥) ∈ (Base‘𝑃))
51 mnfxr 11172 . . . . . . . . . . . . . . 15 -∞ ∈ ℝ*
5251a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → -∞ ∈ ℝ*)
533nn0red 12446 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℝ)
5453rexrd 11165 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℝ*)
5554ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑁 ∈ ℝ*)
5634a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝐷:(Base‘𝑃)⟶ℝ*)
5756, 50ffvelcdmd 7019 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝐷‘(𝑘( ·𝑠𝑃)𝑥)) ∈ ℝ*)
5857mnfled 13038 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → -∞ ≤ (𝐷‘(𝑘( ·𝑠𝑃)𝑥)))
5956, 49ffvelcdmd 7019 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝐷𝑥) ∈ ℝ*)
606ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑅 ∈ Ring)
6115ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
6241, 61eleqtrrd 2831 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑘 ∈ (Base‘𝑅))
631, 24, 60, 33, 2, 38, 62, 49deg1vscale 26007 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝐷‘(𝑘( ·𝑠𝑃)𝑥)) ≤ (𝐷𝑥))
64 simpll 766 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝜑)
65 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑥 ∈ (Base‘𝐸))
6646ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑆 = (Base‘𝐸))
6765, 66eleqtrrd 2831 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → 𝑥𝑆)
6851a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑆) → -∞ ∈ ℝ*)
6954adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑆) → 𝑁 ∈ ℝ*)
7034, 35mp1i 13 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝑆) → 𝐷 Fn (Base‘𝑃))
71 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝑆) → 𝑥𝑆)
7271, 25eleqtrdi 2838 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝑆) → 𝑥 ∈ (𝐷 “ (-∞[,)𝑁)))
73 elpreima 6992 . . . . . . . . . . . . . . . . . . 19 (𝐷 Fn (Base‘𝑃) → (𝑥 ∈ (𝐷 “ (-∞[,)𝑁)) ↔ (𝑥 ∈ (Base‘𝑃) ∧ (𝐷𝑥) ∈ (-∞[,)𝑁))))
7473simplbda 499 . . . . . . . . . . . . . . . . . 18 ((𝐷 Fn (Base‘𝑃) ∧ 𝑥 ∈ (𝐷 “ (-∞[,)𝑁))) → (𝐷𝑥) ∈ (-∞[,)𝑁))
7570, 72, 74syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑆) → (𝐷𝑥) ∈ (-∞[,)𝑁))
76 elico1 13291 . . . . . . . . . . . . . . . . . . 19 ((-∞ ∈ ℝ*𝑁 ∈ ℝ*) → ((𝐷𝑥) ∈ (-∞[,)𝑁) ↔ ((𝐷𝑥) ∈ ℝ* ∧ -∞ ≤ (𝐷𝑥) ∧ (𝐷𝑥) < 𝑁)))
7776biimpa 476 . . . . . . . . . . . . . . . . . 18 (((-∞ ∈ ℝ*𝑁 ∈ ℝ*) ∧ (𝐷𝑥) ∈ (-∞[,)𝑁)) → ((𝐷𝑥) ∈ ℝ* ∧ -∞ ≤ (𝐷𝑥) ∧ (𝐷𝑥) < 𝑁))
7877simp3d 1144 . . . . . . . . . . . . . . . . 17 (((-∞ ∈ ℝ*𝑁 ∈ ℝ*) ∧ (𝐷𝑥) ∈ (-∞[,)𝑁)) → (𝐷𝑥) < 𝑁)
7968, 69, 75, 78syl21anc 837 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑆) → (𝐷𝑥) < 𝑁)
8064, 67, 79syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝐷𝑥) < 𝑁)
8157, 59, 55, 63, 80xrlelttrd 13062 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝐷‘(𝑘( ·𝑠𝑃)𝑥)) < 𝑁)
8252, 55, 57, 58, 81elicod 13298 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝐷‘(𝑘( ·𝑠𝑃)𝑥)) ∈ (-∞[,)𝑁))
8336, 50, 82elpreimad 6993 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝑘( ·𝑠𝑃)𝑥) ∈ (𝐷 “ (-∞[,)𝑁)))
8483, 25eleqtrrdi 2839 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑃))) ∧ 𝑥 ∈ (Base‘𝐸)) → (𝑘( ·𝑠𝑃)𝑥) ∈ 𝑆)
8584anasss 466 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑥 ∈ (Base‘𝐸))) → (𝑘( ·𝑠𝑃)𝑥) ∈ 𝑆)
8685ad5ant15 758 . . . . . . . . 9 (((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑥 ∈ (Base‘𝐸))) → (𝑘( ·𝑠𝑃)𝑥) ∈ 𝑆)
8712ad2antrr 726 . . . . . . . . 9 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑎:(0..^𝑁)⟶(Base‘(Scalar‘𝑃)))
8834, 35mp1i 13 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (0..^𝑁)) → 𝐷 Fn (Base‘𝑃))
89 eqid 2729 . . . . . . . . . . . . . . . 16 (mulGrp‘𝑃) = (mulGrp‘𝑃)
9089, 33mgpbas 20030 . . . . . . . . . . . . . . 15 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
91 eqid 2729 . . . . . . . . . . . . . . 15 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
