Step | Hyp | Ref
| Expression |
1 | | nn0uz 12860 |
. . 3
β’
β0 = (β€β₯β0) |
2 | | 0zd 12566 |
. . 3
β’ ((π β§ π
β β+) β 0 β
β€) |
3 | | id 22 |
. . . 4
β’ (π
β β+
β π
β
β+) |
4 | | abelth.3 |
. . . . 5
β’ (π β π β β) |
5 | | abelth.4 |
. . . . 5
β’ (π β 0 β€ π) |
6 | 4, 5 | ge0p1rpd 13042 |
. . . 4
β’ (π β (π + 1) β
β+) |
7 | | rpdivcl 12995 |
. . . 4
β’ ((π
β β+
β§ (π + 1) β
β+) β (π
/ (π + 1)) β
β+) |
8 | 3, 6, 7 | syl2anr 597 |
. . 3
β’ ((π β§ π
β β+) β (π
/ (π + 1)) β
β+) |
9 | | eqidd 2733 |
. . 3
β’ (((π β§ π
β β+) β§ π β β0)
β (seq0( + , π΄)βπ) = (seq0( + , π΄)βπ)) |
10 | | abelth.7 |
. . . 4
β’ (π β seq0( + , π΄) β 0) |
11 | 10 | adantr 481 |
. . 3
β’ ((π β§ π
β β+) β seq0( +
, π΄) β
0) |
12 | 1, 2, 8, 9, 11 | climi0 15452 |
. 2
β’ ((π β§ π
β β+) β
βπ β
β0 βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < (π
/ (π + 1))) |
13 | 8 | adantr 481 |
. . . 4
β’ (((π β§ π
β β+) β§ (π β β0
β§ βπ β
(β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < (π
/ (π + 1)))) β (π
/ (π + 1)) β
β+) |
14 | | fzfid 13934 |
. . . . . . 7
β’ (π β (0...(π β 1)) β Fin) |
15 | | 0zd 12566 |
. . . . . . . . . 10
β’ (π β 0 β
β€) |
16 | | abelth.1 |
. . . . . . . . . . 11
β’ (π β π΄:β0βΆβ) |
17 | 16 | ffvelcdmda 7083 |
. . . . . . . . . 10
β’ ((π β§ π€ β β0) β (π΄βπ€) β β) |
18 | 1, 15, 17 | serf 13992 |
. . . . . . . . 9
β’ (π β seq0( + , π΄):β0βΆβ) |
19 | | elfznn0 13590 |
. . . . . . . . 9
β’ (π β (0...(π β 1)) β π β β0) |
20 | | ffvelcdm 7080 |
. . . . . . . . 9
β’ ((seq0( +
, π΄):β0βΆβ β§
π β
β0) β (seq0( + , π΄)βπ) β β) |
21 | 18, 19, 20 | syl2an 596 |
. . . . . . . 8
β’ ((π β§ π β (0...(π β 1))) β (seq0( + , π΄)βπ) β β) |
22 | 21 | abscld 15379 |
. . . . . . 7
β’ ((π β§ π β (0...(π β 1))) β (absβ(seq0( + ,
π΄)βπ)) β β) |
23 | 14, 22 | fsumrecl 15676 |
. . . . . 6
β’ (π β Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) β β) |
24 | 23 | ad2antrr 724 |
. . . . 5
β’ (((π β§ π
β β+) β§ (π β β0
β§ βπ β
(β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < (π
/ (π + 1)))) β Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) β β) |
25 | 21 | absge0d 15387 |
. . . . . . 7
β’ ((π β§ π β (0...(π β 1))) β 0 β€ (absβ(seq0(
+ , π΄)βπ))) |
26 | 14, 22, 25 | fsumge0 15737 |
. . . . . 6
β’ (π β 0 β€ Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ))) |
27 | 26 | ad2antrr 724 |
. . . . 5
β’ (((π β§ π
β β+) β§ (π β β0
β§ βπ β
(β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < (π
/ (π + 1)))) β 0 β€ Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ))) |
28 | 24, 27 | ge0p1rpd 13042 |
. . . 4
β’ (((π β§ π
β β+) β§ (π β β0
β§ βπ β
(β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < (π
/ (π + 1)))) β (Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) + 1) β
β+) |
29 | 13, 28 | rpdivcld 13029 |
. . 3
β’ (((π β§ π
β β+) β§ (π β β0
β§ βπ β
(β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < (π
/ (π + 1)))) β ((π
/ (π + 1)) / (Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) + 1)) β
