Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fedgmul Structured version   Visualization version   GIF version

Theorem fedgmul 33676
Description: The multiplicativity formula for degrees of field extensions. Given 𝐸 a field extension of 𝐹, itself a field extension of 𝐾, we have [𝐸:𝐾] = [𝐸:𝐹][𝐹:𝐾]. Proposition 1.2 of [Lang], p. 224. Here (dim‘𝐴) is the degree of the extension 𝐸 of 𝐾, (dim‘𝐵) is the degree of the extension 𝐸 of 𝐹, and (dim‘𝐶) is the degree of the extension 𝐹 of 𝐾. This proof is valid for infinite dimensions, and is actually valid for division ring extensions, not just field extensions. (Contributed by Thierry Arnoux, 25-Jul-2023.)
Hypotheses
Ref Expression
fedgmul.a 𝐴 = ((subringAlg ‘𝐸)‘𝑉)
fedgmul.b 𝐵 = ((subringAlg ‘𝐸)‘𝑈)
fedgmul.c 𝐶 = ((subringAlg ‘𝐹)‘𝑉)
fedgmul.f 𝐹 = (𝐸s 𝑈)
fedgmul.k 𝐾 = (𝐸s 𝑉)
fedgmul.1 (𝜑𝐸 ∈ DivRing)
fedgmul.2 (𝜑𝐹 ∈ DivRing)
fedgmul.3 (𝜑𝐾 ∈ DivRing)
fedgmul.4 (𝜑𝑈 ∈ (SubRing‘𝐸))
fedgmul.5 (𝜑𝑉 ∈ (SubRing‘𝐹))
Assertion
Ref Expression
fedgmul (𝜑 → (dim‘𝐴) = ((dim‘𝐵) ·e (dim‘𝐶)))

Proof of Theorem fedgmul
Dummy variables 𝑎 𝑐 𝑓 𝑢 𝑥 𝑦 𝑧 𝑖 𝑗 𝑤 𝑏 𝑣 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fedgmul.2 . . . . 5 (𝜑𝐹 ∈ DivRing)
2 fedgmul.4 . . . . . . . 8 (𝜑𝑈 ∈ (SubRing‘𝐸))
3 fedgmul.5 . . . . . . . . . 10 (𝜑𝑉 ∈ (SubRing‘𝐹))
4 fedgmul.f . . . . . . . . . . . 12 𝐹 = (𝐸s 𝑈)
54subsubrg 20563 . . . . . . . . . . 11 (𝑈 ∈ (SubRing‘𝐸) → (𝑉 ∈ (SubRing‘𝐹) ↔ (𝑉 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈)))
65biimpa 476 . . . . . . . . . 10 ((𝑈 ∈ (SubRing‘𝐸) ∧ 𝑉 ∈ (SubRing‘𝐹)) → (𝑉 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈))
72, 3, 6syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑉 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈))
87simprd 495 . . . . . . . 8 (𝜑𝑉𝑈)
9 ressabs 17274 . . . . . . . 8 ((𝑈 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈) → ((𝐸s 𝑈) ↾s 𝑉) = (𝐸s 𝑉))
102, 8, 9syl2anc 584 . . . . . . 7 (𝜑 → ((𝐸s 𝑈) ↾s 𝑉) = (𝐸s 𝑉))
114oveq1i 7420 . . . . . . 7 (𝐹s 𝑉) = ((𝐸s 𝑈) ↾s 𝑉)
12 fedgmul.k . . . . . . 7 𝐾 = (𝐸s 𝑉)
1310, 11, 123eqtr4g 2796 . . . . . 6 (𝜑 → (𝐹s 𝑉) = 𝐾)
14 fedgmul.3 . . . . . 6 (𝜑𝐾 ∈ DivRing)
1513, 14eqeltrd 2835 . . . . 5 (𝜑 → (𝐹s 𝑉) ∈ DivRing)
16 fedgmul.c . . . . . 6 𝐶 = ((subringAlg ‘𝐹)‘𝑉)
17 eqid 2736 . . . . . 6 (𝐹s 𝑉) = (𝐹s 𝑉)
1816, 17sralvec 33630 . . . . 5 ((𝐹 ∈ DivRing ∧ (𝐹s 𝑉) ∈ DivRing ∧ 𝑉 ∈ (SubRing‘𝐹)) → 𝐶 ∈ LVec)
191, 15, 3, 18syl3anc 1373 . . . 4 (𝜑𝐶 ∈ LVec)
20 eqid 2736 . . . . 5 (LBasis‘𝐶) = (LBasis‘𝐶)
2120lbsex 21131 . . . 4 (𝐶 ∈ LVec → (LBasis‘𝐶) ≠ ∅)
2219, 21syl 17 . . 3 (𝜑 → (LBasis‘𝐶) ≠ ∅)
23 n0 4333 . . 3 ((LBasis‘𝐶) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (LBasis‘𝐶))
2422, 23sylib 218 . 2 (𝜑 → ∃𝑥 𝑥 ∈ (LBasis‘𝐶))
25 fedgmul.1 . . . . . . 7 (𝜑𝐸 ∈ DivRing)
26 fedgmul.b . . . . . . . 8 𝐵 = ((subringAlg ‘𝐸)‘𝑈)
2726, 4sralvec 33630 . . . . . . 7 ((𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ (SubRing‘𝐸)) → 𝐵 ∈ LVec)
2825, 1, 2, 27syl3anc 1373 . . . . . 6 (𝜑𝐵 ∈ LVec)
29 eqid 2736 . . . . . . 7 (LBasis‘𝐵) = (LBasis‘𝐵)
3029lbsex 21131 . . . . . 6 (𝐵 ∈ LVec → (LBasis‘𝐵) ≠ ∅)
3128, 30syl 17 . . . . 5 (𝜑 → (LBasis‘𝐵) ≠ ∅)
32 n0 4333 . . . . 5 ((LBasis‘𝐵) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (LBasis‘𝐵))
3331, 32sylib 218 . . . 4 (𝜑 → ∃𝑦 𝑦 ∈ (LBasis‘𝐵))
3433adantr 480 . . 3 ((𝜑𝑥 ∈ (LBasis‘𝐶)) → ∃𝑦 𝑦 ∈ (LBasis‘𝐵))
35 drngring 20701 . . . . . . . . . . . . . . 15 (𝐸 ∈ DivRing → 𝐸 ∈ Ring)
3625, 35syl 17 . . . . . . . . . . . . . 14 (𝜑𝐸 ∈ Ring)
3736ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → 𝐸 ∈ Ring)
38 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑥 ∈ (LBasis‘𝐶))
39 eqid 2736 . . . . . . . . . . . . . . . . . 18 (Base‘𝐶) = (Base‘𝐶)
4039, 20lbsss 21040 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (LBasis‘𝐶) → 𝑥 ⊆ (Base‘𝐶))
4138, 40syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑥 ⊆ (Base‘𝐶))
42 eqid 2736 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘𝐸) = (Base‘𝐸)
4342subrgss 20537 . . . . . . . . . . . . . . . . . . . . 21 (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ⊆ (Base‘𝐸))
442, 43syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑈 ⊆ (Base‘𝐸))
454, 42ressbas2 17264 . . . . . . . . . . . . . . . . . . . 20 (𝑈 ⊆ (Base‘𝐸) → 𝑈 = (Base‘𝐹))
4644, 45syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑈 = (Base‘𝐹))
4716a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐶 = ((subringAlg ‘𝐹)‘𝑉))
48 eqid 2736 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘𝐹) = (Base‘𝐹)
4948subrgss 20537 . . . . . . . . . . . . . . . . . . . . 21 (𝑉 ∈ (SubRing‘𝐹) → 𝑉 ⊆ (Base‘𝐹))
503, 49syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑉 ⊆ (Base‘𝐹))
5147, 50srabase 21140 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (Base‘𝐹) = (Base‘𝐶))
5246, 51eqtrd 2771 . . . . . . . . . . . . . . . . . 18 (𝜑𝑈 = (Base‘𝐶))
5352, 44eqsstrrd 3999 . . . . . . . . . . . . . . . . 17 (𝜑 → (Base‘𝐶) ⊆ (Base‘𝐸))
5453ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (Base‘𝐶) ⊆ (Base‘𝐸))
5541, 54sstrd 3974 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑥 ⊆ (Base‘𝐸))
5655ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → 𝑥 ⊆ (Base‘𝐸))
57 simpr 484 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → 𝑖𝑥)
5856, 57sseldd 3964 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → 𝑖 ∈ (Base‘𝐸))
59 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑦 ∈ (LBasis‘𝐵))
60 eqid 2736 . . . . . . . . . . . . . . . . . 18 (Base‘𝐵) = (Base‘𝐵)
6160, 29lbsss 21040 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (LBasis‘𝐵) → 𝑦 ⊆ (Base‘𝐵))
6259, 61syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑦 ⊆ (Base‘𝐵))
6326a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 = ((subringAlg ‘𝐸)‘𝑈))
