Step | Hyp | Ref
| Expression |
1 | | nn0uz 12620 |
. . 3
⊢
ℕ0 = (ℤ≥‘0) |
2 | | 0zd 12331 |
. . 3
⊢ ((𝜑 ∧ 𝑅 ∈ ℝ+) → 0 ∈
ℤ) |
3 | | id 22 |
. . . 4
⊢ (𝑅 ∈ ℝ+
→ 𝑅 ∈
ℝ+) |
4 | | abelth.3 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℝ) |
5 | | abelth.4 |
. . . . 5
⊢ (𝜑 → 0 ≤ 𝑀) |
6 | 4, 5 | ge0p1rpd 12802 |
. . . 4
⊢ (𝜑 → (𝑀 + 1) ∈
ℝ+) |
7 | | rpdivcl 12755 |
. . . 4
⊢ ((𝑅 ∈ ℝ+
∧ (𝑀 + 1) ∈
ℝ+) → (𝑅 / (𝑀 + 1)) ∈
ℝ+) |
8 | 3, 6, 7 | syl2anr 597 |
. . 3
⊢ ((𝜑 ∧ 𝑅 ∈ ℝ+) → (𝑅 / (𝑀 + 1)) ∈
ℝ+) |
9 | | eqidd 2739 |
. . 3
⊢ (((𝜑 ∧ 𝑅 ∈ ℝ+) ∧ 𝑘 ∈ ℕ0)
→ (seq0( + , 𝐴)‘𝑘) = (seq0( + , 𝐴)‘𝑘)) |
10 | | abelth.7 |
. . . 4
⊢ (𝜑 → seq0( + , 𝐴) ⇝ 0) |
11 | 10 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑅 ∈ ℝ+) → seq0( +
, 𝐴) ⇝
0) |
12 | 1, 2, 8, 9, 11 | climi0 15221 |
. 2
⊢ ((𝜑 ∧ 𝑅 ∈ ℝ+) →
∃𝑗 ∈
ℕ0 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1))) |
13 | 8 | adantr 481 |
. . . 4
⊢ (((𝜑 ∧ 𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0
∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) → (𝑅 / (𝑀 + 1)) ∈
ℝ+) |
14 | | fzfid 13693 |
. . . . . . 7
⊢ (𝜑 → (0...(𝑗 − 1)) ∈ Fin) |
15 | | 0zd 12331 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ∈
ℤ) |
16 | | abelth.1 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
17 | 16 | ffvelrnda 6961 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ ℕ0) → (𝐴‘𝑤) ∈ ℂ) |
18 | 1, 15, 17 | serf 13751 |
. . . . . . . . 9
⊢ (𝜑 → seq0( + , 𝐴):ℕ0⟶ℂ) |
19 | | elfznn0 13349 |
. . . . . . . . 9
⊢ (𝑖 ∈ (0...(𝑗 − 1)) → 𝑖 ∈ ℕ0) |
20 | | ffvelrn 6959 |
. . . . . . . . 9
⊢ ((seq0( +
, 𝐴):ℕ0⟶ℂ ∧
𝑖 ∈
ℕ0) → (seq0( + , 𝐴)‘𝑖) ∈ ℂ) |
21 | 18, 19, 20 | syl2an 596 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0...(𝑗 − 1))) → (seq0( + , 𝐴)‘𝑖) ∈ ℂ) |
22 | 21 | abscld 15148 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0...(𝑗 − 1))) → (abs‘(seq0( + ,
𝐴)‘𝑖)) ∈ ℝ) |
23 | 14, 22 | fsumrecl 15446 |
. . . . . 6
⊢ (𝜑 → Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) ∈ ℝ) |
24 | 23 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0
∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) → Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) ∈ ℝ) |
25 | 21 | absge0d 15156 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0...(𝑗 − 1))) → 0 ≤ (abs‘(seq0(
+ , 𝐴)‘𝑖))) |
26 | 14, 22, 25 | fsumge0 15507 |
. . . . . 6
⊢ (𝜑 → 0 ≤ Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖))) |
27 | 26 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0
∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) → 0 ≤ Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖))) |
28 | 24, 27 | ge0p1rpd 12802 |
. . . 4
⊢ (((𝜑 ∧ 𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0
∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) → (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1) ∈
ℝ+) |
29 | 13, 28 | rpdivcld 12789 |
. . 3
⊢ (((𝜑 ∧ 𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0
∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) → ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) ∈
ℝ+) |
30 | | abelth.2 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝
) |
31 | | abelth.5 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 −
𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} |
32 | 16, 30, 4, 5, 31 | abelthlem2 25591 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs
∘ − ))1))) |
33 | 32 | simpld 495 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 1 ∈ 𝑆) |
34 | | oveq1 7282 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 1 → (𝑥↑𝑛) = (1↑𝑛)) |
35 | | nn0z 12343 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℤ) |
36 | | 1exp 13812 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ ℤ →
(1↑𝑛) =
1) |
37 | 35, 36 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ ℕ0
→ (1↑𝑛) =
1) |
38 | 34, 37 | sylan9eq 2798 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 = 1 ∧ 𝑛 ∈ ℕ0) → (𝑥↑𝑛) = 1) |
