Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fedgmul Structured version   Visualization version   GIF version

Theorem fedgmul 31380
Description: The multiplicativity formula for degrees of field extensions. Given 𝐸 a field extension of 𝐹, itself a field extension of 𝐾, we have [𝐸:𝐾] = [𝐸:𝐹][𝐹:𝐾]. Proposition 1.2 of [Lang], p. 224. Here (dim‘𝐴) is the degree of the extension 𝐸 of 𝐾, (dim‘𝐵) is the degree of the extension 𝐸 of 𝐹, and (dim‘𝐶) is the degree of the extension 𝐹 of 𝐾. This proof is valid for infinite dimensions, and is actually valid for division ring extensions, not just field extensions. (Contributed by Thierry Arnoux, 25-Jul-2023.)
Hypotheses
Ref Expression
fedgmul.a 𝐴 = ((subringAlg ‘𝐸)‘𝑉)
fedgmul.b 𝐵 = ((subringAlg ‘𝐸)‘𝑈)
fedgmul.c 𝐶 = ((subringAlg ‘𝐹)‘𝑉)
fedgmul.f 𝐹 = (𝐸s 𝑈)
fedgmul.k 𝐾 = (𝐸s 𝑉)
fedgmul.1 (𝜑𝐸 ∈ DivRing)
fedgmul.2 (𝜑𝐹 ∈ DivRing)
fedgmul.3 (𝜑𝐾 ∈ DivRing)
fedgmul.4 (𝜑𝑈 ∈ (SubRing‘𝐸))
fedgmul.5 (𝜑𝑉 ∈ (SubRing‘𝐹))
Assertion
Ref Expression
fedgmul (𝜑 → (dim‘𝐴) = ((dim‘𝐵) ·e (dim‘𝐶)))

Proof of Theorem fedgmul
Dummy variables 𝑎 𝑐 𝑓 𝑢 𝑥 𝑦 𝑧 𝑖 𝑗 𝑤 𝑏 𝑣 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fedgmul.2 . . . . 5 (𝜑𝐹 ∈ DivRing)
2 fedgmul.4 . . . . . . . 8 (𝜑𝑈 ∈ (SubRing‘𝐸))
3 fedgmul.5 . . . . . . . . . 10 (𝜑𝑉 ∈ (SubRing‘𝐹))
4 fedgmul.f . . . . . . . . . . . 12 𝐹 = (𝐸s 𝑈)
54subsubrg 19780 . . . . . . . . . . 11 (𝑈 ∈ (SubRing‘𝐸) → (𝑉 ∈ (SubRing‘𝐹) ↔ (𝑉 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈)))
65biimpa 480 . . . . . . . . . 10 ((𝑈 ∈ (SubRing‘𝐸) ∧ 𝑉 ∈ (SubRing‘𝐹)) → (𝑉 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈))
72, 3, 6syl2anc 587 . . . . . . . . 9 (𝜑 → (𝑉 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈))
87simprd 499 . . . . . . . 8 (𝜑𝑉𝑈)
9 ressabs 16747 . . . . . . . 8 ((𝑈 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈) → ((𝐸s 𝑈) ↾s 𝑉) = (𝐸s 𝑉))
102, 8, 9syl2anc 587 . . . . . . 7 (𝜑 → ((𝐸s 𝑈) ↾s 𝑉) = (𝐸s 𝑉))
114oveq1i 7201 . . . . . . 7 (𝐹s 𝑉) = ((𝐸s 𝑈) ↾s 𝑉)
12 fedgmul.k . . . . . . 7 𝐾 = (𝐸s 𝑉)
1310, 11, 123eqtr4g 2796 . . . . . 6 (𝜑 → (𝐹s 𝑉) = 𝐾)
14 fedgmul.3 . . . . . 6 (𝜑𝐾 ∈ DivRing)
1513, 14eqeltrd 2831 . . . . 5 (𝜑 → (𝐹s 𝑉) ∈ DivRing)
16 fedgmul.c . . . . . 6 𝐶 = ((subringAlg ‘𝐹)‘𝑉)
17 eqid 2736 . . . . . 6 (𝐹s 𝑉) = (𝐹s 𝑉)
1816, 17sralvec 31343 . . . . 5 ((𝐹 ∈ DivRing ∧ (𝐹s 𝑉) ∈ DivRing ∧ 𝑉 ∈ (SubRing‘𝐹)) → 𝐶 ∈ LVec)
191, 15, 3, 18syl3anc 1373 . . . 4 (𝜑𝐶 ∈ LVec)
20 eqid 2736 . . . . 5 (LBasis‘𝐶) = (LBasis‘𝐶)
2120lbsex 20156 . . . 4 (𝐶 ∈ LVec → (LBasis‘𝐶) ≠ ∅)
2219, 21syl 17 . . 3 (𝜑 → (LBasis‘𝐶) ≠ ∅)
23 n0 4247 . . 3 ((LBasis‘𝐶) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (LBasis‘𝐶))
2422, 23sylib 221 . 2 (𝜑 → ∃𝑥 𝑥 ∈ (LBasis‘𝐶))
25 fedgmul.1 . . . . . . 7 (𝜑𝐸 ∈ DivRing)
26 fedgmul.b . . . . . . . 8 𝐵 = ((subringAlg ‘𝐸)‘𝑈)
2726, 4sralvec 31343 . . . . . . 7 ((𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ (SubRing‘𝐸)) → 𝐵 ∈ LVec)
2825, 1, 2, 27syl3anc 1373 . . . . . 6 (𝜑𝐵 ∈ LVec)
29 eqid 2736 . . . . . . 7 (LBasis‘𝐵) = (LBasis‘𝐵)
3029lbsex 20156 . . . . . 6 (𝐵 ∈ LVec → (LBasis‘𝐵) ≠ ∅)
3128, 30syl 17 . . . . 5 (𝜑 → (LBasis‘𝐵) ≠ ∅)
32 n0 4247 . . . . 5 ((LBasis‘𝐵) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (LBasis‘𝐵))
3331, 32sylib 221 . . . 4 (𝜑 → ∃𝑦 𝑦 ∈ (LBasis‘𝐵))
3433adantr 484 . . 3 ((𝜑𝑥 ∈ (LBasis‘𝐶)) → ∃𝑦 𝑦 ∈ (LBasis‘𝐵))
35 drngring 19728 . . . . . . . . . . . . . . 15 (𝐸 ∈ DivRing → 𝐸 ∈ Ring)
3625, 35syl 17 . . . . . . . . . . . . . 14 (𝜑𝐸 ∈ Ring)
3736ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → 𝐸 ∈ Ring)
38 simplr 769 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑥 ∈ (LBasis‘𝐶))
39 eqid 2736 . . . . . . . . . . . . . . . . . 18 (Base‘𝐶) = (Base‘𝐶)
4039, 20lbsss 20068 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (LBasis‘𝐶) → 𝑥 ⊆ (Base‘𝐶))
4138, 40syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑥 ⊆ (Base‘𝐶))
42 eqid 2736 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘𝐸) = (Base‘𝐸)
4342subrgss 19755 . . . . . . . . . . . . . . . . . . . . 21 (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ⊆ (Base‘𝐸))
442, 43syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑈 ⊆ (Base‘𝐸))
454, 42ressbas2 16739 . . . . . . . . . . . . . . . . . . . 20 (𝑈 ⊆ (Base‘𝐸) → 𝑈 = (Base‘𝐹))
4644, 45syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑈 = (Base‘𝐹))
4716a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐶 = ((subringAlg ‘𝐹)‘𝑉))
48 eqid 2736 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘𝐹) = (Base‘𝐹)
4948subrgss 19755 . . . . . . . . . . . . . . . . . . . . 21 (𝑉 ∈ (SubRing‘𝐹) → 𝑉 ⊆ (Base‘𝐹))
503, 49syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑉 ⊆ (Base‘𝐹))
5147, 50srabase 20169 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (Base‘𝐹) = (Base‘𝐶))
5246, 51eqtrd 2771 . . . . . . . . . . . . . . . . . 18 (𝜑𝑈 = (Base‘𝐶))
5352, 44eqsstrrd 3926 . . . . . . . . . . . . . . . . 17 (𝜑 → (Base‘𝐶) ⊆ (Base‘𝐸))
5453ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (Base‘𝐶) ⊆ (Base‘𝐸))
5541, 54sstrd 3897 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑥 ⊆ (Base‘𝐸))
5655ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → 𝑥 ⊆ (Base‘𝐸))
57 simpr 488 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → 𝑖𝑥)
5856, 57sseldd 3888 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → 𝑖 ∈ (Base‘𝐸))
59 simpr 488 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑦 ∈ (LBasis‘𝐵))
60 eqid 2736 . . . . . . . . . . . . . . . . . 18 (Base‘𝐵) = (Base‘𝐵)
6160, 29lbsss 20068 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (LBasis‘𝐵) → 𝑦 ⊆ (Base‘𝐵))
6259, 61syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑦 ⊆ (Base‘𝐵))
6326a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 = ((subringAlg ‘𝐸)‘𝑈))
6463, 44srabase 20169 . . . . . . . . . . . . . . . . 17 (𝜑 → (Base‘𝐸) = (Base‘𝐵))