6463, 44srabase 21140 . . . . . . . . . . . . . . . . 17 (𝜑 → (Base‘𝐸) = (Base‘𝐵))
6564ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (Base‘𝐸) = (Base‘𝐵))
6662, 65sseqtrrd 4001 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑦 ⊆ (Base‘𝐸))
6766ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → 𝑦 ⊆ (Base‘𝐸))
68 simplr 768 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → 𝑗𝑦)
6967, 68sseldd 3964 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → 𝑗 ∈ (Base‘𝐸))
70 eqid 2736 . . . . . . . . . . . . . 14 (.r𝐸) = (.r𝐸)
7142, 70ringcl 20215 . . . . . . . . . . . . 13 ((𝐸 ∈ Ring ∧ 𝑖 ∈ (Base‘𝐸) ∧ 𝑗 ∈ (Base‘𝐸)) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐸))
7237, 58, 69, 71syl3anc 1373 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐸))
73 fedgmul.a . . . . . . . . . . . . . . 15 𝐴 = ((subringAlg ‘𝐸)‘𝑉)
7473a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐴 = ((subringAlg ‘𝐸)‘𝑉))
757simpld 494 . . . . . . . . . . . . . . 15 (𝜑𝑉 ∈ (SubRing‘𝐸))
7642subrgss 20537 . . . . . . . . . . . . . . 15 (𝑉 ∈ (SubRing‘𝐸) → 𝑉 ⊆ (Base‘𝐸))
7775, 76syl 17 . . . . . . . . . . . . . 14 (𝜑𝑉 ⊆ (Base‘𝐸))
7874, 77srabase 21140 . . . . . . . . . . . . 13 (𝜑 → (Base‘𝐸) = (Base‘𝐴))
7978ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → (Base‘𝐸) = (Base‘𝐴))
8072, 79eleqtrd 2837 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐴))
8180anasss 466 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ (𝑗𝑦𝑖𝑥)) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐴))
8281ralrimivva 3188 . . . . . . . . 9 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ∀𝑗𝑦𝑖𝑥 (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐴))
83 oveq2 7418 . . . . . . . . . . 11 (𝑤 = 𝑗 → (𝑡(.r𝐸)𝑤) = (𝑡(.r𝐸)𝑗))
84 oveq1 7417 . . . . . . . . . . 11 (𝑡 = 𝑖 → (𝑡(.r𝐸)𝑗) = (𝑖(.r𝐸)𝑗))
8583, 84cbvmpov 7507 . . . . . . . . . 10 (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) = (𝑗𝑦, 𝑖𝑥 ↦ (𝑖(.r𝐸)𝑗))
8685fmpo 8072 . . . . . . . . 9 (∀𝑗𝑦𝑖𝑥 (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐴) ↔ (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)):(𝑦 × 𝑥)⟶(Base‘𝐴))
8782, 86sylib 218 . . . . . . . 8 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)):(𝑦 × 𝑥)⟶(Base‘𝐴))
88 eqid 2736 . . . . . . . . . . . . . 14 (Base‘(Scalar‘𝐵)) = (Base‘(Scalar‘𝐵))
89 eqid 2736 . . . . . . . . . . . . . 14 ( ·𝑠𝐵) = ( ·𝑠𝐵)
90 eqid 2736 . . . . . . . . . . . . . 14 (+g𝐵) = (+g𝐵)
91 eqid 2736 . . . . . . . . . . . . . 14 (0g‘(Scalar‘𝐵)) = (0g‘(Scalar‘𝐵))
9228ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝐵 ∈ LVec)
9392ad5antr 734 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝐵 ∈ LVec)
9429lbslinds 21798 . . . . . . . . . . . . . . . 16 (LBasis‘𝐵) ⊆ (LIndS‘𝐵)
9594, 59sselid 3961 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑦 ∈ (LIndS‘𝐵))
9695ad5antr 734 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝑦 ∈ (LIndS‘𝐵))
9768ad3antrrr 730 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝑗𝑦)
98 simpllr 775 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝑣𝑦)
9963, 44srasca 21143 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐸s 𝑈) = (Scalar‘𝐵))
1004, 99eqtrid 2783 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐹 = (Scalar‘𝐵))
101100fveq2d 6885 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (Base‘𝐹) = (Base‘(Scalar‘𝐵)))
102101, 51eqtr3d 2773 . . . . . . . . . . . . . . . . . 18 (𝜑 → (Base‘(Scalar‘𝐵)) = (Base‘𝐶))
103102ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (Base‘(Scalar‘𝐵)) = (Base‘𝐶))
10441, 103sseqtrrd 4001 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑥 ⊆ (Base‘(Scalar‘𝐵)))
105104ad5antr 734 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝑥 ⊆ (Base‘(Scalar‘𝐵)))
106 simp-4r 783 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝑖𝑥)
107105, 106sseldd 3964 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝑖 ∈ (Base‘(Scalar‘𝐵)))
108 simplr 768 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝑢𝑥)
109105, 108sseldd 3964 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝑢 ∈ (Base‘(Scalar‘𝐵)))
11019ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝐶 ∈ LVec)
111 eqid 2736 . . . . . . . . . . . . . . . . . . . . 21 (LSpan‘𝐶) = (LSpan‘𝐶)
11239, 20, 111islbs4 21797 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (LBasis‘𝐶) ↔ (𝑥 ∈ (LIndS‘𝐶) ∧ ((LSpan‘𝐶)‘𝑥) = (Base‘𝐶)))
11338, 112sylib 218 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑥 ∈ (LIndS‘𝐶) ∧ ((LSpan‘𝐶)‘𝑥) = (Base‘𝐶)))
114113simpld 494 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑥 ∈ (LIndS‘𝐶))
115 eqid 2736 . . . . . . . . . . . . . . . . . . 19 (0g𝐶) = (0g𝐶)
1161150nellinds 33390 . . . . . . . . . . . . . . . . . 18 ((𝐶 ∈ LVec ∧ 𝑥 ∈ (LIndS‘𝐶)) → ¬ (0g𝐶) ∈ 𝑥)
117110, 114, 116syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ¬ (0g𝐶) ∈ 𝑥)
118117ad5antr 734 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → ¬ (0g𝐶) ∈ 𝑥)
119 nelne2 3031 . . . . . . . . . . . . . . . 16 ((𝑖𝑥 ∧ ¬ (0g𝐶) ∈ 𝑥) → 𝑖 ≠ (0g𝐶))
120106, 118, 119syl2anc 584 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝑖 ≠ (0g𝐶))
121100fveq2d 6885 . . . . . . . . . . . . . . . . 17 (𝜑 → (0g𝐹) = (0g‘(Scalar‘𝐵)))
12216, 1, 3drgext0g 33634 . . . . . . . . . . . . . . . . 17 (𝜑 → (0g𝐹) = (0g𝐶))
123121, 122eqtr3d 2773 . . . . . . . . . . . . . . . 16 (𝜑 → (0g‘(Scalar‘𝐵)) = (0g𝐶))
124123ad7antr 738 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (0g‘(Scalar‘𝐵)) = (0g𝐶))
125120, 124neeqtrrd 3007 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝑖 ≠ (0g‘(Scalar‘𝐵)))
126 simpr 484 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢))
127 ovexd 7445 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (𝑖(.r𝐸)𝑗) ∈ V)
12885ovmpt4g 7559 . . . . . . . . . . . . . . . . 17 ((𝑗𝑦𝑖𝑥 ∧ (𝑖(.r𝐸)𝑗) ∈ V) → (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑖(.r𝐸)𝑗))