921ply1ring 22130 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
9389ringmgp 20124 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
946, 92, 933syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (mulGrp‘𝑃) ∈ Mnd)
9594adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑁)) → (mulGrp‘𝑃) ∈ Mnd)
96 elfzonn0 13610 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (0..^𝑁) → 𝑛 ∈ ℕ0)
9796adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑁)) → 𝑛 ∈ ℕ0)
98 eqid 2729 . . . . . . . . . . . . . . . . . 18 (var1𝑅) = (var1𝑅)
9998, 1, 33vr1cl 22100 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Ring → (var1𝑅) ∈ (Base‘𝑃))
1006, 99syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (var1𝑅) ∈ (Base‘𝑃))
101100adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑁)) → (var1𝑅) ∈ (Base‘𝑃))
10290, 91, 95, 97, 101mulgnn0cld 18974 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃))
10351a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑁)) → -∞ ∈ ℝ*)
10454adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑁)) → 𝑁 ∈ ℝ*)
10524, 1, 33deg1xrcl 25985 . . . . . . . . . . . . . . . 16 ((𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ ℝ*)
106102, 105syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ ℝ*)
107106mnfled 13038 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑁)) → -∞ ≤ (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))))
10896nn0red 12446 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (0..^𝑁) → 𝑛 ∈ ℝ)
109108rexrd 11165 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (0..^𝑁) → 𝑛 ∈ ℝ*)
110109adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑁)) → 𝑛 ∈ ℝ*)
11124, 1, 98, 89, 91deg1pwle 26023 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Ring ∧ 𝑛 ∈ ℕ0) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))) ≤ 𝑛)
1126, 96, 111syl2an 596 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))) ≤ 𝑛)
113 elfzolt2 13571 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (0..^𝑁) → 𝑛 < 𝑁)
114113adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (0..^𝑁)) → 𝑛 < 𝑁)
115106, 110, 104, 112, 114xrlelttrd 13062 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))) < 𝑁)
116103, 104, 106, 107, 115elicod 13298 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝐷‘(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ (-∞[,)𝑁))
11788, 102, 116elpreimad 6993 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (𝐷 “ (-∞[,)𝑁)))
118117, 25eleqtrrdi 2839 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ 𝑆)
11946adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑁)) → 𝑆 = (Base‘𝐸))
120118, 119eleqtrd 2830 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝐸))
121120, 8fmptd 7048 . . . . . . . . . 10 (𝜑𝐹:(0..^𝑁)⟶(Base‘𝐸))
122121ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝐹:(0..^𝑁)⟶(Base‘𝐸))
123 inidm 4178 . . . . . . . . 9 ((0..^𝑁) ∩ (0..^𝑁)) = (0..^𝑁)
12486, 87, 122, 21, 21, 123off 7631 . . . . . . . 8 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → (𝑎f ( ·𝑠𝑃)𝐹):(0..^𝑁)⟶𝑆)
12521, 32, 124, 44gsumsubm 18709 . . . . . . 7 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → (𝑃 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)))
126 ringmnd 20128 . . . . . . . . . 10 (𝑃 ∈ Ring → 𝑃 ∈ Mnd)
1276, 92, 1263syl 18 . . . . . . . . 9 (𝜑𝑃 ∈ Mnd)
12834, 35mp1i 13 . . . . . . . . . . 11 (𝜑𝐷 Fn (Base‘𝑃))
12933, 10mndidcl 18623 . . . . . . . . . . . 12 (𝑃 ∈ Mnd → (0g𝑃) ∈ (Base‘𝑃))
130127, 129syl 17 . . . . . . . . . . 11 (𝜑 → (0g𝑃) ∈ (Base‘𝑃))
13151a1i 11 . . . . . . . . . . . 12 (𝜑 → -∞ ∈ ℝ*)
13224, 1, 33deg1xrcl 25985 . . . . . . . . . . . . 13 ((0g𝑃) ∈ (Base‘𝑃) → (𝐷‘(0g𝑃)) ∈ ℝ*)
133130, 132syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐷‘(0g𝑃)) ∈ ℝ*)