β+) |
30 | | abelth.2 |
. . . . . . . . . . . . . . . . 17
β’ (π β seq0( + , π΄) β dom β
) |
31 | | abelth.5 |
. . . . . . . . . . . . . . . . 17
β’ π = {π§ β β β£ (absβ(1 β
π§)) β€ (π Β· (1 β (absβπ§)))} |
32 | 16, 30, 4, 5, 31 | abelthlem2 25935 |
. . . . . . . . . . . . . . . 16
β’ (π β (1 β π β§ (π β {1}) β (0(ballβ(abs
β β ))1))) |
33 | 32 | simpld 495 |
. . . . . . . . . . . . . . 15
β’ (π β 1 β π) |
34 | | oveq1 7412 |
. . . . . . . . . . . . . . . . . . 19
β’ (π₯ = 1 β (π₯βπ) = (1βπ)) |
35 | | nn0z 12579 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β β0
β π β
β€) |
36 | | 1exp 14053 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β β€ β
(1βπ) =
1) |
37 | 35, 36 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β β0
β (1βπ) =
1) |
38 | 34, 37 | sylan9eq 2792 |
. . . . . . . . . . . . . . . . . 18
β’ ((π₯ = 1 β§ π β β0) β (π₯βπ) = 1) |
39 | 38 | oveq2d 7421 |
. . . . . . . . . . . . . . . . 17
β’ ((π₯ = 1 β§ π β β0) β ((π΄βπ) Β· (π₯βπ)) = ((π΄βπ) Β· 1)) |
40 | 39 | sumeq2dv 15645 |
. . . . . . . . . . . . . . . 16
β’ (π₯ = 1 β Ξ£π β β0
((π΄βπ) Β· (π₯βπ)) = Ξ£π β β0 ((π΄βπ) Β· 1)) |
41 | | abelth.6 |
. . . . . . . . . . . . . . . 16
β’ πΉ = (π₯ β π β¦ Ξ£π β β0 ((π΄βπ) Β· (π₯βπ))) |
42 | | sumex 15630 |
. . . . . . . . . . . . . . . 16
β’
Ξ£π β
β0 ((π΄βπ) Β· 1) β V |
43 | 40, 41, 42 | fvmpt 6995 |
. . . . . . . . . . . . . . 15
β’ (1 β
π β (πΉβ1) = Ξ£π β β0 ((π΄βπ) Β· 1)) |
44 | 33, 43 | syl 17 |
. . . . . . . . . . . . . 14
β’ (π β (πΉβ1) = Ξ£π β β0 ((π΄βπ) Β· 1)) |
45 | 16 | ffvelcdmda 7083 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ π β β0) β (π΄βπ) β β) |
46 | 45 | mulridd 11227 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π β β0) β ((π΄βπ) Β· 1) = (π΄βπ)) |
47 | 46 | eqcomd 2738 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β β0) β (π΄βπ) = ((π΄βπ) Β· 1)) |
48 | 46, 45 | eqeltrd 2833 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β β0) β ((π΄βπ) Β· 1) β
β) |
49 | 1, 15, 47, 48, 10 | isumclim 15699 |
. . . . . . . . . . . . . 14
β’ (π β Ξ£π β β0 ((π΄βπ) Β· 1) = 0) |
50 | 44, 49 | eqtrd 2772 |
. . . . . . . . . . . . 13
β’ (π β (πΉβ1) = 0) |
51 | 50 | adantr 481 |
. . . . . . . . . . . 12
β’ ((π β§ π¦ β π) β (πΉβ1) = 0) |
52 | 51 | oveq1d 7420 |
. . . . . . . . . . 11
β’ ((π β§ π¦ β π) β ((πΉβ1) β (πΉβπ¦)) = (0 β (πΉβπ¦))) |
53 | | df-neg 11443 |
. . . . . . . . . . 11
β’ -(πΉβπ¦) = (0 β (πΉβπ¦)) |
54 | 52, 53 | eqtr4di 2790 |
. . . . . . . . . 10
β’ ((π β§ π¦ β π) β ((πΉβ1) β (πΉβπ¦)) = -(πΉβπ¦)) |
55 | 54 | fveq2d 6892 |
. . . . . . . . 9
β’ ((π β§ π¦ β π) β (absβ((πΉβ1) β (πΉβπ¦))) = (absβ-(πΉβπ¦))) |
56 | 16, 30, 4, 5, 31, 41 | abelthlem4 25937 |
. . . . . . . . . . 11
β’ (π β πΉ:πβΆβ) |
57 | 56 | ffvelcdmda 7083 |
. . . . . . . . . 10
β’ ((π β§ π¦ β π) β (πΉβπ¦) β β) |
58 | 57 | absnegd 15392 |
. . . . . . . . 9
β’ ((π β§ π¦ β π) β (absβ-(πΉβπ¦)) = (absβ(πΉβπ¦))) |
59 | 55, 58 | eqtrd 2772 |