12997, 106, 127, 128syl3anc 1373 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑖(.r𝐸)𝑗))
13026, 25, 2drgextvsca 33635 . . . . . . . . . . . . . . . . . 18 (𝜑 → (.r𝐸) = ( ·𝑠𝐵))
131130oveqd 7427 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑖(.r𝐸)𝑗) = (𝑖( ·𝑠𝐵)𝑗))
132131ad7antr 738 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (𝑖(.r𝐸)𝑗) = (𝑖( ·𝑠𝐵)𝑗))
133129, 132eqtrd 2771 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑖( ·𝑠𝐵)𝑗))
13485a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑣𝑦) ∧ 𝑢𝑥) → (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) = (𝑗𝑦, 𝑖𝑥 ↦ (𝑖(.r𝐸)𝑗)))
135 simprr 772 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗 = 𝑣𝑖 = 𝑢)) → 𝑖 = 𝑢)
136 simprl 770 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗 = 𝑣𝑖 = 𝑢)) → 𝑗 = 𝑣)
137135, 136oveq12d 7428 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗 = 𝑣𝑖 = 𝑢)) → (𝑖(.r𝐸)𝑗) = (𝑢(.r𝐸)𝑣))
138 simplr 768 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑣𝑦) ∧ 𝑢𝑥) → 𝑣𝑦)
139 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑣𝑦) ∧ 𝑢𝑥) → 𝑢𝑥)
140 ovexd 7445 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑣𝑦) ∧ 𝑢𝑥) → (𝑢(.r𝐸)𝑣) ∈ V)
141134, 137, 138, 139, 140ovmpod 7564 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑣𝑦) ∧ 𝑢𝑥) → (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) = (𝑢(.r𝐸)𝑣))
142141adantllr 719 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) → (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) = (𝑢(.r𝐸)𝑣))
143142adantl3r 750 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) → (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) = (𝑢(.r𝐸)𝑣))
144143adantr 480 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) = (𝑢(.r𝐸)𝑣))
145130oveqd 7427 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑢(.r𝐸)𝑣) = (𝑢( ·𝑠𝐵)𝑣))
146145ad7antr 738 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (𝑢(.r𝐸)𝑣) = (𝑢( ·𝑠𝐵)𝑣))
147144, 146eqtrd 2771 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) = (𝑢( ·𝑠𝐵)𝑣))
148126, 133, 1473eqtr3d 2779 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (𝑖( ·𝑠𝐵)𝑗) = (𝑢( ·𝑠𝐵)𝑣))
14988, 89, 90, 91, 93, 96, 97, 98, 107, 109, 125, 148linds2eq 33401 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (𝑗 = 𝑣𝑖 = 𝑢))
150149ex 412 . . . . . . . . . . . 12 (((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) → ((𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) → (𝑗 = 𝑣𝑖 = 𝑢)))
151150anasss 466 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ (𝑣𝑦𝑢𝑥)) → ((𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) → (𝑗 = 𝑣𝑖 = 𝑢)))
152151ralrimivva 3188 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → ∀𝑣𝑦𝑢𝑥 ((𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) → (𝑗 = 𝑣𝑖 = 𝑢)))
153152anasss 466 . . . . . . . . 9 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ (𝑗𝑦𝑖𝑥)) → ∀𝑣𝑦𝑢𝑥 ((𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) → (𝑗 = 𝑣𝑖 = 𝑢)))
154153ralrimivva 3188 . . . . . . . 8 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ∀𝑗𝑦𝑖𝑥𝑣𝑦𝑢𝑥 ((𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) → (𝑗 = 𝑣𝑖 = 𝑢)))
155 f1opr 7468 . . . . . . . 8 ((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)):(𝑦 × 𝑥)–1-1→(Base‘𝐴) ↔ ((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)):(𝑦 × 𝑥)⟶(Base‘𝐴) ∧ ∀𝑗𝑦𝑖𝑥𝑣𝑦𝑢𝑥 ((𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) → (𝑗 = 𝑣𝑖 = 𝑢))))
15687, 154, 155sylanbrc 583 . . . . . . 7 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)):(𝑦 × 𝑥)–1-1→(Base‘𝐴))
15759, 38xpexd 7750 . . . . . . 7 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑦 × 𝑥) ∈ V)
158 f1rnen 32612 . . . . . . 7 (((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)):(𝑦 × 𝑥)–1-1→(Base‘𝐴) ∧ (𝑦 × 𝑥) ∈ V) → ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) ≈ (𝑦 × 𝑥))
159156, 157, 158syl2anc 584 . . . . . 6 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) ≈ (𝑦 × 𝑥))
160 hasheni 14371 . . . . . 6 (ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) ≈ (𝑦 × 𝑥) → (♯‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))) = (♯‘(𝑦 × 𝑥)))
161159, 160syl 17 . . . . 5 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (♯‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))) = (♯‘(𝑦 × 𝑥)))
162 hashxpe 32791 . . . . . 6 ((𝑦 ∈ (LBasis‘𝐵) ∧ 𝑥 ∈ (LBasis‘𝐶)) → (♯‘(𝑦 × 𝑥)) = ((♯‘𝑦) ·e (♯‘𝑥)))
16359, 38, 162syl2anc 584 . . . . 5 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (♯‘(𝑦 × 𝑥)) = ((♯‘𝑦) ·e (♯‘𝑥)))
164161, 163eqtrd 2771 . . . 4 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (♯‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))) = ((♯‘𝑦) ·e (♯‘𝑥)))
16573, 12sralvec 33630 . . . . . . 7 ((𝐸 ∈ DivRing ∧ 𝐾 ∈ DivRing ∧ 𝑉 ∈ (SubRing‘𝐸)) → 𝐴 ∈ LVec)
16625, 14, 75, 165syl3anc 1373 . . . . . 6 (𝜑𝐴 ∈ LVec)
167166ad2antrr 726 . . . . 5 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝐴 ∈ LVec)
168 lveclmod 21069 . . . . . . . . 9 (𝐴 ∈ LVec → 𝐴 ∈ LMod)
169166, 168syl 17 . . . . . . . 8 (𝜑𝐴 ∈ LMod)
170169ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝐴 ∈ LMod)
17125ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴)) → 𝐸 ∈ DivRing)
1721ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴)) → 𝐹 ∈ DivRing)
17314ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴)) → 𝐾 ∈ DivRing)
1742ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴)) → 𝑈 ∈ (SubRing‘𝐸))
1753ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴)) → 𝑉 ∈ (SubRing‘𝐹))
176 fveq2 6881 . . . . . . . . . . . 12 (𝑤 = 𝑗 → (𝑓𝑤) = (𝑓𝑗))
177176fveq1d 6883 . . . . . . . . . . 11 (𝑤 = 𝑗 → ((𝑓𝑤)‘𝑣) = ((𝑓𝑗)‘𝑣))
178 fveq2 6881 . . . . . . . . . . 11 (𝑣 = 𝑖 → ((𝑓𝑗)‘𝑣) = ((𝑓𝑗)‘𝑖))