134133mnfled 13038 . . . . . . . . . . . 12 (𝜑 → -∞ ≤ (𝐷‘(0g𝑃)))
13524, 1, 10deg1z 25990 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → (𝐷‘(0g𝑃)) = -∞)
1366, 135syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐷‘(0g𝑃)) = -∞)
13753mnfltd 13026 . . . . . . . . . . . . 13 (𝜑 → -∞ < 𝑁)
138136, 137eqbrtrd 5114 . . . . . . . . . . . 12 (𝜑 → (𝐷‘(0g𝑃)) < 𝑁)
139131, 54, 133, 134, 138elicod 13298 . . . . . . . . . . 11 (𝜑 → (𝐷‘(0g𝑃)) ∈ (-∞[,)𝑁))
140128, 130, 139elpreimad 6993 . . . . . . . . . 10 (𝜑 → (0g𝑃) ∈ (𝐷 “ (-∞[,)𝑁)))
141140, 25eleqtrrdi 2839 . . . . . . . . 9 (𝜑 → (0g𝑃) ∈ 𝑆)
14244, 33, 10ress0g 18636 . . . . . . . . 9 ((𝑃 ∈ Mnd ∧ (0g𝑃) ∈ 𝑆𝑆 ⊆ (Base‘𝑃)) → (0g𝑃) = (0g𝐸))
143127, 141, 43, 142syl3anc 1373 . . . . . . . 8 (𝜑 → (0g𝑃) = (0g𝐸))
144143ad3antrrr 730 . . . . . . 7 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → (0g𝑃) = (0g𝐸))
14520, 125, 1443eqtr4d 2774 . . . . . 6 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → (𝑃 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝑃))
1461, 2, 4, 7, 8, 9, 10, 19, 145ply1gsumz 33532 . . . . 5 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑎 = ((0..^𝑁) × {(0g𝑅)}))
14714fveq2d 6826 . . . . . . . 8 (𝜑 → (0g𝑅) = (0g‘(Scalar‘𝑃)))
148147sneqd 4589 . . . . . . 7 (𝜑 → {(0g𝑅)} = {(0g‘(Scalar‘𝑃))})
149148xpeq2d 5649 . . . . . 6 (𝜑 → ((0..^𝑁) × {(0g𝑅)}) = ((0..^𝑁) × {(0g‘(Scalar‘𝑃))}))
150149ad3antrrr 730 . . . . 5 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → ((0..^𝑁) × {(0g𝑅)}) = ((0..^𝑁) × {(0g‘(Scalar‘𝑃))}))
151146, 150eqtrd 2764 . . . 4 ((((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) ∧ 𝑎 finSupp (0g‘(Scalar‘𝑃))) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑎 = ((0..^𝑁) × {(0g‘(Scalar‘𝑃))}))
152151expl 457 . . 3 ((𝜑𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))) → ((𝑎 finSupp (0g‘(Scalar‘𝑃)) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑎 = ((0..^𝑁) × {(0g‘(Scalar‘𝑃))})))
153152ralrimiva 3121 . 2 (𝜑 → ∀𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))((𝑎 finSupp (0g‘(Scalar‘𝑃)) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑎 = ((0..^𝑁) × {(0g‘(Scalar‘𝑃))})))
154118, 8fmptd 7048 . . . . . 6 (𝜑𝐹:(0..^𝑁)⟶𝑆)
155154frnd 6660 . . . . 5 (𝜑 → ran 𝐹𝑆)
156 eqid 2729 . . . . . 6 (LSpan‘𝑃) = (LSpan‘𝑃)
15727, 156lspssp 20891 . . . . 5 ((𝑃 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑃) ∧ ran 𝐹𝑆) → ((LSpan‘𝑃)‘ran 𝐹) ⊆ 𝑆)
15823, 26, 155, 157syl3anc 1373 . . . 4 (𝜑 → ((LSpan‘𝑃)‘ran 𝐹) ⊆ 𝑆)
159 breq1 5095 . . . . . . . 8 (𝑎 = ((coe1𝑥) ↾ (0..^𝑁)) → (𝑎 finSupp (0g‘(Scalar‘𝑃)) ↔ ((coe1𝑥) ↾ (0..^𝑁)) finSupp (0g‘(Scalar‘𝑃))))
160 oveq1 7356 . . . . . . . . . 10 (𝑎 = ((coe1𝑥) ↾ (0..^𝑁)) → (𝑎f ( ·𝑠𝑃)𝐹) = (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹))
161160oveq2d 7365 . . . . . . . . 9 (𝑎 = ((coe1𝑥) ↾ (0..^𝑁)) → (𝑃 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (𝑃 Σg (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹)))
162161eqeq2d 2740 . . . . . . . 8 (𝑎 = ((coe1𝑥) ↾ (0..^𝑁)) → (𝑥 = (𝑃 Σg (𝑎f ( ·𝑠𝑃)𝐹)) ↔ 𝑥 = (𝑃 Σg (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹))))
163159, 162anbi12d 632 . . . . . . 7 (𝑎 = ((coe1𝑥) ↾ (0..^𝑁)) → ((𝑎 finSupp (0g‘(Scalar‘𝑃)) ∧ 𝑥 = (𝑃 Σg (𝑎f ( ·𝑠𝑃)𝐹))) ↔ (((coe1𝑥) ↾ (0..^𝑁)) finSupp (0g‘(Scalar‘𝑃)) ∧ 𝑥 = (𝑃 Σg (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹)))))
164 fvexd 6837 . . . . . . . 8 ((𝜑𝑥𝑆) → (Base‘(Scalar‘𝑃)) ∈ V)
165 ovexd 7384 . . . . . . . 8 ((𝜑𝑥𝑆) → (0..^𝑁) ∈ V)
16643sselda 3935 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → 𝑥 ∈ (Base‘𝑃))
167 eqid 2729 . . . . . . . . . . . 12 (coe1𝑥) = (coe1𝑥)
168167, 33, 1, 2coe1f 22094 . . . . . . . . . . 11 (𝑥 ∈ (Base‘𝑃) → (coe1𝑥):ℕ0⟶(Base‘𝑅))
169166, 168syl 17 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (coe1𝑥):ℕ0⟶(Base‘𝑅))
17015adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