6564ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (Base‘𝐸) = (Base‘𝐵))
6662, 65sseqtrrd 3928 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑦 ⊆ (Base‘𝐸))
6766ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → 𝑦 ⊆ (Base‘𝐸))
68 simplr 769 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → 𝑗𝑦)
6967, 68sseldd 3888 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → 𝑗 ∈ (Base‘𝐸))
70 eqid 2736 . . . . . . . . . . . . . 14 (.r𝐸) = (.r𝐸)
7142, 70ringcl 19533 . . . . . . . . . . . . 13 ((𝐸 ∈ Ring ∧ 𝑖 ∈ (Base‘𝐸) ∧ 𝑗 ∈ (Base‘𝐸)) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐸))
7237, 58, 69, 71syl3anc 1373 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐸))
73 fedgmul.a . . . . . . . . . . . . . . 15 𝐴 = ((subringAlg ‘𝐸)‘𝑉)
7473a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐴 = ((subringAlg ‘𝐸)‘𝑉))
757simpld 498 . . . . . . . . . . . . . . 15 (𝜑𝑉 ∈ (SubRing‘𝐸))
7642subrgss 19755 . . . . . . . . . . . . . . 15 (𝑉 ∈ (SubRing‘𝐸) → 𝑉 ⊆ (Base‘𝐸))
7775, 76syl 17 . . . . . . . . . . . . . 14 (𝜑𝑉 ⊆ (Base‘𝐸))
7874, 77srabase 20169 . . . . . . . . . . . . 13 (𝜑 → (Base‘𝐸) = (Base‘𝐴))
7978ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → (Base‘𝐸) = (Base‘𝐴))
8072, 79eleqtrd 2833 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐴))
8180anasss 470 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ (𝑗𝑦𝑖𝑥)) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐴))
8281ralrimivva 3102 . . . . . . . . 9 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ∀𝑗𝑦𝑖𝑥 (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐴))
83 oveq2 7199 . . . . . . . . . . 11 (𝑤 = 𝑗 → (𝑡(.r𝐸)𝑤) = (𝑡(.r𝐸)𝑗))
84 oveq1 7198 . . . . . . . . . . 11 (𝑡 = 𝑖 → (𝑡(.r𝐸)𝑗) = (𝑖(.r𝐸)𝑗))
8583, 84cbvmpov 7284 . . . . . . . . . 10 (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) = (𝑗𝑦, 𝑖𝑥 ↦ (𝑖(.r𝐸)𝑗))
8685fmpo 7816 . . . . . . . . 9 (∀𝑗𝑦𝑖𝑥 (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐴) ↔ (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)):(𝑦 × 𝑥)⟶(Base‘𝐴))
8782, 86sylib 221 . . . . . . . 8 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)):(𝑦 × 𝑥)⟶(Base‘𝐴))
88 eqid 2736 . . . . . . . . . . . . . 14 (Base‘(Scalar‘𝐵)) = (Base‘(Scalar‘𝐵))
89 eqid 2736 . . . . . . . . . . . . . 14 ( ·𝑠𝐵) = ( ·𝑠𝐵)
90 eqid 2736 . . . . . . . . . . . . . 14 (+g𝐵) = (+g𝐵)
91 eqid 2736 . . . . . . . . . . . . . 14 (0g‘(Scalar‘𝐵)) = (0g‘(Scalar‘𝐵))
9228ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝐵 ∈ LVec)
9392ad5antr 734 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝐵 ∈ LVec)
9429lbslinds 20749 . . . . . . . . . . . . . . . 16 (LBasis‘𝐵) ⊆ (LIndS‘𝐵)
9594, 59sseldi 3885 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑦 ∈ (LIndS‘𝐵))
9695ad5antr 734 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝑦 ∈ (LIndS‘𝐵))
9768ad3antrrr 730 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝑗𝑦)
98 simpllr 776 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝑣𝑦)
9963, 44srasca 20172 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐸s 𝑈) = (Scalar‘𝐵))
1004, 99syl5eq 2783 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐹 = (Scalar‘𝐵))
101100fveq2d 6699 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (Base‘𝐹) = (Base‘(Scalar‘𝐵)))
102101, 51eqtr3d 2773 . . . . . . . . . . . . . . . . . 18 (𝜑 → (Base‘(Scalar‘𝐵)) = (Base‘𝐶))
103102ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (Base‘(Scalar‘𝐵)) = (Base‘𝐶))
10441, 103sseqtrrd 3928 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑥 ⊆ (Base‘(Scalar‘𝐵)))
105104ad5antr 734 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝑥 ⊆ (Base‘(Scalar‘𝐵)))
106 simp-4r 784 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝑖𝑥)
107105, 106sseldd 3888 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝑖 ∈ (Base‘(Scalar‘𝐵)))
108 simplr 769 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝑢𝑥)
109105, 108sseldd 3888 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝑢 ∈ (Base‘(Scalar‘𝐵)))
11019ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝐶 ∈ LVec)
111 eqid 2736 . . . . . . . . . . . . . . . . . . . . 21 (LSpan‘𝐶) = (LSpan‘𝐶)
11239, 20, 111islbs4 20748 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (LBasis‘𝐶) ↔ (𝑥 ∈ (LIndS‘𝐶) ∧ ((LSpan‘𝐶)‘𝑥) = (Base‘𝐶)))
11338, 112sylib 221 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑥 ∈ (LIndS‘𝐶) ∧ ((LSpan‘𝐶)‘𝑥) = (Base‘𝐶)))
114113simpld 498 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑥 ∈ (LIndS‘𝐶))
115 eqid 2736 . . . . . . . . . . . . . . . . . . 19 (0g𝐶) = (0g𝐶)
1161150nellinds 31234 . . . . . . . . . . . . . . . . . 18 ((𝐶 ∈ LVec ∧ 𝑥 ∈ (LIndS‘𝐶)) → ¬ (0g𝐶) ∈ 𝑥)
117110, 114, 116syl2anc 587 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ¬ (0g𝐶) ∈ 𝑥)
118117ad5antr 734 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → ¬ (0g𝐶) ∈ 𝑥)
119 nelne2 3029 . . . . . . . . . . . . . . . 16 ((𝑖𝑥 ∧ ¬ (0g𝐶) ∈ 𝑥) → 𝑖 ≠ (0g𝐶))
120106, 118, 119syl2anc 587 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝑖 ≠ (0g𝐶))
121100fveq2d 6699 . . . . . . . . . . . . . . . . 17 (𝜑 → (0g𝐹) = (0g‘(Scalar‘𝐵)))
12216, 1, 3drgext0g 31345 . . . . . . . . . . . . . . . . 17 (𝜑 → (0g𝐹) = (0g𝐶))
123121, 122eqtr3d 2773 . . . . . . . . . . . . . . . 16 (𝜑 → (0g‘(Scalar‘𝐵)) = (0g𝐶))
124123ad7antr 738 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (0g‘(Scalar‘𝐵)) = (0g𝐶))
125120, 124neeqtrrd 3006 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝑖 ≠ (0g‘(Scalar‘𝐵)))
126 simpr 488 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢))
127 ovexd 7226 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (𝑖(.r𝐸)𝑗) ∈ V)
12885ovmpt4g 7334 . . . . . . . . . . . . . . . . 17 ((𝑗𝑦𝑖𝑥 ∧ (𝑖(.r𝐸)𝑗) ∈ V) → (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑖(.r𝐸)𝑗))
12997, 106, 127, 128syl3anc 1373 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑖(.r𝐸)𝑗))