179177, 178cbvmpov 7507 . . . . . . . . . 10 (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) = (𝑗𝑦, 𝑖𝑥 ↦ ((𝑓𝑗)‘𝑖))
180 simp-4r 783 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴)) → 𝑥 ∈ (LBasis‘𝐶))
181 simpllr 775 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴)) → 𝑦 ∈ (LBasis‘𝐵))
182 simplr 768 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴)) → 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥))))
183 simpr 484 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴)) → (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴))
18473, 26, 16, 4, 12, 171, 172, 173, 174, 175, 85, 179, 180, 181, 182, 183fedgmullem2 33675 . . . . . . . . 9 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴)) → 𝑐 = ((𝑦 × 𝑥) × {(0g‘(Scalar‘𝐴))}))
185184ex 412 . . . . . . . 8 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) → ((𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴) → 𝑐 = ((𝑦 × 𝑥) × {(0g‘(Scalar‘𝐴))})))
186185ralrimiva 3133 . . . . . . 7 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ∀𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))((𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴) → 𝑐 = ((𝑦 × 𝑥) × {(0g‘(Scalar‘𝐴))})))
187 eqid 2736 . . . . . . . . 9 (Base‘𝐴) = (Base‘𝐴)
188 eqid 2736 . . . . . . . . 9 (Scalar‘𝐴) = (Scalar‘𝐴)
189 eqid 2736 . . . . . . . . 9 ( ·𝑠𝐴) = ( ·𝑠𝐴)
190 eqid 2736 . . . . . . . . 9 (0g𝐴) = (0g𝐴)
191 eqid 2736 . . . . . . . . 9 (0g‘(Scalar‘𝐴)) = (0g‘(Scalar‘𝐴))
192 eqid 2736 . . . . . . . . 9 (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥))) = (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))
193187, 188, 189, 190, 191, 192islindf4 21803 . . . . . . . 8 ((𝐴 ∈ LMod ∧ (𝑦 × 𝑥) ∈ V ∧ (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)):(𝑦 × 𝑥)⟶(Base‘𝐴)) → ((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) LIndF 𝐴 ↔ ∀𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))((𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴) → 𝑐 = ((𝑦 × 𝑥) × {(0g‘(Scalar‘𝐴))}))))
194193biimpar 477 . . . . . . 7 (((𝐴 ∈ LMod ∧ (𝑦 × 𝑥) ∈ V ∧ (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)):(𝑦 × 𝑥)⟶(Base‘𝐴)) ∧ ∀𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))((𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴) → 𝑐 = ((𝑦 × 𝑥) × {(0g‘(Scalar‘𝐴))}))) → (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) LIndF 𝐴)
195170, 157, 87, 186, 194syl31anc 1375 . . . . . 6 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) LIndF 𝐴)
19672anasss 466 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ (𝑗𝑦𝑖𝑥)) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐸))
197196ralrimivva 3188 . . . . . . . . . 10 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ∀𝑗𝑦𝑖𝑥 (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐸))
19885rnmposs 32657 . . . . . . . . . 10 (∀𝑗𝑦𝑖𝑥 (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐸) → ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) ⊆ (Base‘𝐸))
199197, 198syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) ⊆ (Base‘𝐸))
20078ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (Base‘𝐸) = (Base‘𝐴))
201199, 200sseqtrd 4000 . . . . . . . 8 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) ⊆ (Base‘𝐴))
202 eqid 2736 . . . . . . . . 9 (LSpan‘𝐴) = (LSpan‘𝐴)
203187, 202lspssv 20945 . . . . . . . 8 ((𝐴 ∈ LMod ∧ ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) ⊆ (Base‘𝐴)) → ((LSpan‘𝐴)‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))) ⊆ (Base‘𝐴))
204170, 201, 203syl2anc 584 . . . . . . 7 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ((LSpan‘𝐴)‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))) ⊆ (Base‘𝐴))
205 simpl 482 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → ((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)))
206205ad4antr 732 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑗𝑦) → ((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)))
207 elmapi 8868 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦) → 𝑎:𝑦⟶(Base‘(Scalar‘𝐵)))
208207ad4antlr 733 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑗𝑦) → 𝑎:𝑦⟶(Base‘(Scalar‘𝐵)))
209 simpr 484 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑗𝑦) → 𝑗𝑦)
210208, 209ffvelcdmd 7080 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑗𝑦) → (𝑎𝑗) ∈ (Base‘(Scalar‘𝐵)))
211113simprd 495 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ((LSpan‘𝐶)‘𝑥) = (Base‘𝐶))
212206, 211syl 17 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑗𝑦) → ((LSpan‘𝐶)‘𝑥) = (Base‘𝐶))
213102ad7antr 738 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑗𝑦) → (Base‘(Scalar‘𝐵)) = (Base‘𝐶))
214212, 213eqtr4d 2774 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑗𝑦) → ((LSpan‘𝐶)‘𝑥) = (Base‘(Scalar‘𝐵)))
215210, 214eleqtrrd 2838 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑗𝑦) → (𝑎𝑗) ∈ ((LSpan‘𝐶)‘𝑥))
216 eqid 2736 . . . . . . . . . . . . . . . . 17 (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶))
217 eqid 2736 . . . . . . . . . . . . . . . . 17 (Scalar‘𝐶) = (Scalar‘𝐶)
218 eqid 2736 . . . . . . . . . . . . . . . . 17 (0g‘(Scalar‘𝐶)) = (0g‘(Scalar‘𝐶))
219 eqid 2736 . . . . . . . . . . . . . . . . 17 ( ·𝑠𝐶) = ( ·𝑠𝐶)
220 lveclmod 21069 . . . . . . . . . . . . . . . . . . 19 (𝐶 ∈ LVec → 𝐶 ∈ LMod)
22119, 220syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐶 ∈ LMod)
222221ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝐶 ∈ LMod)
223111, 39, 216, 217, 218, 219, 222, 41ellspds 33388 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ((𝑎𝑗) ∈ ((LSpan‘𝐶)‘𝑥) ↔ ∃𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖))))))
224223biimpa 476 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ (𝑎𝑗) ∈ ((LSpan‘𝐶)‘𝑥)) → ∃𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖)))))