171170feq3d 6637 . . . . . . . . . 10 ((𝜑𝑥𝑆) → ((coe1𝑥):ℕ0⟶(Base‘𝑅) ↔ (coe1𝑥):ℕ0⟶(Base‘(Scalar‘𝑃))))
172169, 171mpbid 232 . . . . . . . . 9 ((𝜑𝑥𝑆) → (coe1𝑥):ℕ0⟶(Base‘(Scalar‘𝑃)))
173 fzo0ssnn0 13649 . . . . . . . . . 10 (0..^𝑁) ⊆ ℕ0
174173a1i 11 . . . . . . . . 9 ((𝜑𝑥𝑆) → (0..^𝑁) ⊆ ℕ0)
175172, 174fssresd 6691 . . . . . . . 8 ((𝜑𝑥𝑆) → ((coe1𝑥) ↾ (0..^𝑁)):(0..^𝑁)⟶(Base‘(Scalar‘𝑃)))
176164, 165, 175elmapdd 8768 . . . . . . 7 ((𝜑𝑥𝑆) → ((coe1𝑥) ↾ (0..^𝑁)) ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁)))
177169ffund 6656 . . . . . . . . 9 ((𝜑𝑥𝑆) → Fun (coe1𝑥))
178 fzofi 13881 . . . . . . . . . 10 (0..^𝑁) ∈ Fin
179178a1i 11 . . . . . . . . 9 ((𝜑𝑥𝑆) → (0..^𝑁) ∈ Fin)
180 fvexd 6837 . . . . . . . . 9 ((𝜑𝑥𝑆) → (0g‘(Scalar‘𝑃)) ∈ V)
181177, 179, 180resfifsupp 9287 . . . . . . . 8 ((𝜑𝑥𝑆) → ((coe1𝑥) ↾ (0..^𝑁)) finSupp (0g‘(Scalar‘𝑃)))
182 ringcmn 20167 . . . . . . . . . . . 12 (𝑃 ∈ Ring → 𝑃 ∈ CMnd)
1836, 92, 1823syl 18 . . . . . . . . . . 11 (𝜑𝑃 ∈ CMnd)
184183adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝑆) → 𝑃 ∈ CMnd)
185 nn0ex 12390 . . . . . . . . . . 11 0 ∈ V
186185a1i 11 . . . . . . . . . 10 ((𝜑𝑥𝑆) → ℕ0 ∈ V)
18723ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑖 ∈ ℕ0) → 𝑃 ∈ LMod)
188172ffvelcdmda 7018 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑖 ∈ ℕ0) → ((coe1𝑥)‘𝑖) ∈ (Base‘(Scalar‘𝑃)))
1896ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑖 ∈ ℕ0) → 𝑅 ∈ Ring)
190189, 92, 933syl 18 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑖 ∈ ℕ0) → (mulGrp‘𝑃) ∈ Mnd)
191 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
192189, 99syl 17 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑖 ∈ ℕ0) → (var1𝑅) ∈ (Base‘𝑃))
19390, 91, 190, 191, 192mulgnn0cld 18974 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑖 ∈ ℕ0) → (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃))
19433, 37, 38, 39, 187, 188, 193lmodvscld 20782 . . . . . . . . . . 11 (((𝜑𝑥𝑆) ∧ 𝑖 ∈ ℕ0) → (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ (Base‘𝑃))
195 eqid 2729 . . . . . . . . . . 11 (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) = (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))
196194, 195fmptd 7048 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))):ℕ0⟶(Base‘𝑃))
197 nfv 1914 . . . . . . . . . . . 12 𝑖(𝜑𝑥𝑆)
198197, 194, 195fnmptd 6623 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) Fn ℕ0)
199 fveq2 6822 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → ((coe1𝑥)‘𝑖) = ((coe1𝑥)‘𝑗))
200 oveq1 7356 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑗(.g‘(mulGrp‘𝑃))(var1𝑅)))
201199, 200oveq12d 7367 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))) = (((coe1𝑥)‘𝑗)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))))
202 simplr 768 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → 𝑗 ∈ ℕ0)
203 ovexd 7384 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (((coe1𝑥)‘𝑗)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ V)
204195, 201, 202, 203fvmptd3 6953 . . . . . . . . . . . 12 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝑗) = (((coe1𝑥)‘𝑗)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))))
205166ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → 𝑥 ∈ (Base‘𝑃))
206 icossxr 13335 . . . . . . . . . . . . . . . . 17 (-∞[,)𝑁) ⊆ ℝ*
207206, 75sselid 3933 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑆) → (𝐷𝑥) ∈ ℝ*)
208207ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (𝐷𝑥) ∈ ℝ*)
20954ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → 𝑁 ∈ ℝ*)
210202nn0red 12446 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → 𝑗 ∈ ℝ)
211210rexrd 11165 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → 𝑗 ∈ ℝ*)
21279ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (𝐷𝑥) < 𝑁)
