Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fedgmul Structured version   Visualization version   GIF version

Theorem fedgmul 33606
Description: The multiplicativity formula for degrees of field extensions. Given 𝐸 a field extension of 𝐹, itself a field extension of 𝐾, we have [𝐸:𝐾] = [𝐸:𝐹][𝐹:𝐾]. Proposition 1.2 of [Lang], p. 224. Here (dim‘𝐴) is the degree of the extension 𝐸 of 𝐾, (dim‘𝐵) is the degree of the extension 𝐸 of 𝐹, and (dim‘𝐶) is the degree of the extension 𝐹 of 𝐾. This proof is valid for infinite dimensions, and is actually valid for division ring extensions, not just field extensions. (Contributed by Thierry Arnoux, 25-Jul-2023.)
Hypotheses
Ref Expression
fedgmul.a 𝐴 = ((subringAlg ‘𝐸)‘𝑉)
fedgmul.b 𝐵 = ((subringAlg ‘𝐸)‘𝑈)
fedgmul.c 𝐶 = ((subringAlg ‘𝐹)‘𝑉)
fedgmul.f 𝐹 = (𝐸s 𝑈)
fedgmul.k 𝐾 = (𝐸s 𝑉)
fedgmul.1 (𝜑𝐸 ∈ DivRing)
fedgmul.2 (𝜑𝐹 ∈ DivRing)
fedgmul.3 (𝜑𝐾 ∈ DivRing)
fedgmul.4 (𝜑𝑈 ∈ (SubRing‘𝐸))
fedgmul.5 (𝜑𝑉 ∈ (SubRing‘𝐹))
Assertion
Ref Expression
fedgmul (𝜑 → (dim‘𝐴) = ((dim‘𝐵) ·e (dim‘𝐶)))

Proof of Theorem fedgmul
Dummy variables 𝑎 𝑐 𝑓 𝑢 𝑥 𝑦 𝑧 𝑖 𝑗 𝑤 𝑏 𝑣 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fedgmul.2 . . . . 5 (𝜑𝐹 ∈ DivRing)
2 fedgmul.4 . . . . . . . 8 (𝜑𝑈 ∈ (SubRing‘𝐸))
3 fedgmul.5 . . . . . . . . . 10 (𝜑𝑉 ∈ (SubRing‘𝐹))
4 fedgmul.f . . . . . . . . . . . 12 𝐹 = (𝐸s 𝑈)
54subsubrg 20501 . . . . . . . . . . 11 (𝑈 ∈ (SubRing‘𝐸) → (𝑉 ∈ (SubRing‘𝐹) ↔ (𝑉 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈)))
65biimpa 476 . . . . . . . . . 10 ((𝑈 ∈ (SubRing‘𝐸) ∧ 𝑉 ∈ (SubRing‘𝐹)) → (𝑉 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈))
72, 3, 6syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑉 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈))
87simprd 495 . . . . . . . 8 (𝜑𝑉𝑈)
9 ressabs 17177 . . . . . . . 8 ((𝑈 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈) → ((𝐸s 𝑈) ↾s 𝑉) = (𝐸s 𝑉))
102, 8, 9syl2anc 584 . . . . . . 7 (𝜑 → ((𝐸s 𝑈) ↾s 𝑉) = (𝐸s 𝑉))
114oveq1i 7363 . . . . . . 7 (𝐹s 𝑉) = ((𝐸s 𝑈) ↾s 𝑉)
12 fedgmul.k . . . . . . 7 𝐾 = (𝐸s 𝑉)
1310, 11, 123eqtr4g 2789 . . . . . 6 (𝜑 → (𝐹s 𝑉) = 𝐾)
14 fedgmul.3 . . . . . 6 (𝜑𝐾 ∈ DivRing)
1513, 14eqeltrd 2828 . . . . 5 (𝜑 → (𝐹s 𝑉) ∈ DivRing)
16 fedgmul.c . . . . . 6 𝐶 = ((subringAlg ‘𝐹)‘𝑉)
17 eqid 2729 . . . . . 6 (𝐹s 𝑉) = (𝐹s 𝑉)
1816, 17sralvec 33560 . . . . 5 ((𝐹 ∈ DivRing ∧ (𝐹s 𝑉) ∈ DivRing ∧ 𝑉 ∈ (SubRing‘𝐹)) → 𝐶 ∈ LVec)
191, 15, 3, 18syl3anc 1373 . . . 4 (𝜑𝐶 ∈ LVec)
20 eqid 2729 . . . . 5 (LBasis‘𝐶) = (LBasis‘𝐶)
2120lbsex 21090 . . . 4 (𝐶 ∈ LVec → (LBasis‘𝐶) ≠ ∅)
2219, 21syl 17 . . 3 (𝜑 → (LBasis‘𝐶) ≠ ∅)
23 n0 4306 . . 3 ((LBasis‘𝐶) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (LBasis‘𝐶))
2422, 23sylib 218 . 2 (𝜑 → ∃𝑥 𝑥 ∈ (LBasis‘𝐶))
25 fedgmul.1 . . . . . . 7 (𝜑𝐸 ∈ DivRing)
26 fedgmul.b . . . . . . . 8 𝐵 = ((subringAlg ‘𝐸)‘𝑈)
2726, 4sralvec 33560 . . . . . . 7 ((𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ (SubRing‘𝐸)) → 𝐵 ∈ LVec)
2825, 1, 2, 27syl3anc 1373 . . . . . 6 (𝜑𝐵 ∈ LVec)
29 eqid 2729 . . . . . . 7 (LBasis‘𝐵) = (LBasis‘𝐵)
3029lbsex 21090 . . . . . 6 (𝐵 ∈ LVec → (LBasis‘𝐵) ≠ ∅)
3128, 30syl 17 . . . . 5 (𝜑 → (LBasis‘𝐵) ≠ ∅)
32 n0 4306 . . . . 5 ((LBasis‘𝐵) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (LBasis‘𝐵))
3331, 32sylib 218 . . . 4 (𝜑 → ∃𝑦 𝑦 ∈ (LBasis‘𝐵))
3433adantr 480 . . 3 ((𝜑𝑥 ∈ (LBasis‘𝐶)) → ∃𝑦 𝑦 ∈ (LBasis‘𝐵))
35 drngring 20639 . . . . . . . . . . . . . . 15 (𝐸 ∈ DivRing → 𝐸 ∈ Ring)
3625, 35syl 17 . . . . . . . . . . . . . 14 (𝜑𝐸 ∈ Ring)
3736ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → 𝐸 ∈ Ring)
38 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑥 ∈ (LBasis‘𝐶))
39 eqid 2729 . . . . . . . . . . . . . . . . . 18 (Base‘𝐶) = (Base‘𝐶)
4039, 20lbsss 20999 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (LBasis‘𝐶) → 𝑥 ⊆ (Base‘𝐶))
4138, 40syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑥 ⊆ (Base‘𝐶))
42 eqid 2729 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘𝐸) = (Base‘𝐸)
4342subrgss 20475 . . . . . . . . . . . . . . . . . . . . 21 (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ⊆ (Base‘𝐸))
442, 43syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑈 ⊆ (Base‘𝐸))
454, 42ressbas2 17167 . . . . . . . . . . . . . . . . . . . 20 (𝑈 ⊆ (Base‘𝐸) → 𝑈 = (Base‘𝐹))
4644, 45syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑈 = (Base‘𝐹))
4716a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐶 = ((subringAlg ‘𝐹)‘𝑉))
48 eqid 2729 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘𝐹) = (Base‘𝐹)
4948subrgss 20475 . . . . . . . . . . . . . . . . . . . . 21 (𝑉 ∈ (SubRing‘𝐹) → 𝑉 ⊆ (Base‘𝐹))
503, 49syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑉 ⊆ (Base‘𝐹))
5147, 50srabase 21099 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (Base‘𝐹) = (Base‘𝐶))
5246, 51eqtrd 2764 . . . . . . . . . . . . . . . . . 18 (𝜑𝑈 = (Base‘𝐶))
5352, 44eqsstrrd 3973 . . . . . . . . . . . . . . . . 17 (𝜑 → (Base‘𝐶) ⊆ (Base‘𝐸))
5453ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (Base‘𝐶) ⊆ (Base‘𝐸))
5541, 54sstrd 3948 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑥 ⊆ (Base‘𝐸))
5655ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → 𝑥 ⊆ (Base‘𝐸))
57 simpr 484 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → 𝑖𝑥)
5856, 57sseldd 3938 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → 𝑖 ∈ (Base‘𝐸))
59 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑦 ∈ (LBasis‘𝐵))
60 eqid 2729 . . . . . . . . . . . . . . . . . 18 (Base‘𝐵) = (Base‘𝐵)
6160, 29lbsss 20999 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (LBasis‘𝐵) → 𝑦 ⊆ (Base‘𝐵))
6259, 61syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑦 ⊆ (Base‘𝐵))
6326a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 = ((subringAlg ‘𝐸)‘𝑈))