225206, 215, 224syl2anc 584 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑗𝑦) → ∃𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖)))))
226225ralrimiva 3133 . . . . . . . . . . . . 13 (((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) → ∀𝑗𝑦𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖)))))
227 fveq2 6881 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑗 → (𝑎𝑤) = (𝑎𝑗))
228 fveq2 6881 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 = 𝑖 → (𝑏𝑣) = (𝑏𝑖))
229 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 = 𝑖𝑣 = 𝑖)
230228, 229oveq12d 7428 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = 𝑖 → ((𝑏𝑣)( ·𝑠𝐶)𝑣) = ((𝑏𝑖)( ·𝑠𝐶)𝑖))
231230cbvmptv 5230 . . . . . . . . . . . . . . . . . . . 20 (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣)) = (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖))
232231oveq2i 7421 . . . . . . . . . . . . . . . . . . 19 (𝐶 Σg (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣))) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖)))
233232a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑗 → (𝐶 Σg (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣))) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖))))
234227, 233eqeq12d 2752 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑗 → ((𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣))) ↔ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖)))))
235234anbi2d 630 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑗 → ((𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣)))) ↔ (𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖))))))
236235rexbidv 3165 . . . . . . . . . . . . . . 15 (𝑤 = 𝑗 → (∃𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣)))) ↔ ∃𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖))))))
237236cbvralvw 3224 . . . . . . . . . . . . . 14 (∀𝑤𝑦𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣)))) ↔ ∀𝑗𝑦𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖)))))
238 vex 3468 . . . . . . . . . . . . . . 15 𝑦 ∈ V
239 breq1 5127 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑓𝑤) → (𝑏 finSupp (0g‘(Scalar‘𝐶)) ↔ (𝑓𝑤) finSupp (0g‘(Scalar‘𝐶))))
240 fveq1 6880 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = (𝑓𝑤) → (𝑏𝑣) = ((𝑓𝑤)‘𝑣))
241240oveq1d 7425 . . . . . . . . . . . . . . . . . . 19 (𝑏 = (𝑓𝑤) → ((𝑏𝑣)( ·𝑠𝐶)𝑣) = (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))
242241mpteq2dv 5220 . . . . . . . . . . . . . . . . . 18 (𝑏 = (𝑓𝑤) → (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣)) = (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣)))
243242oveq2d 7426 . . . . . . . . . . . . . . . . 17 (𝑏 = (𝑓𝑤) → (𝐶 Σg (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣))) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))
244243eqeq2d 2747 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑓𝑤) → ((𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣))) ↔ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣)))))
245239, 244anbi12d 632 . . . . . . . . . . . . . . 15 (𝑏 = (𝑓𝑤) → ((𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣)))) ↔ ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))))
246238, 245ac6s 10503 . . . . . . . . . . . . . 14 (∀𝑤𝑦𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣)))) → ∃𝑓(𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))))
247237, 246sylbir 235 . . . . . . . . . . . . 13 (∀𝑗𝑦𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖)))) → ∃𝑓(𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))))
248226, 247syl 17 . . . . . . . . . . . 12 (((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) → ∃𝑓(𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))))
249 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥))
250 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → 𝑗𝑦)
251249, 250ffvelcdmd 7080 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → (𝑓𝑗) ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥))
252 elmapi 8868 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓𝑗) ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥) → (𝑓𝑗):𝑥⟶(Base‘(Scalar‘𝐶)))
253251, 252syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → (𝑓𝑗):𝑥⟶(Base‘(Scalar‘𝐶)))
254253anasss 466 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ (𝑗𝑦𝑖𝑥)) → (𝑓𝑗):𝑥⟶(Base‘(Scalar‘𝐶)))
255 simprr 772 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ (𝑗𝑦𝑖𝑥)) → 𝑖𝑥)
256254, 255ffvelcdmd 7080 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ (𝑗𝑦𝑖𝑥)) → ((𝑓𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐶)))
25774, 77srasca 21143 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐸s 𝑉) = (Scalar‘𝐴))
25812, 257eqtrid 2783 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐾 = (Scalar‘𝐴))
25947, 50srasca 21143 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐹s 𝑉) = (Scalar‘𝐶))
26013, 259eqtr3d 2773 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐾 = (Scalar‘𝐶))
261258, 260eqtr3d 2773 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (Scalar‘𝐴) = (Scalar‘𝐶))
262261fveq2d 6885 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐶)))
263262ad4antr 732 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ (𝑗𝑦𝑖𝑥)) → (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐶)))
264256, 263eleqtrrd 2838 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ (𝑗𝑦𝑖𝑥)) → ((𝑓𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)))
265264ralrimivva 3188 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) → ∀𝑗𝑦𝑖𝑥 ((𝑓𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)))
266179fmpo 8072 . . . . . . . . . . . . . . . . . . 19 (∀𝑗𝑦𝑖𝑥 ((𝑓𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)) ↔ (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)):(𝑦 × 𝑥)⟶(Base‘(Scalar‘𝐴)))