213 simpr 484 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → 𝑁𝑗)
214208, 209, 211, 212, 213xrltletrd 13063 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (𝐷𝑥) < 𝑗)
21524, 1, 33, 9, 167deg1lt 26000 . . . . . . . . . . . . . 14 ((𝑥 ∈ (Base‘𝑃) ∧ 𝑗 ∈ ℕ0 ∧ (𝐷𝑥) < 𝑗) → ((coe1𝑥)‘𝑗) = (0g𝑅))
216205, 202, 214, 215syl3anc 1373 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → ((coe1𝑥)‘𝑗) = (0g𝑅))
217216oveq1d 7364 . . . . . . . . . . . 12 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (((coe1𝑥)‘𝑗)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))) = ((0g𝑅)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))))
218147ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (0g𝑅) = (0g‘(Scalar‘𝑃)))
219218oveq1d 7364 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → ((0g𝑅)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))) = ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))))
22023ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → 𝑃 ∈ LMod)
22194ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (mulGrp‘𝑃) ∈ Mnd)
222100ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (var1𝑅) ∈ (Base‘𝑃))
22390, 91, 221, 202, 222mulgnn0cld 18974 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → (𝑗(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃))
224 eqid 2729 . . . . . . . . . . . . . . 15 (0g‘(Scalar‘𝑃)) = (0g‘(Scalar‘𝑃))
22533, 37, 38, 224, 10lmod0vs 20798 . . . . . . . . . . . . . 14 ((𝑃 ∈ LMod ∧ (𝑗(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃)) → ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃))
226220, 223, 225syl2anc 584 . . . . . . . . . . . . 13 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃))
227219, 226eqtrd 2764 . . . . . . . . . . . 12 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → ((0g𝑅)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))) = (0g𝑃))
228204, 217, 2273eqtrd 2768 . . . . . . . . . . 11 ((((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) ∧ 𝑁𝑗) → ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝑗) = (0g𝑃))
2293nn0zd 12497 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
230229adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → 𝑁 ∈ ℤ)
231198, 228, 230suppssnn0 32751 . . . . . . . . . 10 ((𝜑𝑥𝑆) → ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) supp (0g𝑃)) ⊆ (0..^𝑁))
232186mptexd 7160 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ∈ V)
233198fnfund 6583 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → Fun (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))))
234 fvexd 6837 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (0g𝑃) ∈ V)
235 suppssfifsupp 9270 . . . . . . . . . . 11 ((((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ∈ V ∧ Fun (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ∧ (0g𝑃) ∈ V) ∧ ((0..^𝑁) ∈ Fin ∧ ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) supp (0g𝑃)) ⊆ (0..^𝑁))) → (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) finSupp (0g𝑃))
236232, 233, 234, 179, 231, 235syl32anc 1380 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) finSupp (0g𝑃))
23733, 10, 184, 186, 196, 231, 236gsumres 19792 . . . . . . . . 9 ((𝜑𝑥𝑆) → (𝑃 Σg ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ↾ (0..^𝑁))) = (𝑃 Σg (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))))
238 fvexd 6837 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → (coe1𝑥) ∈ V)
239 ovexd 7384 . . . . . . . . . . . . . 14 (𝜑 → (0..^𝑁) ∈ V)
240154, 239fexd 7163 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ V)
241240adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → 𝐹 ∈ V)
242 offres 7918 . . . . . . . . . . . 12 (((coe1𝑥) ∈ V ∧ 𝐹 ∈ V) → (((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹) ↾ (0..^𝑁)) = (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)(𝐹 ↾ (0..^𝑁))))