13026, 25, 2drgextvsca 31346 . . . . . . . . . . . . . . . . . 18 (𝜑 → (.r𝐸) = ( ·𝑠𝐵))
131130oveqd 7208 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑖(.r𝐸)𝑗) = (𝑖( ·𝑠𝐵)𝑗))
132131ad7antr 738 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (𝑖(.r𝐸)𝑗) = (𝑖( ·𝑠𝐵)𝑗))
133129, 132eqtrd 2771 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑖( ·𝑠𝐵)𝑗))
13485a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑣𝑦) ∧ 𝑢𝑥) → (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) = (𝑗𝑦, 𝑖𝑥 ↦ (𝑖(.r𝐸)𝑗)))
135 simprr 773 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗 = 𝑣𝑖 = 𝑢)) → 𝑖 = 𝑢)
136 simprl 771 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗 = 𝑣𝑖 = 𝑢)) → 𝑗 = 𝑣)
137135, 136oveq12d 7209 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗 = 𝑣𝑖 = 𝑢)) → (𝑖(.r𝐸)𝑗) = (𝑢(.r𝐸)𝑣))
138 simplr 769 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑣𝑦) ∧ 𝑢𝑥) → 𝑣𝑦)
139 simpr 488 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑣𝑦) ∧ 𝑢𝑥) → 𝑢𝑥)
140 ovexd 7226 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑣𝑦) ∧ 𝑢𝑥) → (𝑢(.r𝐸)𝑣) ∈ V)
141134, 137, 138, 139, 140ovmpod 7339 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑣𝑦) ∧ 𝑢𝑥) → (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) = (𝑢(.r𝐸)𝑣))
142141adantllr 719 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) → (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) = (𝑢(.r𝐸)𝑣))
143142adantl3r 750 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) → (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) = (𝑢(.r𝐸)𝑣))
144143adantr 484 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) = (𝑢(.r𝐸)𝑣))
145130oveqd 7208 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑢(.r𝐸)𝑣) = (𝑢( ·𝑠𝐵)𝑣))
146145ad7antr 738 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (𝑢(.r𝐸)𝑣) = (𝑢( ·𝑠𝐵)𝑣))
147144, 146eqtrd 2771 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) = (𝑢( ·𝑠𝐵)𝑣))
148126, 133, 1473eqtr3d 2779 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (𝑖( ·𝑠𝐵)𝑗) = (𝑢( ·𝑠𝐵)𝑣))
14988, 89, 90, 91, 93, 96, 97, 98, 107, 109, 125, 148linds2eq 31243 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (𝑗 = 𝑣𝑖 = 𝑢))
150149ex 416 . . . . . . . . . . . 12 (((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) → ((𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) → (𝑗 = 𝑣𝑖 = 𝑢)))
151150anasss 470 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ (𝑣𝑦𝑢𝑥)) → ((𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) → (𝑗 = 𝑣𝑖 = 𝑢)))
152151ralrimivva 3102 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → ∀𝑣𝑦𝑢𝑥 ((𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) → (𝑗 = 𝑣𝑖 = 𝑢)))
153152anasss 470 . . . . . . . . 9 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ (𝑗𝑦𝑖𝑥)) → ∀𝑣𝑦𝑢𝑥 ((𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) → (𝑗 = 𝑣𝑖 = 𝑢)))
154153ralrimivva 3102 . . . . . . . 8 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ∀𝑗𝑦𝑖𝑥𝑣𝑦𝑢𝑥 ((𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) → (𝑗 = 𝑣𝑖 = 𝑢)))
155 f1opr 7245 . . . . . . . 8 ((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)):(𝑦 × 𝑥)–1-1→(Base‘𝐴) ↔ ((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)):(𝑦 × 𝑥)⟶(Base‘𝐴) ∧ ∀𝑗𝑦𝑖𝑥𝑣𝑦𝑢𝑥 ((𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) → (𝑗 = 𝑣𝑖 = 𝑢))))
15687, 154, 155sylanbrc 586 . . . . . . 7 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)):(𝑦 × 𝑥)–1-1→(Base‘𝐴))
15759, 38xpexd 7514 . . . . . . 7 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑦 × 𝑥) ∈ V)
158 f1rnen 30637 . . . . . . 7 (((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)):(𝑦 × 𝑥)–1-1→(Base‘𝐴) ∧ (𝑦 × 𝑥) ∈ V) → ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) ≈ (𝑦 × 𝑥))
159156, 157, 158syl2anc 587 . . . . . 6 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) ≈ (𝑦 × 𝑥))
160 hasheni 13879 . . . . . 6 (ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) ≈ (𝑦 × 𝑥) → (♯‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))) = (♯‘(𝑦 × 𝑥)))
161159, 160syl 17 . . . . 5 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (♯‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))) = (♯‘(𝑦 × 𝑥)))
162 hashxpe 30801 . . . . . 6 ((𝑦 ∈ (LBasis‘𝐵) ∧ 𝑥 ∈ (LBasis‘𝐶)) → (♯‘(𝑦 × 𝑥)) = ((♯‘𝑦) ·e (♯‘𝑥)))
16359, 38, 162syl2anc 587 . . . . 5 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (♯‘(𝑦 × 𝑥)) = ((♯‘𝑦) ·e (♯‘𝑥)))
164161, 163eqtrd 2771 . . . 4 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (♯‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))) = ((♯‘𝑦) ·e (♯‘𝑥)))
16573, 12sralvec 31343 . . . . . . 7 ((𝐸 ∈ DivRing ∧ 𝐾 ∈ DivRing ∧ 𝑉 ∈ (SubRing‘𝐸)) → 𝐴 ∈ LVec)
16625, 14, 75, 165syl3anc 1373 . . . . . 6 (𝜑𝐴 ∈ LVec)
167166ad2antrr 726 . . . . 5 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝐴 ∈ LVec)
168 lveclmod 20097 . . . . . . . . 9 (𝐴 ∈ LVec → 𝐴 ∈ LMod)
169166, 168syl 17 . . . . . . . 8 (𝜑𝐴 ∈ LMod)
170169ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝐴 ∈ LMod)
17125ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴)) → 𝐸 ∈ DivRing)
1721ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴)) → 𝐹 ∈ DivRing)
17314ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴)) → 𝐾 ∈ DivRing)
1742ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴)) → 𝑈 ∈ (SubRing‘𝐸))
1753ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴)) → 𝑉 ∈ (SubRing‘𝐹))
176 fveq2 6695 . . . . . . . . . . . 12 (𝑤 = 𝑗 → (𝑓𝑤) = (𝑓𝑗))
177176fveq1d 6697 . . . . . . . . . . 11 (𝑤 = 𝑗 → ((𝑓𝑤)‘𝑣) = ((𝑓𝑗)‘𝑣))
178 fveq2 6695 . . . . . . . . . . 11 (𝑣 = 𝑖 → ((𝑓𝑗)‘𝑣) = ((𝑓𝑗)‘𝑖))
179177, 178cbvmpov 7284 . . . . . . . . . 10 (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) = (𝑗𝑦, 𝑖𝑥 ↦ ((𝑓𝑗)‘𝑖))
180 simp-4r 784 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴)) → 𝑥 ∈ (LBasis‘𝐶))