. . . . . . . 8
β’ ((π β§ π¦ β π) β (absβ((πΉβ1) β (πΉβπ¦))) = (absβ(πΉβπ¦))) |
60 | 59 | adantlr 713 |
. . . . . . 7
β’ (((π β§ π
β β+) β§ π¦ β π) β (absβ((πΉβ1) β (πΉβπ¦))) = (absβ(πΉβπ¦))) |
61 | 60 | ad2ant2r 745 |
. . . . . 6
β’ ((((π β§ π
β β+) β§ (π β β0
β§ βπ β
(β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < (π
/ (π + 1)))) β§ (π¦ β π β§ (absβ(1 β π¦)) < ((π
/ (π + 1)) / (Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) + 1)))) β (absβ((πΉβ1) β (πΉβπ¦))) = (absβ(πΉβπ¦))) |
62 | | fveq2 6888 |
. . . . . . . . . . 11
β’ (π¦ = 1 β (πΉβπ¦) = (πΉβ1)) |
63 | 62, 50 | sylan9eqr 2794 |
. . . . . . . . . 10
β’ ((π β§ π¦ = 1) β (πΉβπ¦) = 0) |
64 | 63 | abs00bd 15234 |
. . . . . . . . 9
β’ ((π β§ π¦ = 1) β (absβ(πΉβπ¦)) = 0) |
65 | 64 | ad5ant15 757 |
. . . . . . . 8
β’
(((((π β§ π
β β+)
β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < (π
/ (π + 1)))) β§ (π¦ β π β§ (absβ(1 β π¦)) < ((π
/ (π + 1)) / (Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) + 1)))) β§ π¦ = 1) β (absβ(πΉβπ¦)) = 0) |
66 | | simpllr 774 |
. . . . . . . . . 10
β’ ((((π β§ π
β β+) β§ (π β β0
β§ βπ β
(β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < (π
/ (π + 1)))) β§ (π¦ β π β§ (absβ(1 β π¦)) < ((π
/ (π + 1)) / (Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) + 1)))) β π
β
β+) |
67 | 66 | rpgt0d 13015 |
. . . . . . . . 9
β’ ((((π β§ π
β β+) β§ (π β β0
β§ βπ β
(β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < (π
/ (π + 1)))) β§ (π¦ β π β§ (absβ(1 β π¦)) < ((π
/ (π + 1)) / (Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) + 1)))) β 0 < π
) |
68 | 67 | adantr 481 |
. . . . . . . 8
β’
(((((π β§ π
β β+)
β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < (π
/ (π + 1)))) β§ (π¦ β π β§ (absβ(1 β π¦)) < ((π
/ (π + 1)) / (Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) + 1)))) β§ π¦ = 1) β 0 < π
) |
69 | 65, 68 | eqbrtrd 5169 |
. . . . . . 7
β’
(((((π β§ π
β β+)
β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < (π
/ (π + 1)))) β§ (π¦ β π β§ (absβ(1 β π¦)) < ((π
/ (π + 1)) / (Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) + 1)))) β§ π¦ = 1) β (absβ(πΉβπ¦)) < π
) |
70 | 16 | ad3antrrr 728 |
. . . . . . . . . 10
β’ ((((π β§ π
β β+) β§ (π β β0
β§ βπ β
(β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < (π
/ (π + 1)))) β§ ((π¦ β π β§ (absβ(1 β π¦)) < ((π
/ (π + 1)) / (Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) + 1))) β§ π¦ β 1)) β π΄:β0βΆβ) |
71 | 30 | ad3antrrr 728 |
. . . . . . . . . 10
β’ ((((π β§ π
β β+) β§ (π β β0
β§ βπ β
(β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < (π
/ (π + 1)))) β§ ((π¦ β π β§ (absβ(1 β π¦)) < ((π
/ (π + 1)) / (Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) + 1))) β§ π¦ β 1)) β seq0( + , π΄) β dom β ) |
72 | 4 | ad3antrrr 728 |
. . . . . . . . . 10
β’ ((((π β§ π
β β+) β§ (π β β0
β§ βπ β
(β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < (π
/ (π + 1)))) β§ ((π¦ β π β§ (absβ(1 β π¦)) < ((π