243238, 241, 242syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹) ↾ (0..^𝑁)) = (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)(𝐹 ↾ (0..^𝑁))))
244169ffnd 6653 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑆) → (coe1𝑥) Fn ℕ0)
245154ffnd 6653 . . . . . . . . . . . . . . . 16 (𝜑𝐹 Fn (0..^𝑁))
246245adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑆) → 𝐹 Fn (0..^𝑁))
247 sseqin2 4174 . . . . . . . . . . . . . . . 16 ((0..^𝑁) ⊆ ℕ0 ↔ (ℕ0 ∩ (0..^𝑁)) = (0..^𝑁))
248173, 247mpbi 230 . . . . . . . . . . . . . . 15 (ℕ0 ∩ (0..^𝑁)) = (0..^𝑁)
249 eqidd 2730 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ ℕ0) → ((coe1𝑥)‘𝑗) = ((coe1𝑥)‘𝑗))
250 oveq1 7356 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗 → (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑗(.g‘(mulGrp‘𝑃))(var1𝑅)))
251 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ (0..^𝑁))
252 ovexd 7384 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → (𝑗(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ V)
2538, 250, 251, 252fvmptd3 6953 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → (𝐹𝑗) = (𝑗(.g‘(mulGrp‘𝑃))(var1𝑅)))
254244, 246, 186, 165, 248, 249, 253ofval 7624 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → (((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹)‘𝑗) = (((coe1𝑥)‘𝑗)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))))
255173, 251sselid 3933 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ ℕ0)
256 ovexd 7384 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → (((coe1𝑥)‘𝑗)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))) ∈ V)
257195, 201, 255, 256fvmptd3 6953 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝑗) = (((coe1𝑥)‘𝑗)( ·𝑠𝑃)(𝑗(.g‘(mulGrp‘𝑃))(var1𝑅))))
258254, 257eqtr4d 2767 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑗 ∈ (0..^𝑁)) → (((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹)‘𝑗) = ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝑗))
259258ralrimiva 3121 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → ∀𝑗 ∈ (0..^𝑁)(((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹)‘𝑗) = ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝑗))
260244, 246, 186, 165, 248offn 7626 . . . . . . . . . . . . 13 ((𝜑𝑥𝑆) → ((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹) Fn (0..^𝑁))
261 ssidd 3959 . . . . . . . . . . . . 13 ((𝜑𝑥𝑆) → (0..^𝑁) ⊆ (0..^𝑁))
262 fvreseq0 6972 . . . . . . . . . . . . 13 (((((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹) Fn (0..^𝑁) ∧ (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) Fn ℕ0) ∧ ((0..^𝑁) ⊆ (0..^𝑁) ∧ (0..^𝑁) ⊆ ℕ0)) → ((((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹) ↾ (0..^𝑁)) = ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ↾ (0..^𝑁)) ↔ ∀𝑗 ∈ (0..^𝑁)(((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹)‘𝑗) = ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝑗)))
263260, 198, 261, 174, 262syl22anc 838 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → ((((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹) ↾ (0..^𝑁)) = ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ↾ (0..^𝑁)) ↔ ∀𝑗 ∈ (0..^𝑁)(((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹)‘𝑗) = ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))‘𝑗)))
264259, 263mpbird 257 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (((coe1𝑥) ∘f ( ·𝑠𝑃)𝐹) ↾ (0..^𝑁)) = ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ↾ (0..^𝑁)))
265 fnresdm 6601 . . . . . . . . . . . . . 14 (𝐹 Fn (0..^𝑁) → (𝐹 ↾ (0..^𝑁)) = 𝐹)
266245, 265syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐹 ↾ (0..^𝑁)) = 𝐹)
267266adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → (𝐹 ↾ (0..^𝑁)) = 𝐹)