6463, 44srabase 21099 . . . . . . . . . . . . . . . . 17 (𝜑 → (Base‘𝐸) = (Base‘𝐵))
6564ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (Base‘𝐸) = (Base‘𝐵))
6662, 65sseqtrrd 3975 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑦 ⊆ (Base‘𝐸))
6766ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → 𝑦 ⊆ (Base‘𝐸))
68 simplr 768 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → 𝑗𝑦)
6967, 68sseldd 3938 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → 𝑗 ∈ (Base‘𝐸))
70 eqid 2729 . . . . . . . . . . . . . 14 (.r𝐸) = (.r𝐸)
7142, 70ringcl 20153 . . . . . . . . . . . . 13 ((𝐸 ∈ Ring ∧ 𝑖 ∈ (Base‘𝐸) ∧ 𝑗 ∈ (Base‘𝐸)) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐸))
7237, 58, 69, 71syl3anc 1373 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐸))
73 fedgmul.a . . . . . . . . . . . . . . 15 𝐴 = ((subringAlg ‘𝐸)‘𝑉)
7473a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐴 = ((subringAlg ‘𝐸)‘𝑉))
757simpld 494 . . . . . . . . . . . . . . 15 (𝜑𝑉 ∈ (SubRing‘𝐸))
7642subrgss 20475 . . . . . . . . . . . . . . 15 (𝑉 ∈ (SubRing‘𝐸) → 𝑉 ⊆ (Base‘𝐸))
7775, 76syl 17 . . . . . . . . . . . . . 14 (𝜑𝑉 ⊆ (Base‘𝐸))
7874, 77srabase 21099 . . . . . . . . . . . . 13 (𝜑 → (Base‘𝐸) = (Base‘𝐴))
7978ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → (Base‘𝐸) = (Base‘𝐴))
8072, 79eleqtrd 2830 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐴))
8180anasss 466 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ (𝑗𝑦𝑖𝑥)) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐴))
8281ralrimivva 3172 . . . . . . . . 9 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ∀𝑗𝑦𝑖𝑥 (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐴))
83 oveq2 7361 . . . . . . . . . . 11 (𝑤 = 𝑗 → (𝑡(.r𝐸)𝑤) = (𝑡(.r𝐸)𝑗))
84 oveq1 7360 . . . . . . . . . . 11 (𝑡 = 𝑖 → (𝑡(.r𝐸)𝑗) = (𝑖(.r𝐸)𝑗))
8583, 84cbvmpov 7448 . . . . . . . . . 10 (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) = (𝑗𝑦, 𝑖𝑥 ↦ (𝑖(.r𝐸)𝑗))
8685fmpo 8010 . . . . . . . . 9 (∀𝑗𝑦𝑖𝑥 (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐴) ↔ (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)):(𝑦 × 𝑥)⟶(Base‘𝐴))
8782, 86sylib 218 . . . . . . . 8 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)):(𝑦 × 𝑥)⟶(Base‘𝐴))
88 eqid 2729 . . . . . . . . . . . . . 14 (Base‘(Scalar‘𝐵)) = (Base‘(Scalar‘𝐵))
89 eqid 2729 . . . . . . . . . . . . . 14 ( ·𝑠𝐵) = ( ·𝑠𝐵)
90 eqid 2729 . . . . . . . . . . . . . 14 (+g𝐵) = (+g𝐵)
91 eqid 2729 . . . . . . . . . . . . . 14 (0g‘(Scalar‘𝐵)) = (0g‘(Scalar‘𝐵))
9228ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝐵 ∈ LVec)
9392ad5antr 734 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝐵 ∈ LVec)
9429lbslinds 21758 . . . . . . . . . . . . . . . 16 (LBasis‘𝐵) ⊆ (LIndS‘𝐵)
9594, 59sselid 3935 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑦 ∈ (LIndS‘𝐵))
9695ad5antr 734 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝑦 ∈ (LIndS‘𝐵))
9768ad3antrrr 730 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝑗𝑦)
98 simpllr 775 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝑣𝑦)
9963, 44srasca 21102 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐸s 𝑈) = (Scalar‘𝐵))
1004, 99eqtrid 2776 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐹 = (Scalar‘𝐵))
101100fveq2d 6830 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (Base‘𝐹) = (Base‘(Scalar‘𝐵)))
102101, 51eqtr3d 2766 . . . . . . . . . . . . . . . . . 18 (𝜑 → (Base‘(Scalar‘𝐵)) = (Base‘𝐶))
103102ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (Base‘(Scalar‘𝐵)) = (Base‘𝐶))
10441, 103sseqtrrd 3975 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑥 ⊆ (Base‘(Scalar‘𝐵)))
105104ad5antr 734 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝑥 ⊆ (Base‘(Scalar‘𝐵)))
106 simp-4r 783 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝑖𝑥)
107105, 106sseldd 3938 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝑖 ∈ (Base‘(Scalar‘𝐵)))
108 simplr 768 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝑢𝑥)
109105, 108sseldd 3938 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝑢 ∈ (Base‘(Scalar‘𝐵)))
11019ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝐶 ∈ LVec)
111 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 (LSpan‘𝐶) = (LSpan‘𝐶)
11239, 20, 111islbs4 21757 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (LBasis‘𝐶) ↔ (𝑥 ∈ (LIndS‘𝐶) ∧ ((LSpan‘𝐶)‘𝑥) = (Base‘𝐶)))
11338, 112sylib 218 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑥 ∈ (LIndS‘𝐶) ∧ ((LSpan‘𝐶)‘𝑥) = (Base‘𝐶)))
114113simpld 494 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑥 ∈ (LIndS‘𝐶))
115 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (0g𝐶) = (0g𝐶)
1161150nellinds 33320 . . . . . . . . . . . . . . . . . 18 ((𝐶 ∈ LVec ∧ 𝑥 ∈ (LIndS‘𝐶)) → ¬ (0g𝐶) ∈ 𝑥)
117110, 114, 116syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ¬ (0g𝐶) ∈ 𝑥)
118117ad5antr 734 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → ¬ (0g𝐶) ∈ 𝑥)
119 nelne2 3023 . . . . . . . . . . . . . . . 16 ((𝑖𝑥 ∧ ¬ (0g𝐶) ∈ 𝑥) → 𝑖 ≠ (0g𝐶))
120106, 118, 119syl2anc 584 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝑖 ≠ (0g𝐶))
121100fveq2d 6830 . . . . . . . . . . . . . . . . 17 (𝜑 → (0g𝐹) = (0g‘(Scalar‘𝐵)))
12216, 1, 3drgext0g 33564 . . . . . . . . . . . . . . . . 17 (𝜑 → (0g𝐹) = (0g𝐶))
123121, 122eqtr3d 2766 . . . . . . . . . . . . . . . 16 (𝜑 → (0g‘(Scalar‘𝐵)) = (0g𝐶))
124123ad7antr 738 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (0g‘(Scalar‘𝐵)) = (0g𝐶))
125120, 124neeqtrrd 2999 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝑖 ≠ (0g‘(Scalar‘𝐵)))
126 simpr 484 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢))
127 ovexd 7388 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (𝑖(.r𝐸)𝑗) ∈ V)