/ (π + 1)) / (Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) + 1))) β§ π¦ β 1)) β π β β) |
73 | 5 | ad3antrrr 728 |
. . . . . . . . . 10
β’ ((((π β§ π
β β+) β§ (π β β0
β§ βπ β
(β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < (π
/ (π + 1)))) β§ ((π¦ β π β§ (absβ(1 β π¦)) < ((π
/ (π + 1)) / (Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) + 1))) β§ π¦ β 1)) β 0 β€ π) |
74 | 10 | ad3antrrr 728 |
. . . . . . . . . 10
β’ ((((π β§ π
β β+) β§ (π β β0
β§ βπ β
(β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < (π
/ (π + 1)))) β§ ((π¦ β π β§ (absβ(1 β π¦)) < ((π
/ (π + 1)) / (Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) + 1))) β§ π¦ β 1)) β seq0( + , π΄) β 0) |
75 | | simprll 777 |
. . . . . . . . . . 11
β’ ((((π β§ π
β β+) β§ (π β β0
β§ βπ β
(β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < (π
/ (π + 1)))) β§ ((π¦ β π β§ (absβ(1 β π¦)) < ((π
/ (π + 1)) / (Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) + 1))) β§ π¦ β 1)) β π¦ β π) |
76 | | simprr 771 |
. . . . . . . . . . 11
β’ ((((π β§ π
β β+) β§ (π β β0
β§ βπ β
(β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < (π
/ (π + 1)))) β§ ((π¦ β π β§ (absβ(1 β π¦)) < ((π
/ (π + 1)) / (Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) + 1))) β§ π¦ β 1)) β π¦ β 1) |
77 | | eldifsn 4789 |
. . . . . . . . . . 11
β’ (π¦ β (π β {1}) β (π¦ β π β§ π¦ β 1)) |
78 | 75, 76, 77 | sylanbrc 583 |
. . . . . . . . . 10
β’ ((((π β§ π
β β+) β§ (π β β0
β§ βπ β
(β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < (π
/ (π + 1)))) β§ ((π¦ β π β§ (absβ(1 β π¦)) < ((π
/ (π + 1)) / (Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) + 1))) β§ π¦ β 1)) β π¦ β (π β {1})) |
79 | 8 | ad2antrr 724 |
. . . . . . . . . 10
β’ ((((π β§ π
β β+) β§ (π β β0
β§ βπ β
(β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < (π
/ (π + 1)))) β§ ((π¦ β π β§ (absβ(1 β π¦)) < ((π
/ (π + 1)) / (Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) + 1))) β§ π¦ β 1)) β (π
/ (π + 1)) β
β+) |
80 | | simplrl 775 |
. . . . . . . . . 10
β’ ((((π β§ π
β β+) β§ (π β β0
β§ βπ β
(β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < (π
/ (π + 1)))) β§ ((π¦ β π β§ (absβ(1 β π¦)) < ((π
/ (π + 1)) / (Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) + 1))) β§ π¦ β 1)) β π β β0) |
81 | | simplrr 776 |
. . . . . . . . . . 11
β’ ((((π β§ π
β β+) β§ (π β β0
β§ βπ β
(β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < (π
/ (π + 1)))) β§ ((π¦ β π β§ (absβ(1 β π¦)) < ((π
/ (π + 1)) / (Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) + 1))) β§ π¦ β 1)) β βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < (π
/ (π + 1))) |
82 | | 2fveq3 6893 |
. . . . . . . . . . . . 13
β’ (π = π β (absβ(seq0( + , π΄)βπ)) = (absβ(seq0( + , π΄)βπ))) |
83 | 82 | breq1d 5157 |
. . . . . . . . . . . 12
β’ (π = π β ((absβ(seq0( + , π΄)βπ)) < (π
/ (π + 1)) β (absβ(seq0( + , π΄)βπ)) < (π
/ (π + 1)))) |
84 | 83 | cbvralvw 3234 |