268267oveq2d 7365 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)(𝐹 ↾ (0..^𝑁))) = (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹))
269243, 264, 2683eqtr3rd 2773 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹) = ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ↾ (0..^𝑁)))
270269oveq2d 7365 . . . . . . . . 9 ((𝜑𝑥𝑆) → (𝑃 Σg (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹)) = (𝑃 Σg ((𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))) ↾ (0..^𝑁))))
2716adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝑆) → 𝑅 ∈ Ring)
2721, 98, 33, 38, 89, 91, 167ply1coe 22183 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑃)) → 𝑥 = (𝑃 Σg (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))))
273271, 166, 272syl2anc 584 . . . . . . . . 9 ((𝜑𝑥𝑆) → 𝑥 = (𝑃 Σg (𝑖 ∈ ℕ0 ↦ (((coe1𝑥)‘𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))))
274237, 270, 2733eqtr4rd 2775 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝑥 = (𝑃 Σg (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹)))
275181, 274jca 511 . . . . . . 7 ((𝜑𝑥𝑆) → (((coe1𝑥) ↾ (0..^𝑁)) finSupp (0g‘(Scalar‘𝑃)) ∧ 𝑥 = (𝑃 Σg (((coe1𝑥) ↾ (0..^𝑁)) ∘f ( ·𝑠𝑃)𝐹))))
276163, 176, 275rspcedvdw 3580 . . . . . 6 ((𝜑𝑥𝑆) → ∃𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))(𝑎 finSupp (0g‘(Scalar‘𝑃)) ∧ 𝑥 = (𝑃 Σg (𝑎f ( ·𝑠𝑃)𝐹))))
277102, 8fmptd 7048 . . . . . . . 8 (𝜑𝐹:(0..^𝑁)⟶(Base‘𝑃))
278156, 33, 39, 37, 224, 38, 277, 23, 239ellspd 21709 . . . . . . 7 (𝜑 → (𝑥 ∈ ((LSpan‘𝑃)‘(𝐹 “ (0..^𝑁))) ↔ ∃𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))(𝑎 finSupp (0g‘(Scalar‘𝑃)) ∧ 𝑥 = (𝑃 Σg (𝑎f ( ·𝑠𝑃)𝐹)))))
279278adantr 480 . . . . . 6 ((𝜑𝑥𝑆) → (𝑥 ∈ ((LSpan‘𝑃)‘(𝐹 “ (0..^𝑁))) ↔ ∃𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))(𝑎 finSupp (0g‘(Scalar‘𝑃)) ∧ 𝑥 = (𝑃 Σg (𝑎f ( ·𝑠𝑃)𝐹)))))
280276, 279mpbird 257 . . . . 5 ((𝜑𝑥𝑆) → 𝑥 ∈ ((LSpan‘𝑃)‘(𝐹 “ (0..^𝑁))))
281 imadmrn 6021 . . . . . . . 8 (𝐹 “ dom 𝐹) = ran 𝐹
282154fdmd 6662 . . . . . . . . 9 (𝜑 → dom 𝐹 = (0..^𝑁))
283282imaeq2d 6011 . . . . . . . 8 (𝜑 → (𝐹 “ dom 𝐹) = (𝐹 “ (0..^𝑁)))
284281, 283eqtr3id 2778 . . . . . . 7 (𝜑 → ran 𝐹 = (𝐹 “ (0..^𝑁)))
285284fveq2d 6826 . . . . . 6 (𝜑 → ((LSpan‘𝑃)‘ran 𝐹) = ((LSpan‘𝑃)‘(𝐹 “ (0..^𝑁))))
286285adantr 480 . . . . 5 ((𝜑𝑥𝑆) → ((LSpan‘𝑃)‘ran 𝐹) = ((LSpan‘𝑃)‘(𝐹 “ (0..^𝑁))))
287280, 286eleqtrrd 2831 . . . 4 ((𝜑𝑥𝑆) → 𝑥 ∈ ((LSpan‘𝑃)‘ran 𝐹))
288158, 287eqelssd 3957 . . 3 (𝜑 → ((LSpan‘𝑃)‘ran 𝐹) = 𝑆)
289 eqid 2729 . . . . . 6 (LSpan‘𝐸) = (LSpan‘𝐸)
29044, 156, 289, 27lsslsp 20918 . . . . 5 ((𝑃 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑃) ∧ ran 𝐹𝑆) → ((LSpan‘𝐸)‘ran 𝐹) = ((LSpan‘𝑃)‘ran 𝐹))
291290eqcomd 2735 . . . 4 ((𝑃 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑃) ∧ ran 𝐹𝑆) → ((LSpan‘𝑃)‘ran 𝐹) = ((LSpan‘𝐸)‘ran 𝐹))
29223, 26, 155, 291syl3anc 1373 . . 3 (𝜑 → ((LSpan‘𝑃)‘ran 𝐹) = ((LSpan‘𝐸)‘ran 𝐹))
293288, 292, 463eqtr3d 2772 . 2 (𝜑 → ((LSpan‘𝐸)‘ran 𝐹) = (Base‘𝐸))
294 eqid 2729 . . 3 (Base‘𝐸) = (Base‘𝐸)
29524fvexi 6836 . . . . . . 7 𝐷 ∈ V
296 cnvexg 7857 . . . . . . 7 (𝐷 ∈ V → 𝐷 ∈ V)
297 imaexg 7846 . . . . . . 7 (𝐷 ∈ V → (𝐷 “ (-∞[,)𝑁)) ∈ V)
298295, 296, 297mp2b 10 . . . . . 6 (𝐷 “ (-∞[,)𝑁)) ∈ V
29925, 298eqeltri 2824 . . . . 5 𝑆 ∈ V
30044, 37resssca 17247 . . . . 5 (𝑆 ∈ V → (Scalar‘𝑃) = (Scalar‘𝐸))
301299, 300ax-mp 5 . . . 4 (Scalar‘𝑃) = (Scalar‘𝐸)
302301fveq2i 6825 . . 3 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝐸))
303 eqid 2729 . . 3 (Scalar‘𝐸) = (Scalar‘𝐸)
30444, 38ressvsca 17248 . . . 4 (𝑆 ∈ V → ( ·𝑠𝑃) = ( ·𝑠𝐸))
305299, 304ax-mp 5 . . 3 ( ·𝑠𝑃) = ( ·𝑠𝐸)
306 eqid 2729 . . 3 (0g𝐸) = (0g𝐸)
307301fveq2i 6825 . . 3 (0g‘(Scalar‘𝑃)) = (0g‘(Scalar‘𝐸))
308 eqid 2729 . . 3 (LBasis‘𝐸) = (LBasis‘𝐸)
30944, 27lsslvec 21013 . . . . 5 ((𝑃 ∈ LVec ∧ 𝑆 ∈ (LSubSp‘𝑃)) → 𝐸 ∈ LVec)
31022, 26, 309syl2anc 584 . . . 4 (𝜑𝐸 ∈ LVec)
311310lveclmodd 21011 . . 3 (𝜑𝐸 ∈ LMod)
