Step | Hyp | Ref
| Expression |
1 | | fedgmul.2 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ DivRing) |
2 | | fedgmul.4 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝐸)) |
3 | | fedgmul.5 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑉 ∈ (SubRing‘𝐹)) |
4 | | fedgmul.f |
. . . . . . . . . . . 12
⊢ 𝐹 = (𝐸 ↾s 𝑈) |
5 | 4 | subsubrg 20061 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ (SubRing‘𝐸) → (𝑉 ∈ (SubRing‘𝐹) ↔ (𝑉 ∈ (SubRing‘𝐸) ∧ 𝑉 ⊆ 𝑈))) |
6 | 5 | biimpa 477 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ (SubRing‘𝐸) ∧ 𝑉 ∈ (SubRing‘𝐹)) → (𝑉 ∈ (SubRing‘𝐸) ∧ 𝑉 ⊆ 𝑈)) |
7 | 2, 3, 6 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (𝑉 ∈ (SubRing‘𝐸) ∧ 𝑉 ⊆ 𝑈)) |
8 | 7 | simprd 496 |
. . . . . . . 8
⊢ (𝜑 → 𝑉 ⊆ 𝑈) |
9 | | ressabs 16970 |
. . . . . . . 8
⊢ ((𝑈 ∈ (SubRing‘𝐸) ∧ 𝑉 ⊆ 𝑈) → ((𝐸 ↾s 𝑈) ↾s 𝑉) = (𝐸 ↾s 𝑉)) |
10 | 2, 8, 9 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → ((𝐸 ↾s 𝑈) ↾s 𝑉) = (𝐸 ↾s 𝑉)) |
11 | 4 | oveq1i 7282 |
. . . . . . 7
⊢ (𝐹 ↾s 𝑉) = ((𝐸 ↾s 𝑈) ↾s 𝑉) |
12 | | fedgmul.k |
. . . . . . 7
⊢ 𝐾 = (𝐸 ↾s 𝑉) |
13 | 10, 11, 12 | 3eqtr4g 2805 |
. . . . . 6
⊢ (𝜑 → (𝐹 ↾s 𝑉) = 𝐾) |
14 | | fedgmul.3 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ DivRing) |
15 | 13, 14 | eqeltrd 2841 |
. . . . 5
⊢ (𝜑 → (𝐹 ↾s 𝑉) ∈ DivRing) |
16 | | fedgmul.c |
. . . . . 6
⊢ 𝐶 = ((subringAlg ‘𝐹)‘𝑉) |
17 | | eqid 2740 |
. . . . . 6
⊢ (𝐹 ↾s 𝑉) = (𝐹 ↾s 𝑉) |
18 | 16, 17 | sralvec 31684 |
. . . . 5
⊢ ((𝐹 ∈ DivRing ∧ (𝐹 ↾s 𝑉) ∈ DivRing ∧ 𝑉 ∈ (SubRing‘𝐹)) → 𝐶 ∈ LVec) |
19 | 1, 15, 3, 18 | syl3anc 1370 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ LVec) |
20 | | eqid 2740 |
. . . . 5
⊢
(LBasis‘𝐶) =
(LBasis‘𝐶) |
21 | 20 | lbsex 20438 |
. . . 4
⊢ (𝐶 ∈ LVec →
(LBasis‘𝐶) ≠
∅) |
22 | 19, 21 | syl 17 |
. . 3
⊢ (𝜑 → (LBasis‘𝐶) ≠ ∅) |
23 | | n0 4286 |
. . 3
⊢
((LBasis‘𝐶)
≠ ∅ ↔ ∃𝑥 𝑥 ∈ (LBasis‘𝐶)) |
24 | 22, 23 | sylib 217 |
. 2
⊢ (𝜑 → ∃𝑥 𝑥 ∈ (LBasis‘𝐶)) |
25 | | fedgmul.1 |
. . . . . . 7
⊢ (𝜑 → 𝐸 ∈ DivRing) |
26 | | fedgmul.b |
. . . . . . . 8
⊢ 𝐵 = ((subringAlg ‘𝐸)‘𝑈) |
27 | 26, 4 | sralvec 31684 |
. . . . . . 7
⊢ ((𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ (SubRing‘𝐸)) → 𝐵 ∈ LVec) |
28 | 25, 1, 2, 27 | syl3anc 1370 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ LVec) |
29 | | eqid 2740 |
. . . . . . 7
⊢
(LBasis‘𝐵) =
(LBasis‘𝐵) |
30 | 29 | lbsex 20438 |
. . . . . 6
⊢ (𝐵 ∈ LVec →
(LBasis‘𝐵) ≠
∅) |
31 | 28, 30 | syl 17 |
. . . . 5
⊢ (𝜑 → (LBasis‘𝐵) ≠ ∅) |
32 | | n0 4286 |
. . . . 5
⊢
((LBasis‘𝐵)
≠ ∅ ↔ ∃𝑦 𝑦 ∈ (LBasis‘𝐵)) |
33 | 31, 32 | sylib 217 |
. . . 4
⊢ (𝜑 → ∃𝑦 𝑦 ∈ (LBasis‘𝐵)) |
34 | 33 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) → ∃𝑦 𝑦 ∈ (LBasis‘𝐵)) |
35 | | drngring 20009 |
. . . . . . . . . . . . . . 15
⊢ (𝐸 ∈ DivRing → 𝐸 ∈ Ring) |
36 | 25, 35 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐸 ∈ Ring) |
37 | 36 | ad4antr 729 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗 ∈ 𝑦) ∧ 𝑖 ∈ 𝑥) → 𝐸 ∈ Ring) |
38 | | simplr 766 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑥 ∈ (LBasis‘𝐶)) |
39 | | eqid 2740 |
. . . . . . . . . . . . . . . . . 18
⊢
(Base‘𝐶) =
(Base‘𝐶) |
40 | 39, 20 | lbsss 20350 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ (LBasis‘𝐶) → 𝑥 ⊆ (Base‘𝐶)) |
41 | 38, 40 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑥 ⊆ (Base‘𝐶)) |
42 | | eqid 2740 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(Base‘𝐸) =
(Base‘𝐸) |
43 | 42 | subrgss 20036 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ⊆ (Base‘𝐸)) |
44 | 2, 43 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑈 ⊆ (Base‘𝐸)) |
45 | 4, 42 | ressbas2 16960 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑈 ⊆ (Base‘𝐸) → 𝑈 = (Base‘𝐹)) |
46 | 44, 45 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑈 = (Base‘𝐹)) |
47 | 16 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐶 = ((subringAlg ‘𝐹)‘𝑉)) |
48 | | eqid 2740 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(Base‘𝐹) =
(Base‘𝐹) |
49 | 48 | subrgss 20036 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑉 ∈ (SubRing‘𝐹) → 𝑉 ⊆ (Base‘𝐹)) |
50 | 3, 49 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑉 ⊆ (Base‘𝐹)) |
51 | 47, 50 | srabase 20452 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (Base‘𝐹) = (Base‘𝐶)) |
52 | 46, 51 | eqtrd 2780 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑈 = (Base‘𝐶)) |
53 | 52, 44 | eqsstrrd 3965 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (Base‘𝐶) ⊆ (Base‘𝐸)) |
54 | 53 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (Base‘𝐶) ⊆ (Base‘𝐸)) |
55 | 41, 54 | sstrd 3936 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑥 ⊆ (Base‘𝐸)) |
56 | 55 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗 ∈ 𝑦) ∧ 𝑖 ∈ 𝑥) → 𝑥 ⊆ (Base‘𝐸)) |
57 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗 ∈ 𝑦) ∧ 𝑖 ∈ 𝑥) → 𝑖 ∈ 𝑥) |
58 | 56, 57 | sseldd 3927 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗 ∈ 𝑦) ∧ 𝑖 ∈ 𝑥) → 𝑖 ∈ (Base‘𝐸)) |
59 | | simpr 485 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑦 ∈ (LBasis‘𝐵)) |
60 | | eqid 2740 |
. . . . . . . . . . . . . . . . . 18
⊢
(Base‘𝐵) =
(Base‘𝐵) |
61 | 60, 29 | lbsss 20350 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (LBasis‘𝐵) → 𝑦 ⊆ (Base‘𝐵)) |
62 | 59, 61 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑦 ⊆ (Base‘𝐵)) |
63 | 26 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐵 = ((subringAlg ‘𝐸)‘𝑈)) |
64 | 63, 44 | srabase 20452 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (Base‘𝐸) = (Base‘𝐵)) |
65 | 64 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (Base‘𝐸) = (Base‘𝐵)) |
66 | 62, 65 | sseqtrrd 3967 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑦 ⊆ (Base‘𝐸)) |
67 | 66 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗 ∈ 𝑦) ∧ 𝑖 ∈ 𝑥) → 𝑦 ⊆ (Base‘𝐸)) |
68 | | simplr 766 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗 ∈ 𝑦) ∧ 𝑖 ∈ 𝑥) → 𝑗 ∈ 𝑦) |
69 | 67, 68 | sseldd 3927 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗 ∈ 𝑦) ∧ 𝑖 ∈ 𝑥) → 𝑗 ∈ (Base‘𝐸)) |
70 | | eqid 2740 |
. . . . . . . . . . . . . 14
⊢
(.r‘𝐸) = (.r‘𝐸) |
71 | 42, 70 | ringcl 19811 |
. . . . . . . . . . . . 13
⊢ ((𝐸 ∈ Ring ∧ 𝑖 ∈ (Base‘𝐸) ∧ 𝑗 ∈ (Base‘𝐸)) → (𝑖(.r‘𝐸)𝑗) ∈ (Base‘𝐸)) |
72 | 37, 58, 69, 71 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗 ∈ 𝑦) ∧ 𝑖 ∈ 𝑥) → (𝑖(.r‘𝐸)𝑗) ∈ (Base‘𝐸)) |
73 | | fedgmul.a |
. . . . . . . . . . . . . . 15
⊢ 𝐴 = ((subringAlg ‘𝐸)‘𝑉) |
74 | 73 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝐸)‘𝑉)) |
75 | 7 | simpld 495 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑉 ∈ (SubRing‘𝐸)) |
76 | 42 | subrgss 20036 |
. . . . . . . . . . . . . . 15
⊢ (𝑉 ∈ (SubRing‘𝐸) → 𝑉 ⊆ (Base‘𝐸)) |
77 | 75, 76 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑉 ⊆ (Base‘𝐸)) |
78 | 74, 77 | srabase 20452 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (Base‘𝐸) = (Base‘𝐴)) |
79 | 78 | ad4antr 729 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗 ∈ 𝑦) ∧ 𝑖 ∈ 𝑥) → (Base‘𝐸) = (Base‘𝐴)) |
80 | 72, 79 | eleqtrd 2843 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗 ∈ 𝑦) ∧ 𝑖 ∈ 𝑥) → (𝑖(.r‘𝐸)𝑗) ∈ (Base‘𝐴)) |
81 | 80 | anasss 467 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ (𝑗 ∈ 𝑦 ∧ 𝑖 ∈ 𝑥)) → (𝑖(.r‘𝐸)𝑗) ∈ (Base‘𝐴)) |