. . . . . . . . . . 11
β’
(βπ β
(β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < (π
/ (π + 1)) β βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < (π
/ (π + 1))) |
85 | 81, 84 | sylib 217 |
. . . . . . . . . 10
β’ ((((π β§ π
β β+) β§ (π β β0
β§ βπ β
(β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < (π
/ (π + 1)))) β§ ((π¦ β π β§ (absβ(1 β π¦)) < ((π
/ (π + 1)) / (Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) + 1))) β§ π¦ β 1)) β βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < (π
/ (π + 1))) |
86 | | simprlr 778 |
. . . . . . . . . . 11
β’ ((((π β§ π
β β+) β§ (π β β0
β§ βπ β
(β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < (π
/ (π + 1)))) β§ ((π¦ β π β§ (absβ(1 β π¦)) < ((π
/ (π + 1)) / (Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) + 1))) β§ π¦ β 1)) β (absβ(1 β π¦)) < ((π
/ (π + 1)) / (Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) + 1))) |
87 | | 2fveq3 6893 |
. . . . . . . . . . . . . 14
β’ (π = π β (absβ(seq0( + , π΄)βπ)) = (absβ(seq0( + , π΄)βπ))) |
88 | 87 | cbvsumv 15638 |
. . . . . . . . . . . . 13
β’
Ξ£π β
(0...(π β
1))(absβ(seq0( + , π΄)βπ)) = Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) |
89 | 88 | oveq1i 7415 |
. . . . . . . . . . . 12
β’
(Ξ£π β
(0...(π β
1))(absβ(seq0( + , π΄)βπ)) + 1) = (Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) + 1) |
90 | 89 | oveq2i 7416 |
. . . . . . . . . . 11
β’ ((π
/ (π + 1)) / (Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) + 1)) = ((π
/ (π + 1)) / (Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) + 1)) |
91 | 86, 90 | breqtrdi 5188 |
. . . . . . . . . 10
β’ ((((π β§ π
β β+) β§ (π β β0
β§ βπ β
(β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < (π
/ (π + 1)))) β§ ((π¦ β π β§ (absβ(1 β π¦)) < ((π
/ (π + 1)) / (Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) + 1))) β§ π¦ β 1)) β (absβ(1 β π¦)) < ((π
/ (π + 1)) / (Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) + 1))) |
92 | 70, 71, 72, 73, 31, 41, 74, 78, 79, 80, 85, 91 | abelthlem7 25941 |
. . . . . . . . 9
β’ ((((π β§ π
β β+) β§ (π β β0
β§ βπ β
(β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < (π
/ (π + 1)))) β§ ((π¦ β π β§ (absβ(1 β π¦)) < ((π
/ (π + 1)) / (Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) + 1))) β§ π¦ β 1)) β (absβ(πΉβπ¦)) < ((π + 1) Β· (π
/ (π + 1)))) |
93 | | rpcn 12980 |
. . . . . . . . . . . 12
β’ (π
β β+
β π
β
β) |
94 | 93 | adantl 482 |
. . . . . . . . . . 11
β’ ((π β§ π
β β+) β π
β
β) |
95 | 6 | adantr 481 |
. . . . . . . . . . . 12
β’ ((π β§ π
β β+) β (π + 1) β
β+) |
96 | 95 | rpcnd 13014 |
. . . . . . . . . . 11
β’ ((π β§ π
β β+) β (π + 1) β
β) |
97 | 95 | rpne0d 13017 |
. . . . . . . . . . 11
β’ ((π β§ π
β β+) β (π + 1) β 0) |
98 | 94, 96, 97 | divcan2d 11988 |
. . . . . . . . . 10
β’ ((π β§ π
β β+) β ((π + 1) Β· (π
/ (π + 1))) = π
) |
99 | 98 | ad2antrr 724 |
. . . . . . . . 9
β’ ((((π β§ π
β β+) β§ (π β β0
β§ βπ β
