MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem8 Structured version   Visualization version   GIF version

Theorem abelthlem8 26497
Description: Lemma for abelth 26499. (Contributed by Mario Carneiro, 2-Apr-2015.)
Hypotheses
Ref Expression
abelth.1 (𝜑𝐴:ℕ0⟶ℂ)
abelth.2 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
abelth.3 (𝜑𝑀 ∈ ℝ)
abelth.4 (𝜑 → 0 ≤ 𝑀)
abelth.5 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
abelth.6 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
abelth.7 (𝜑 → seq0( + , 𝐴) ⇝ 0)
Assertion
Ref Expression
abelthlem8 ((𝜑𝑅 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑦𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅))
Distinct variable groups:   𝑤,𝑛,𝑥,𝑦,𝑧,𝑀   𝑅,𝑛,𝑤,𝑥,𝑦,𝑧   𝐴,𝑛,𝑤,𝑥,𝑦,𝑧   𝜑,𝑛,𝑤,𝑥,𝑦   𝑤,𝐹,𝑦   𝑆,𝑛,𝑤,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝑆(𝑧)   𝐹(𝑥,𝑧,𝑛)

Proof of Theorem abelthlem8
Dummy variables 𝑖 𝑗 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12917 . . 3 0 = (ℤ‘0)
2 0zd 12622 . . 3 ((𝜑𝑅 ∈ ℝ+) → 0 ∈ ℤ)
3 id 22 . . . 4 (𝑅 ∈ ℝ+𝑅 ∈ ℝ+)
4 abelth.3 . . . . 5 (𝜑𝑀 ∈ ℝ)
5 abelth.4 . . . . 5 (𝜑 → 0 ≤ 𝑀)
64, 5ge0p1rpd 13104 . . . 4 (𝜑 → (𝑀 + 1) ∈ ℝ+)
7 rpdivcl 13057 . . . 4 ((𝑅 ∈ ℝ+ ∧ (𝑀 + 1) ∈ ℝ+) → (𝑅 / (𝑀 + 1)) ∈ ℝ+)
83, 6, 7syl2anr 597 . . 3 ((𝜑𝑅 ∈ ℝ+) → (𝑅 / (𝑀 + 1)) ∈ ℝ+)
9 eqidd 2735 . . 3 (((𝜑𝑅 ∈ ℝ+) ∧ 𝑘 ∈ ℕ0) → (seq0( + , 𝐴)‘𝑘) = (seq0( + , 𝐴)‘𝑘))
10 abelth.7 . . . 4 (𝜑 → seq0( + , 𝐴) ⇝ 0)
1110adantr 480 . . 3 ((𝜑𝑅 ∈ ℝ+) → seq0( + , 𝐴) ⇝ 0)
121, 2, 8, 9, 11climi0 15544 . 2 ((𝜑𝑅 ∈ ℝ+) → ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))
138adantr 480 . . . 4 (((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) → (𝑅 / (𝑀 + 1)) ∈ ℝ+)
14 fzfid 14010 . . . . . . 7 (𝜑 → (0...(𝑗 − 1)) ∈ Fin)
15 0zd 12622 . . . . . . . . . 10 (𝜑 → 0 ∈ ℤ)
16 abelth.1 . . . . . . . . . . 11 (𝜑𝐴:ℕ0⟶ℂ)
1716ffvelcdmda 7103 . . . . . . . . . 10 ((𝜑𝑤 ∈ ℕ0) → (𝐴𝑤) ∈ ℂ)
181, 15, 17serf 14067 . . . . . . . . 9 (𝜑 → seq0( + , 𝐴):ℕ0⟶ℂ)
19 elfznn0 13656 . . . . . . . . 9 (𝑖 ∈ (0...(𝑗 − 1)) → 𝑖 ∈ ℕ0)
20 ffvelcdm 7100 . . . . . . . . 9 ((seq0( + , 𝐴):ℕ0⟶ℂ ∧ 𝑖 ∈ ℕ0) → (seq0( + , 𝐴)‘𝑖) ∈ ℂ)
2118, 19, 20syl2an 596 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → (seq0( + , 𝐴)‘𝑖) ∈ ℂ)
2221abscld 15471 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → (abs‘(seq0( + , 𝐴)‘𝑖)) ∈ ℝ)
2314, 22fsumrecl 15766 . . . . . 6 (𝜑 → Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) ∈ ℝ)
2423ad2antrr 726 . . . . 5 (((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) → Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) ∈ ℝ)
2521absge0d 15479 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝑗 − 1))) → 0 ≤ (abs‘(seq0( + , 𝐴)‘𝑖)))
2614, 22, 25fsumge0 15827 . . . . . 6 (𝜑 → 0 ≤ Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)))
2726ad2antrr 726 . . . . 5 (((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) → 0 ≤ Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)))
2824, 27ge0p1rpd 13104 . . . 4 (((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) → (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1) ∈ ℝ+)
2913, 28rpdivcld 13091 . . 3 (((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) → ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) ∈ ℝ+)