82 | 81 | ralrimivva 3117 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ∀𝑗 ∈ 𝑦 ∀𝑖 ∈ 𝑥 (𝑖(.r‘𝐸)𝑗) ∈ (Base‘𝐴)) |
83 | | oveq2 7280 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑗 → (𝑡(.r‘𝐸)𝑤) = (𝑡(.r‘𝐸)𝑗)) |
84 | | oveq1 7279 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑖 → (𝑡(.r‘𝐸)𝑗) = (𝑖(.r‘𝐸)𝑗)) |
85 | 83, 84 | cbvmpov 7365 |
. . . . . . . . . 10
⊢ (𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)) = (𝑗 ∈ 𝑦, 𝑖 ∈ 𝑥 ↦ (𝑖(.r‘𝐸)𝑗)) |
86 | 85 | fmpo 7902 |
. . . . . . . . 9
⊢
(∀𝑗 ∈
𝑦 ∀𝑖 ∈ 𝑥 (𝑖(.r‘𝐸)𝑗) ∈ (Base‘𝐴) ↔ (𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)):(𝑦 × 𝑥)⟶(Base‘𝐴)) |
87 | 82, 86 | sylib 217 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)):(𝑦 × 𝑥)⟶(Base‘𝐴)) |
88 | | eqid 2740 |
. . . . . . . . . . . . . 14
⊢
(Base‘(Scalar‘𝐵)) = (Base‘(Scalar‘𝐵)) |
89 | | eqid 2740 |
. . . . . . . . . . . . . 14
⊢ (
·𝑠 ‘𝐵) = ( ·𝑠
‘𝐵) |
90 | | eqid 2740 |
. . . . . . . . . . . . . 14
⊢
(+g‘𝐵) = (+g‘𝐵) |
91 | | eqid 2740 |
. . . . . . . . . . . . . 14
⊢
(0g‘(Scalar‘𝐵)) =
(0g‘(Scalar‘𝐵)) |
92 | 28 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝐵 ∈ LVec) |
93 | 92 | ad5antr 731 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗 ∈ 𝑦) ∧ 𝑖 ∈ 𝑥) ∧ 𝑣 ∈ 𝑦) ∧ 𝑢 ∈ 𝑥) ∧ (𝑗(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑖) = (𝑣(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑢)) → 𝐵 ∈ LVec) |
94 | 29 | lbslinds 21051 |
. . . . . . . . . . . . . . . 16
⊢
(LBasis‘𝐵)
⊆ (LIndS‘𝐵) |
95 | 94, 59 | sselid 3924 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑦 ∈ (LIndS‘𝐵)) |
96 | 95 | ad5antr 731 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗 ∈ 𝑦) ∧ 𝑖 ∈ 𝑥) ∧ 𝑣 ∈ 𝑦) ∧ 𝑢 ∈ 𝑥) ∧ (𝑗(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑖) = (𝑣(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑢)) → 𝑦 ∈ (LIndS‘𝐵)) |
97 | 68 | ad3antrrr 727 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗 ∈ 𝑦) ∧ 𝑖 ∈ 𝑥) ∧ 𝑣 ∈ 𝑦) ∧ 𝑢 ∈ 𝑥) ∧ (𝑗(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑖) = (𝑣(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑢)) → 𝑗 ∈ 𝑦) |
98 | | simpllr 773 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗 ∈ 𝑦) ∧ 𝑖 ∈ 𝑥) ∧ 𝑣 ∈ 𝑦) ∧ 𝑢 ∈ 𝑥) ∧ (𝑗(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑖) = (𝑣(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑢)) → 𝑣 ∈ 𝑦) |
99 | 63, 44 | srasca 20458 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝐸 ↾s 𝑈) = (Scalar‘𝐵)) |
100 | 4, 99 | eqtrid 2792 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐹 = (Scalar‘𝐵)) |
101 | 100 | fveq2d 6775 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (Base‘𝐹) =
(Base‘(Scalar‘𝐵))) |
102 | 101, 51 | eqtr3d 2782 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 →
(Base‘(Scalar‘𝐵)) = (Base‘𝐶)) |
103 | 102 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (Base‘(Scalar‘𝐵)) = (Base‘𝐶)) |
104 | 41, 103 | sseqtrrd 3967 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑥 ⊆ (Base‘(Scalar‘𝐵))) |
105 | 104 | ad5antr 731 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗 ∈ 𝑦) ∧ 𝑖 ∈ 𝑥) ∧ 𝑣 ∈ 𝑦) ∧ 𝑢 ∈ 𝑥) ∧ (𝑗(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑖) = (𝑣(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑢)) → 𝑥 ⊆ (Base‘(Scalar‘𝐵))) |
106 | | simp-4r 781 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗 ∈ 𝑦) ∧ 𝑖 ∈ 𝑥) ∧ 𝑣 ∈ 𝑦) ∧ 𝑢 ∈ 𝑥) ∧ (𝑗(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑖) = (𝑣(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑢)) → 𝑖 ∈ 𝑥) |
107 | 105, 106 | sseldd 3927 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗 ∈ 𝑦) ∧ 𝑖 ∈ 𝑥) ∧ 𝑣 ∈ 𝑦) ∧ 𝑢 ∈ 𝑥) ∧ (𝑗(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑖) = (𝑣(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑢)) → 𝑖 ∈ (Base‘(Scalar‘𝐵))) |
108 | | simplr 766 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗 ∈ 𝑦) ∧ 𝑖 ∈ 𝑥) ∧ 𝑣 ∈ 𝑦) ∧ 𝑢 ∈ 𝑥) ∧ (𝑗(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑖) = (𝑣(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑢)) → 𝑢 ∈ 𝑥) |
109 | 105, 108 | sseldd 3927 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗 ∈ 𝑦) ∧ 𝑖 ∈ 𝑥) ∧ 𝑣 ∈ 𝑦) ∧ 𝑢 ∈ 𝑥) ∧ (𝑗(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑖) = (𝑣(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑢)) → 𝑢 ∈ (Base‘(Scalar‘𝐵))) |
110 | 19 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝐶 ∈ LVec) |
111 | | eqid 2740 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(LSpan‘𝐶) =
(LSpan‘𝐶) |
112 | 39, 20, 111 | islbs4 21050 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ (LBasis‘𝐶) ↔ (𝑥 ∈ (LIndS‘𝐶) ∧ ((LSpan‘𝐶)‘𝑥) = (Base‘𝐶))) |
113 | 38, 112 | sylib 217 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑥 ∈ (LIndS‘𝐶) ∧ ((LSpan‘𝐶)‘𝑥) = (Base‘𝐶))) |
114 | 113 | simpld 495 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑥 ∈ (LIndS‘𝐶)) |
115 | | eqid 2740 |
. . . . . . . . . . . . . . . . . . 19
⊢
(0g‘𝐶) = (0g‘𝐶) |
116 | 115 | 0nellinds 31575 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐶 ∈ LVec ∧ 𝑥 ∈ (LIndS‘𝐶)) → ¬
(0g‘𝐶)
∈ 𝑥) |
117 | 110, 114,
116 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ¬ (0g‘𝐶) ∈ 𝑥) |
118 | 117 | ad5antr 731 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗 ∈ 𝑦) ∧ 𝑖 ∈ 𝑥) ∧ 𝑣 ∈ 𝑦) ∧ 𝑢 ∈ 𝑥) ∧ (𝑗(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑖) = (𝑣(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑢)) → ¬ (0g‘𝐶) ∈ 𝑥) |
119 | | nelne2 3044 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑖 ∈ 𝑥 ∧ ¬ (0g‘𝐶) ∈ 𝑥) → 𝑖 ≠ (0g‘𝐶)) |
120 | 106, 118,
119 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗 ∈ 𝑦) ∧ 𝑖 ∈ 𝑥) ∧ 𝑣 ∈ 𝑦) ∧ 𝑢 ∈ 𝑥) ∧ (𝑗(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑖) = (𝑣(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑢)) → 𝑖 ≠ (0g‘𝐶)) |
121 | 100 | fveq2d 6775 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (0g‘𝐹) =
(0g‘(Scalar‘𝐵))) |
122 | 16, 1, 3 | drgext0g 31686 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (0g‘𝐹) = (0g‘𝐶)) |
123 | 121, 122 | eqtr3d 2782 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 →
(0g‘(Scalar‘𝐵)) = (0g‘𝐶)) |
124 | 123 | ad7antr 735 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗 ∈ 𝑦) ∧ 𝑖 ∈ 𝑥) ∧ 𝑣 ∈ 𝑦) ∧ 𝑢 ∈ 𝑥) ∧ (𝑗(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑖) = (𝑣(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑢)) →
(0g‘(Scalar‘𝐵)) = (0g‘𝐶)) |
125 | 120, 124 | neeqtrrd 3020 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗 ∈ 𝑦) ∧ 𝑖 ∈ 𝑥) ∧ 𝑣 ∈ 𝑦) ∧ 𝑢 ∈ 𝑥) ∧ (𝑗(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑖) = (𝑣(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑢)) → 𝑖 ≠
(0g‘(Scalar‘𝐵))) |
126 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗 ∈ 𝑦) ∧ 𝑖 ∈ 𝑥) ∧ 𝑣 ∈ 𝑦) ∧ 𝑢 ∈ 𝑥) ∧ (𝑗(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑖) = (𝑣(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑢)) → (𝑗(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑖) = (𝑣(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑢)) |
127 | | ovexd 7307 |
. . . . . . . . . . . . . . . . 17
⊢
((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗 ∈ 𝑦) ∧ 𝑖 ∈ 𝑥) ∧ 𝑣 ∈ 𝑦) ∧ 𝑢 ∈ 𝑥) ∧ (𝑗(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑖) = (𝑣(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑢)) → (𝑖(.r‘𝐸)𝑗) ∈ V) |