12885ovmpt4g 7500 . . . . . . . . . . . . . . . . 17 ((𝑗𝑦𝑖𝑥 ∧ (𝑖(.r𝐸)𝑗) ∈ V) → (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑖(.r𝐸)𝑗))
12997, 106, 127, 128syl3anc 1373 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑖(.r𝐸)𝑗))
13026, 25, 2drgextvsca 33565 . . . . . . . . . . . . . . . . . 18 (𝜑 → (.r𝐸) = ( ·𝑠𝐵))
131130oveqd 7370 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑖(.r𝐸)𝑗) = (𝑖( ·𝑠𝐵)𝑗))
132131ad7antr 738 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (𝑖(.r𝐸)𝑗) = (𝑖( ·𝑠𝐵)𝑗))
133129, 132eqtrd 2764 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑖( ·𝑠𝐵)𝑗))
13485a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑣𝑦) ∧ 𝑢𝑥) → (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) = (𝑗𝑦, 𝑖𝑥 ↦ (𝑖(.r𝐸)𝑗)))
135 simprr 772 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗 = 𝑣𝑖 = 𝑢)) → 𝑖 = 𝑢)
136 simprl 770 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗 = 𝑣𝑖 = 𝑢)) → 𝑗 = 𝑣)
137135, 136oveq12d 7371 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗 = 𝑣𝑖 = 𝑢)) → (𝑖(.r𝐸)𝑗) = (𝑢(.r𝐸)𝑣))
138 simplr 768 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑣𝑦) ∧ 𝑢𝑥) → 𝑣𝑦)
139 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑣𝑦) ∧ 𝑢𝑥) → 𝑢𝑥)
140 ovexd 7388 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑣𝑦) ∧ 𝑢𝑥) → (𝑢(.r𝐸)𝑣) ∈ V)
141134, 137, 138, 139, 140ovmpod 7505 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑣𝑦) ∧ 𝑢𝑥) → (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) = (𝑢(.r𝐸)𝑣))
142141adantllr 719 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) → (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) = (𝑢(.r𝐸)𝑣))
143142adantl3r 750 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) → (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) = (𝑢(.r𝐸)𝑣))
144143adantr 480 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) = (𝑢(.r𝐸)𝑣))
145130oveqd 7370 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑢(.r𝐸)𝑣) = (𝑢( ·𝑠𝐵)𝑣))
146145ad7antr 738 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (𝑢(.r𝐸)𝑣) = (𝑢( ·𝑠𝐵)𝑣))
147144, 146eqtrd 2764 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) = (𝑢( ·𝑠𝐵)𝑣))
148126, 133, 1473eqtr3d 2772 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (𝑖( ·𝑠𝐵)𝑗) = (𝑢( ·𝑠𝐵)𝑣))
14988, 89, 90, 91, 93, 96, 97, 98, 107, 109, 125, 148linds2eq 33331 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (𝑗 = 𝑣𝑖 = 𝑢))
150149ex 412 . . . . . . . . . . . 12 (((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) → ((𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) → (𝑗 = 𝑣𝑖 = 𝑢)))
151150anasss 466 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ (𝑣𝑦𝑢𝑥)) → ((𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) → (𝑗 = 𝑣𝑖 = 𝑢)))
152151ralrimivva 3172 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → ∀𝑣𝑦𝑢𝑥 ((𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) → (𝑗 = 𝑣𝑖 = 𝑢)))
153152anasss 466 . . . . . . . . 9 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ (𝑗𝑦𝑖𝑥)) → ∀𝑣𝑦𝑢𝑥 ((𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) → (𝑗 = 𝑣𝑖 = 𝑢)))
154153ralrimivva 3172 . . . . . . . 8 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ∀𝑗𝑦𝑖𝑥𝑣𝑦𝑢𝑥 ((𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) → (𝑗 = 𝑣𝑖 = 𝑢)))
155 f1opr 7409 . . . . . . . 8 ((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)):(𝑦 × 𝑥)–1-1→(Base‘𝐴) ↔ ((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)):(𝑦 × 𝑥)⟶(Base‘𝐴) ∧ ∀𝑗𝑦𝑖𝑥𝑣𝑦𝑢𝑥 ((𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) → (𝑗 = 𝑣𝑖 = 𝑢))))
15687, 154, 155sylanbrc 583 . . . . . . 7 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)):(𝑦 × 𝑥)–1-1→(Base‘𝐴))
15759, 38xpexd 7691 . . . . . . 7 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑦 × 𝑥) ∈ V)
158 f1rnen 32586 . . . . . . 7 (((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)):(𝑦 × 𝑥)–1-1→(Base‘𝐴) ∧ (𝑦 × 𝑥) ∈ V) → ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) ≈ (𝑦 × 𝑥))
159156, 157, 158syl2anc 584 . . . . . 6 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) ≈ (𝑦 × 𝑥))
160 hasheni 14273 . . . . . 6 (ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) ≈ (𝑦 × 𝑥) → (♯‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))) = (♯‘(𝑦 × 𝑥)))
161159, 160syl 17 . . . . 5 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (♯‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))) = (♯‘(𝑦 × 𝑥)))
162 hashxpe 32765 . . . . . 6 ((𝑦 ∈ (LBasis‘𝐵) ∧ 𝑥 ∈ (LBasis‘𝐶)) → (♯‘(𝑦 × 𝑥)) = ((♯‘𝑦) ·e (♯‘𝑥)))
16359, 38, 162syl2anc 584 . . . . 5 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (♯‘(𝑦 × 𝑥)) = ((♯‘𝑦) ·e (♯‘𝑥)))
164161, 163eqtrd 2764 . . . 4 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (♯‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))) = ((♯‘𝑦) ·e (♯‘𝑥)))
16573, 12sralvec 33560 . . . . . . 7 ((𝐸 ∈ DivRing ∧ 𝐾 ∈ DivRing ∧ 𝑉 ∈ (SubRing‘𝐸)) → 𝐴 ∈ LVec)
16625, 14, 75, 165syl3anc 1373 . . . . . 6 (𝜑𝐴 ∈ LVec)
167166ad2antrr 726 . . . . 5 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝐴 ∈ LVec)
168 lveclmod 21028 . . . . . . . . 9 (𝐴 ∈ LVec → 𝐴 ∈ LMod)
169166, 168syl 17 . . . . . . . 8 (𝜑𝐴 ∈ LMod)
170169ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝐴 ∈ LMod)
17125ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴)) → 𝐸 ∈ DivRing)
1721ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴)) → 𝐹 ∈ DivRing)
17314ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴)) → 𝐾 ∈ DivRing)
1742ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴)) → 𝑈 ∈ (SubRing‘𝐸))
1753ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴)) → 𝑉 ∈ (SubRing‘𝐹))
176 fveq2 6826 . . . . . . . . . . . 12 (𝑤 = 𝑗 → (𝑓𝑤) = (𝑓𝑗))
177176fveq1d 6828 . . . . . . . . . . 11 (𝑤 = 𝑗 → ((𝑓𝑤)‘𝑣) = ((𝑓𝑗)‘𝑣))
178 fveq2 6826 . . . . . . . . . . 11 (𝑣 = 𝑖 → ((𝑓𝑗)‘𝑣) = ((𝑓𝑗)‘𝑖))