181 simpllr 776 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴)) → 𝑦 ∈ (LBasis‘𝐵))
182 simplr 769 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴)) → 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥))))
183 simpr 488 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴)) → (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴))
18473, 26, 16, 4, 12, 171, 172, 173, 174, 175, 85, 179, 180, 181, 182, 183fedgmullem2 31379 . . . . . . . . 9 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴)) → 𝑐 = ((𝑦 × 𝑥) × {(0g‘(Scalar‘𝐴))}))
185184ex 416 . . . . . . . 8 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) → ((𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴) → 𝑐 = ((𝑦 × 𝑥) × {(0g‘(Scalar‘𝐴))})))
186185ralrimiva 3095 . . . . . . 7 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ∀𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))((𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴) → 𝑐 = ((𝑦 × 𝑥) × {(0g‘(Scalar‘𝐴))})))
187 eqid 2736 . . . . . . . . 9 (Base‘𝐴) = (Base‘𝐴)
188 eqid 2736 . . . . . . . . 9 (Scalar‘𝐴) = (Scalar‘𝐴)
189 eqid 2736 . . . . . . . . 9 ( ·𝑠𝐴) = ( ·𝑠𝐴)
190 eqid 2736 . . . . . . . . 9 (0g𝐴) = (0g𝐴)
191 eqid 2736 . . . . . . . . 9 (0g‘(Scalar‘𝐴)) = (0g‘(Scalar‘𝐴))
192 eqid 2736 . . . . . . . . 9 (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥))) = (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))
193187, 188, 189, 190, 191, 192islindf4 20754 . . . . . . . 8 ((𝐴 ∈ LMod ∧ (𝑦 × 𝑥) ∈ V ∧ (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)):(𝑦 × 𝑥)⟶(Base‘𝐴)) → ((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) LIndF 𝐴 ↔ ∀𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))((𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴) → 𝑐 = ((𝑦 × 𝑥) × {(0g‘(Scalar‘𝐴))}))))
194193biimpar 481 . . . . . . 7 (((𝐴 ∈ LMod ∧ (𝑦 × 𝑥) ∈ V ∧ (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)):(𝑦 × 𝑥)⟶(Base‘𝐴)) ∧ ∀𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))((𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴) → 𝑐 = ((𝑦 × 𝑥) × {(0g‘(Scalar‘𝐴))}))) → (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) LIndF 𝐴)
195170, 157, 87, 186, 194syl31anc 1375 . . . . . 6 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) LIndF 𝐴)
19672anasss 470 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ (𝑗𝑦𝑖𝑥)) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐸))
197196ralrimivva 3102 . . . . . . . . . 10 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ∀𝑗𝑦𝑖𝑥 (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐸))
19885rnmposs 30685 . . . . . . . . . 10 (∀𝑗𝑦𝑖𝑥 (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐸) → ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) ⊆ (Base‘𝐸))
199197, 198syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) ⊆ (Base‘𝐸))
20078ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (Base‘𝐸) = (Base‘𝐴))
201199, 200sseqtrd 3927 . . . . . . . 8 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) ⊆ (Base‘𝐴))
202 eqid 2736 . . . . . . . . 9 (LSpan‘𝐴) = (LSpan‘𝐴)
203187, 202lspssv 19974 . . . . . . . 8 ((𝐴 ∈ LMod ∧ ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) ⊆ (Base‘𝐴)) → ((LSpan‘𝐴)‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))) ⊆ (Base‘𝐴))
204170, 201, 203syl2anc 587 . . . . . . 7 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ((LSpan‘𝐴)‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))) ⊆ (Base‘𝐴))
205 simpl 486 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → ((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)))
206205ad4antr 732 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑗𝑦) → ((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)))
207 elmapi 8508 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦) → 𝑎:𝑦⟶(Base‘(Scalar‘𝐵)))
208207ad4antlr 733 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑗𝑦) → 𝑎:𝑦⟶(Base‘(Scalar‘𝐵)))
209 simpr 488 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑗𝑦) → 𝑗𝑦)
210208, 209ffvelrnd 6883 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑗𝑦) → (𝑎𝑗) ∈ (Base‘(Scalar‘𝐵)))
211113simprd 499 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ((LSpan‘𝐶)‘𝑥) = (Base‘𝐶))
212206, 211syl 17 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑗𝑦) → ((LSpan‘𝐶)‘𝑥) = (Base‘𝐶))
213102ad7antr 738 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑗𝑦) → (Base‘(Scalar‘𝐵)) = (Base‘𝐶))
214212, 213eqtr4d 2774 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑗𝑦) → ((LSpan‘𝐶)‘𝑥) = (Base‘(Scalar‘𝐵)))
215210, 214eleqtrrd 2834 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑗𝑦) → (𝑎𝑗) ∈ ((LSpan‘𝐶)‘𝑥))
216 eqid 2736 . . . . . . . . . . . . . . . . 17 (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶))
217 eqid 2736 . . . . . . . . . . . . . . . . 17 (Scalar‘𝐶) = (Scalar‘𝐶)
218 eqid 2736 . . . . . . . . . . . . . . . . 17 (0g‘(Scalar‘𝐶)) = (0g‘(Scalar‘𝐶))
219 eqid 2736 . . . . . . . . . . . . . . . . 17 ( ·𝑠𝐶) = ( ·𝑠𝐶)
220 lveclmod 20097 . . . . . . . . . . . . . . . . . . 19 (𝐶 ∈ LVec → 𝐶 ∈ LMod)
22119, 220syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐶 ∈ LMod)
222221ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝐶 ∈ LMod)
223111, 39, 216, 217, 218, 219, 222, 41ellspds 31232 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ((𝑎𝑗) ∈ ((LSpan‘𝐶)‘𝑥) ↔ ∃𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖))))))
224223biimpa 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ (𝑎𝑗) ∈ ((LSpan‘𝐶)‘𝑥)) → ∃𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖)))))
225206, 215, 224syl2anc 587 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑗𝑦) → ∃𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖)))))
226225ralrimiva 3095 . . . . . . . . . . . . 13 (((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) → ∀𝑗𝑦𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖)))))