128 | 85 | ovmpt4g 7415 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑗 ∈ 𝑦 ∧ 𝑖 ∈ 𝑥 ∧ (𝑖(.r‘𝐸)𝑗) ∈ V) → (𝑗(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑖) = (𝑖(.r‘𝐸)𝑗)) |
129 | 97, 106, 127, 128 | syl3anc 1370 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗 ∈ 𝑦) ∧ 𝑖 ∈ 𝑥) ∧ 𝑣 ∈ 𝑦) ∧ 𝑢 ∈ 𝑥) ∧ (𝑗(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑖) = (𝑣(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑢)) → (𝑗(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑖) = (𝑖(.r‘𝐸)𝑗)) |
130 | 26, 25, 2 | drgextvsca 31687 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (.r‘𝐸) = (
·𝑠 ‘𝐵)) |
131 | 130 | oveqd 7289 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑖(.r‘𝐸)𝑗) = (𝑖( ·𝑠
‘𝐵)𝑗)) |
132 | 131 | ad7antr 735 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗 ∈ 𝑦) ∧ 𝑖 ∈ 𝑥) ∧ 𝑣 ∈ 𝑦) ∧ 𝑢 ∈ 𝑥) ∧ (𝑗(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑖) = (𝑣(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑢)) → (𝑖(.r‘𝐸)𝑗) = (𝑖( ·𝑠
‘𝐵)𝑗)) |
133 | 129, 132 | eqtrd 2780 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗 ∈ 𝑦) ∧ 𝑖 ∈ 𝑥) ∧ 𝑣 ∈ 𝑦) ∧ 𝑢 ∈ 𝑥) ∧ (𝑗(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑖) = (𝑣(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑢)) → (𝑗(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑖) = (𝑖( ·𝑠
‘𝐵)𝑗)) |
134 | 85 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑣 ∈ 𝑦) ∧ 𝑢 ∈ 𝑥) → (𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)) = (𝑗 ∈ 𝑦, 𝑖 ∈ 𝑥 ↦ (𝑖(.r‘𝐸)𝑗))) |
135 | | simprr 770 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑣 ∈ 𝑦) ∧ 𝑢 ∈ 𝑥) ∧ (𝑗 = 𝑣 ∧ 𝑖 = 𝑢)) → 𝑖 = 𝑢) |
136 | | simprl 768 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑣 ∈ 𝑦) ∧ 𝑢 ∈ 𝑥) ∧ (𝑗 = 𝑣 ∧ 𝑖 = 𝑢)) → 𝑗 = 𝑣) |
137 | 135, 136 | oveq12d 7290 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑣 ∈ 𝑦) ∧ 𝑢 ∈ 𝑥) ∧ (𝑗 = 𝑣 ∧ 𝑖 = 𝑢)) → (𝑖(.r‘𝐸)𝑗) = (𝑢(.r‘𝐸)𝑣)) |
138 | | simplr 766 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑣 ∈ 𝑦) ∧ 𝑢 ∈ 𝑥) → 𝑣 ∈ 𝑦) |
139 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑣 ∈ 𝑦) ∧ 𝑢 ∈ 𝑥) → 𝑢 ∈ 𝑥) |
140 | | ovexd 7307 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑣 ∈ 𝑦) ∧ 𝑢 ∈ 𝑥) → (𝑢(.r‘𝐸)𝑣) ∈ V) |
141 | 134, 137,
138, 139, 140 | ovmpod 7420 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑣 ∈ 𝑦) ∧ 𝑢 ∈ 𝑥) → (𝑣(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑢) = (𝑢(.r‘𝐸)𝑣)) |
142 | 141 | adantllr 716 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑖 ∈ 𝑥) ∧ 𝑣 ∈ 𝑦) ∧ 𝑢 ∈ 𝑥) → (𝑣(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑢) = (𝑢(.r‘𝐸)𝑣)) |
143 | 142 | adantl3r 747 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗 ∈ 𝑦) ∧ 𝑖 ∈ 𝑥) ∧ 𝑣 ∈ 𝑦) ∧ 𝑢 ∈ 𝑥) → (𝑣(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑢) = (𝑢(.r‘𝐸)𝑣)) |
144 | 143 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗 ∈ 𝑦) ∧ 𝑖 ∈ 𝑥) ∧ 𝑣 ∈ 𝑦) ∧ 𝑢 ∈ 𝑥) ∧ (𝑗(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑖) = (𝑣(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑢)) → (𝑣(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑢) = (𝑢(.r‘𝐸)𝑣)) |
145 | 130 | oveqd 7289 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑢(.r‘𝐸)𝑣) = (𝑢( ·𝑠
‘𝐵)𝑣)) |
146 | 145 | ad7antr 735 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗 ∈ 𝑦) ∧ 𝑖 ∈ 𝑥) ∧ 𝑣 ∈ 𝑦) ∧ 𝑢 ∈ 𝑥) ∧ (𝑗(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑖) = (𝑣(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑢)) → (𝑢(.r‘𝐸)𝑣) = (𝑢( ·𝑠
‘𝐵)𝑣)) |
147 | 144, 146 | eqtrd 2780 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗 ∈ 𝑦) ∧ 𝑖 ∈ 𝑥) ∧ 𝑣 ∈ 𝑦) ∧ 𝑢 ∈ 𝑥) ∧ (𝑗(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑖) = (𝑣(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑢)) → (𝑣(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑢) = (𝑢( ·𝑠
‘𝐵)𝑣)) |
148 | 126, 133,
147 | 3eqtr3d 2788 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗 ∈ 𝑦) ∧ 𝑖 ∈ 𝑥) ∧ 𝑣 ∈ 𝑦) ∧ 𝑢 ∈ 𝑥) ∧ (𝑗(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑖) = (𝑣(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑢)) → (𝑖( ·𝑠
‘𝐵)𝑗) = (𝑢( ·𝑠
‘𝐵)𝑣)) |
149 | 88, 89, 90, 91, 93, 96, 97, 98, 107, 109, 125, 148 | linds2eq 31584 |
. . . . . . . . . . . . 13
⊢
((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗 ∈ 𝑦) ∧ 𝑖 ∈ 𝑥) ∧ 𝑣 ∈ 𝑦) ∧ 𝑢 ∈ 𝑥) ∧ (𝑗(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑖) = (𝑣(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑢)) → (𝑗 = 𝑣 ∧ 𝑖 = 𝑢)) |
150 | 149 | ex 413 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗 ∈ 𝑦) ∧ 𝑖 ∈ 𝑥) ∧ 𝑣 ∈ 𝑦) ∧ 𝑢 ∈ 𝑥) → ((𝑗(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑖) = (𝑣(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑢) → (𝑗 = 𝑣 ∧ 𝑖 = 𝑢))) |
151 | 150 | anasss 467 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗 ∈ 𝑦) ∧ 𝑖 ∈ 𝑥) ∧ (𝑣 ∈ 𝑦 ∧ 𝑢 ∈ 𝑥)) → ((𝑗(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑖) = (𝑣(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑢) → (𝑗 = 𝑣 ∧ 𝑖 = 𝑢))) |
152 | 151 | ralrimivva 3117 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗 ∈ 𝑦) ∧ 𝑖 ∈ 𝑥) → ∀𝑣 ∈ 𝑦 ∀𝑢 ∈ 𝑥 ((𝑗(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑖) = (𝑣(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑢) → (𝑗 = 𝑣 ∧ 𝑖 = 𝑢))) |
153 | 152 | anasss 467 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ (𝑗 ∈ 𝑦 ∧ 𝑖 ∈ 𝑥)) → ∀𝑣 ∈ 𝑦 ∀𝑢 ∈ 𝑥 ((𝑗(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑖) = (𝑣(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑢) → (𝑗 = 𝑣 ∧ 𝑖 = 𝑢))) |
154 | 153 | ralrimivva 3117 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ∀𝑗 ∈ 𝑦 ∀𝑖 ∈ 𝑥 ∀𝑣 ∈ 𝑦 ∀𝑢 ∈ 𝑥 ((𝑗(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑖) = (𝑣(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑢) → (𝑗 = 𝑣 ∧ 𝑖 = 𝑢))) |
155 | | f1opr 7326 |
. . . . . . . 8
⊢ ((𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)):(𝑦 × 𝑥)–1-1→(Base‘𝐴) ↔ ((𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)):(𝑦 × 𝑥)⟶(Base‘𝐴) ∧ ∀𝑗 ∈ 𝑦 ∀𝑖 ∈ 𝑥 ∀𝑣 ∈ 𝑦 ∀𝑢 ∈ 𝑥 ((𝑗(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑖) = (𝑣(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))𝑢) → (𝑗 = 𝑣 ∧ 𝑖 = 𝑢)))) |
156 | 87, 154, 155 | sylanbrc 583 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)):(𝑦 × 𝑥)–1-1→(Base‘𝐴)) |
157 | 59, 38 | xpexd 7596 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑦 × 𝑥) ∈ V) |
158 | | f1rnen 30973 |
. . . . . . 7
⊢ (((𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)):(𝑦 × 𝑥)–1-1→(Base‘𝐴) ∧ (𝑦 × 𝑥) ∈ V) → ran (𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)) ≈ (𝑦 × 𝑥)) |
159 | 156, 157,
158 | syl2anc 584 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ran (𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)) ≈ (𝑦 × 𝑥)) |
160 | | hasheni 14073 |
. . . . . 6
⊢ (ran
(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)) ≈ (𝑦 × 𝑥) → (♯‘ran (𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))) = (♯‘(𝑦 × 𝑥))) |
161 | 159, 160 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (♯‘ran (𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))) = (♯‘(𝑦 × 𝑥))) |
162 | | hashxpe 31136 |
. . . . . 6
⊢ ((𝑦 ∈ (LBasis‘𝐵) ∧ 𝑥 ∈ (LBasis‘𝐶)) → (♯‘(𝑦 × 𝑥)) = ((♯‘𝑦) ·e (♯‘𝑥))) |