267265, 266sylib 218 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) → (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)):(𝑦 × 𝑥)⟶(Base‘(Scalar‘𝐴)))
268 fvexd 6896 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) → (Base‘(Scalar‘𝐴)) ∈ V)
269157adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) → (𝑦 × 𝑥) ∈ V)
270268, 269elmapd 8859 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) → ((𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥)) ↔ (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)):(𝑦 × 𝑥)⟶(Base‘(Scalar‘𝐴))))
271267, 270mpbird 257 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) → (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥)))
272271ad5ant15 758 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) → (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥)))
273272adantr 480 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥)))
274273adantl3r 750 . . . . . . . . . . . . . 14 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥)))
275 simpr 484 . . . . . . . . . . . . . . . 16 ((((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) ∧ 𝑐 = (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣))) → 𝑐 = (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)))
276275breq1d 5134 . . . . . . . . . . . . . . 15 ((((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) ∧ 𝑐 = (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣))) → (𝑐 finSupp (0g‘(Scalar‘𝐴)) ↔ (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) finSupp (0g‘(Scalar‘𝐴))))
277275oveq1d 7425 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) ∧ 𝑐 = (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣))) → (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))) = ((𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) ∘f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))
278277oveq2d 7426 . . . . . . . . . . . . . . . 16 ((((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) ∧ 𝑐 = (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣))) → (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (𝐴 Σg ((𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) ∘f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))))
279278eqeq2d 2747 . . . . . . . . . . . . . . 15 ((((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) ∧ 𝑐 = (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣))) → (𝑧 = (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) ↔ 𝑧 = (𝐴 Σg ((𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) ∘f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))))
280276, 279anbi12d 632 . . . . . . . . . . . . . 14 ((((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) ∧ 𝑐 = (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣))) → ((𝑐 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))) ↔ ((𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg ((𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) ∘f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))))))
28125ad8antr 740 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝐸 ∈ DivRing)
2821ad8antr 740 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝐹 ∈ DivRing)
28314ad8antr 740 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝐾 ∈ DivRing)
2842ad8antr 740 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝑈 ∈ (SubRing‘𝐸))
2853ad8antr 740 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝑉 ∈ (SubRing‘𝐹))
28638ad6antr 736 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝑥 ∈ (LBasis‘𝐶))
28759ad6antr 736 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝑦 ∈ (LBasis‘𝐵))
288 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → 𝑧 ∈ (Base‘𝐴))
289288ad5antr 734 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝑧 ∈ (Base‘𝐴))
290207ad5antlr 735 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝑎:𝑦⟶(Base‘(Scalar‘𝐵)))
291 simp-4r 783 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝑎 finSupp (0g‘(Scalar‘𝐵)))
292 simpllr 775 . . . . . . . . . . . . . . . 16 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤))))
293 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑗𝑤 = 𝑗)
294227, 293oveq12d 7428 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑗 → ((𝑎𝑤)( ·𝑠𝐵)𝑤) = ((𝑎𝑗)( ·𝑠𝐵)𝑗))
295294cbvmptv 5230 . . . . . . . . . . . . . . . . 17 (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)) = (𝑗𝑦 ↦ ((𝑎𝑗)( ·𝑠𝐵)𝑗))
296295oveq2i 7421 . . . . . . . . . . . . . . . 16 (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤))) = (𝐵 Σg (𝑗𝑦 ↦ ((𝑎𝑗)( ·𝑠𝐵)𝑗)))
297292, 296eqtrdi 2787 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝑧 = (𝐵 Σg (𝑗𝑦 ↦ ((𝑎𝑗)( ·𝑠𝐵)𝑗))))
298 simplr 768 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥))
299 simpr 484 . . . . . . . . . . . . . . . . . 18 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣)))))
300176breq1d 5134 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑗 → ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ↔ (𝑓𝑗) finSupp (0g‘(Scalar‘𝐶))))
301 fveq2 6881 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 = 𝑖 → ((𝑓𝑤)‘𝑣) = ((𝑓𝑤)‘𝑖))
302301, 229oveq12d 7428 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑣 = 𝑖 → (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣) = (((𝑓𝑤)‘𝑖)( ·𝑠𝐶)𝑖))
303302cbvmptv 5230 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣)) = (𝑖𝑥 ↦ (((𝑓𝑤)‘𝑖)( ·𝑠𝐶)𝑖))
304176fveq1d 6883 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = 𝑗 → ((𝑓𝑤)‘𝑖) = ((𝑓𝑗)‘𝑖))
305304oveq1d 7425 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = 𝑗 → (((𝑓𝑤)‘𝑖)( ·𝑠𝐶)𝑖) = (((𝑓𝑗)‘𝑖)( ·𝑠𝐶)𝑖))
306305mpteq2dv 5220 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 𝑗 → (𝑖𝑥 ↦ (((𝑓𝑤)‘𝑖)( ·𝑠𝐶)𝑖)) = (𝑖𝑥 ↦ (((𝑓𝑗)‘𝑖)( ·𝑠𝐶)𝑖)))