227 fveq2 6695 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑗 → (𝑎𝑤) = (𝑎𝑗))
228 fveq2 6695 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 = 𝑖 → (𝑏𝑣) = (𝑏𝑖))
229 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 = 𝑖𝑣 = 𝑖)
230228, 229oveq12d 7209 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = 𝑖 → ((𝑏𝑣)( ·𝑠𝐶)𝑣) = ((𝑏𝑖)( ·𝑠𝐶)𝑖))
231230cbvmptv 5143 . . . . . . . . . . . . . . . . . . . 20 (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣)) = (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖))
232231oveq2i 7202 . . . . . . . . . . . . . . . . . . 19 (𝐶 Σg (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣))) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖)))
233232a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑗 → (𝐶 Σg (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣))) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖))))
234227, 233eqeq12d 2752 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑗 → ((𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣))) ↔ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖)))))
235234anbi2d 632 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑗 → ((𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣)))) ↔ (𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖))))))
236235rexbidv 3206 . . . . . . . . . . . . . . 15 (𝑤 = 𝑗 → (∃𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣)))) ↔ ∃𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖))))))
237236cbvralvw 3348 . . . . . . . . . . . . . 14 (∀𝑤𝑦𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣)))) ↔ ∀𝑗𝑦𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖)))))
238 vex 3402 . . . . . . . . . . . . . . 15 𝑦 ∈ V
239 breq1 5042 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑓𝑤) → (𝑏 finSupp (0g‘(Scalar‘𝐶)) ↔ (𝑓𝑤) finSupp (0g‘(Scalar‘𝐶))))
240 fveq1 6694 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = (𝑓𝑤) → (𝑏𝑣) = ((𝑓𝑤)‘𝑣))
241240oveq1d 7206 . . . . . . . . . . . . . . . . . . 19 (𝑏 = (𝑓𝑤) → ((𝑏𝑣)( ·𝑠𝐶)𝑣) = (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))
242241mpteq2dv 5136 . . . . . . . . . . . . . . . . . 18 (𝑏 = (𝑓𝑤) → (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣)) = (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣)))
243242oveq2d 7207 . . . . . . . . . . . . . . . . 17 (𝑏 = (𝑓𝑤) → (𝐶 Σg (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣))) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))
244243eqeq2d 2747 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑓𝑤) → ((𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣))) ↔ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣)))))
245239, 244anbi12d 634 . . . . . . . . . . . . . . 15 (𝑏 = (𝑓𝑤) → ((𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣)))) ↔ ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))))
246238, 245ac6s 10063 . . . . . . . . . . . . . 14 (∀𝑤𝑦𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣)))) → ∃𝑓(𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))))
247237, 246sylbir 238 . . . . . . . . . . . . 13 (∀𝑗𝑦𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖)))) → ∃𝑓(𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))))
248226, 247syl 17 . . . . . . . . . . . 12 (((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) → ∃𝑓(𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))))
249 simpllr 776 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥))
250 simplr 769 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → 𝑗𝑦)
251249, 250ffvelrnd 6883 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → (𝑓𝑗) ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥))
252 elmapi 8508 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓𝑗) ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥) → (𝑓𝑗):𝑥⟶(Base‘(Scalar‘𝐶)))
253251, 252syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → (𝑓𝑗):𝑥⟶(Base‘(Scalar‘𝐶)))
254253anasss 470 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ (𝑗𝑦𝑖𝑥)) → (𝑓𝑗):𝑥⟶(Base‘(Scalar‘𝐶)))
255 simprr 773 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ (𝑗𝑦𝑖𝑥)) → 𝑖𝑥)
256254, 255ffvelrnd 6883 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ (𝑗𝑦𝑖𝑥)) → ((𝑓𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐶)))
25774, 77srasca 20172 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐸s 𝑉) = (Scalar‘𝐴))
25812, 257syl5eq 2783 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐾 = (Scalar‘𝐴))
25947, 50srasca 20172 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐹s 𝑉) = (Scalar‘𝐶))
26013, 259eqtr3d 2773 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐾 = (Scalar‘𝐶))
261258, 260eqtr3d 2773 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (Scalar‘𝐴) = (Scalar‘𝐶))
262261fveq2d 6699 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐶)))
263262ad4antr 732 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ (𝑗𝑦𝑖𝑥)) → (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐶)))
264256, 263eleqtrrd 2834 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ (𝑗𝑦𝑖𝑥)) → ((𝑓𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)))
265264ralrimivva 3102 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) → ∀𝑗𝑦𝑖𝑥 ((𝑓𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)))
266179fmpo 7816 . . . . . . . . . . . . . . . . . . 19 (∀𝑗𝑦𝑖𝑥 ((𝑓𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)) ↔ (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)):(𝑦 × 𝑥)⟶(Base‘(Scalar‘𝐴)))
267265, 266sylib 221 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) → (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)):(𝑦 × 𝑥)⟶(Base‘(Scalar‘𝐴)))
268 fvexd 6710 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) → (Base‘(Scalar‘𝐴)) ∈ V)