163 | 59, 38, 162 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (♯‘(𝑦 × 𝑥)) = ((♯‘𝑦) ·e (♯‘𝑥))) |
164 | 161, 163 | eqtrd 2780 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (♯‘ran (𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))) = ((♯‘𝑦) ·e (♯‘𝑥))) |
165 | 73, 12 | sralvec 31684 |
. . . . . . 7
⊢ ((𝐸 ∈ DivRing ∧ 𝐾 ∈ DivRing ∧ 𝑉 ∈ (SubRing‘𝐸)) → 𝐴 ∈ LVec) |
166 | 25, 14, 75, 165 | syl3anc 1370 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ LVec) |
167 | 166 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝐴 ∈ LVec) |
168 | | lveclmod 20379 |
. . . . . . . . 9
⊢ (𝐴 ∈ LVec → 𝐴 ∈ LMod) |
169 | 166, 168 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ LMod) |
170 | 169 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝐴 ∈ LMod) |
171 | 25 | ad4antr 729 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐 ∘f (
·𝑠 ‘𝐴)(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)))) = (0g‘𝐴)) → 𝐸 ∈ DivRing) |
172 | 1 | ad4antr 729 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐 ∘f (
·𝑠 ‘𝐴)(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)))) = (0g‘𝐴)) → 𝐹 ∈ DivRing) |
173 | 14 | ad4antr 729 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐 ∘f (
·𝑠 ‘𝐴)(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)))) = (0g‘𝐴)) → 𝐾 ∈ DivRing) |
174 | 2 | ad4antr 729 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐 ∘f (
·𝑠 ‘𝐴)(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)))) = (0g‘𝐴)) → 𝑈 ∈ (SubRing‘𝐸)) |
175 | 3 | ad4antr 729 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐 ∘f (
·𝑠 ‘𝐴)(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)))) = (0g‘𝐴)) → 𝑉 ∈ (SubRing‘𝐹)) |
176 | | fveq2 6771 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑗 → (𝑓‘𝑤) = (𝑓‘𝑗)) |
177 | 176 | fveq1d 6773 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑗 → ((𝑓‘𝑤)‘𝑣) = ((𝑓‘𝑗)‘𝑣)) |
178 | | fveq2 6771 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝑖 → ((𝑓‘𝑗)‘𝑣) = ((𝑓‘𝑗)‘𝑖)) |
179 | 177, 178 | cbvmpov 7365 |
. . . . . . . . . 10
⊢ (𝑤 ∈ 𝑦, 𝑣 ∈ 𝑥 ↦ ((𝑓‘𝑤)‘𝑣)) = (𝑗 ∈ 𝑦, 𝑖 ∈ 𝑥 ↦ ((𝑓‘𝑗)‘𝑖)) |
180 | | simp-4r 781 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐 ∘f (
·𝑠 ‘𝐴)(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)))) = (0g‘𝐴)) → 𝑥 ∈ (LBasis‘𝐶)) |
181 | | simpllr 773 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐 ∘f (
·𝑠 ‘𝐴)(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)))) = (0g‘𝐴)) → 𝑦 ∈ (LBasis‘𝐵)) |
182 | | simplr 766 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐 ∘f (
·𝑠 ‘𝐴)(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)))) = (0g‘𝐴)) → 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) |
183 | | simpr 485 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐 ∘f (
·𝑠 ‘𝐴)(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)))) = (0g‘𝐴)) → (𝐴 Σg (𝑐 ∘f (
·𝑠 ‘𝐴)(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)))) = (0g‘𝐴)) |
184 | 73, 26, 16, 4, 12, 171, 172, 173, 174, 175, 85, 179, 180, 181, 182, 183 | fedgmullem2 31720 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐 ∘f (
·𝑠 ‘𝐴)(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)))) = (0g‘𝐴)) → 𝑐 = ((𝑦 × 𝑥) ×
{(0g‘(Scalar‘𝐴))})) |
185 | 184 | ex 413 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) → ((𝐴 Σg (𝑐 ∘f (
·𝑠 ‘𝐴)(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)))) = (0g‘𝐴) → 𝑐 = ((𝑦 × 𝑥) ×
{(0g‘(Scalar‘𝐴))}))) |
186 | 185 | ralrimiva 3110 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ∀𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))((𝐴 Σg (𝑐 ∘f (
·𝑠 ‘𝐴)(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)))) = (0g‘𝐴) → 𝑐 = ((𝑦 × 𝑥) ×
{(0g‘(Scalar‘𝐴))}))) |
187 | | eqid 2740 |
. . . . . . . . 9
⊢
(Base‘𝐴) =
(Base‘𝐴) |
188 | | eqid 2740 |
. . . . . . . . 9
⊢
(Scalar‘𝐴) =
(Scalar‘𝐴) |
189 | | eqid 2740 |
. . . . . . . . 9
⊢ (
·𝑠 ‘𝐴) = ( ·𝑠
‘𝐴) |
190 | | eqid 2740 |
. . . . . . . . 9
⊢
(0g‘𝐴) = (0g‘𝐴) |
191 | | eqid 2740 |
. . . . . . . . 9
⊢
(0g‘(Scalar‘𝐴)) =
(0g‘(Scalar‘𝐴)) |
192 | | eqid 2740 |
. . . . . . . . 9
⊢
(Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥))) = (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥))) |
193 | 187, 188,
189, 190, 191, 192 | islindf4 21056 |
. . . . . . . 8
⊢ ((𝐴 ∈ LMod ∧ (𝑦 × 𝑥) ∈ V ∧ (𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)):(𝑦 × 𝑥)⟶(Base‘𝐴)) → ((𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)) LIndF 𝐴 ↔ ∀𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))((𝐴 Σg (𝑐 ∘f (
·𝑠 ‘𝐴)(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)))) = (0g‘𝐴) → 𝑐 = ((𝑦 × 𝑥) ×
{(0g‘(Scalar‘𝐴))})))) |
194 | 193 | biimpar 478 |
. . . . . . 7
⊢ (((𝐴 ∈ LMod ∧ (𝑦 × 𝑥) ∈ V ∧ (𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)):(𝑦 × 𝑥)⟶(Base‘𝐴)) ∧ ∀𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))((𝐴 Σg (𝑐 ∘f (
·𝑠 ‘𝐴)(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)))) = (0g‘𝐴) → 𝑐 = ((𝑦 × 𝑥) ×
{(0g‘(Scalar‘𝐴))}))) → (𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)) LIndF 𝐴) |
195 | 170, 157,
87, 186, 194 | syl31anc 1372 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)) LIndF 𝐴) |
196 | 72 | anasss 467 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ (𝑗 ∈ 𝑦 ∧ 𝑖 ∈ 𝑥)) → (𝑖(.r‘𝐸)𝑗) ∈ (Base‘𝐸)) |
197 | 196 | ralrimivva 3117 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ∀𝑗 ∈ 𝑦 ∀𝑖 ∈ 𝑥 (𝑖(.r‘𝐸)𝑗) ∈ (Base‘𝐸)) |
198 | 85 | rnmposs 31020 |
. . . . . . . . . 10
⊢
(∀𝑗 ∈
𝑦 ∀𝑖 ∈ 𝑥 (𝑖(.r‘𝐸)𝑗) ∈ (Base‘𝐸) → ran (𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)) ⊆ (Base‘𝐸)) |
199 | 197, 198 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ran (𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)) ⊆ (Base‘𝐸)) |
200 | 78 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (Base‘𝐸) = (Base‘𝐴)) |
201 | 199, 200 | sseqtrd 3966 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ran (𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)) ⊆ (Base‘𝐴)) |
202 | | eqid 2740 |
. . . . . . . . 9
⊢
(LSpan‘𝐴) =
(LSpan‘𝐴) |
203 | 187, 202 | lspssv 20256 |
. . . . . . . 8
⊢ ((𝐴 ∈ LMod ∧ ran (𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)) ⊆ (Base‘𝐴)) → ((LSpan‘𝐴)‘ran (𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))) ⊆ (Base‘𝐴)) |
204 | 170, 201,
203 | syl2anc 584 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ((LSpan‘𝐴)‘ran (𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))) ⊆ (Base‘𝐴)) |
205 | | simpl 483 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → ((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵))) |
206 | 205 | ad4antr 729 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) ∧ 𝑗 ∈ 𝑦) → ((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵))) |
207 | | elmapi 8629 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 ∈
((Base‘(Scalar‘𝐵)) ↑m 𝑦) → 𝑎:𝑦⟶(Base‘(Scalar‘𝐵))) |
208 | 207 | ad4antlr 730 |
. . . . . . . . . . . . . . . . 17
⊢
((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) ∧ 𝑗 ∈ 𝑦) → 𝑎:𝑦⟶(Base‘(Scalar‘𝐵))) |
209 | | simpr 485 |
. . . . . . . . . . . . . . . . 17
⊢
((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) ∧ 𝑗 ∈ 𝑦) → 𝑗 ∈ 𝑦) |
210 | 208, 209 | ffvelrnd 6959 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) ∧ 𝑗 ∈ 𝑦) → (𝑎‘𝑗) ∈ (Base‘(Scalar‘𝐵))) |