179177, 178cbvmpov 7448 . . . . . . . . . 10 (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) = (𝑗𝑦, 𝑖𝑥 ↦ ((𝑓𝑗)‘𝑖))
180 simp-4r 783 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴)) → 𝑥 ∈ (LBasis‘𝐶))
181 simpllr 775 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴)) → 𝑦 ∈ (LBasis‘𝐵))
182 simplr 768 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴)) → 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥))))
183 simpr 484 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴)) → (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴))
18473, 26, 16, 4, 12, 171, 172, 173, 174, 175, 85, 179, 180, 181, 182, 183fedgmullem2 33605 . . . . . . . . 9 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴)) → 𝑐 = ((𝑦 × 𝑥) × {(0g‘(Scalar‘𝐴))}))
185184ex 412 . . . . . . . 8 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) → ((𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴) → 𝑐 = ((𝑦 × 𝑥) × {(0g‘(Scalar‘𝐴))})))
186185ralrimiva 3121 . . . . . . 7 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ∀𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))((𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴) → 𝑐 = ((𝑦 × 𝑥) × {(0g‘(Scalar‘𝐴))})))
187 eqid 2729 . . . . . . . . 9 (Base‘𝐴) = (Base‘𝐴)
188 eqid 2729 . . . . . . . . 9 (Scalar‘𝐴) = (Scalar‘𝐴)
189 eqid 2729 . . . . . . . . 9 ( ·𝑠𝐴) = ( ·𝑠𝐴)
190 eqid 2729 . . . . . . . . 9 (0g𝐴) = (0g𝐴)
191 eqid 2729 . . . . . . . . 9 (0g‘(Scalar‘𝐴)) = (0g‘(Scalar‘𝐴))
192 eqid 2729 . . . . . . . . 9 (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥))) = (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))
193187, 188, 189, 190, 191, 192islindf4 21763 . . . . . . . 8 ((𝐴 ∈ LMod ∧ (𝑦 × 𝑥) ∈ V ∧ (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)):(𝑦 × 𝑥)⟶(Base‘𝐴)) → ((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) LIndF 𝐴 ↔ ∀𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))((𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴) → 𝑐 = ((𝑦 × 𝑥) × {(0g‘(Scalar‘𝐴))}))))
194193biimpar 477 . . . . . . 7 (((𝐴 ∈ LMod ∧ (𝑦 × 𝑥) ∈ V ∧ (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)):(𝑦 × 𝑥)⟶(Base‘𝐴)) ∧ ∀𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))((𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴) → 𝑐 = ((𝑦 × 𝑥) × {(0g‘(Scalar‘𝐴))}))) → (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) LIndF 𝐴)
195170, 157, 87, 186, 194syl31anc 1375 . . . . . 6 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) LIndF 𝐴)
19672anasss 466 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ (𝑗𝑦𝑖𝑥)) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐸))
197196ralrimivva 3172 . . . . . . . . . 10 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ∀𝑗𝑦𝑖𝑥 (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐸))
19885rnmposs 32631 . . . . . . . . . 10 (∀𝑗𝑦𝑖𝑥 (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐸) → ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) ⊆ (Base‘𝐸))
199197, 198syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) ⊆ (Base‘𝐸))
20078ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (Base‘𝐸) = (Base‘𝐴))
201199, 200sseqtrd 3974 . . . . . . . 8 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) ⊆ (Base‘𝐴))
202 eqid 2729 . . . . . . . . 9 (LSpan‘𝐴) = (LSpan‘𝐴)
203187, 202lspssv 20904 . . . . . . . 8 ((𝐴 ∈ LMod ∧ ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) ⊆ (Base‘𝐴)) → ((LSpan‘𝐴)‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))) ⊆ (Base‘𝐴))
204170, 201, 203syl2anc 584 . . . . . . 7 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ((LSpan‘𝐴)‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))) ⊆ (Base‘𝐴))
205 simpl 482 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → ((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)))
206205ad4antr 732 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑗𝑦) → ((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)))
207 elmapi 8783 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦) → 𝑎:𝑦⟶(Base‘(Scalar‘𝐵)))
208207ad4antlr 733 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑗𝑦) → 𝑎:𝑦⟶(Base‘(Scalar‘𝐵)))
209 simpr 484 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑗𝑦) → 𝑗𝑦)
210208, 209ffvelcdmd 7023 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑗𝑦) → (𝑎𝑗) ∈ (Base‘(Scalar‘𝐵)))
211113simprd 495 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ((LSpan‘𝐶)‘𝑥) = (Base‘𝐶))
212206, 211syl 17 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑗𝑦) → ((LSpan‘𝐶)‘𝑥) = (Base‘𝐶))
213102ad7antr 738 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑗𝑦) → (Base‘(Scalar‘𝐵)) = (Base‘𝐶))
214212, 213eqtr4d 2767 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑗𝑦) → ((LSpan‘𝐶)‘𝑥) = (Base‘(Scalar‘𝐵)))
215210, 214eleqtrrd 2831 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑗𝑦) → (𝑎𝑗) ∈ ((LSpan‘𝐶)‘𝑥))
216 eqid 2729 . . . . . . . . . . . . . . . . 17 (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶))
217 eqid 2729 . . . . . . . . . . . . . . . . 17 (Scalar‘𝐶) = (Scalar‘𝐶)
218 eqid 2729 . . . . . . . . . . . . . . . . 17 (0g‘(Scalar‘𝐶)) = (0g‘(Scalar‘𝐶))
219 eqid 2729 . . . . . . . . . . . . . . . . 17 ( ·𝑠𝐶) = ( ·𝑠𝐶)
220 lveclmod 21028 . . . . . . . . . . . . . . . . . . 19 (𝐶 ∈ LVec → 𝐶 ∈ LMod)
22119, 220syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐶 ∈ LMod)
222221ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝐶 ∈ LMod)
223111, 39, 216, 217, 218, 219, 222, 41ellspds 33318 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ((𝑎𝑗) ∈ ((LSpan‘𝐶)‘𝑥) ↔ ∃𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖))))))
224223biimpa 476 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ (𝑎𝑗) ∈ ((LSpan‘𝐶)‘𝑥)) → ∃𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖)))))