307303, 306eqtrid 2783 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = 𝑗 → (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣)) = (𝑖𝑥 ↦ (((𝑓𝑗)‘𝑖)( ·𝑠𝐶)𝑖)))
308307oveq2d 7426 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑗 → (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))) = (𝐶 Σg (𝑖𝑥 ↦ (((𝑓𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
309227, 308eqeq12d 2752 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑗 → ((𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))) ↔ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ (((𝑓𝑗)‘𝑖)( ·𝑠𝐶)𝑖)))))
310300, 309anbi12d 632 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑗 → (((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣)))) ↔ ((𝑓𝑗) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ (((𝑓𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))))
311310cbvralvw 3224 . . . . . . . . . . . . . . . . . 18 (∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣)))) ↔ ∀𝑗𝑦 ((𝑓𝑗) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ (((𝑓𝑗)‘𝑖)( ·𝑠𝐶)𝑖)))))
312299, 311sylib 218 . . . . . . . . . . . . . . . . 17 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → ∀𝑗𝑦 ((𝑓𝑗) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ (((𝑓𝑗)‘𝑖)( ·𝑠𝐶)𝑖)))))
313312r19.21bi 3238 . . . . . . . . . . . . . . . 16 ((((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) ∧ 𝑗𝑦) → ((𝑓𝑗) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ (((𝑓𝑗)‘𝑖)( ·𝑠𝐶)𝑖)))))
314313simpld 494 . . . . . . . . . . . . . . 15 ((((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) ∧ 𝑗𝑦) → (𝑓𝑗) finSupp (0g‘(Scalar‘𝐶)))
315313simprd 495 . . . . . . . . . . . . . . 15 ((((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) ∧ 𝑗𝑦) → (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ (((𝑓𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
31673, 26, 16, 4, 12, 281, 282, 283, 284, 285, 85, 179, 286, 287, 289, 290, 291, 297, 298, 314, 315fedgmullem1 33674 . . . . . . . . . . . . . 14 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → ((𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg ((𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) ∘f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))))
317274, 280, 316rspcedvd 3608 . . . . . . . . . . . . 13 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → ∃𝑐 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥))(𝑐 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))))
318317anasss 466 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ (𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣)))))) → ∃𝑐 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥))(𝑐 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))))
319248, 318exlimddv 1935 . . . . . . . . . . 11 (((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) → ∃𝑐 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥))(𝑐 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))))
320319anasss 466 . . . . . . . . . 10 ((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ (𝑎 finSupp (0g‘(Scalar‘𝐵)) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤))))) → ∃𝑐 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥))(𝑐 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))))
321 eqid 2736 . . . . . . . . . . . . . . . . 17 (LSpan‘𝐵) = (LSpan‘𝐵)
32260, 29, 321islbs4 21797 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (LBasis‘𝐵) ↔ (𝑦 ∈ (LIndS‘𝐵) ∧ ((LSpan‘𝐵)‘𝑦) = (Base‘𝐵)))
32359, 322sylib 218 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑦 ∈ (LIndS‘𝐵) ∧ ((LSpan‘𝐵)‘𝑦) = (Base‘𝐵)))
324323simprd 495 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ((LSpan‘𝐵)‘𝑦) = (Base‘𝐵))
325324adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → ((LSpan‘𝐵)‘𝑦) = (Base‘𝐵))
32678, 64eqtr3d 2773 . . . . . . . . . . . . . 14 (𝜑 → (Base‘𝐴) = (Base‘𝐵))
327326ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → (Base‘𝐴) = (Base‘𝐵))
328325, 327eqtr4d 2774 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → ((LSpan‘𝐵)‘𝑦) = (Base‘𝐴))
329288, 328eleqtrrd 2838 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → 𝑧 ∈ ((LSpan‘𝐵)‘𝑦))
330 eqid 2736 . . . . . . . . . . . . 13 (Scalar‘𝐵) = (Scalar‘𝐵)
331 lveclmod 21069 . . . . . . . . . . . . . . 15 (𝐵 ∈ LVec → 𝐵 ∈ LMod)
33228, 331syl 17 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ LMod)
333332ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝐵 ∈ LMod)
334321, 60, 88, 330, 91, 89, 333, 62ellspds 33388 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑧 ∈ ((LSpan‘𝐵)‘𝑦) ↔ ∃𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)(𝑎 finSupp (0g‘(Scalar‘𝐵)) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤))))))
335334biimpa 476 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ ((LSpan‘𝐵)‘𝑦)) → ∃𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)(𝑎 finSupp (0g‘(Scalar‘𝐵)) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))))
336205, 329, 335syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → ∃𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)(𝑎 finSupp (0g‘(Scalar‘𝐵)) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))))
337320, 336r19.29a 3149 . . . . . . . . 9 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → ∃𝑐 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥))(𝑐 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))))
338 eqid 2736 . . . . . . . . . . 11 (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴))
339202, 187, 338, 188, 191, 189, 87, 170, 157ellspd 21767 . . . . . . . . . 10 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑧 ∈ ((LSpan‘𝐴)‘((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) “ (𝑦 × 𝑥))) ↔ ∃𝑐 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥))(𝑐 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))))))
