MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem8 Structured version   Visualization version   GIF version

Theorem abelthlem8 24746
Description: Lemma for abelth 24748. (Contributed by Mario Carneiro, 2-Apr-2015.)
Hypotheses
Ref Expression
abelth.1 (𝜑𝐴:ℕ0⟶ℂ)
abelth.2 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
abelth.3 (𝜑𝑀 ∈ ℝ)
abelth.4 (𝜑 → 0 ≤ 𝑀)
abelth.5 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
abelth.6 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
abelth.7 (𝜑 → seq0( + , 𝐴) ⇝ 0)
Assertion
Ref Expression
abelthlem8 ((𝜑𝑅 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑦𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅))
Distinct variable groups:   𝑤,𝑛,𝑥,𝑦,𝑧,𝑀   𝑅,𝑛,𝑤,𝑥,𝑦,𝑧   𝐴,𝑛,𝑤,𝑥,𝑦,𝑧   𝜑,𝑛,𝑤,𝑥,𝑦   𝑤,𝐹,𝑦   𝑆,𝑛,𝑤,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝑆(𝑧)   𝐹(𝑥,𝑧,𝑛)

Proof of Theorem abelthlem8
Dummy variables 𝑖 𝑗 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12093 . . 3 0 = (ℤ‘0)
2 0zd 11804 . . 3 ((𝜑𝑅 ∈ ℝ+) → 0 ∈ ℤ)
3 id 22 . . . 4 (𝑅 ∈ ℝ+𝑅 ∈ ℝ+)
4 abelth.3 . . . . 5 (𝜑𝑀 ∈ ℝ)
5 abelth.4 . . . . 5 (𝜑 → 0 ≤ 𝑀)
64, 5ge0p1rpd 12277 . . . 4 (𝜑 → (𝑀 + 1) ∈ ℝ+)
7 rpdivcl 12230 . . . 4 ((𝑅 ∈ ℝ+ ∧ (𝑀 + 1) ∈ ℝ+) → (𝑅 / (𝑀 + 1)) ∈ ℝ+)
83, 6, 7syl2anr 588 . . 3 ((𝜑𝑅 ∈ ℝ+) → (𝑅 / (𝑀 + 1)) ∈ ℝ+)
9 eqidd 2774 . . 3 (((𝜑𝑅 ∈ ℝ+) ∧ 𝑘 ∈ ℕ0) → (seq0( + , 𝐴)‘𝑘) = (seq0( + , 𝐴)‘𝑘))
10 abelth.7 . . . 4 (𝜑 → seq0( + , 𝐴) ⇝ 0)
1110adantr 473 . . 3 ((𝜑𝑅 ∈ ℝ+) → seq0( + , 𝐴) ⇝ 0)
121, 2, 8, 9, 11climi0 14729 . 2 ((𝜑𝑅 ∈ ℝ+) → ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))
138adantr 473 . . . 4 (((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) → (𝑅 / (𝑀 + 1)) ∈ ℝ+)
14 fzfid 13155 . . . . . . 7 (𝜑 → (0...(𝑗 − 1)) ∈ Fin)
15 0zd 11804 . . . . . . . . . 10 (𝜑 → 0 ∈ ℤ)
16 abelth.1 . . . . . . . . . . 11 (𝜑𝐴:ℕ0⟶ℂ)
1716ffvelrnda 6675 . . . . . . . . . 10 ((𝜑𝑤 ∈ ℕ0) → (𝐴𝑤) ∈ ℂ)
181, 15, 17serf 13212 . . . . . . . . 9 (𝜑 → seq0( + , 𝐴):ℕ0⟶ℂ)
19 elfznn0 12815 . . . . . . . . 9 (𝑖 ∈ (0...(𝑗 − 1)) → 𝑖 ∈ ℕ0)
20 ffvelrn 6673 . . . . . . . . 9 ((seq0( + , 𝐴):ℕ0⟶ℂ ∧ 𝑖 ∈ ℕ0) → (seq0( + , 𝐴)‘𝑖) ∈ ℂ)
2118, 19, 20syl2an 587 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → (seq0( + , 𝐴)‘𝑖) ∈ ℂ)
2221abscld 14656 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → (abs‘(seq0( + , 𝐴)‘𝑖)) ∈ ℝ)
2314, 22fsumrecl 14950 . . . . . 6 (𝜑 → Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) ∈ ℝ)
2423ad2antrr 714 . . . . 5 (((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) → Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) ∈ ℝ)
2521absge0d 14664 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → 0 ≤ (abs‘(seq0( + , 𝐴)‘𝑖)))
2614, 22, 25fsumge0 15009 . . . . . 6 (𝜑 → 0 ≤ Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)))
2726ad2antrr 714 . . . . 5 (((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) → 0 ≤ Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)))
2824, 27ge0p1rpd 12277 . . . 4 (((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) → (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1) ∈ ℝ+)
2913, 28rpdivcld 12264 . . 3 (((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) → ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) ∈ ℝ+)
30 abelth.2 . . . . . . . . . . . . . . . . 17 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
31 abelth.5 . . . . . . . . . . . . . . . . 17 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
3216, 30, 4, 5, 31abelthlem2 24739 . . . . . . . . . . . . . . . 16 (𝜑 → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1)))