269157adantr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) → (𝑦 × 𝑥) ∈ V)
270268, 269elmapd 8500 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) → ((𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥)) ↔ (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)):(𝑦 × 𝑥)⟶(Base‘(Scalar‘𝐴))))
271267, 270mpbird 260 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) → (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥)))
272271ad5ant15 759 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) → (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥)))
273272adantr 484 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥)))
274273adantl3r 750 . . . . . . . . . . . . . 14 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥)))
275 simpr 488 . . . . . . . . . . . . . . . 16 ((((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) ∧ 𝑐 = (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣))) → 𝑐 = (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)))
276275breq1d 5049 . . . . . . . . . . . . . . 15 ((((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) ∧ 𝑐 = (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣))) → (𝑐 finSupp (0g‘(Scalar‘𝐴)) ↔ (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) finSupp (0g‘(Scalar‘𝐴))))
277275oveq1d 7206 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) ∧ 𝑐 = (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣))) → (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))) = ((𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) ∘f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))
278277oveq2d 7207 . . . . . . . . . . . . . . . 16 ((((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) ∧ 𝑐 = (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣))) → (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (𝐴 Σg ((𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) ∘f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))))
279278eqeq2d 2747 . . . . . . . . . . . . . . 15 ((((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) ∧ 𝑐 = (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣))) → (𝑧 = (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) ↔ 𝑧 = (𝐴 Σg ((𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) ∘f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))))
280276, 279anbi12d 634 . . . . . . . . . . . . . 14 ((((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) ∧ 𝑐 = (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣))) → ((𝑐 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))) ↔ ((𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg ((𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) ∘f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))))))
28125ad8antr 740 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝐸 ∈ DivRing)
2821ad8antr 740 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝐹 ∈ DivRing)
28314ad8antr 740 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝐾 ∈ DivRing)
2842ad8antr 740 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝑈 ∈ (SubRing‘𝐸))
2853ad8antr 740 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝑉 ∈ (SubRing‘𝐹))
28638ad6antr 736 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝑥 ∈ (LBasis‘𝐶))
28759ad6antr 736 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝑦 ∈ (LBasis‘𝐵))
288 simpr 488 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → 𝑧 ∈ (Base‘𝐴))
289288ad5antr 734 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝑧 ∈ (Base‘𝐴))
290207ad5antlr 735 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝑎:𝑦⟶(Base‘(Scalar‘𝐵)))
291 simp-4r 784 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝑎 finSupp (0g‘(Scalar‘𝐵)))
292 simpllr 776 . . . . . . . . . . . . . . . 16 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤))))
293 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑗𝑤 = 𝑗)
294227, 293oveq12d 7209 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑗 → ((𝑎𝑤)( ·𝑠𝐵)𝑤) = ((𝑎𝑗)( ·𝑠𝐵)𝑗))
295294cbvmptv 5143 . . . . . . . . . . . . . . . . 17 (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)) = (𝑗𝑦 ↦ ((𝑎𝑗)( ·𝑠𝐵)𝑗))
296295oveq2i 7202 . . . . . . . . . . . . . . . 16 (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤))) = (𝐵 Σg (𝑗𝑦 ↦ ((𝑎𝑗)( ·𝑠𝐵)𝑗)))
297292, 296eqtrdi 2787 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝑧 = (𝐵 Σg (𝑗𝑦 ↦ ((𝑎𝑗)( ·𝑠𝐵)𝑗))))
298 simplr 769 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥))
299 simpr 488 . . . . . . . . . . . . . . . . . 18 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣)))))
300176breq1d 5049 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑗 → ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ↔ (𝑓𝑗) finSupp (0g‘(Scalar‘𝐶))))
301 fveq2 6695 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 = 𝑖 → ((𝑓𝑤)‘𝑣) = ((𝑓𝑤)‘𝑖))
302301, 229oveq12d 7209 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑣 = 𝑖 → (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣) = (((𝑓𝑤)‘𝑖)( ·𝑠𝐶)𝑖))
303302cbvmptv 5143 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣)) = (𝑖𝑥 ↦ (((𝑓𝑤)‘𝑖)( ·𝑠𝐶)𝑖))
304176fveq1d 6697 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = 𝑗 → ((𝑓𝑤)‘𝑖) = ((𝑓𝑗)‘𝑖))
305304oveq1d 7206 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = 𝑗 → (((𝑓𝑤)‘𝑖)( ·𝑠𝐶)𝑖) = (((𝑓𝑗)‘𝑖)( ·𝑠𝐶)𝑖))
306305mpteq2dv 5136 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 𝑗 → (𝑖𝑥 ↦ (((𝑓𝑤)‘𝑖)( ·𝑠𝐶)𝑖)) = (𝑖𝑥 ↦ (((𝑓𝑗)‘𝑖)( ·𝑠𝐶)𝑖)))
307303, 306syl5eq 2783 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = 𝑗 → (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣)) = (𝑖𝑥 ↦ (((𝑓𝑗)‘𝑖)( ·𝑠𝐶)𝑖)))
308307oveq2d 7207 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑗 → (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))) = (𝐶 Σg (𝑖𝑥 ↦ (((𝑓𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