340339adantr 480 . . . . . . . . 9 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → (𝑧 ∈ ((LSpan‘𝐴)‘((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) “ (𝑦 × 𝑥))) ↔ ∃𝑐 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥))(𝑐 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))))))
341337, 340mpbird 257 . . . . . . . 8 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → 𝑧 ∈ ((LSpan‘𝐴)‘((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) “ (𝑦 × 𝑥))))
34287ffnd 6712 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) Fn (𝑦 × 𝑥))
343342adantr 480 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) Fn (𝑦 × 𝑥))
344 fnima 6673 . . . . . . . . . 10 ((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) Fn (𝑦 × 𝑥) → ((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) “ (𝑦 × 𝑥)) = ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))
345343, 344syl 17 . . . . . . . . 9 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → ((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) “ (𝑦 × 𝑥)) = ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))
346345fveq2d 6885 . . . . . . . 8 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → ((LSpan‘𝐴)‘((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) “ (𝑦 × 𝑥))) = ((LSpan‘𝐴)‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))
347341, 346eleqtrd 2837 . . . . . . 7 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → 𝑧 ∈ ((LSpan‘𝐴)‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))
348204, 347eqelssd 3985 . . . . . 6 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ((LSpan‘𝐴)‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))) = (Base‘𝐴))
349 eqid 2736 . . . . . . 7 (Base‘(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))) = (Base‘(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))
350 drngnzr 20713 . . . . . . . . . 10 (𝐾 ∈ DivRing → 𝐾 ∈ NzRing)
35114, 350syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ NzRing)
352258, 351eqeltrrd 2836 . . . . . . . 8 (𝜑 → (Scalar‘𝐴) ∈ NzRing)
353352ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (Scalar‘𝐴) ∈ NzRing)
354187, 349, 188, 189, 190, 191, 202, 170, 353, 157, 156lindflbs 33399 . . . . . 6 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) ∈ (LBasis‘𝐴) ↔ ((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) LIndF 𝐴 ∧ ((LSpan‘𝐴)‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))) = (Base‘𝐴))))
355195, 348, 354mpbir2and 713 . . . . 5 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) ∈ (LBasis‘𝐴))
356 eqid 2736 . . . . . 6 (LBasis‘𝐴) = (LBasis‘𝐴)
357356dimval 33645 . . . . 5 ((𝐴 ∈ LVec ∧ ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) ∈ (LBasis‘𝐴)) → (dim‘𝐴) = (♯‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))
358167, 355, 357syl2anc 584 . . . 4 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (dim‘𝐴) = (♯‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))
35929dimval 33645 . . . . . 6 ((𝐵 ∈ LVec ∧ 𝑦 ∈ (LBasis‘𝐵)) → (dim‘𝐵) = (♯‘𝑦))
36092, 59, 359syl2anc 584 . . . . 5 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (dim‘𝐵) = (♯‘𝑦))
36120dimval 33645 . . . . . 6 ((𝐶 ∈ LVec ∧ 𝑥 ∈ (LBasis‘𝐶)) → (dim‘𝐶) = (♯‘𝑥))
362110, 38, 361syl2anc 584 . . . . 5 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (dim‘𝐶) = (♯‘𝑥))
363360, 362oveq12d 7428 . . . 4 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ((dim‘𝐵) ·e (dim‘𝐶)) = ((♯‘𝑦) ·e (♯‘𝑥)))
364164, 358, 3633eqtr4d 2781 . . 3 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (dim‘𝐴) = ((dim‘𝐵) ·e (dim‘𝐶)))
36534, 364exlimddv 1935 . 2 ((𝜑𝑥 ∈ (LBasis‘𝐶)) → (dim‘𝐴) = ((dim‘𝐵) ·e (dim‘𝐶)))
36624, 365exlimddv 1935 1 (𝜑 → (dim‘𝐴) = ((dim‘𝐵) ·e (dim‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2933  wral 3052  wrex 3061  Vcvv 3464  wss 3931  c0 4313  {csn 4606   class class class wbr 5124  cmpt 5206   × cxp 5657  ran crn 5660  cima 5662   Fn wfn 6531  wf 6532  1-1wf1 6533  cfv 6536  (class class class)co 7410  cmpo 7412  f cof 7674  m cmap 8845  cen 8961   finSupp cfsupp 9378   ·e cxmu 13132  chash 14353  Basecbs 17233  s cress 17256  +gcplusg 17276  .rcmulr 17277  Scalarcsca 17279   ·𝑠 cvsca 17280  0gc0g 17458   Σg cgsu 17459  Ringcrg 20198  NzRingcnzr 20477  SubRingcsubrg 20534  DivRingcdr 20694  LModclmod 20822  LSpanclspn 20933  LBasisclbs 21037  LVecclvec 21065  subringAlg csra 21134   freeLMod cfrlm 21711   LIndF clindf 21769  LIndSclinds 21770  dimcldim 33643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-reg 9611  ax-inf2 9660  ax-ac2 10482  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-rpss 7722  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8724  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-oi 9529  df-r1 9783  df-rank 9784  df-dju 9920  df-card 9958  df-acn 9961  df-ac 10135  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-xnn0 12580  df-z 12594  df-dec 12714  df-uz 12858  df-xmul 13135  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ocomp 17297  df-ds 17298  df-hom 17300  df-cco 17301  df-0g 17460  df-gsum 17461  df-prds 17466  df-pws 17468  df-mre 17603  df-mrc 17604  df-mri 17605  df-acs 17606  df-proset 18311  df-drs 18312  df-poset 18330  df-ipo 18543  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-ghm 19201  df-cntz 19305  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-nzr 20478  df-subrng 20511  df-subrg 20535  df-drng 20696  df-lmod 20824  df-lss 20894  df-lsp 20934  df-lmhm 20985  df-lbs 21038  df-lvec 21066  df-sra 21136  df-rgmod 21137  df-dsmm 21697  df-frlm 21712  df-uvc 21748  df-lindf 21771  df-linds 21772  df-dim 33644
This theorem is referenced by:  extdgmul  33710
  Copyright terms: Public domain W3C validator