MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem8 Structured version   Visualization version   GIF version

Theorem abelthlem8 25034
Description: Lemma for abelth 25036. (Contributed by Mario Carneiro, 2-Apr-2015.)
Hypotheses
Ref Expression
abelth.1 (𝜑𝐴:ℕ0⟶ℂ)
abelth.2 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
abelth.3 (𝜑𝑀 ∈ ℝ)
abelth.4 (𝜑 → 0 ≤ 𝑀)
abelth.5 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
abelth.6 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
abelth.7 (𝜑 → seq0( + , 𝐴) ⇝ 0)
Assertion
Ref Expression
abelthlem8 ((𝜑𝑅 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑦𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅))
Distinct variable groups:   𝑤,𝑛,𝑥,𝑦,𝑧,𝑀   𝑅,𝑛,𝑤,𝑥,𝑦,𝑧   𝐴,𝑛,𝑤,𝑥,𝑦,𝑧   𝜑,𝑛,𝑤,𝑥,𝑦   𝑤,𝐹,𝑦   𝑆,𝑛,𝑤,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝑆(𝑧)   𝐹(𝑥,𝑧,𝑛)

Proof of Theorem abelthlem8
Dummy variables 𝑖 𝑗 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12268 . . 3 0 = (ℤ‘0)
2 0zd 11981 . . 3 ((𝜑𝑅 ∈ ℝ+) → 0 ∈ ℤ)
3 id 22 . . . 4 (𝑅 ∈ ℝ+𝑅 ∈ ℝ+)
4 abelth.3 . . . . 5 (𝜑𝑀 ∈ ℝ)
5 abelth.4 . . . . 5 (𝜑 → 0 ≤ 𝑀)
64, 5ge0p1rpd 12449 . . . 4 (𝜑 → (𝑀 + 1) ∈ ℝ+)
7 rpdivcl 12402 . . . 4 ((𝑅 ∈ ℝ+ ∧ (𝑀 + 1) ∈ ℝ+) → (𝑅 / (𝑀 + 1)) ∈ ℝ+)
83, 6, 7syl2anr 599 . . 3 ((𝜑𝑅 ∈ ℝ+) → (𝑅 / (𝑀 + 1)) ∈ ℝ+)
9 eqidd 2799 . . 3 (((𝜑𝑅 ∈ ℝ+) ∧ 𝑘 ∈ ℕ0) → (seq0( + , 𝐴)‘𝑘) = (seq0( + , 𝐴)‘𝑘))
10 abelth.7 . . . 4 (𝜑 → seq0( + , 𝐴) ⇝ 0)
1110adantr 484 . . 3 ((𝜑𝑅 ∈ ℝ+) → seq0( + , 𝐴) ⇝ 0)
121, 2, 8, 9, 11climi0 14861 . 2 ((𝜑𝑅 ∈ ℝ+) → ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))
138adantr 484 . . . 4 (((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) → (𝑅 / (𝑀 + 1)) ∈ ℝ+)
14 fzfid 13336 . . . . . . 7 (𝜑 → (0...(𝑗 − 1)) ∈ Fin)
15 0zd 11981 . . . . . . . . . 10 (𝜑 → 0 ∈ ℤ)
16 abelth.1 . . . . . . . . . . 11 (𝜑𝐴:ℕ0⟶ℂ)
1716ffvelrnda 6828 . . . . . . . . . 10 ((𝜑𝑤 ∈ ℕ0) → (𝐴𝑤) ∈ ℂ)
181, 15, 17serf 13394 . . . . . . . . 9 (𝜑 → seq0( + , 𝐴):ℕ0⟶ℂ)
19 elfznn0 12995 . . . . . . . . 9 (𝑖 ∈ (0...(𝑗 − 1)) → 𝑖 ∈ ℕ0)
20 ffvelrn 6826 . . . . . . . . 9 ((seq0( + , 𝐴):ℕ0⟶ℂ ∧ 𝑖 ∈ ℕ0) → (seq0( + , 𝐴)‘𝑖) ∈ ℂ)
2118, 19, 20syl2an 598 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → (seq0( + , 𝐴)‘𝑖) ∈ ℂ)
2221abscld 14788 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → (abs‘(seq0( + , 𝐴)‘𝑖)) ∈ ℝ)
2314, 22fsumrecl 15083 . . . . . 6 (𝜑 → Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) ∈ ℝ)
2423ad2antrr 725 . . . . 5 (((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) → Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) ∈ ℝ)
2521absge0d 14796 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → 0 ≤ (abs‘(seq0( + , 𝐴)‘𝑖)))
2614, 22, 25fsumge0 15142 . . . . . 6 (𝜑 → 0 ≤ Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)))
2726ad2antrr 725 . . . . 5 (((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) → 0 ≤ Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)))
2824, 27ge0p1rpd 12449 . . . 4 (((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) → (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1) ∈ ℝ+)
2913, 28rpdivcld 12436 . . 3 (((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) → ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) ∈ ℝ+)
30 abelth.2 . . . . . . . . . . . . . . . . 17 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
31 abelth.5 . . . . . . . . . . . . . . . . 17 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
3216, 30, 4, 5, 31abelthlem2 25027 . . . . . . . . . . . . . . . 16 (𝜑 → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1)))
3332simpld 498 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ 𝑆)
34 oveq1 7142 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 1 → (𝑥𝑛) = (1↑𝑛))
35 nn0z 11993 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
36 1exp 13454 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℤ → (1↑𝑛) = 1)
3735, 36syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ0 → (1↑𝑛) = 1)
3834, 37sylan9eq 2853 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 1 ∧ 𝑛 ∈ ℕ0) → (𝑥𝑛) = 1)