225206, 215, 224syl2anc 584 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑗𝑦) → ∃𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖)))))
226225ralrimiva 3121 . . . . . . . . . . . . 13 (((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) → ∀𝑗𝑦𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖)))))
227 fveq2 6826 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑗 → (𝑎𝑤) = (𝑎𝑗))
228 fveq2 6826 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 = 𝑖 → (𝑏𝑣) = (𝑏𝑖))
229 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 = 𝑖𝑣 = 𝑖)
230228, 229oveq12d 7371 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = 𝑖 → ((𝑏𝑣)( ·𝑠𝐶)𝑣) = ((𝑏𝑖)( ·𝑠𝐶)𝑖))
231230cbvmptv 5199 . . . . . . . . . . . . . . . . . . . 20 (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣)) = (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖))
232231oveq2i 7364 . . . . . . . . . . . . . . . . . . 19 (𝐶 Σg (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣))) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖)))
233232a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑗 → (𝐶 Σg (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣))) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖))))
234227, 233eqeq12d 2745 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑗 → ((𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣))) ↔ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖)))))
235234anbi2d 630 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑗 → ((𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣)))) ↔ (𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖))))))
236235rexbidv 3153 . . . . . . . . . . . . . . 15 (𝑤 = 𝑗 → (∃𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣)))) ↔ ∃𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖))))))
237236cbvralvw 3207 . . . . . . . . . . . . . 14 (∀𝑤𝑦𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣)))) ↔ ∀𝑗𝑦𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖)))))
238 vex 3442 . . . . . . . . . . . . . . 15 𝑦 ∈ V
239 breq1 5098 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑓𝑤) → (𝑏 finSupp (0g‘(Scalar‘𝐶)) ↔ (𝑓𝑤) finSupp (0g‘(Scalar‘𝐶))))
240 fveq1 6825 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = (𝑓𝑤) → (𝑏𝑣) = ((𝑓𝑤)‘𝑣))
241240oveq1d 7368 . . . . . . . . . . . . . . . . . . 19 (𝑏 = (𝑓𝑤) → ((𝑏𝑣)( ·𝑠𝐶)𝑣) = (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))
242241mpteq2dv 5189 . . . . . . . . . . . . . . . . . 18 (𝑏 = (𝑓𝑤) → (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣)) = (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣)))
243242oveq2d 7369 . . . . . . . . . . . . . . . . 17 (𝑏 = (𝑓𝑤) → (𝐶 Σg (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣))) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))
244243eqeq2d 2740 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑓𝑤) → ((𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣))) ↔ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣)))))
245239, 244anbi12d 632 . . . . . . . . . . . . . . 15 (𝑏 = (𝑓𝑤) → ((𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣)))) ↔ ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))))
246238, 245ac6s 10397 . . . . . . . . . . . . . 14 (∀𝑤𝑦𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣)))) → ∃𝑓(𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))))
247237, 246sylbir 235 . . . . . . . . . . . . 13 (∀𝑗𝑦𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖)))) → ∃𝑓(𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))))
248226, 247syl 17 . . . . . . . . . . . 12 (((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) → ∃𝑓(𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))))
249 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥))
250 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → 𝑗𝑦)
251249, 250ffvelcdmd 7023 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → (𝑓𝑗) ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥))
252 elmapi 8783 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓𝑗) ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥) → (𝑓𝑗):𝑥⟶(Base‘(Scalar‘𝐶)))
253251, 252syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → (𝑓𝑗):𝑥⟶(Base‘(Scalar‘𝐶)))
254253anasss 466 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ (𝑗𝑦𝑖𝑥)) → (𝑓𝑗):𝑥⟶(Base‘(Scalar‘𝐶)))
255 simprr 772 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ (𝑗𝑦𝑖𝑥)) → 𝑖𝑥)
256254, 255ffvelcdmd 7023 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ (𝑗𝑦𝑖𝑥)) → ((𝑓𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐶)))
25774, 77srasca 21102 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐸s 𝑉) = (Scalar‘𝐴))
25812, 257eqtrid 2776 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐾 = (Scalar‘𝐴))
25947, 50srasca 21102 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐹s 𝑉) = (Scalar‘𝐶))
26013, 259eqtr3d 2766 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐾 = (Scalar‘𝐶))
261258, 260eqtr3d 2766 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (Scalar‘𝐴) = (Scalar‘𝐶))
262261fveq2d 6830 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐶)))
263262ad4antr 732 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ (𝑗𝑦𝑖𝑥)) → (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐶)))
264256, 263eleqtrrd 2831 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ (𝑗𝑦𝑖𝑥)) → ((𝑓𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)))
265264ralrimivva 3172 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) → ∀𝑗𝑦𝑖𝑥 ((𝑓𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)))