211 | 113 | simprd 496 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ((LSpan‘𝐶)‘𝑥) = (Base‘𝐶)) |
212 | 206, 211 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢
((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) ∧ 𝑗 ∈ 𝑦) → ((LSpan‘𝐶)‘𝑥) = (Base‘𝐶)) |
213 | 102 | ad7antr 735 |
. . . . . . . . . . . . . . . . 17
⊢
((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) ∧ 𝑗 ∈ 𝑦) → (Base‘(Scalar‘𝐵)) = (Base‘𝐶)) |
214 | 212, 213 | eqtr4d 2783 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) ∧ 𝑗 ∈ 𝑦) → ((LSpan‘𝐶)‘𝑥) = (Base‘(Scalar‘𝐵))) |
215 | 210, 214 | eleqtrrd 2844 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) ∧ 𝑗 ∈ 𝑦) → (𝑎‘𝑗) ∈ ((LSpan‘𝐶)‘𝑥)) |
216 | | eqid 2740 |
. . . . . . . . . . . . . . . . 17
⊢
(Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶)) |
217 | | eqid 2740 |
. . . . . . . . . . . . . . . . 17
⊢
(Scalar‘𝐶) =
(Scalar‘𝐶) |
218 | | eqid 2740 |
. . . . . . . . . . . . . . . . 17
⊢
(0g‘(Scalar‘𝐶)) =
(0g‘(Scalar‘𝐶)) |
219 | | eqid 2740 |
. . . . . . . . . . . . . . . . 17
⊢ (
·𝑠 ‘𝐶) = ( ·𝑠
‘𝐶) |
220 | | lveclmod 20379 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐶 ∈ LVec → 𝐶 ∈ LMod) |
221 | 19, 220 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐶 ∈ LMod) |
222 | 221 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝐶 ∈ LMod) |
223 | 111, 39, 216, 217, 218, 219, 222, 41 | ellspds 31573 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ((𝑎‘𝑗) ∈ ((LSpan‘𝐶)‘𝑥) ↔ ∃𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑗) = (𝐶 Σg (𝑖 ∈ 𝑥 ↦ ((𝑏‘𝑖)( ·𝑠
‘𝐶)𝑖)))))) |
224 | 223 | biimpa 477 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ (𝑎‘𝑗) ∈ ((LSpan‘𝐶)‘𝑥)) → ∃𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑗) = (𝐶 Σg (𝑖 ∈ 𝑥 ↦ ((𝑏‘𝑖)( ·𝑠
‘𝐶)𝑖))))) |
225 | 206, 215,
224 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) ∧ 𝑗 ∈ 𝑦) → ∃𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑗) = (𝐶 Σg (𝑖 ∈ 𝑥 ↦ ((𝑏‘𝑖)( ·𝑠
‘𝐶)𝑖))))) |
226 | 225 | ralrimiva 3110 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) → ∀𝑗 ∈ 𝑦 ∃𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑗) = (𝐶 Σg (𝑖 ∈ 𝑥 ↦ ((𝑏‘𝑖)( ·𝑠
‘𝐶)𝑖))))) |
227 | | fveq2 6771 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = 𝑗 → (𝑎‘𝑤) = (𝑎‘𝑗)) |
228 | | fveq2 6771 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑣 = 𝑖 → (𝑏‘𝑣) = (𝑏‘𝑖)) |
229 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑣 = 𝑖 → 𝑣 = 𝑖) |
230 | 228, 229 | oveq12d 7290 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑣 = 𝑖 → ((𝑏‘𝑣)( ·𝑠
‘𝐶)𝑣) = ((𝑏‘𝑖)( ·𝑠
‘𝐶)𝑖)) |
231 | 230 | cbvmptv 5192 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑣 ∈ 𝑥 ↦ ((𝑏‘𝑣)( ·𝑠
‘𝐶)𝑣)) = (𝑖 ∈ 𝑥 ↦ ((𝑏‘𝑖)( ·𝑠
‘𝐶)𝑖)) |
232 | 231 | oveq2i 7283 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐶 Σg
(𝑣 ∈ 𝑥 ↦ ((𝑏‘𝑣)( ·𝑠
‘𝐶)𝑣))) = (𝐶 Σg (𝑖 ∈ 𝑥 ↦ ((𝑏‘𝑖)( ·𝑠
‘𝐶)𝑖))) |
233 | 232 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = 𝑗 → (𝐶 Σg (𝑣 ∈ 𝑥 ↦ ((𝑏‘𝑣)( ·𝑠
‘𝐶)𝑣))) = (𝐶 Σg (𝑖 ∈ 𝑥 ↦ ((𝑏‘𝑖)( ·𝑠
‘𝐶)𝑖)))) |
234 | 227, 233 | eqeq12d 2756 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑗 → ((𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ ((𝑏‘𝑣)( ·𝑠
‘𝐶)𝑣))) ↔ (𝑎‘𝑗) = (𝐶 Σg (𝑖 ∈ 𝑥 ↦ ((𝑏‘𝑖)( ·𝑠
‘𝐶)𝑖))))) |
235 | 234 | anbi2d 629 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑗 → ((𝑏 finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ ((𝑏‘𝑣)( ·𝑠
‘𝐶)𝑣)))) ↔ (𝑏 finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑗) = (𝐶 Σg (𝑖 ∈ 𝑥 ↦ ((𝑏‘𝑖)( ·𝑠
‘𝐶)𝑖)))))) |
236 | 235 | rexbidv 3228 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = 𝑗 → (∃𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ ((𝑏‘𝑣)( ·𝑠
‘𝐶)𝑣)))) ↔ ∃𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑗) = (𝐶 Σg (𝑖 ∈ 𝑥 ↦ ((𝑏‘𝑖)( ·𝑠
‘𝐶)𝑖)))))) |
237 | 236 | cbvralvw 3381 |
. . . . . . . . . . . . . 14
⊢
(∀𝑤 ∈
𝑦 ∃𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ ((𝑏‘𝑣)( ·𝑠
‘𝐶)𝑣)))) ↔ ∀𝑗 ∈ 𝑦 ∃𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑗) = (𝐶 Σg (𝑖 ∈ 𝑥 ↦ ((𝑏‘𝑖)( ·𝑠
‘𝐶)𝑖))))) |
238 | | vex 3435 |
. . . . . . . . . . . . . . 15
⊢ 𝑦 ∈ V |
239 | | breq1 5082 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = (𝑓‘𝑤) → (𝑏 finSupp
(0g‘(Scalar‘𝐶)) ↔ (𝑓‘𝑤) finSupp
(0g‘(Scalar‘𝐶)))) |
240 | | fveq1 6770 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 = (𝑓‘𝑤) → (𝑏‘𝑣) = ((𝑓‘𝑤)‘𝑣)) |
241 | 240 | oveq1d 7287 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = (𝑓‘𝑤) → ((𝑏‘𝑣)( ·𝑠
‘𝐶)𝑣) = (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣)) |
242 | 241 | mpteq2dv 5181 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = (𝑓‘𝑤) → (𝑣 ∈ 𝑥 ↦ ((𝑏‘𝑣)( ·𝑠
‘𝐶)𝑣)) = (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣))) |
243 | 242 | oveq2d 7288 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = (𝑓‘𝑤) → (𝐶 Σg (𝑣 ∈ 𝑥 ↦ ((𝑏‘𝑣)( ·𝑠
‘𝐶)𝑣))) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣)))) |
244 | 243 | eqeq2d 2751 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = (𝑓‘𝑤) → ((𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ ((𝑏‘𝑣)( ·𝑠
‘𝐶)𝑣))) ↔ (𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣))))) |
245 | 239, 244 | anbi12d 631 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = (𝑓‘𝑤) → ((𝑏 finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ ((𝑏‘𝑣)( ·𝑠
‘𝐶)𝑣)))) ↔ ((𝑓‘𝑤) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣)))))) |
246 | 238, 245 | ac6s 10251 |
. . . . . . . . . . . . . 14
⊢
(∀𝑤 ∈
𝑦 ∃𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ ((𝑏‘𝑣)( ·𝑠
‘𝐶)𝑣)))) → ∃𝑓(𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥) ∧ ∀𝑤 ∈ 𝑦 ((𝑓‘𝑤) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣)))))) |
247 | 237, 246 | sylbir 234 |
. . . . . . . . . . . . 13
⊢
(∀𝑗 ∈
𝑦 ∃𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑗) = (𝐶 Σg (𝑖 ∈ 𝑥 ↦ ((𝑏‘𝑖)( ·𝑠
‘𝐶)𝑖)))) → ∃𝑓(𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥) ∧ ∀𝑤 ∈ 𝑦 ((𝑓‘𝑤) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣)))))) |
248 | 226, 247 | syl 17 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) → ∃𝑓(𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥) ∧ ∀𝑤 ∈ 𝑦 ((𝑓‘𝑤) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣)))))) |
249 | | simpllr 773 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ 𝑗 ∈ 𝑦) ∧ 𝑖 ∈ 𝑥) → 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) |
250 | | simplr 766 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ 𝑗 ∈ 𝑦) ∧ 𝑖 ∈ 𝑥) → 𝑗 ∈ 𝑦) |
251 | 249, 250 | ffvelrnd 6959 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ 𝑗 ∈ 𝑦) ∧ 𝑖 ∈ 𝑥) → (𝑓‘𝑗) ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)) |
252 | | elmapi 8629 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑓‘𝑗) ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥) → (𝑓‘𝑗):𝑥⟶(Base‘(Scalar‘𝐶))) |
253 | 251, 252 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ 𝑗 ∈ 𝑦) ∧ 𝑖 ∈ 𝑥) → (𝑓‘𝑗):𝑥⟶(Base‘(Scalar‘𝐶))) |
254 | 253 | anasss 467 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ (𝑗 ∈ 𝑦 ∧ 𝑖 ∈ 𝑥)) → (𝑓‘𝑗):𝑥⟶(Base‘(Scalar‘𝐶))) |
255 | | simprr 770 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ (𝑗 ∈ 𝑦 ∧ 𝑖 ∈ 𝑥)) → 𝑖 ∈ 𝑥) |