3332simpld 487 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ 𝑆)
34 oveq1 6982 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 1 → (𝑥𝑛) = (1↑𝑛))
35 nn0z 11817 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
36 1exp 13272 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℤ → (1↑𝑛) = 1)
3735, 36syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ0 → (1↑𝑛) = 1)
3834, 37sylan9eq 2829 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 1 ∧ 𝑛 ∈ ℕ0) → (𝑥𝑛) = 1)
3938oveq2d 6991 . . . . . . . . . . . . . . . . 17 ((𝑥 = 1 ∧ 𝑛 ∈ ℕ0) → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴𝑛) · 1))
4039sumeq2dv 14919 . . . . . . . . . . . . . . . 16 (𝑥 = 1 → Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)) = Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · 1))
41 abelth.6 . . . . . . . . . . . . . . . 16 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
42 sumex 14904 . . . . . . . . . . . . . . . 16 Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · 1) ∈ V
4340, 41, 42fvmpt 6594 . . . . . . . . . . . . . . 15 (1 ∈ 𝑆 → (𝐹‘1) = Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · 1))
4433, 43syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝐹‘1) = Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · 1))
4516ffvelrnda 6675 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℂ)
4645mulid1d 10456 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → ((𝐴𝑛) · 1) = (𝐴𝑛))
4746eqcomd 2779 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) = ((𝐴𝑛) · 1))
4846, 45eqeltrd 2861 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → ((𝐴𝑛) · 1) ∈ ℂ)
491, 15, 47, 48, 10isumclim 14971 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · 1) = 0)
5044, 49eqtrd 2809 . . . . . . . . . . . . 13 (𝜑 → (𝐹‘1) = 0)
5150adantr 473 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → (𝐹‘1) = 0)
5251oveq1d 6990 . . . . . . . . . . 11 ((𝜑𝑦𝑆) → ((𝐹‘1) − (𝐹𝑦)) = (0 − (𝐹𝑦)))
53 df-neg 10672 . . . . . . . . . . 11 -(𝐹𝑦) = (0 − (𝐹𝑦))
5452, 53syl6eqr 2827 . . . . . . . . . 10 ((𝜑𝑦𝑆) → ((𝐹‘1) − (𝐹𝑦)) = -(𝐹𝑦))
5554fveq2d 6501 . . . . . . . . 9 ((𝜑𝑦𝑆) → (abs‘((𝐹‘1) − (𝐹𝑦))) = (abs‘-(𝐹𝑦)))
5616, 30, 4, 5, 31, 41abelthlem4 24741 . . . . . . . . . . 11 (𝜑𝐹:𝑆⟶ℂ)
5756ffvelrnda 6675 . . . . . . . . . 10 ((𝜑𝑦𝑆) → (𝐹𝑦) ∈ ℂ)
5857absnegd 14669 . . . . . . . . 9 ((𝜑𝑦𝑆) → (abs‘-(𝐹𝑦)) = (abs‘(𝐹𝑦)))
5955, 58eqtrd 2809 . . . . . . . 8 ((𝜑𝑦𝑆) → (abs‘((𝐹‘1) − (𝐹𝑦))) = (abs‘(𝐹𝑦)))
6059adantlr 703 . . . . . . 7 (((𝜑𝑅 ∈ ℝ+) ∧ 𝑦𝑆) → (abs‘((𝐹‘1) − (𝐹𝑦))) = (abs‘(𝐹𝑦)))
6160ad2ant2r 735 . . . . . 6 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) → (abs‘((𝐹‘1) − (𝐹𝑦))) = (abs‘(𝐹𝑦)))
62 fveq2 6497 . . . . . . . . . . 11 (𝑦 = 1 → (𝐹𝑦) = (𝐹‘1))
6362, 50sylan9eqr 2831 . . . . . . . . . 10 ((𝜑𝑦 = 1) → (𝐹𝑦) = 0)
6463abs00bd 14511 . . . . . . . . 9 ((𝜑𝑦 = 1) → (abs‘(𝐹𝑦)) = 0)
6564ad5ant15 747 . . . . . . . 8 (((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) ∧ 𝑦 = 1) → (abs‘(𝐹𝑦)) = 0)
66 simpllr 764 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) → 𝑅 ∈ ℝ+)
6766rpgt0d 12250 . . . . . . . . 9 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) → 0 < 𝑅)
6867adantr 473 . . . . . . . 8 (((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) ∧ 𝑦 = 1) → 0 < 𝑅)
6965, 68eqbrtrd 4948 . . . . . . 7 (((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) ∧ 𝑦 = 1) → (abs‘(𝐹𝑦)) < 𝑅)
7016ad3antrrr 718 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → 𝐴:ℕ0⟶ℂ)