3938oveq2d 7151 . . . . . . . . . . . . . . . . 17 ((𝑥 = 1 ∧ 𝑛 ∈ ℕ0) → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴𝑛) · 1))
4039sumeq2dv 15052 . . . . . . . . . . . . . . . 16 (𝑥 = 1 → Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)) = Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · 1))
41 abelth.6 . . . . . . . . . . . . . . . 16 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
42 sumex 15036 . . . . . . . . . . . . . . . 16 Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · 1) ∈ V
4340, 41, 42fvmpt 6745 . . . . . . . . . . . . . . 15 (1 ∈ 𝑆 → (𝐹‘1) = Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · 1))
4433, 43syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝐹‘1) = Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · 1))
4516ffvelrnda 6828 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℂ)
4645mulid1d 10647 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → ((𝐴𝑛) · 1) = (𝐴𝑛))
4746eqcomd 2804 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) = ((𝐴𝑛) · 1))
4846, 45eqeltrd 2890 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → ((𝐴𝑛) · 1) ∈ ℂ)
491, 15, 47, 48, 10isumclim 15104 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · 1) = 0)
5044, 49eqtrd 2833 . . . . . . . . . . . . 13 (𝜑 → (𝐹‘1) = 0)
5150adantr 484 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → (𝐹‘1) = 0)
5251oveq1d 7150 . . . . . . . . . . 11 ((𝜑𝑦𝑆) → ((𝐹‘1) − (𝐹𝑦)) = (0 − (𝐹𝑦)))
53 df-neg 10862 . . . . . . . . . . 11 -(𝐹𝑦) = (0 − (𝐹𝑦))
5452, 53eqtr4di 2851 . . . . . . . . . 10 ((𝜑𝑦𝑆) → ((𝐹‘1) − (𝐹𝑦)) = -(𝐹𝑦))
5554fveq2d 6649 . . . . . . . . 9 ((𝜑𝑦𝑆) → (abs‘((𝐹‘1) − (𝐹𝑦))) = (abs‘-(𝐹𝑦)))
5616, 30, 4, 5, 31, 41abelthlem4 25029 . . . . . . . . . . 11 (𝜑𝐹:𝑆⟶ℂ)
5756ffvelrnda 6828 . . . . . . . . . 10 ((𝜑𝑦𝑆) → (𝐹𝑦) ∈ ℂ)
5857absnegd 14801 . . . . . . . . 9 ((𝜑𝑦𝑆) → (abs‘-(𝐹𝑦)) = (abs‘(𝐹𝑦)))
5955, 58eqtrd 2833 . . . . . . . 8 ((𝜑𝑦𝑆) → (abs‘((𝐹‘1) − (𝐹𝑦))) = (abs‘(𝐹𝑦)))
6059adantlr 714 . . . . . . 7 (((𝜑𝑅 ∈ ℝ+) ∧ 𝑦𝑆) → (abs‘((𝐹‘1) − (𝐹𝑦))) = (abs‘(𝐹𝑦)))
6160ad2ant2r 746 . . . . . 6 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) → (abs‘((𝐹‘1) − (𝐹𝑦))) = (abs‘(𝐹𝑦)))
62 fveq2 6645 . . . . . . . . . . 11 (𝑦 = 1 → (𝐹𝑦) = (𝐹‘1))
6362, 50sylan9eqr 2855 . . . . . . . . . 10 ((𝜑𝑦 = 1) → (𝐹𝑦) = 0)
6463abs00bd 14643 . . . . . . . . 9 ((𝜑𝑦 = 1) → (abs‘(𝐹𝑦)) = 0)
6564ad5ant15 758 . . . . . . . 8 (((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) ∧ 𝑦 = 1) → (abs‘(𝐹𝑦)) = 0)
66 simpllr 775 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) → 𝑅 ∈ ℝ+)
6766rpgt0d 12422 . . . . . . . . 9 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) → 0 < 𝑅)
6867adantr 484 . . . . . . . 8 (((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) ∧ 𝑦 = 1) → 0 < 𝑅)
6965, 68eqbrtrd 5052 . . . . . . 7 (((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) ∧ 𝑦 = 1) → (abs‘(𝐹𝑦)) < 𝑅)
7016ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → 𝐴:ℕ0⟶ℂ)
7130ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → seq0( + , 𝐴) ∈ dom ⇝ )
724ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → 𝑀 ∈ ℝ)
735ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → 0 ≤ 𝑀)
7410ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → seq0( + , 𝐴) ⇝ 0)
75 simprll 778 . . . . . . . . . . 11 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → 𝑦𝑆)
76 simprr 772 . . . . . . . . . . 11 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → 𝑦 ≠ 1)
77 eldifsn 4680 . . . . . . . . . . 11 (𝑦 ∈ (𝑆 ∖ {1}) ↔ (𝑦𝑆𝑦 ≠ 1))
7875, 76, 77sylanbrc 586 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → 𝑦 ∈ (𝑆 ∖ {1}))
798ad2antrr 725 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → (𝑅 / (𝑀 + 1)) ∈ ℝ+)
80 simplrl 776 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → 𝑗 ∈ ℕ0)
81 simplrr 777 . . . . . . . . . . 11 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))
82 2fveq3 6650 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (abs‘(seq0( + , 𝐴)‘𝑘)) = (abs‘(seq0( + , 𝐴)‘𝑚)))