266179fmpo 8010 . . . . . . . . . . . . . . . . . . 19 (∀𝑗𝑦𝑖𝑥 ((𝑓𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)) ↔ (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)):(𝑦 × 𝑥)⟶(Base‘(Scalar‘𝐴)))
267265, 266sylib 218 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) → (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)):(𝑦 × 𝑥)⟶(Base‘(Scalar‘𝐴)))
268 fvexd 6841 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) → (Base‘(Scalar‘𝐴)) ∈ V)
269157adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) → (𝑦 × 𝑥) ∈ V)
270268, 269elmapd 8774 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) → ((𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥)) ↔ (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)):(𝑦 × 𝑥)⟶(Base‘(Scalar‘𝐴))))
271267, 270mpbird 257 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) → (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥)))
272271ad5ant15 758 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) → (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥)))
273272adantr 480 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥)))
274273adantl3r 750 . . . . . . . . . . . . . 14 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥)))
275 simpr 484 . . . . . . . . . . . . . . . 16 ((((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) ∧ 𝑐 = (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣))) → 𝑐 = (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)))
276275breq1d 5105 . . . . . . . . . . . . . . 15 ((((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) ∧ 𝑐 = (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣))) → (𝑐 finSupp (0g‘(Scalar‘𝐴)) ↔ (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) finSupp (0g‘(Scalar‘𝐴))))
277275oveq1d 7368 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) ∧ 𝑐 = (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣))) → (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))) = ((𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) ∘f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))
278277oveq2d 7369 . . . . . . . . . . . . . . . 16 ((((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) ∧ 𝑐 = (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣))) → (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (𝐴 Σg ((𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) ∘f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))))
279278eqeq2d 2740 . . . . . . . . . . . . . . 15 ((((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) ∧ 𝑐 = (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣))) → (𝑧 = (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) ↔ 𝑧 = (𝐴 Σg ((𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) ∘f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))))
280276, 279anbi12d 632 . . . . . . . . . . . . . 14 ((((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) ∧ 𝑐 = (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣))) → ((𝑐 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))) ↔ ((𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg ((𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) ∘f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))))))
28125ad8antr 740 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝐸 ∈ DivRing)
2821ad8antr 740 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝐹 ∈ DivRing)
28314ad8antr 740 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝐾 ∈ DivRing)
2842ad8antr 740 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝑈 ∈ (SubRing‘𝐸))
2853ad8antr 740 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝑉 ∈ (SubRing‘𝐹))
28638ad6antr 736 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝑥 ∈ (LBasis‘𝐶))
28759ad6antr 736 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝑦 ∈ (LBasis‘𝐵))
288 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → 𝑧 ∈ (Base‘𝐴))
289288ad5antr 734 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝑧 ∈ (Base‘𝐴))
290207ad5antlr 735 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝑎:𝑦⟶(Base‘(Scalar‘𝐵)))
291 simp-4r 783 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝑎 finSupp (0g‘(Scalar‘𝐵)))
292 simpllr 775 . . . . . . . . . . . . . . . 16 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤))))
293 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑗𝑤 = 𝑗)
294227, 293oveq12d 7371 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑗 → ((𝑎𝑤)( ·𝑠𝐵)𝑤) = ((𝑎𝑗)( ·𝑠𝐵)𝑗))
295294cbvmptv 5199 . . . . . . . . . . . . . . . . 17 (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)) = (𝑗𝑦 ↦ ((𝑎𝑗)( ·𝑠𝐵)𝑗))
296295oveq2i 7364 . . . . . . . . . . . . . . . 16 (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤))) = (𝐵 Σg (𝑗𝑦 ↦ ((𝑎𝑗)( ·𝑠𝐵)𝑗)))
297292, 296eqtrdi 2780 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝑧 = (𝐵 Σg (𝑗𝑦 ↦ ((𝑎𝑗)( ·𝑠𝐵)𝑗))))
298 simplr 768 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥))
299 simpr 484 . . . . . . . . . . . . . . . . . 18 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣)))))
300176breq1d 5105 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑗 → ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ↔ (𝑓𝑗) finSupp (0g‘(Scalar‘𝐶))))
301 fveq2 6826 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 = 𝑖 → ((𝑓𝑤)‘𝑣) = ((𝑓𝑤)‘𝑖))
302301, 229oveq12d 7371 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑣 = 𝑖 → (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣) = (((𝑓𝑤)‘𝑖)( ·𝑠𝐶)𝑖))
303302cbvmptv 5199 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣)) = (𝑖𝑥 ↦ (((𝑓𝑤)‘𝑖)( ·𝑠𝐶)𝑖))
304176fveq1d 6828 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = 𝑗 → ((𝑓𝑤)‘𝑖) = ((𝑓𝑗)‘𝑖))
305304oveq1d 7368 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = 𝑗 → (((𝑓𝑤)‘𝑖)( ·𝑠𝐶)𝑖) = (((𝑓𝑗)‘𝑖)( ·𝑠𝐶)𝑖))