7130ad3antrrr 718 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → seq0( + , 𝐴) ∈ dom ⇝ )
724ad3antrrr 718 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → 𝑀 ∈ ℝ)
735ad3antrrr 718 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → 0 ≤ 𝑀)
7410ad3antrrr 718 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → seq0( + , 𝐴) ⇝ 0)
75 simprll 767 . . . . . . . . . . 11 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → 𝑦𝑆)
76 simprr 761 . . . . . . . . . . 11 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → 𝑦 ≠ 1)
77 eldifsn 4590 . . . . . . . . . . 11 (𝑦 ∈ (𝑆 ∖ {1}) ↔ (𝑦𝑆𝑦 ≠ 1))
7875, 76, 77sylanbrc 575 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → 𝑦 ∈ (𝑆 ∖ {1}))
798ad2antrr 714 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → (𝑅 / (𝑀 + 1)) ∈ ℝ+)
80 simplrl 765 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → 𝑗 ∈ ℕ0)
81 simplrr 766 . . . . . . . . . . 11 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))
82 2fveq3 6502 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (abs‘(seq0( + , 𝐴)‘𝑘)) = (abs‘(seq0( + , 𝐴)‘𝑚)))
8382breq1d 4936 . . . . . . . . . . . 12 (𝑘 = 𝑚 → ((abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)) ↔ (abs‘(seq0( + , 𝐴)‘𝑚)) < (𝑅 / (𝑀 + 1))))
8483cbvralv 3378 . . . . . . . . . . 11 (∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)) ↔ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < (𝑅 / (𝑀 + 1)))
8581, 84sylib 210 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < (𝑅 / (𝑀 + 1)))
86 simprlr 768 . . . . . . . . . . 11 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))
87 2fveq3 6502 . . . . . . . . . . . . . 14 (𝑖 = 𝑛 → (abs‘(seq0( + , 𝐴)‘𝑖)) = (abs‘(seq0( + , 𝐴)‘𝑛)))
8887cbvsumv 14912 . . . . . . . . . . . . 13 Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) = Σ𝑛 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑛))
8988oveq1i 6985 . . . . . . . . . . . 12 𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1) = (Σ𝑛 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1)
9089oveq2i 6986 . . . . . . . . . . 11 ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) = ((𝑅 / (𝑀 + 1)) / (Σ𝑛 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1))
9186, 90syl6breq 4967 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑛 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1)))
9270, 71, 72, 73, 31, 41, 74, 78, 79, 80, 85, 91abelthlem7 24745 . . . . . . . . 9 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → (abs‘(𝐹𝑦)) < ((𝑀 + 1) · (𝑅 / (𝑀 + 1))))
93 rpcn 12215 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+𝑅 ∈ ℂ)
9493adantl 474 . . . . . . . . . . 11 ((𝜑𝑅 ∈ ℝ+) → 𝑅 ∈ ℂ)
956adantr 473 . . . . . . . . . . . 12 ((𝜑𝑅 ∈ ℝ+) → (𝑀 + 1) ∈ ℝ+)
9695rpcnd 12249 . . . . . . . . . . 11 ((𝜑𝑅 ∈ ℝ+) → (𝑀 + 1) ∈ ℂ)
9795rpne0d 12252 . . . . . . . . . . 11 ((𝜑𝑅 ∈ ℝ+) → (𝑀 + 1) ≠ 0)
9894, 96, 97divcan2d 11218 . . . . . . . . . 10 ((𝜑𝑅 ∈ ℝ+) → ((𝑀 + 1) · (𝑅 / (𝑀 + 1))) = 𝑅)
9998ad2antrr 714 . . . . . . . . 9 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → ((𝑀 + 1) · (𝑅 / (𝑀 + 1))) = 𝑅)
10092, 99breqtrd 4952 . . . . . . . 8 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → (abs‘(𝐹𝑦)) < 𝑅)
101100anassrs 460 . . . . . . 7 (((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) ∧ 𝑦 ≠ 1) → (abs‘(𝐹𝑦)) < 𝑅)
10269, 101pm2.61dane 3050 . . . . . 6 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) → (abs‘(𝐹𝑦)) < 𝑅)
10361, 102eqbrtrd 4948 . . . . 5 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅)