8382breq1d 5040 . . . . . . . . . . . 12 (𝑘 = 𝑚 → ((abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)) ↔ (abs‘(seq0( + , 𝐴)‘𝑚)) < (𝑅 / (𝑀 + 1))))
8483cbvralvw 3396 . . . . . . . . . . 11 (∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)) ↔ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < (𝑅 / (𝑀 + 1)))
8581, 84sylib 221 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < (𝑅 / (𝑀 + 1)))
86 simprlr 779 . . . . . . . . . . 11 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))
87 2fveq3 6650 . . . . . . . . . . . . . 14 (𝑖 = 𝑛 → (abs‘(seq0( + , 𝐴)‘𝑖)) = (abs‘(seq0( + , 𝐴)‘𝑛)))
8887cbvsumv 15045 . . . . . . . . . . . . 13 Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) = Σ𝑛 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑛))
8988oveq1i 7145 . . . . . . . . . . . 12 𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1) = (Σ𝑛 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1)
9089oveq2i 7146 . . . . . . . . . . 11 ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) = ((𝑅 / (𝑀 + 1)) / (Σ𝑛 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1))
9186, 90breqtrdi 5071 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑛 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1)))
9270, 71, 72, 73, 31, 41, 74, 78, 79, 80, 85, 91abelthlem7 25033 . . . . . . . . 9 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → (abs‘(𝐹𝑦)) < ((𝑀 + 1) · (𝑅 / (𝑀 + 1))))
93 rpcn 12387 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+𝑅 ∈ ℂ)
9493adantl 485 . . . . . . . . . . 11 ((𝜑𝑅 ∈ ℝ+) → 𝑅 ∈ ℂ)
956adantr 484 . . . . . . . . . . . 12 ((𝜑𝑅 ∈ ℝ+) → (𝑀 + 1) ∈ ℝ+)
9695rpcnd 12421 . . . . . . . . . . 11 ((𝜑𝑅 ∈ ℝ+) → (𝑀 + 1) ∈ ℂ)
9795rpne0d 12424 . . . . . . . . . . 11 ((𝜑𝑅 ∈ ℝ+) → (𝑀 + 1) ≠ 0)
9894, 96, 97divcan2d 11407 . . . . . . . . . 10 ((𝜑𝑅 ∈ ℝ+) → ((𝑀 + 1) · (𝑅 / (𝑀 + 1))) = 𝑅)
9998ad2antrr 725 . . . . . . . . 9 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → ((𝑀 + 1) · (𝑅 / (𝑀 + 1))) = 𝑅)
10092, 99breqtrd 5056 . . . . . . . 8 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → (abs‘(𝐹𝑦)) < 𝑅)
101100anassrs 471 . . . . . . 7 (((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) ∧ 𝑦 ≠ 1) → (abs‘(𝐹𝑦)) < 𝑅)
10269, 101pm2.61dane 3074 . . . . . 6 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) → (abs‘(𝐹𝑦)) < 𝑅)
10361, 102eqbrtrd 5052 . . . . 5 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅)
104103expr 460 . . . 4 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ 𝑦𝑆) → ((abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅))
105104ralrimiva 3149 . . 3 (((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) → ∀𝑦𝑆 ((abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅))
106 breq2 5034 . . . 4 (𝑤 = ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) → ((abs‘(1 − 𝑦)) < 𝑤 ↔ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))))
107106rspceaimv 3576 . . 3 ((((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) ∈ ℝ+ ∧ ∀𝑦𝑆 ((abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅)) → ∃𝑤 ∈ ℝ+𝑦𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅))
10829, 105, 107syl2anc 587 . 2 (((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) → ∃𝑤 ∈ ℝ+𝑦𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅))
10912, 108rexlimddv 3250 1 ((𝜑𝑅 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑦𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  {crab 3110  cdif 3878  wss 3881  {csn 4525   class class class wbr 5030  cmpt 5110  dom cdm 5519  ccom 5523  wf 6320  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859  -cneg 10860   / cdiv 11286  0cn0 11885  cz 11969  cuz 12231  +crp 12377  ...cfz 12885  seqcseq 13364  cexp 13425  abscabs 14585  cli 14833  Σcsu 15034  ballcbl 20078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-xadd 12496  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086
This theorem is referenced by:  abelthlem9  25035
  Copyright terms: Public domain W3C validator