256 | 254, 255 | ffvelrnd 6959 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ (𝑗 ∈ 𝑦 ∧ 𝑖 ∈ 𝑥)) → ((𝑓‘𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐶))) |
257 | 74, 77 | srasca 20458 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝐸 ↾s 𝑉) = (Scalar‘𝐴)) |
258 | 12, 257 | eqtrid 2792 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝐾 = (Scalar‘𝐴)) |
259 | 47, 50 | srasca 20458 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝐹 ↾s 𝑉) = (Scalar‘𝐶)) |
260 | 13, 259 | eqtr3d 2782 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝐾 = (Scalar‘𝐶)) |
261 | 258, 260 | eqtr3d 2782 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (Scalar‘𝐴) = (Scalar‘𝐶)) |
262 | 261 | fveq2d 6775 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 →
(Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐶))) |
263 | 262 | ad4antr 729 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ (𝑗 ∈ 𝑦 ∧ 𝑖 ∈ 𝑥)) → (Base‘(Scalar‘𝐴)) =
(Base‘(Scalar‘𝐶))) |
264 | 256, 263 | eleqtrrd 2844 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ (𝑗 ∈ 𝑦 ∧ 𝑖 ∈ 𝑥)) → ((𝑓‘𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴))) |
265 | 264 | ralrimivva 3117 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) → ∀𝑗 ∈ 𝑦 ∀𝑖 ∈ 𝑥 ((𝑓‘𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴))) |
266 | 179 | fmpo 7902 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑗 ∈
𝑦 ∀𝑖 ∈ 𝑥 ((𝑓‘𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)) ↔ (𝑤 ∈ 𝑦, 𝑣 ∈ 𝑥 ↦ ((𝑓‘𝑤)‘𝑣)):(𝑦 × 𝑥)⟶(Base‘(Scalar‘𝐴))) |
267 | 265, 266 | sylib 217 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) → (𝑤 ∈ 𝑦, 𝑣 ∈ 𝑥 ↦ ((𝑓‘𝑤)‘𝑣)):(𝑦 × 𝑥)⟶(Base‘(Scalar‘𝐴))) |
268 | | fvexd 6786 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) →
(Base‘(Scalar‘𝐴)) ∈ V) |
269 | 157 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) → (𝑦 × 𝑥) ∈ V) |
270 | 268, 269 | elmapd 8621 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) → ((𝑤 ∈ 𝑦, 𝑣 ∈ 𝑥 ↦ ((𝑓‘𝑤)‘𝑣)) ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥)) ↔ (𝑤 ∈ 𝑦, 𝑣 ∈ 𝑥 ↦ ((𝑓‘𝑤)‘𝑣)):(𝑦 × 𝑥)⟶(Base‘(Scalar‘𝐴)))) |
271 | 267, 270 | mpbird 256 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) → (𝑤 ∈ 𝑦, 𝑣 ∈ 𝑥 ↦ ((𝑓‘𝑤)‘𝑣)) ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥))) |
272 | 271 | ad5ant15 756 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) → (𝑤 ∈ 𝑦, 𝑣 ∈ 𝑥 ↦ ((𝑓‘𝑤)‘𝑣)) ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥))) |
273 | 272 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤 ∈ 𝑦 ((𝑓‘𝑤) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣))))) → (𝑤 ∈ 𝑦, 𝑣 ∈ 𝑥 ↦ ((𝑓‘𝑤)‘𝑣)) ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥))) |
274 | 273 | adantl3r 747 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤 ∈ 𝑦 ((𝑓‘𝑤) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣))))) → (𝑤 ∈ 𝑦, 𝑣 ∈ 𝑥 ↦ ((𝑓‘𝑤)‘𝑣)) ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥))) |
275 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢
((((((((((𝜑 ∧
𝑥 ∈
(LBasis‘𝐶)) ∧
𝑦 ∈
(LBasis‘𝐵)) ∧
𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤 ∈ 𝑦 ((𝑓‘𝑤) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣))))) ∧ 𝑐 = (𝑤 ∈ 𝑦, 𝑣 ∈ 𝑥 ↦ ((𝑓‘𝑤)‘𝑣))) → 𝑐 = (𝑤 ∈ 𝑦, 𝑣 ∈ 𝑥 ↦ ((𝑓‘𝑤)‘𝑣))) |
276 | 275 | breq1d 5089 |
. . . . . . . . . . . . . . 15
⊢
((((((((((𝜑 ∧
𝑥 ∈
(LBasis‘𝐶)) ∧
𝑦 ∈
(LBasis‘𝐵)) ∧
𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤 ∈ 𝑦 ((𝑓‘𝑤) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣))))) ∧ 𝑐 = (𝑤 ∈ 𝑦, 𝑣 ∈ 𝑥 ↦ ((𝑓‘𝑤)‘𝑣))) → (𝑐 finSupp
(0g‘(Scalar‘𝐴)) ↔ (𝑤 ∈ 𝑦, 𝑣 ∈ 𝑥 ↦ ((𝑓‘𝑤)‘𝑣)) finSupp
(0g‘(Scalar‘𝐴)))) |
277 | 275 | oveq1d 7287 |
. . . . . . . . . . . . . . . . 17
⊢
((((((((((𝜑 ∧
𝑥 ∈
(LBasis‘𝐶)) ∧
𝑦 ∈
(LBasis‘𝐵)) ∧
𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤 ∈ 𝑦 ((𝑓‘𝑤) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣))))) ∧ 𝑐 = (𝑤 ∈ 𝑦, 𝑣 ∈ 𝑥 ↦ ((𝑓‘𝑤)‘𝑣))) → (𝑐 ∘f (
·𝑠 ‘𝐴)(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))) = ((𝑤 ∈ 𝑦, 𝑣 ∈ 𝑥 ↦ ((𝑓‘𝑤)‘𝑣)) ∘f (
·𝑠 ‘𝐴)(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)))) |
278 | 277 | oveq2d 7288 |
. . . . . . . . . . . . . . . 16
⊢
((((((((((𝜑 ∧
𝑥 ∈
(LBasis‘𝐶)) ∧
𝑦 ∈
(LBasis‘𝐵)) ∧
𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤 ∈ 𝑦 ((𝑓‘𝑤) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣))))) ∧ 𝑐 = (𝑤 ∈ 𝑦, 𝑣 ∈ 𝑥 ↦ ((𝑓‘𝑤)‘𝑣))) → (𝐴 Σg (𝑐 ∘f (
·𝑠 ‘𝐴)(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)))) = (𝐴 Σg ((𝑤 ∈ 𝑦, 𝑣 ∈ 𝑥 ↦ ((𝑓‘𝑤)‘𝑣)) ∘f (
·𝑠 ‘𝐴)(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))))) |
279 | 278 | eqeq2d 2751 |
. . . . . . . . . . . . . . 15
⊢
((((((((((𝜑 ∧
𝑥 ∈
(LBasis‘𝐶)) ∧
𝑦 ∈
(LBasis‘𝐵)) ∧
𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤 ∈ 𝑦 ((𝑓‘𝑤) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣))))) ∧ 𝑐 = (𝑤 ∈ 𝑦, 𝑣 ∈ 𝑥 ↦ ((𝑓‘𝑤)‘𝑣))) → (𝑧 = (𝐴 Σg (𝑐 ∘f (
·𝑠 ‘𝐴)(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)))) ↔ 𝑧 = (𝐴 Σg ((𝑤 ∈ 𝑦, 𝑣 ∈ 𝑥 ↦ ((𝑓‘𝑤)‘𝑣)) ∘f (
·𝑠 ‘𝐴)(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)))))) |
280 | 276, 279 | anbi12d 631 |
. . . . . . . . . . . . . 14
⊢
((((((((((𝜑 ∧
𝑥 ∈
(LBasis‘𝐶)) ∧
𝑦 ∈
(LBasis‘𝐵)) ∧
𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤 ∈ 𝑦 ((𝑓‘𝑤) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣))))) ∧ 𝑐 = (𝑤 ∈ 𝑦, 𝑣 ∈ 𝑥 ↦ ((𝑓‘𝑤)‘𝑣))) → ((𝑐 finSupp
(0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg (𝑐 ∘f (
·𝑠 ‘𝐴)(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))))) ↔ ((𝑤 ∈ 𝑦, 𝑣 ∈ 𝑥 ↦ ((𝑓‘𝑤)‘𝑣)) finSupp
(0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg ((𝑤 ∈ 𝑦, 𝑣 ∈ 𝑥 ↦ ((𝑓‘𝑤)‘𝑣)) ∘f (
·𝑠 ‘𝐴)(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))))))) |
281 | 25 | ad8antr 737 |
. . . . . . . . . . . . . . 15
⊢
(((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤 ∈ 𝑦 ((𝑓‘𝑤) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣))))) → 𝐸 ∈ DivRing) |
282 | 1 | ad8antr 737 |
. . . . . . . . . . . . . . 15
⊢
(((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤 ∈ 𝑦 ((𝑓‘𝑤) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣))))) → 𝐹 ∈ DivRing) |
283 | 14 | ad8antr 737 |
. . . . . . . . . . . . . . 15
⊢
(((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤 ∈ 𝑦 ((𝑓‘𝑤) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣))))) → 𝐾 ∈ DivRing) |
284 | 2 | ad8antr 737 |
. . . . . . . . . . . . . . 15
⊢
(((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤 ∈ 𝑦 ((𝑓‘𝑤) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣))))) → 𝑈 ∈ (SubRing‘𝐸)) |
285 | 3 | ad8antr 737 |
. . . . . . . . . . . . . . 15
⊢
(((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤 ∈ 𝑦 ((𝑓‘𝑤) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣))))) → 𝑉 ∈ (SubRing‘𝐹)) |
286 | 38 | ad6antr 733 |
. . . . . . . . . . . . . . 15
⊢
(((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤 ∈ 𝑦 ((𝑓‘𝑤) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣))))) → 𝑥 ∈ (LBasis‘𝐶)) |
287 | 59 | ad6antr 733 |
. . . . . . . . . . . . . . 15
⊢
(((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤 ∈ 𝑦 ((𝑓‘𝑤) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣))))) → 𝑦 ∈ (LBasis‘𝐵)) |
288 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → 𝑧 ∈ (Base‘𝐴)) |
289 | 288 | ad5antr 731 |
. . . . . . . . . . . . . . 15
⊢
(((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤 ∈ 𝑦 ((𝑓‘𝑤) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣))))) → 𝑧 ∈ (Base‘𝐴)) |