104103expr 449 . . . 4 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ 𝑦𝑆) → ((abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅))
105104ralrimiva 3127 . . 3 (((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) → ∀𝑦𝑆 ((abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅))
106 breq2 4930 . . . 4 (𝑤 = ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) → ((abs‘(1 − 𝑦)) < 𝑤 ↔ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))))
107106rspceaimv 3538 . . 3 ((((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) ∈ ℝ+ ∧ ∀𝑦𝑆 ((abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅)) → ∃𝑤 ∈ ℝ+𝑦𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅))
10829, 105, 107syl2anc 576 . 2 (((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) → ∃𝑤 ∈ ℝ+𝑦𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅))
10912, 108rexlimddv 3231 1 ((𝜑𝑅 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑦𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1508  wcel 2051  wne 2962  wral 3083  wrex 3084  {crab 3087  cdif 3821  wss 3824  {csn 4436   class class class wbr 4926  cmpt 5005  dom cdm 5404  ccom 5408  wf 6182  cfv 6186  (class class class)co 6975  cc 10332  cr 10333  0cc0 10334  1c1 10335   + caddc 10337   · cmul 10339   < clt 10473  cle 10474  cmin 10669  -cneg 10670   / cdiv 11097  0cn0 11706  cz 11792  cuz 12057  +crp 12203  ...cfz 12707  seqcseq 13183  cexp 13243  abscabs 14453  cli 14701  Σcsu 14902  ballcbl 20250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-rep 5046  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-inf2 8897  ax-cnex 10390  ax-resscn 10391  ax-1cn 10392  ax-icn 10393  ax-addcl 10394  ax-addrcl 10395  ax-mulcl 10396  ax-mulrcl 10397  ax-mulcom 10398  ax-addass 10399  ax-mulass 10400  ax-distr 10401  ax-i2m1 10402  ax-1ne0 10403  ax-1rid 10404  ax-rnegex 10405  ax-rrecex 10406  ax-cnre 10407  ax-pre-lttri 10408  ax-pre-lttrn 10409  ax-pre-ltadd 10410  ax-pre-mulgt0 10411  ax-pre-sup 10412  ax-addf 10413  ax-mulf 10414
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-fal 1521  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-nel 3069  df-ral 3088  df-rex 3089  df-reu 3090  df-rmo 3091  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-pss 3840  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-tp 4441  df-op 4443  df-uni 4710  df-int 4747  df-iun 4791  df-br 4927  df-opab 4989  df-mpt 5006  df-tr 5028  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-se 5364  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-lim 6032  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-isom 6195  df-riota 6936  df-ov 6978  df-oprab 6979  df-mpo 6980  df-om 7396  df-1st 7500  df-2nd 7501  df-wrecs 7749  df-recs 7811  df-rdg 7849  df-1o 7904  df-oadd 7908  df-er 8088  df-map 8207  df-pm 8208  df-en 8306  df-dom 8307  df-sdom 8308  df-fin 8309  df-sup 8700  df-inf 8701  df-oi 8768  df-card 9161  df-pnf 10475  df-mnf 10476  df-xr 10477  df-ltxr 10478  df-le 10479  df-sub 10671  df-neg 10672  df-div 11098  df-nn 11439  df-2 11502  df-3 11503  df-n0 11707  df-z 11793  df-uz 12058  df-rp 12204  df-xadd 12324  df-ico 12559  df-icc 12560  df-fz 12708  df-fzo 12849  df-fl 12976  df-seq 13184  df-exp 13244  df-hash 13505  df-shft 14286  df-cj 14318  df-re 14319  df-im 14320  df-sqrt 14454  df-abs 14455  df-limsup 14688  df-clim 14705  df-rlim 14706  df-sum 14903  df-psmet 20255  df-xmet 20256  df-met 20257  df-bl 20258
This theorem is referenced by:  abelthlem9  24747
  Copyright terms: Public domain W3C validator