39 | 38 | oveq2d 7291 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 = 1 ∧ 𝑛 ∈ ℕ0) → ((𝐴‘𝑛) · (𝑥↑𝑛)) = ((𝐴‘𝑛) · 1)) |
40 | 39 | sumeq2dv 15415 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 1 → Σ𝑛 ∈ ℕ0
((𝐴‘𝑛) · (𝑥↑𝑛)) = Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · 1)) |
41 | | abelth.6 |
. . . . . . . . . . . . . . . 16
⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) |
42 | | sumex 15399 |
. . . . . . . . . . . . . . . 16
⊢
Σ𝑛 ∈
ℕ0 ((𝐴‘𝑛) · 1) ∈ V |
43 | 40, 41, 42 | fvmpt 6875 |
. . . . . . . . . . . . . . 15
⊢ (1 ∈
𝑆 → (𝐹‘1) = Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · 1)) |
44 | 33, 43 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐹‘1) = Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · 1)) |
45 | 16 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐴‘𝑛) ∈ ℂ) |
46 | 45 | mulid1d 10992 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝐴‘𝑛) · 1) = (𝐴‘𝑛)) |
47 | 46 | eqcomd 2744 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐴‘𝑛) = ((𝐴‘𝑛) · 1)) |
48 | 46, 45 | eqeltrd 2839 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝐴‘𝑛) · 1) ∈
ℂ) |
49 | 1, 15, 47, 48, 10 | isumclim 15469 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · 1) = 0) |
50 | 44, 49 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹‘1) = 0) |
51 | 50 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝐹‘1) = 0) |
52 | 51 | oveq1d 7290 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((𝐹‘1) − (𝐹‘𝑦)) = (0 − (𝐹‘𝑦))) |
53 | | df-neg 11208 |
. . . . . . . . . . 11
⊢ -(𝐹‘𝑦) = (0 − (𝐹‘𝑦)) |
54 | 52, 53 | eqtr4di 2796 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((𝐹‘1) − (𝐹‘𝑦)) = -(𝐹‘𝑦)) |
55 | 54 | fveq2d 6778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (abs‘((𝐹‘1) − (𝐹‘𝑦))) = (abs‘-(𝐹‘𝑦))) |
56 | 16, 30, 4, 5, 31, 41 | abelthlem4 25593 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:𝑆⟶ℂ) |
57 | 56 | ffvelrnda 6961 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝐹‘𝑦) ∈ ℂ) |
58 | 57 | absnegd 15161 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (abs‘-(𝐹‘𝑦)) = (abs‘(𝐹‘𝑦))) |
59 | 55, 58 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (abs‘((𝐹‘1) − (𝐹‘𝑦))) = (abs‘(𝐹‘𝑦))) |
60 | 59 | adantlr 712 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑅 ∈ ℝ+) ∧ 𝑦 ∈ 𝑆) → (abs‘((𝐹‘1) − (𝐹‘𝑦))) = (abs‘(𝐹‘𝑦))) |
61 | 60 | ad2ant2r 744 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0
∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦 ∈ 𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) → (abs‘((𝐹‘1) − (𝐹‘𝑦))) = (abs‘(𝐹‘𝑦))) |
62 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑦 = 1 → (𝐹‘𝑦) = (𝐹‘1)) |
63 | 62, 50 | sylan9eqr 2800 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 = 1) → (𝐹‘𝑦) = 0) |
64 | 63 | abs00bd 15003 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 = 1) → (abs‘(𝐹‘𝑦)) = 0) |
65 | 64 | ad5ant15 756 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑅 ∈ ℝ+)
∧ (𝑗 ∈
ℕ0 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦 ∈ 𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) ∧ 𝑦 = 1) → (abs‘(𝐹‘𝑦)) = 0) |
66 | | simpllr 773 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0
∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦 ∈ 𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) → 𝑅 ∈
ℝ+) |
67 | 66 | rpgt0d 12775 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0
∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦 ∈ 𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) → 0 < 𝑅) |
68 | 67 | adantr 481 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑅 ∈ ℝ+)
∧ (𝑗 ∈
ℕ0 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦 ∈ 𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) ∧ 𝑦 = 1) → 0 < 𝑅) |
69 | 65, 68 | eqbrtrd 5096 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑅 ∈ ℝ+)
∧ (𝑗 ∈