290 | 207 | ad5antlr 732 |
. . . . . . . . . . . . . . 15
⊢
(((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤 ∈ 𝑦 ((𝑓‘𝑤) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣))))) → 𝑎:𝑦⟶(Base‘(Scalar‘𝐵))) |
291 | | simp-4r 781 |
. . . . . . . . . . . . . . 15
⊢
(((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤 ∈ 𝑦 ((𝑓‘𝑤) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣))))) → 𝑎 finSupp
(0g‘(Scalar‘𝐵))) |
292 | | simpllr 773 |
. . . . . . . . . . . . . . . 16
⊢
(((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤 ∈ 𝑦 ((𝑓‘𝑤) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣))))) → 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) |
293 | | id 22 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = 𝑗 → 𝑤 = 𝑗) |
294 | 227, 293 | oveq12d 7290 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = 𝑗 → ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤) = ((𝑎‘𝑗)( ·𝑠
‘𝐵)𝑗)) |
295 | 294 | cbvmptv 5192 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)) = (𝑗 ∈ 𝑦 ↦ ((𝑎‘𝑗)( ·𝑠
‘𝐵)𝑗)) |
296 | 295 | oveq2i 7283 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵 Σg
(𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤))) = (𝐵 Σg (𝑗 ∈ 𝑦 ↦ ((𝑎‘𝑗)( ·𝑠
‘𝐵)𝑗))) |
297 | 292, 296 | eqtrdi 2796 |
. . . . . . . . . . . . . . 15
⊢
(((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤 ∈ 𝑦 ((𝑓‘𝑤) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣))))) → 𝑧 = (𝐵 Σg (𝑗 ∈ 𝑦 ↦ ((𝑎‘𝑗)( ·𝑠
‘𝐵)𝑗)))) |
298 | | simplr 766 |
. . . . . . . . . . . . . . 15
⊢
(((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤 ∈ 𝑦 ((𝑓‘𝑤) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣))))) → 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) |
299 | | simpr 485 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤 ∈ 𝑦 ((𝑓‘𝑤) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣))))) → ∀𝑤 ∈ 𝑦 ((𝑓‘𝑤) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣))))) |
300 | 176 | breq1d 5089 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 = 𝑗 → ((𝑓‘𝑤) finSupp
(0g‘(Scalar‘𝐶)) ↔ (𝑓‘𝑗) finSupp
(0g‘(Scalar‘𝐶)))) |
301 | | fveq2 6771 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑣 = 𝑖 → ((𝑓‘𝑤)‘𝑣) = ((𝑓‘𝑤)‘𝑖)) |
302 | 301, 229 | oveq12d 7290 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑣 = 𝑖 → (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣) = (((𝑓‘𝑤)‘𝑖)( ·𝑠
‘𝐶)𝑖)) |
303 | 302 | cbvmptv 5192 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣)) = (𝑖 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑖)( ·𝑠
‘𝐶)𝑖)) |
304 | 176 | fveq1d 6773 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑤 = 𝑗 → ((𝑓‘𝑤)‘𝑖) = ((𝑓‘𝑗)‘𝑖)) |
305 | 304 | oveq1d 7287 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 = 𝑗 → (((𝑓‘𝑤)‘𝑖)( ·𝑠
‘𝐶)𝑖) = (((𝑓‘𝑗)‘𝑖)( ·𝑠
‘𝐶)𝑖)) |
306 | 305 | mpteq2dv 5181 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = 𝑗 → (𝑖 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑖)( ·𝑠
‘𝐶)𝑖)) = (𝑖 ∈ 𝑥 ↦ (((𝑓‘𝑗)‘𝑖)( ·𝑠
‘𝐶)𝑖))) |
307 | 303, 306 | eqtrid 2792 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 = 𝑗 → (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣)) = (𝑖 ∈ 𝑥 ↦ (((𝑓‘𝑗)‘𝑖)( ·𝑠
‘𝐶)𝑖))) |
308 | 307 | oveq2d 7288 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 = 𝑗 → (𝐶 Σg (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣))) = (𝐶 Σg (𝑖 ∈ 𝑥 ↦ (((𝑓‘𝑗)‘𝑖)( ·𝑠
‘𝐶)𝑖)))) |
309 | 227, 308 | eqeq12d 2756 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 = 𝑗 → ((𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣))) ↔ (𝑎‘𝑗) = (𝐶 Σg (𝑖 ∈ 𝑥 ↦ (((𝑓‘𝑗)‘𝑖)( ·𝑠
‘𝐶)𝑖))))) |
310 | 300, 309 | anbi12d 631 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = 𝑗 → (((𝑓‘𝑤) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣)))) ↔ ((𝑓‘𝑗) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑗) = (𝐶 Σg (𝑖 ∈ 𝑥 ↦ (((𝑓‘𝑗)‘𝑖)( ·𝑠
‘𝐶)𝑖)))))) |
311 | 310 | cbvralvw 3381 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑤 ∈
𝑦 ((𝑓‘𝑤) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣)))) ↔ ∀𝑗 ∈ 𝑦 ((𝑓‘𝑗) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑗) = (𝐶 Σg (𝑖 ∈ 𝑥 ↦ (((𝑓‘𝑗)‘𝑖)( ·𝑠
‘𝐶)𝑖))))) |
312 | 299, 311 | sylib 217 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤 ∈ 𝑦 ((𝑓‘𝑤) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣))))) → ∀𝑗 ∈ 𝑦 ((𝑓‘𝑗) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑗) = (𝐶 Σg (𝑖 ∈ 𝑥 ↦ (((𝑓‘𝑗)‘𝑖)( ·𝑠
‘𝐶)𝑖))))) |
313 | 312 | r19.21bi 3135 |
. . . . . . . . . . . . . . . 16
⊢
((((((((((𝜑 ∧
𝑥 ∈
(LBasis‘𝐶)) ∧
𝑦 ∈
(LBasis‘𝐵)) ∧
𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤 ∈ 𝑦 ((𝑓‘𝑤) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣))))) ∧ 𝑗 ∈ 𝑦) → ((𝑓‘𝑗) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑗) = (𝐶 Σg (𝑖 ∈ 𝑥 ↦ (((𝑓‘𝑗)‘𝑖)( ·𝑠
‘𝐶)𝑖))))) |
314 | 313 | simpld 495 |
. . . . . . . . . . . . . . 15
⊢
((((((((((𝜑 ∧
𝑥 ∈
(LBasis‘𝐶)) ∧
𝑦 ∈
(LBasis‘𝐵)) ∧
𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤 ∈ 𝑦 ((𝑓‘𝑤) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣))))) ∧ 𝑗 ∈ 𝑦) → (𝑓‘𝑗) finSupp
(0g‘(Scalar‘𝐶))) |
315 | 313 | simprd 496 |
. . . . . . . . . . . . . . 15
⊢
((((((((((𝜑 ∧
𝑥 ∈
(LBasis‘𝐶)) ∧
𝑦 ∈
(LBasis‘𝐵)) ∧
𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤 ∈ 𝑦 ((𝑓‘𝑤) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣))))) ∧ 𝑗 ∈ 𝑦) → (𝑎‘𝑗) = (𝐶 Σg (𝑖 ∈ 𝑥 ↦ (((𝑓‘𝑗)‘𝑖)( ·𝑠
‘𝐶)𝑖)))) |
316 | 73, 26, 16, 4, 12, 281, 282, 283, 284, 285, 85, 179, 286, 287, 289, 290, 291, 297, 298, 314, 315 | fedgmullem1 31719 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤 ∈ 𝑦 ((𝑓‘𝑤) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣))))) → ((𝑤 ∈ 𝑦, 𝑣 ∈ 𝑥 ↦ ((𝑓‘𝑤)‘𝑣)) finSupp
(0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg ((𝑤 ∈ 𝑦, 𝑣 ∈ 𝑥 ↦ ((𝑓‘𝑤)‘𝑣)) ∘f (
·𝑠 ‘𝐴)(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)))))) |
317 | 274, 280,
316 | rspcedvd 3564 |
. . . . . . . . . . . . 13
⊢
(((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤 ∈ 𝑦 ((𝑓‘𝑤) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣))))) → ∃𝑐 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥))(𝑐 finSupp
(0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg (𝑐 ∘f (
·𝑠 ‘𝐴)(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)))))) |
318 | 317 | anasss 467 |
. . . . . . . . . . . 12
⊢
((((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) ∧ (𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥) ∧ ∀𝑤 ∈ 𝑦 ((𝑓‘𝑤) finSupp
(0g‘(Scalar‘𝐶)) ∧ (𝑎‘𝑤) = (𝐶 Σg (𝑣 ∈ 𝑥 ↦ (((𝑓‘𝑤)‘𝑣)( ·𝑠
‘𝐶)𝑣)))))) → ∃𝑐 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥))(𝑐 finSupp
(0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg (𝑐 ∘f (
·𝑠 ‘𝐴)(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)))))) |
319 | 248, 318 | exlimddv 1942 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp
(0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))) → ∃𝑐 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥))(𝑐 finSupp
(0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg (𝑐 ∘f (
·𝑠 ‘𝐴)(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)))))) |
320 | 319 | anasss 467 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ (𝑎 finSupp