30 abelth.2 . . . . . . . . . . . . . . . . 17 (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ )
31 abelth.5 . . . . . . . . . . . . . . . . 17 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 − 𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))}
3216, 30, 4, 5, 31abelthlem2 26490 . . . . . . . . . . . . . . . 16 (𝜑 → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs ∘ − ))1)))
3332simpld 494 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ 𝑆)
34 oveq1 7437 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 1 → (𝑥𝑛) = (1↑𝑛))
35 nn0z 12635 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
36 1exp 14128 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℤ → (1↑𝑛) = 1)
3735, 36syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ0 → (1↑𝑛) = 1)
3834, 37sylan9eq 2794 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 1 ∧ 𝑛 ∈ ℕ0) → (𝑥𝑛) = 1)
3938oveq2d 7446 . . . . . . . . . . . . . . . . 17 ((𝑥 = 1 ∧ 𝑛 ∈ ℕ0) → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴𝑛) · 1))
4039sumeq2dv 15734 . . . . . . . . . . . . . . . 16 (𝑥 = 1 → Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)) = Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · 1))
41 abelth.6 . . . . . . . . . . . . . . . 16 𝐹 = (𝑥𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · (𝑥𝑛)))
42 sumex 15720 . . . . . . . . . . . . . . . 16 Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · 1) ∈ V
4340, 41, 42fvmpt 7015 . . . . . . . . . . . . . . 15 (1 ∈ 𝑆 → (𝐹‘1) = Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · 1))
4433, 43syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝐹‘1) = Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · 1))
4516ffvelcdmda 7103 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) ∈ ℂ)
4645mulridd 11275 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → ((𝐴𝑛) · 1) = (𝐴𝑛))
4746eqcomd 2740 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → (𝐴𝑛) = ((𝐴𝑛) · 1))
4846, 45eqeltrd 2838 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → ((𝐴𝑛) · 1) ∈ ℂ)
491, 15, 47, 48, 10isumclim 15789 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑛 ∈ ℕ0 ((𝐴𝑛) · 1) = 0)
5044, 49eqtrd 2774 . . . . . . . . . . . . 13 (𝜑 → (𝐹‘1) = 0)
5150adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦𝑆) → (𝐹‘1) = 0)
5251oveq1d 7445 . . . . . . . . . . 11 ((𝜑𝑦𝑆) → ((𝐹‘1) − (𝐹𝑦)) = (0 − (𝐹𝑦)))
53 df-neg 11492 . . . . . . . . . . 11 -(𝐹𝑦) = (0 − (𝐹𝑦))
5452, 53eqtr4di 2792 . . . . . . . . . 10 ((𝜑𝑦𝑆) → ((𝐹‘1) − (𝐹𝑦)) = -(𝐹𝑦))
5554fveq2d 6910 . . . . . . . . 9 ((𝜑𝑦𝑆) → (abs‘((𝐹‘1) − (𝐹𝑦))) = (abs‘-(𝐹𝑦)))
5616, 30, 4, 5, 31, 41abelthlem4 26492 . . . . . . . . . . 11 (𝜑𝐹:𝑆⟶ℂ)
5756ffvelcdmda 7103 . . . . . . . . . 10 ((𝜑𝑦𝑆) → (𝐹𝑦) ∈ ℂ)
5857absnegd 15484 . . . . . . . . 9 ((𝜑𝑦𝑆) → (abs‘-(𝐹𝑦)) = (abs‘(𝐹𝑦)))
5955, 58eqtrd 2774 . . . . . . . 8 ((𝜑𝑦𝑆) → (abs‘((𝐹‘1) − (𝐹𝑦))) = (abs‘(𝐹𝑦)))
6059adantlr 715 . . . . . . 7 (((𝜑𝑅 ∈ ℝ+) ∧ 𝑦𝑆) → (abs‘((𝐹‘1) − (𝐹𝑦))) = (abs‘(𝐹𝑦)))
6160ad2ant2r 747 . . . . . 6 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) → (abs‘((𝐹‘1) − (𝐹𝑦))) = (abs‘(𝐹𝑦)))
62 fveq2 6906 . . . . . . . . . . 11 (𝑦 = 1 → (𝐹𝑦) = (𝐹‘1))