(β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < (π
/ (π + 1)))) β§ ((π¦ β π β§ (absβ(1 β π¦)) < ((π
/ (π + 1)) / (Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) + 1))) β§ π¦ β 1)) β ((π + 1) Β· (π
/ (π + 1))) = π
) |
100 | 92, 99 | breqtrd 5173 |
. . . . . . . 8
β’ ((((π β§ π
β β+) β§ (π β β0
β§ βπ β
(β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < (π
/ (π + 1)))) β§ ((π¦ β π β§ (absβ(1 β π¦)) < ((π
/ (π + 1)) / (Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) + 1))) β§ π¦ β 1)) β (absβ(πΉβπ¦)) < π
) |
101 | 100 | anassrs 468 |
. . . . . . 7
β’
(((((π β§ π
β β+)
β§ (π β
β0 β§ βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < (π
/ (π + 1)))) β§ (π¦ β π β§ (absβ(1 β π¦)) < ((π
/ (π + 1)) / (Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) + 1)))) β§ π¦ β 1) β (absβ(πΉβπ¦)) < π
) |
102 | 69, 101 | pm2.61dane 3029 |
. . . . . 6
β’ ((((π β§ π
β β+) β§ (π β β0
β§ βπ β
(β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < (π
/ (π + 1)))) β§ (π¦ β π β§ (absβ(1 β π¦)) < ((π
/ (π + 1)) / (Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) + 1)))) β (absβ(πΉβπ¦)) < π
) |
103 | 61, 102 | eqbrtrd 5169 |
. . . . 5
β’ ((((π β§ π
β β+) β§ (π β β0
β§ βπ β
(β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < (π
/ (π + 1)))) β§ (π¦ β π β§ (absβ(1 β π¦)) < ((π
/ (π + 1)) / (Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) + 1)))) β (absβ((πΉβ1) β (πΉβπ¦))) < π
) |
104 | 103 | expr 457 |
. . . 4
β’ ((((π β§ π
β β+) β§ (π β β0
β§ βπ β
(β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < (π
/ (π + 1)))) β§ π¦ β π) β ((absβ(1 β π¦)) < ((π
/ (π + 1)) / (Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) + 1)) β (absβ((πΉβ1) β (πΉβπ¦))) < π
)) |
105 | 104 | ralrimiva 3146 |
. . 3
β’ (((π β§ π
β β+) β§ (π β β0
β§ βπ β
(β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < (π
/ (π + 1)))) β βπ¦ β π ((absβ(1 β π¦)) < ((π
/ (π + 1)) / (Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) + 1)) β (absβ((πΉβ1) β (πΉβπ¦))) < π
)) |
106 | | breq2 5151 |
. . . 4
β’ (π€ = ((π
/ (π + 1)) / (Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) + 1)) β ((absβ(1 β π¦)) < π€ β (absβ(1 β π¦)) < ((π
/ (π + 1)) / (Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) + 1)))) |
107 | 106 | rspceaimv 3616 |
. . 3
β’ ((((π
/ (π + 1)) / (Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) + 1)) β β+ β§
βπ¦ β π ((absβ(1 β π¦)) < ((π
/ (π + 1)) / (Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) + 1)) β (absβ((πΉβ1) β (πΉβπ¦))) < π
)) β βπ€ β β+ βπ¦ β π ((absβ(1 β π¦)) < π€ β (absβ((πΉβ1) β (πΉβπ¦))) < π
)) |
108 | 29, 105, 107 | syl2anc 584 |
. 2
β’ (((π β§ π
β β+) β§ (π β β0
β§ βπ β
(β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < (π
/ (π + 1)))) β βπ€ β β+ βπ¦ β π ((absβ(1 β π¦)) < π€ β (absβ((πΉβ1) β (πΉβπ¦))) < π
)) |
109 | 12, 108 | rexlimddv 3161 |
1
β’ ((π β§ π
β β+) β
βπ€ β
β+ βπ¦ β π ((absβ(1 β π¦)) < π€ β (absβ((πΉβ1) β (πΉβπ¦))) < π
)) |