309227, 308eqeq12d 2752 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑗 → ((𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))) ↔ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ (((𝑓𝑗)‘𝑖)( ·𝑠𝐶)𝑖)))))
310300, 309anbi12d 634 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑗 → (((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣)))) ↔ ((𝑓𝑗) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ (((𝑓𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))))
311310cbvralvw 3348 . . . . . . . . . . . . . . . . . 18 (∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣)))) ↔ ∀𝑗𝑦 ((𝑓𝑗) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ (((𝑓𝑗)‘𝑖)( ·𝑠𝐶)𝑖)))))
312299, 311sylib 221 . . . . . . . . . . . . . . . . 17 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → ∀𝑗𝑦 ((𝑓𝑗) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ (((𝑓𝑗)‘𝑖)( ·𝑠𝐶)𝑖)))))
313312r19.21bi 3120 . . . . . . . . . . . . . . . 16 ((((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) ∧ 𝑗𝑦) → ((𝑓𝑗) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ (((𝑓𝑗)‘𝑖)( ·𝑠𝐶)𝑖)))))
314313simpld 498 . . . . . . . . . . . . . . 15 ((((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) ∧ 𝑗𝑦) → (𝑓𝑗) finSupp (0g‘(Scalar‘𝐶)))
315313simprd 499 . . . . . . . . . . . . . . 15 ((((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) ∧ 𝑗𝑦) → (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ (((𝑓𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
31673, 26, 16, 4, 12, 281, 282, 283, 284, 285, 85, 179, 286, 287, 289, 290, 291, 297, 298, 314, 315fedgmullem1 31378 . . . . . . . . . . . . . 14 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → ((𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg ((𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) ∘f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))))
317274, 280, 316rspcedvd 3530 . . . . . . . . . . . . 13 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → ∃𝑐 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥))(𝑐 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))))
318317anasss 470 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ (𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣)))))) → ∃𝑐 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥))(𝑐 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))))
319248, 318exlimddv 1943 . . . . . . . . . . 11 (((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) → ∃𝑐 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥))(𝑐 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))))
320319anasss 470 . . . . . . . . . 10 ((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ (𝑎 finSupp (0g‘(Scalar‘𝐵)) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤))))) → ∃𝑐 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥))(𝑐 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))))
321 eqid 2736 . . . . . . . . . . . . . . . . 17 (LSpan‘𝐵) = (LSpan‘𝐵)
32260, 29, 321islbs4 20748 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (LBasis‘𝐵) ↔ (𝑦 ∈ (LIndS‘𝐵) ∧ ((LSpan‘𝐵)‘𝑦) = (Base‘𝐵)))
32359, 322sylib 221 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑦 ∈ (LIndS‘𝐵) ∧ ((LSpan‘𝐵)‘𝑦) = (Base‘𝐵)))
324323simprd 499 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ((LSpan‘𝐵)‘𝑦) = (Base‘𝐵))
325324adantr 484 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → ((LSpan‘𝐵)‘𝑦) = (Base‘𝐵))
32678, 64eqtr3d 2773 . . . . . . . . . . . . . 14 (𝜑 → (Base‘𝐴) = (Base‘𝐵))
327326ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → (Base‘𝐴) = (Base‘𝐵))
328325, 327eqtr4d 2774 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → ((LSpan‘𝐵)‘𝑦) = (Base‘𝐴))
329288, 328eleqtrrd 2834 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → 𝑧 ∈ ((LSpan‘𝐵)‘𝑦))
330 eqid 2736 . . . . . . . . . . . . 13 (Scalar‘𝐵) = (Scalar‘𝐵)
331 lveclmod 20097 . . . . . . . . . . . . . . 15 (𝐵 ∈ LVec → 𝐵 ∈ LMod)
33228, 331syl 17 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ LMod)
333332ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝐵 ∈ LMod)
334321, 60, 88, 330, 91, 89, 333, 62ellspds 31232 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑧 ∈ ((LSpan‘𝐵)‘𝑦) ↔ ∃𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)(𝑎 finSupp (0g‘(Scalar‘𝐵)) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤))))))
335334biimpa 480 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ ((LSpan‘𝐵)‘𝑦)) → ∃𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)(𝑎 finSupp (0g‘(Scalar‘𝐵)) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))))
336205, 329, 335syl2anc 587 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → ∃𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)(𝑎 finSupp (0g‘(Scalar‘𝐵)) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))))
337320, 336r19.29a 3198 . . . . . . . . 9 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → ∃𝑐 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥))(𝑐 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))))
338 eqid 2736 . . . . . . . . . . 11 (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴))
339202, 187, 338, 188, 191, 189, 87, 170, 157ellspd 20718 . . . . . . . . . 10 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑧 ∈ ((LSpan‘𝐴)‘((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) “ (𝑦 × 𝑥))) ↔ ∃𝑐 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥))(𝑐 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))))))
340339adantr 484 . . . . . . . . 9 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → (𝑧 ∈ ((LSpan‘𝐴)‘((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) “ (𝑦 × 𝑥))) ↔ ∃𝑐 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥))(𝑐 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))))))