6362, 50sylan9eqr 2796 . . . . . . . . . 10 ((𝜑𝑦 = 1) → (𝐹𝑦) = 0)
6463abs00bd 15326 . . . . . . . . 9 ((𝜑𝑦 = 1) → (abs‘(𝐹𝑦)) = 0)
6564ad5ant15 759 . . . . . . . 8 (((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) ∧ 𝑦 = 1) → (abs‘(𝐹𝑦)) = 0)
66 simpllr 776 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) → 𝑅 ∈ ℝ+)
6766rpgt0d 13077 . . . . . . . . 9 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) → 0 < 𝑅)
6867adantr 480 . . . . . . . 8 (((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) ∧ 𝑦 = 1) → 0 < 𝑅)
6965, 68eqbrtrd 5169 . . . . . . 7 (((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) ∧ 𝑦 = 1) → (abs‘(𝐹𝑦)) < 𝑅)
7016ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → 𝐴:ℕ0⟶ℂ)
7130ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → seq0( + , 𝐴) ∈ dom ⇝ )
724ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → 𝑀 ∈ ℝ)
735ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → 0 ≤ 𝑀)
7410ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → seq0( + , 𝐴) ⇝ 0)
75 simprll 779 . . . . . . . . . . 11 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → 𝑦𝑆)
76 simprr 773 . . . . . . . . . . 11 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → 𝑦 ≠ 1)
77 eldifsn 4790 . . . . . . . . . . 11 (𝑦 ∈ (𝑆 ∖ {1}) ↔ (𝑦𝑆𝑦 ≠ 1))
7875, 76, 77sylanbrc 583 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → 𝑦 ∈ (𝑆 ∖ {1}))
798ad2antrr 726 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → (𝑅 / (𝑀 + 1)) ∈ ℝ+)
80 simplrl 777 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → 𝑗 ∈ ℕ0)
81 simplrr 778 . . . . . . . . . . 11 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))
82 2fveq3 6911 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (abs‘(seq0( + , 𝐴)‘𝑘)) = (abs‘(seq0( + , 𝐴)‘𝑚)))
8382breq1d 5157 . . . . . . . . . . . 12 (𝑘 = 𝑚 → ((abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)) ↔ (abs‘(seq0( + , 𝐴)‘𝑚)) < (𝑅 / (𝑀 + 1))))
8483cbvralvw 3234 . . . . . . . . . . 11 (∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)) ↔ ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < (𝑅 / (𝑀 + 1)))
8581, 84sylib 218 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → ∀𝑚 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑚)) < (𝑅 / (𝑀 + 1)))
86 simprlr 780 . . . . . . . . . . 11 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))
87 2fveq3 6911 . . . . . . . . . . . . . 14 (𝑖 = 𝑛 → (abs‘(seq0( + , 𝐴)‘𝑖)) = (abs‘(seq0( + , 𝐴)‘𝑛)))
8887cbvsumv 15728 . . . . . . . . . . . . 13 Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) = Σ𝑛 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑛))
8988oveq1i 7440 . . . . . . . . . . . 12 𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1) = (Σ𝑛 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1)
9089oveq2i 7441 . . . . . . . . . . 11 ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) = ((𝑅 / (𝑀 + 1)) / (Σ𝑛 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1))
9186, 90breqtrdi 5188 . . . . . . . . . 10 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑛 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1)))
9270, 71, 72, 73, 31, 41, 74, 78, 79, 80, 85, 91abelthlem7 26496 . . . . . . . . 9 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → (abs‘(𝐹𝑦)) < ((𝑀 + 1) · (𝑅 / (𝑀 + 1))))