(0g‘(Scalar‘𝐵)) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤))))) → ∃𝑐 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥))(𝑐 finSupp
(0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg (𝑐 ∘f (
·𝑠 ‘𝐴)(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)))))) |
321 | | eqid 2740 |
. . . . . . . . . . . . . . . . 17
⊢
(LSpan‘𝐵) =
(LSpan‘𝐵) |
322 | 60, 29, 321 | islbs4 21050 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (LBasis‘𝐵) ↔ (𝑦 ∈ (LIndS‘𝐵) ∧ ((LSpan‘𝐵)‘𝑦) = (Base‘𝐵))) |
323 | 59, 322 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑦 ∈ (LIndS‘𝐵) ∧ ((LSpan‘𝐵)‘𝑦) = (Base‘𝐵))) |
324 | 323 | simprd 496 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ((LSpan‘𝐵)‘𝑦) = (Base‘𝐵)) |
325 | 324 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → ((LSpan‘𝐵)‘𝑦) = (Base‘𝐵)) |
326 | 78, 64 | eqtr3d 2782 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (Base‘𝐴) = (Base‘𝐵)) |
327 | 326 | ad3antrrr 727 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → (Base‘𝐴) = (Base‘𝐵)) |
328 | 325, 327 | eqtr4d 2783 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → ((LSpan‘𝐵)‘𝑦) = (Base‘𝐴)) |
329 | 288, 328 | eleqtrrd 2844 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → 𝑧 ∈ ((LSpan‘𝐵)‘𝑦)) |
330 | | eqid 2740 |
. . . . . . . . . . . . 13
⊢
(Scalar‘𝐵) =
(Scalar‘𝐵) |
331 | | lveclmod 20379 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 ∈ LVec → 𝐵 ∈ LMod) |
332 | 28, 331 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵 ∈ LMod) |
333 | 332 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝐵 ∈ LMod) |
334 | 321, 60, 88, 330, 91, 89, 333, 62 | ellspds 31573 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑧 ∈ ((LSpan‘𝐵)‘𝑦) ↔ ∃𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)(𝑎 finSupp
(0g‘(Scalar‘𝐵)) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤)))))) |
335 | 334 | biimpa 477 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ ((LSpan‘𝐵)‘𝑦)) → ∃𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)(𝑎 finSupp
(0g‘(Scalar‘𝐵)) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤))))) |
336 | 205, 329,
335 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → ∃𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)(𝑎 finSupp
(0g‘(Scalar‘𝐵)) ∧ 𝑧 = (𝐵 Σg (𝑤 ∈ 𝑦 ↦ ((𝑎‘𝑤)( ·𝑠
‘𝐵)𝑤))))) |
337 | 320, 336 | r19.29a 3220 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → ∃𝑐 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥))(𝑐 finSupp
(0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg (𝑐 ∘f (
·𝑠 ‘𝐴)(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)))))) |
338 | | eqid 2740 |
. . . . . . . . . . 11
⊢
(Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴)) |
339 | 202, 187,
338, 188, 191, 189, 87, 170, 157 | ellspd 21020 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑧 ∈ ((LSpan‘𝐴)‘((𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)) “ (𝑦 × 𝑥))) ↔ ∃𝑐 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥))(𝑐 finSupp
(0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg (𝑐 ∘f (
·𝑠 ‘𝐴)(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))))))) |
340 | 339 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → (𝑧 ∈ ((LSpan‘𝐴)‘((𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)) “ (𝑦 × 𝑥))) ↔ ∃𝑐 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥))(𝑐 finSupp
(0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg (𝑐 ∘f (
·𝑠 ‘𝐴)(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))))))) |
341 | 337, 340 | mpbird 256 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → 𝑧 ∈ ((LSpan‘𝐴)‘((𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)) “ (𝑦 × 𝑥)))) |
342 | 87 | ffnd 6599 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)) Fn (𝑦 × 𝑥)) |
343 | 342 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → (𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)) Fn (𝑦 × 𝑥)) |
344 | | fnima 6561 |
. . . . . . . . . 10
⊢ ((𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)) Fn (𝑦 × 𝑥) → ((𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)) “ (𝑦 × 𝑥)) = ran (𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))) |
345 | 343, 344 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → ((𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)) “ (𝑦 × 𝑥)) = ran (𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))) |
346 | 345 | fveq2d 6775 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → ((LSpan‘𝐴)‘((𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)) “ (𝑦 × 𝑥))) = ((LSpan‘𝐴)‘ran (𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)))) |
347 | 341, 346 | eleqtrd 2843 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → 𝑧 ∈ ((LSpan‘𝐴)‘ran (𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)))) |
348 | 204, 347 | eqelssd 3947 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ((LSpan‘𝐴)‘ran (𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))) = (Base‘𝐴)) |
349 | | eqid 2740 |
. . . . . . 7
⊢
(Base‘(𝑤
∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))) = (Base‘(𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))) |
350 | | drngnzr 20544 |
. . . . . . . . . 10
⊢ (𝐾 ∈ DivRing → 𝐾 ∈ NzRing) |
351 | 14, 350 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ NzRing) |
352 | 258, 351 | eqeltrrd 2842 |
. . . . . . . 8
⊢ (𝜑 → (Scalar‘𝐴) ∈
NzRing) |
353 | 352 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (Scalar‘𝐴) ∈ NzRing) |
354 | 187, 349,
188, 189, 190, 191, 202, 170, 353, 157, 156 | lindflbs 31583 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (ran (𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)) ∈ (LBasis‘𝐴) ↔ ((𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)) LIndF 𝐴 ∧ ((LSpan‘𝐴)‘ran (𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤))) = (Base‘𝐴)))) |
355 | 195, 348,
354 | mpbir2and 710 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ran (𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)) ∈ (LBasis‘𝐴)) |
356 | | eqid 2740 |
. . . . . 6
⊢
(LBasis‘𝐴) =
(LBasis‘𝐴) |
357 | 356 | dimval 31695 |
. . . . 5
⊢ ((𝐴 ∈ LVec ∧ ran (𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)) ∈ (LBasis‘𝐴)) → (dim‘𝐴) = (♯‘ran (𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)))) |
358 | 167, 355,
357 | syl2anc 584 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (dim‘𝐴) = (♯‘ran (𝑤 ∈ 𝑦, 𝑡 ∈ 𝑥 ↦ (𝑡(.r‘𝐸)𝑤)))) |
359 | 29 | dimval 31695 |
. . . . . 6
⊢ ((𝐵 ∈ LVec ∧ 𝑦 ∈ (LBasis‘𝐵)) → (dim‘𝐵) = (♯‘𝑦)) |
360 | 92, 59, 359 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (dim‘𝐵) = (♯‘𝑦)) |
361 | 20 | dimval 31695 |
. . . . . 6
⊢ ((𝐶 ∈ LVec ∧ 𝑥 ∈ (LBasis‘𝐶)) → (dim‘𝐶) = (♯‘𝑥)) |
362 | 110, 38, 361 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (dim‘𝐶) = (♯‘𝑥)) |
363 | 360, 362 | oveq12d 7290 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ((dim‘𝐵) ·e (dim‘𝐶)) = ((♯‘𝑦) ·e
(♯‘𝑥))) |
364 | 164, 358,
363 | 3eqtr4d 2790 |
. . 3
⊢ (((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (dim‘𝐴) = ((dim‘𝐵) ·e (dim‘𝐶))) |
365 | 34, 364 | exlimddv 1942 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐶)) → (dim‘𝐴) = ((dim‘𝐵) ·e (dim‘𝐶))) |
366 | 24, 365 | exlimddv 1942 |
1
⊢ (𝜑 → (dim‘𝐴) = ((dim‘𝐵) ·e
(dim‘𝐶))) |