ℕ0 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦 ∈ 𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) ∧ 𝑦 = 1) → (abs‘(𝐹‘𝑦)) < 𝑅) |
70 | 16 | ad3antrrr 727 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0
∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦 ∈ 𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → 𝐴:ℕ0⟶ℂ) |
71 | 30 | ad3antrrr 727 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0
∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦 ∈ 𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → seq0( + , 𝐴) ∈ dom ⇝ ) |
72 | 4 | ad3antrrr 727 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0
∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦 ∈ 𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → 𝑀 ∈ ℝ) |
73 | 5 | ad3antrrr 727 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0
∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦 ∈ 𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → 0 ≤ 𝑀) |
74 | 10 | ad3antrrr 727 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0
∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦 ∈ 𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → seq0( + , 𝐴) ⇝ 0) |
75 | | simprll 776 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0
∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦 ∈ 𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → 𝑦 ∈ 𝑆) |
76 | | simprr 770 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0
∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦 ∈ 𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → 𝑦 ≠ 1) |
77 | | eldifsn 4720 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (𝑆 ∖ {1}) ↔ (𝑦 ∈ 𝑆 ∧ 𝑦 ≠ 1)) |
78 | 75, 76, 77 | sylanbrc 583 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0
∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦 ∈ 𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → 𝑦 ∈ (𝑆 ∖ {1})) |
79 | 8 | ad2antrr 723 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0
∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦 ∈ 𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → (𝑅 / (𝑀 + 1)) ∈
ℝ+) |
80 | | simplrl 774 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0
∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦 ∈ 𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → 𝑗 ∈ ℕ0) |
81 | | simplrr 775 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0
∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦 ∈ 𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1))) |
82 | | 2fveq3 6779 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑚 → (abs‘(seq0( + , 𝐴)‘𝑘)) = (abs‘(seq0( + , 𝐴)‘𝑚))) |
83 | 82 | breq1d 5084 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑚 → ((abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)) ↔ (abs‘(seq0( + , 𝐴)‘𝑚)) < (𝑅 / (𝑀 + 1)))) |
84 | 83 | cbvralvw 3383 |
. . . . . . . . . . 11
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)) ↔ ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < (𝑅 / (𝑀 + 1))) |
85 | 81, 84 | sylib 217 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0
∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦 ∈ 𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → ∀𝑚 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < (𝑅 / (𝑀 + 1))) |
86 | | simprlr 777 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0
∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦 ∈ 𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) |
87 | | 2fveq3 6779 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑛 → (abs‘(seq0( + , 𝐴)‘𝑖)) = (abs‘(seq0( + , 𝐴)‘𝑛))) |
88 | 87 | cbvsumv 15408 |
. . . . . . . . . . . . 13
⊢
Σ𝑖 ∈
(0...(𝑗 −
1))(abs‘(seq0( + , 𝐴)‘𝑖)) = Σ𝑛 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) |
89 | 88 | oveq1i 7285 |
. . . . . . . . . . . 12
⊢
(Σ𝑖 ∈
(0...(𝑗 −