93 rpcn 13042 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+𝑅 ∈ ℂ)
9493adantl 481 . . . . . . . . . . 11 ((𝜑𝑅 ∈ ℝ+) → 𝑅 ∈ ℂ)
956adantr 480 . . . . . . . . . . . 12 ((𝜑𝑅 ∈ ℝ+) → (𝑀 + 1) ∈ ℝ+)
9695rpcnd 13076 . . . . . . . . . . 11 ((𝜑𝑅 ∈ ℝ+) → (𝑀 + 1) ∈ ℂ)
9795rpne0d 13079 . . . . . . . . . . 11 ((𝜑𝑅 ∈ ℝ+) → (𝑀 + 1) ≠ 0)
9894, 96, 97divcan2d 12042 . . . . . . . . . 10 ((𝜑𝑅 ∈ ℝ+) → ((𝑀 + 1) · (𝑅 / (𝑀 + 1))) = 𝑅)
9998ad2antrr 726 . . . . . . . . 9 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → ((𝑀 + 1) · (𝑅 / (𝑀 + 1))) = 𝑅)
10092, 99breqtrd 5173 . . . . . . . 8 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ ((𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))) ∧ 𝑦 ≠ 1)) → (abs‘(𝐹𝑦)) < 𝑅)
101100anassrs 467 . . . . . . 7 (((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) ∧ 𝑦 ≠ 1) → (abs‘(𝐹𝑦)) < 𝑅)
10269, 101pm2.61dane 3026 . . . . . 6 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) → (abs‘(𝐹𝑦)) < 𝑅)
10361, 102eqbrtrd 5169 . . . . 5 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ (𝑦𝑆 ∧ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)))) → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅)
104103expr 456 . . . 4 ((((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) ∧ 𝑦𝑆) → ((abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅))
105104ralrimiva 3143 . . 3 (((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) → ∀𝑦𝑆 ((abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅))
106 breq2 5151 . . . 4 (𝑤 = ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) → ((abs‘(1 − 𝑦)) < 𝑤 ↔ (abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1))))
107106rspceaimv 3627 . . 3 ((((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) ∈ ℝ+ ∧ ∀𝑦𝑆 ((abs‘(1 − 𝑦)) < ((𝑅 / (𝑀 + 1)) / (Σ𝑖 ∈ (0...(𝑗 − 1))(abs‘(seq0( + , 𝐴)‘𝑖)) + 1)) → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅)) → ∃𝑤 ∈ ℝ+𝑦𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅))
10829, 105, 107syl2anc 584 . 2 (((𝜑𝑅 ∈ ℝ+) ∧ (𝑗 ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(seq0( + , 𝐴)‘𝑘)) < (𝑅 / (𝑀 + 1)))) → ∃𝑤 ∈ ℝ+𝑦𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅))
10912, 108rexlimddv 3158 1 ((𝜑𝑅 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑦𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹𝑦))) < 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  wne 2937  wral 3058  wrex 3067  {crab 3432  cdif 3959  wss 3962  {csn 4630   class class class wbr 5147  cmpt 5230  dom cdm 5688  ccom 5692  wf 6558  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157   < clt 11292  cle 11293  cmin 11489  -cneg 11490   / cdiv 11917  0cn0 12523  cz 12610  cuz 12875  +crp 13031  ...cfz 13543  seqcseq 14038  cexp 14098  abscabs 15269  cli 15516  Σcsu 15718  ballcbl 21368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-pm 8867  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-xadd 13152  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-seq 14039  df-exp 14099  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376
This theorem is referenced by:  abelthlem9  26498
  Copyright terms: Public domain W3C validator