341337, 340mpbird 260 . . . . . . . 8 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → 𝑧 ∈ ((LSpan‘𝐴)‘((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) “ (𝑦 × 𝑥))))
34287ffnd 6524 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) Fn (𝑦 × 𝑥))
343342adantr 484 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) Fn (𝑦 × 𝑥))
344 fnima 6486 . . . . . . . . . 10 ((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) Fn (𝑦 × 𝑥) → ((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) “ (𝑦 × 𝑥)) = ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))
345343, 344syl 17 . . . . . . . . 9 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → ((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) “ (𝑦 × 𝑥)) = ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))
346345fveq2d 6699 . . . . . . . 8 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → ((LSpan‘𝐴)‘((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) “ (𝑦 × 𝑥))) = ((LSpan‘𝐴)‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))
347341, 346eleqtrd 2833 . . . . . . 7 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → 𝑧 ∈ ((LSpan‘𝐴)‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))
348204, 347eqelssd 3908 . . . . . 6 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ((LSpan‘𝐴)‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))) = (Base‘𝐴))
349 eqid 2736 . . . . . . 7 (Base‘(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))) = (Base‘(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))
350 drngnzr 20254 . . . . . . . . . 10 (𝐾 ∈ DivRing → 𝐾 ∈ NzRing)
35114, 350syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ NzRing)
352258, 351eqeltrrd 2832 . . . . . . . 8 (𝜑 → (Scalar‘𝐴) ∈ NzRing)
353352ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (Scalar‘𝐴) ∈ NzRing)
354187, 349, 188, 189, 190, 191, 202, 170, 353, 157, 156lindflbs 31242 . . . . . 6 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) ∈ (LBasis‘𝐴) ↔ ((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) LIndF 𝐴 ∧ ((LSpan‘𝐴)‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))) = (Base‘𝐴))))
355195, 348, 354mpbir2and 713 . . . . 5 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) ∈ (LBasis‘𝐴))
356 eqid 2736 . . . . . 6 (LBasis‘𝐴) = (LBasis‘𝐴)
357356dimval 31354 . . . . 5 ((𝐴 ∈ LVec ∧ ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) ∈ (LBasis‘𝐴)) → (dim‘𝐴) = (♯‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))
358167, 355, 357syl2anc 587 . . . 4 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (dim‘𝐴) = (♯‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))
35929dimval 31354 . . . . . 6 ((𝐵 ∈ LVec ∧ 𝑦 ∈ (LBasis‘𝐵)) → (dim‘𝐵) = (♯‘𝑦))
36092, 59, 359syl2anc 587 . . . . 5 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (dim‘𝐵) = (♯‘𝑦))
36120dimval 31354 . . . . . 6 ((𝐶 ∈ LVec ∧ 𝑥 ∈ (LBasis‘𝐶)) → (dim‘𝐶) = (♯‘𝑥))
362110, 38, 361syl2anc 587 . . . . 5 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (dim‘𝐶) = (♯‘𝑥))
363360, 362oveq12d 7209 . . . 4 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ((dim‘𝐵) ·e (dim‘𝐶)) = ((♯‘𝑦) ·e (♯‘𝑥)))
364164, 358, 3633eqtr4d 2781 . . 3 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (dim‘𝐴) = ((dim‘𝐵) ·e (dim‘𝐶)))
36534, 364exlimddv 1943 . 2 ((𝜑𝑥 ∈ (LBasis‘𝐶)) → (dim‘𝐴) = ((dim‘𝐵) ·e (dim‘𝐶)))
36624, 365exlimddv 1943 1 (𝜑 → (dim‘𝐴) = ((dim‘𝐵) ·e (dim‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wex 1787  wcel 2112  wne 2932  wral 3051  wrex 3052  Vcvv 3398  wss 3853  c0 4223  {csn 4527   class class class wbr 5039  cmpt 5120   × cxp 5534  ran crn 5537  cima 5539   Fn wfn 6353  wf 6354  1-1wf1 6355  cfv 6358  (class class class)co 7191  cmpo 7193  f cof 7445  m cmap 8486  cen 8601   finSupp cfsupp 8963   ·e cxmu 12668  chash 13861  Basecbs 16666  s cress 16667  +gcplusg 16749  .rcmulr 16750  Scalarcsca 16752   ·𝑠 cvsca 16753  0gc0g 16898   Σg cgsu 16899  Ringcrg 19516  DivRingcdr 19721  SubRingcsubrg 19750  LModclmod 19853  LSpanclspn 19962  LBasisclbs 20065  LVecclvec 20093  subringAlg csra 20159  NzRingcnzr 20249   freeLMod cfrlm 20662   LIndF clindf 20720  LIndSclinds 20721  dimcldim 31352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-reg 9186  ax-inf2 9234  ax-ac2 10042  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-of 7447  df-rpss 7489  df-om 7623  df-1st 7739  df-2nd 7740  df-supp 7882  df-tpos 7946  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-oadd 8184  df-er 8369  df-map 8488  df-ixp 8557  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-fsupp 8964  df-sup 9036  df-oi 9104  df-r1 9345  df-rank 9346  df-dju 9482  df-card 9520  df-acn 9523  df-ac 9695  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-xnn0 12128  df-z 12142  df-dec 12259  df-uz 12404  df-xmul 12671  df-fz 13061  df-fzo 13204  df-seq 13540  df-hash 13862  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-mulr 16763  df-sca 16765  df-vsca 16766  df-ip 16767  df-tset 16768  df-ple 16769  df-ocomp 16770  df-ds 16771  df-hom 16773  df-cco 16774  df-0g 16900  df-gsum 16901  df-prds 16906  df-pws 16908  df-mre 17043  df-mrc 17044  df-mri 17045  df-acs 17046  df-proset 17756  df-drs 17757  df-poset 17774  df-ipo 17988  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-mhm 18172  df-submnd 18173  df-grp 18322  df-minusg 18323  df-sbg 18324  df-mulg 18443  df-subg 18494  df-ghm 18574  df-cntz 18665  df-cmn 19126  df-abl 19127  df-mgp 19459  df-ur 19471  df-ring 19518  df-oppr 19595  df-dvdsr 19613  df-unit 19614  df-invr 19644  df-drng 19723  df-subrg 19752  df-lmod 19855  df-lss 19923  df-lsp 19963  df-lmhm 20013  df-lbs 20066  df-lvec 20094  df-sra 20163  df-rgmod 20164  df-nzr 20250  df-dsmm 20648  df-frlm 20663  df-uvc 20699  df-lindf 20722  df-linds 20723  df-dim 31353
This theorem is referenced by:  extdgmul  31404
  Copyright terms: Public domain W3C validator