1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1) = (Σ𝑛 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1) |
90 | 89 | oveq2i 7286 |
. . . . . . . . . . 11
⊢ ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) = ((𝑅 / (𝑀 + 1)) / (Σ𝑛 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1)) |
91 | 86, 90 | breqtrdi 5115 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0
∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦 ∈ 𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑛 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1))) |
92 | 70, 71, 72, 73, 31, 41, 74, 78, 79, 80, 85, 91 | abelthlem7 25597 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0
∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦 ∈ 𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → (abs‘(𝐹‘𝑦)) < ((𝑀 + 1) · (𝑅 / (𝑀 + 1)))) |
93 | | rpcn 12740 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ ℝ+
→ 𝑅 ∈
ℂ) |
94 | 93 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑅 ∈ ℝ+) → 𝑅 ∈
ℂ) |
95 | 6 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑅 ∈ ℝ+) → (𝑀 + 1) ∈
ℝ+) |
96 | 95 | rpcnd 12774 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑅 ∈ ℝ+) → (𝑀 + 1) ∈
ℂ) |
97 | 95 | rpne0d 12777 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑅 ∈ ℝ+) → (𝑀 + 1) ≠ 0) |
98 | 94, 96, 97 | divcan2d 11753 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑅 ∈ ℝ+) → ((𝑀 + 1) · (𝑅 / (𝑀 + 1))) = 𝑅) |
99 | 98 | ad2antrr 723 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0
∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦 ∈ 𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → ((𝑀 + 1) · (𝑅 / (𝑀 + 1))) = 𝑅) |
100 | 92, 99 | breqtrd 5100 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0
∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦 ∈ 𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → (abs‘(𝐹‘𝑦)) < 𝑅) |
101 | 100 | anassrs 468 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑅 ∈ ℝ+)
∧ (𝑗 ∈
ℕ0 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦 ∈ 𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) ∧ 𝑦 ≠ 1) → (abs‘(𝐹‘𝑦)) < 𝑅) |
102 | 69, 101 | pm2.61dane 3032 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0
∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦 ∈ 𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) → (abs‘(𝐹‘𝑦)) < 𝑅) |
103 | 61, 102 | eqbrtrd 5096 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0
∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦 ∈ 𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) → (abs‘((𝐹‘1) − (𝐹‘𝑦))) < 𝑅) |
104 | 103 | expr 457 |
. . . 4
⊢ ((((𝜑 ∧ 𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0
∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ 𝑦 ∈ 𝑆) → ((abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) → (abs‘((𝐹‘1) − (𝐹‘𝑦))) < 𝑅)) |
105 | 104 | ralrimiva 3103 |
. . 3
⊢ (((𝜑 ∧ 𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0
∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) → ∀𝑦 ∈ 𝑆 ((abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) → (abs‘((𝐹‘1) − (𝐹‘𝑦))) < 𝑅)) |
106 | | breq2 5078 |
. . . 4
⊢ (𝑤 = ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) → ((abs‘(1 − 𝑦)) < 𝑤 ↔ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) |
107 | 106 | rspceaimv 3565 |
. . 3
⊢ ((((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) ∈ ℝ+ ∧
∀𝑦 ∈ 𝑆 ((abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) → (abs‘((𝐹‘1) − (𝐹‘𝑦))) < 𝑅)) → ∃𝑤 ∈ ℝ+ ∀𝑦 ∈ 𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹‘𝑦))) < 𝑅)) |
108 | 29, 105, 107 | syl2anc 584 |
. 2
⊢ (((𝜑 ∧ 𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0
∧ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) → ∃𝑤 ∈ ℝ+ ∀𝑦 ∈ 𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹‘𝑦))) < 𝑅)) |
109 | 12, 108 | rexlimddv 3220 |
1
⊢ ((𝜑 ∧ 𝑅 ∈ ℝ+) →
∃𝑤 ∈
ℝ+ ∀𝑦 ∈ 𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹‘𝑦))) < 𝑅)) |