306305mpteq2dv 5189 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 𝑗 → (𝑖𝑥 ↦ (((𝑓𝑤)‘𝑖)( ·𝑠𝐶)𝑖)) = (𝑖𝑥 ↦ (((𝑓𝑗)‘𝑖)( ·𝑠𝐶)𝑖)))
307303, 306eqtrid 2776 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = 𝑗 → (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣)) = (𝑖𝑥 ↦ (((𝑓𝑗)‘𝑖)( ·𝑠𝐶)𝑖)))
308307oveq2d 7369 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑗 → (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))) = (𝐶 Σg (𝑖𝑥 ↦ (((𝑓𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
309227, 308eqeq12d 2745 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑗 → ((𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))) ↔ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ (((𝑓𝑗)‘𝑖)( ·𝑠𝐶)𝑖)))))
310300, 309anbi12d 632 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑗 → (((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣)))) ↔ ((𝑓𝑗) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ (((𝑓𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))))
311310cbvralvw 3207 . . . . . . . . . . . . . . . . . 18 (∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣)))) ↔ ∀𝑗𝑦 ((𝑓𝑗) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ (((𝑓𝑗)‘𝑖)( ·𝑠𝐶)𝑖)))))
312299, 311sylib 218 . . . . . . . . . . . . . . . . 17 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → ∀𝑗𝑦 ((𝑓𝑗) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ (((𝑓𝑗)‘𝑖)( ·𝑠𝐶)𝑖)))))
313312r19.21bi 3221 . . . . . . . . . . . . . . . 16 ((((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) ∧ 𝑗𝑦) → ((𝑓𝑗) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ (((𝑓𝑗)‘𝑖)( ·𝑠𝐶)𝑖)))))
314313simpld 494 . . . . . . . . . . . . . . 15 ((((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) ∧ 𝑗𝑦) → (𝑓𝑗) finSupp (0g‘(Scalar‘𝐶)))
315313simprd 495 . . . . . . . . . . . . . . 15 ((((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) ∧ 𝑗𝑦) → (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ (((𝑓𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
31673, 26, 16, 4, 12, 281, 282, 283, 284, 285, 85, 179, 286, 287, 289, 290, 291, 297, 298, 314, 315fedgmullem1 33604 . . . . . . . . . . . . . 14 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → ((𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg ((𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) ∘f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))))
317274, 280, 316rspcedvd 3581 . . . . . . . . . . . . 13 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → ∃𝑐 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥))(𝑐 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))))
318317anasss 466 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ (𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣)))))) → ∃𝑐 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥))(𝑐 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))))
319248, 318exlimddv 1935 . . . . . . . . . . 11 (((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) → ∃𝑐 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥))(𝑐 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))))
320319anasss 466 . . . . . . . . . 10 ((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ (𝑎 finSupp (0g‘(Scalar‘𝐵)) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤))))) → ∃𝑐 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥))(𝑐 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))))
321 eqid 2729 . . . . . . . . . . . . . . . . 17 (LSpan‘𝐵) = (LSpan‘𝐵)
32260, 29, 321islbs4 21757 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (LBasis‘𝐵) ↔ (𝑦 ∈ (LIndS‘𝐵) ∧ ((LSpan‘𝐵)‘𝑦) = (Base‘𝐵)))
32359, 322sylib 218 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑦 ∈ (LIndS‘𝐵) ∧ ((LSpan‘𝐵)‘𝑦) = (Base‘𝐵)))
324323simprd 495 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ((LSpan‘𝐵)‘𝑦) = (Base‘𝐵))
325324adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → ((LSpan‘𝐵)‘𝑦) = (Base‘𝐵))
32678, 64eqtr3d 2766 . . . . . . . . . . . . . 14 (𝜑 → (Base‘𝐴) = (Base‘𝐵))
327326ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → (Base‘𝐴) = (Base‘𝐵))
328325, 327eqtr4d 2767 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → ((LSpan‘𝐵)‘𝑦) = (Base‘𝐴))
329288, 328eleqtrrd 2831 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → 𝑧 ∈ ((LSpan‘𝐵)‘𝑦))
330 eqid 2729 . . . . . . . . . . . . 13 (Scalar‘𝐵) = (Scalar‘𝐵)
331 lveclmod 21028 . . . . . . . . . . . . . . 15 (𝐵 ∈ LVec → 𝐵 ∈ LMod)
33228, 331syl 17 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ LMod)
333332ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝐵 ∈ LMod)
334321, 60, 88, 330, 91, 89, 333, 62ellspds 33318 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑧 ∈ ((LSpan‘𝐵)‘𝑦) ↔ ∃𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)(𝑎 finSupp (0g‘(Scalar‘𝐵)) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤))))))
335334biimpa 476 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ ((LSpan‘𝐵)‘𝑦)) → ∃𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)(𝑎 finSupp (0g‘(Scalar‘𝐵)) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))))
336205, 329, 335syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → ∃𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)(𝑎 finSupp (0g‘(Scalar‘𝐵)) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))))
337320, 336r19.29a 3137 . . . . . . . . 9 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → ∃𝑐 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥))(𝑐 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))))
338 eqid 2729 . . . . . . . . . . 11 (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴))
339202, 187, 338, 188, 191, 189, 87, 170, 157ellspd 21727 . . . . . . . . . 10 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑧 ∈ ((LSpan‘𝐴)‘((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) “ (𝑦 × 𝑥))) ↔ ∃𝑐 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥))(𝑐 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))))))