31214, 5eqeltrrd 2829 . . . . 5 (𝜑 → (Scalar‘𝑃) ∈ DivRing)
313 drngnzr 20633 . . . . 5 ((Scalar‘𝑃) ∈ DivRing → (Scalar‘𝑃) ∈ NzRing)
314312, 313syl 17 . . . 4 (𝜑 → (Scalar‘𝑃) ∈ NzRing)
315301, 314eqeltrrid 2833 . . 3 (𝜑 → (Scalar‘𝐸) ∈ NzRing)
316120ralrimiva 3121 . . . 4 (𝜑 → ∀𝑛 ∈ (0..^𝑁)(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝐸))
317 drngnzr 20633 . . . . . . . . . 10 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
3185, 317syl 17 . . . . . . . . 9 (𝜑𝑅 ∈ NzRing)
319318ad2antrr 726 . . . . . . . 8 (((𝜑𝑛 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑅 ∈ NzRing)
32097adantr 480 . . . . . . . 8 (((𝜑𝑛 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑛 ∈ ℕ0)
321 elfzonn0 13610 . . . . . . . . 9 (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ ℕ0)
322321adantl 481 . . . . . . . 8 (((𝜑𝑛 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ ℕ0)
3231, 98, 91, 319, 320, 322ply1moneq 33523 . . . . . . 7 (((𝜑𝑛 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) ↔ 𝑛 = 𝑖))
324323biimpd 229 . . . . . 6 (((𝜑𝑛 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) → 𝑛 = 𝑖))
325324anasss 466 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (0..^𝑁) ∧ 𝑖 ∈ (0..^𝑁))) → ((𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) → 𝑛 = 𝑖))
326325ralrimivva 3172 . . . 4 (𝜑 → ∀𝑛 ∈ (0..^𝑁)∀𝑖 ∈ (0..^𝑁)((𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) → 𝑛 = 𝑖))
327 oveq1 7356 . . . . 5 (𝑛 = 𝑖 → (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))
3288, 327f1mpt 7198 . . . 4 (𝐹:(0..^𝑁)–1-1→(Base‘𝐸) ↔ (∀𝑛 ∈ (0..^𝑁)(𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝐸) ∧ ∀𝑛 ∈ (0..^𝑁)∀𝑖 ∈ (0..^𝑁)((𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) → 𝑛 = 𝑖)))
329316, 326, 328sylanbrc 583 . . 3 (𝜑𝐹:(0..^𝑁)–1-1→(Base‘𝐸))
330294, 302, 303, 305, 306, 307, 308, 289, 311, 315, 239, 329islbs5 33318 . 2 (𝜑 → (ran 𝐹 ∈ (LBasis‘𝐸) ↔ (∀𝑎 ∈ ((Base‘(Scalar‘𝑃)) ↑m (0..^𝑁))((𝑎 finSupp (0g‘(Scalar‘𝑃)) ∧ (𝐸 Σg (𝑎f ( ·𝑠𝑃)𝐹)) = (0g𝐸)) → 𝑎 = ((0..^𝑁) × {(0g‘(Scalar‘𝑃))})) ∧ ((LSpan‘𝐸)‘ran 𝐹) = (Base‘𝐸))))
331153, 293, 330mpbir2and 713 1 (𝜑 → ran 𝐹 ∈ (LBasis‘𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3436  cin 3902  wss 3903  {csn 4577   class class class wbr 5092  cmpt 5173   × cxp 5617  ccnv 5618  dom cdm 5619  ran crn 5620  cres 5621  cima 5622  Fun wfun 6476   Fn wfn 6477  wf 6478  1-1wf1 6479  cfv 6482  (class class class)co 7349  f cof 7611   supp csupp 8093  m cmap 8753  Fincfn 8872   finSupp cfsupp 9251  0cc0 11009  -∞cmnf 11147  *cxr 11148   < clt 11149  cle 11150  0cn0 12384  cz 12471  [,)cico 13250  ..^cfzo 13557  Basecbs 17120  s cress 17141  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343   Σg cgsu 17344  Mndcmnd 18608  SubMndcsubmnd 18656  .gcmg 18946  SubGrpcsubg 18999  CMndccmn 19659  mulGrpcmgp 20025  Ringcrg 20118  NzRingcnzr 20397  DivRingcdr 20614  LModclmod 20763  LSubSpclss 20834  LSpanclspn 20874  LBasisclbs 20978  LVecclvec 21006  var1cv1 22058  Poly1cpl1 22059  coe1cco1 22060  deg1cdg1 25957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-ico 13254  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-ghm 19092  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-srg 20072  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-nzr 20398  df-subrng 20431  df-subrg 20455  df-drng 20616  df-lmod 20765  df-lss 20835  df-lsp 20875  df-lmhm 20926  df-lbs 20979  df-lvec 21007  df-sra 21077  df-rgmod 21078  df-cnfld 21262  df-dsmm 21639  df-frlm 21654  df-uvc 21690  df-lindf 21713  df-linds 21714  df-psr 21816  df-mvr 21817  df-mpl 21818  df-opsr 21820  df-psr1 22062  df-vr1 22063  df-ply1 22064  df-coe1 22065  df-mdeg 25958  df-deg1 25959
This theorem is referenced by:  ply1degltdim  33596
  Copyright terms: Public domain W3C validator