340339adantr 480 . . . . . . . . 9 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → (𝑧 ∈ ((LSpan‘𝐴)‘((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) “ (𝑦 × 𝑥))) ↔ ∃𝑐 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥))(𝑐 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))))))
341337, 340mpbird 257 . . . . . . . 8 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → 𝑧 ∈ ((LSpan‘𝐴)‘((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) “ (𝑦 × 𝑥))))
34287ffnd 6657 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) Fn (𝑦 × 𝑥))
343342adantr 480 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) Fn (𝑦 × 𝑥))
344 fnima 6616 . . . . . . . . . 10 ((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) Fn (𝑦 × 𝑥) → ((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) “ (𝑦 × 𝑥)) = ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))
345343, 344syl 17 . . . . . . . . 9 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → ((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) “ (𝑦 × 𝑥)) = ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))
346345fveq2d 6830 . . . . . . . 8 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → ((LSpan‘𝐴)‘((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) “ (𝑦 × 𝑥))) = ((LSpan‘𝐴)‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))
347341, 346eleqtrd 2830 . . . . . . 7 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → 𝑧 ∈ ((LSpan‘𝐴)‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))
348204, 347eqelssd 3959 . . . . . 6 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ((LSpan‘𝐴)‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))) = (Base‘𝐴))
349 eqid 2729 . . . . . . 7 (Base‘(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))) = (Base‘(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))
350 drngnzr 20651 . . . . . . . . . 10 (𝐾 ∈ DivRing → 𝐾 ∈ NzRing)
35114, 350syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ NzRing)
352258, 351eqeltrrd 2829 . . . . . . . 8 (𝜑 → (Scalar‘𝐴) ∈ NzRing)
353352ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (Scalar‘𝐴) ∈ NzRing)
354187, 349, 188, 189, 190, 191, 202, 170, 353, 157, 156lindflbs 33329 . . . . . 6 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) ∈ (LBasis‘𝐴) ↔ ((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) LIndF 𝐴 ∧ ((LSpan‘𝐴)‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))) = (Base‘𝐴))))
355195, 348, 354mpbir2and 713 . . . . 5 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) ∈ (LBasis‘𝐴))
356 eqid 2729 . . . . . 6 (LBasis‘𝐴) = (LBasis‘𝐴)
357356dimval 33575 . . . . 5 ((𝐴 ∈ LVec ∧ ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) ∈ (LBasis‘𝐴)) → (dim‘𝐴) = (♯‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))
358167, 355, 357syl2anc 584 . . . 4 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (dim‘𝐴) = (♯‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))
35929dimval 33575 . . . . . 6 ((𝐵 ∈ LVec ∧ 𝑦 ∈ (LBasis‘𝐵)) → (dim‘𝐵) = (♯‘𝑦))
36092, 59, 359syl2anc 584 . . . . 5 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (dim‘𝐵) = (♯‘𝑦))
36120dimval 33575 . . . . . 6 ((𝐶 ∈ LVec ∧ 𝑥 ∈ (LBasis‘𝐶)) → (dim‘𝐶) = (♯‘𝑥))
362110, 38, 361syl2anc 584 . . . . 5 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (dim‘𝐶) = (♯‘𝑥))
363360, 362oveq12d 7371 . . . 4 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ((dim‘𝐵) ·e (dim‘𝐶)) = ((♯‘𝑦) ·e (♯‘𝑥)))
364164, 358, 3633eqtr4d 2774 . . 3 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (dim‘𝐴) = ((dim‘𝐵) ·e (dim‘𝐶)))
36534, 364exlimddv 1935 . 2 ((𝜑𝑥 ∈ (LBasis‘𝐶)) → (dim‘𝐴) = ((dim‘𝐵) ·e (dim‘𝐶)))
36624, 365exlimddv 1935 1 (𝜑 → (dim‘𝐴) = ((dim‘𝐵) ·e (dim‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3438  wss 3905  c0 4286  {csn 4579   class class class wbr 5095  cmpt 5176   × cxp 5621  ran crn 5624  cima 5626   Fn wfn 6481  wf 6482  1-1wf1 6483  cfv 6486  (class class class)co 7353  cmpo 7355  f cof 7615  m cmap 8760  cen 8876   finSupp cfsupp 9270   ·e cxmu 13031  chash 14255  Basecbs 17138  s cress 17159  +gcplusg 17179  .rcmulr 17180  Scalarcsca 17182   ·𝑠 cvsca 17183  0gc0g 17361   Σg cgsu 17362  Ringcrg 20136  NzRingcnzr 20415  SubRingcsubrg 20472  DivRingcdr 20632  LModclmod 20781  LSpanclspn 20892  LBasisclbs 20996  LVecclvec 21024  subringAlg csra 21093   freeLMod cfrlm 21671   LIndF clindf 21729  LIndSclinds 21730  dimcldim 33573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-reg 9503  ax-inf2 9556  ax-ac2 10376  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-rpss 7663  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-oi 9421  df-r1 9679  df-rank 9680  df-dju 9816  df-card 9854  df-acn 9857  df-ac 10029  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-xnn0 12476  df-z 12490  df-dec 12610  df-uz 12754  df-xmul 13034  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ocomp 17200  df-ds 17201  df-hom 17203  df-cco 17204  df-0g 17363  df-gsum 17364  df-prds 17369  df-pws 17371  df-mre 17506  df-mrc 17507  df-mri 17508  df-acs 17509  df-proset 18218  df-drs 18219  df-poset 18237  df-ipo 18452  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-ghm 19110  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-nzr 20416  df-subrng 20449  df-subrg 20473  df-drng 20634  df-lmod 20783  df-lss 20853  df-lsp 20893  df-lmhm 20944  df-lbs 20997  df-lvec 21025  df-sra 21095  df-rgmod 21096  df-dsmm 21657  df-frlm 21672  df-uvc 21708  df-lindf 21731  df-linds 21732  df-dim 33574
This theorem is referenced by:  extdgmul  33638
  Copyright terms: Public domain W3C validator