Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fedgmul Structured version   Visualization version   GIF version

Theorem fedgmul 33634
Description: The multiplicativity formula for degrees of field extensions. Given 𝐸 a field extension of 𝐹, itself a field extension of 𝐾, we have [𝐸:𝐾] = [𝐸:𝐹][𝐹:𝐾]. Proposition 1.2 of [Lang], p. 224. Here (dim‘𝐴) is the degree of the extension 𝐸 of 𝐾, (dim‘𝐵) is the degree of the extension 𝐸 of 𝐹, and (dim‘𝐶) is the degree of the extension 𝐹 of 𝐾. This proof is valid for infinite dimensions, and is actually valid for division ring extensions, not just field extensions. (Contributed by Thierry Arnoux, 25-Jul-2023.)
Hypotheses
Ref Expression
fedgmul.a 𝐴 = ((subringAlg ‘𝐸)‘𝑉)
fedgmul.b 𝐵 = ((subringAlg ‘𝐸)‘𝑈)
fedgmul.c 𝐶 = ((subringAlg ‘𝐹)‘𝑉)
fedgmul.f 𝐹 = (𝐸s 𝑈)
fedgmul.k 𝐾 = (𝐸s 𝑉)
fedgmul.1 (𝜑𝐸 ∈ DivRing)
fedgmul.2 (𝜑𝐹 ∈ DivRing)
fedgmul.3 (𝜑𝐾 ∈ DivRing)
fedgmul.4 (𝜑𝑈 ∈ (SubRing‘𝐸))
fedgmul.5 (𝜑𝑉 ∈ (SubRing‘𝐹))
Assertion
Ref Expression
fedgmul (𝜑 → (dim‘𝐴) = ((dim‘𝐵) ·e (dim‘𝐶)))

Proof of Theorem fedgmul
Dummy variables 𝑎 𝑐 𝑓 𝑢 𝑥 𝑦 𝑧 𝑖 𝑗 𝑤 𝑏 𝑣 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fedgmul.2 . . . . 5 (𝜑𝐹 ∈ DivRing)
2 fedgmul.4 . . . . . . . 8 (𝜑𝑈 ∈ (SubRing‘𝐸))
3 fedgmul.5 . . . . . . . . . 10 (𝜑𝑉 ∈ (SubRing‘𝐹))
4 fedgmul.f . . . . . . . . . . . 12 𝐹 = (𝐸s 𝑈)
54subsubrg 20514 . . . . . . . . . . 11 (𝑈 ∈ (SubRing‘𝐸) → (𝑉 ∈ (SubRing‘𝐹) ↔ (𝑉 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈)))
65biimpa 476 . . . . . . . . . 10 ((𝑈 ∈ (SubRing‘𝐸) ∧ 𝑉 ∈ (SubRing‘𝐹)) → (𝑉 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈))
72, 3, 6syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑉 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈))
87simprd 495 . . . . . . . 8 (𝜑𝑉𝑈)
9 ressabs 17225 . . . . . . . 8 ((𝑈 ∈ (SubRing‘𝐸) ∧ 𝑉𝑈) → ((𝐸s 𝑈) ↾s 𝑉) = (𝐸s 𝑉))
102, 8, 9syl2anc 584 . . . . . . 7 (𝜑 → ((𝐸s 𝑈) ↾s 𝑉) = (𝐸s 𝑉))
114oveq1i 7400 . . . . . . 7 (𝐹s 𝑉) = ((𝐸s 𝑈) ↾s 𝑉)
12 fedgmul.k . . . . . . 7 𝐾 = (𝐸s 𝑉)
1310, 11, 123eqtr4g 2790 . . . . . 6 (𝜑 → (𝐹s 𝑉) = 𝐾)
14 fedgmul.3 . . . . . 6 (𝜑𝐾 ∈ DivRing)
1513, 14eqeltrd 2829 . . . . 5 (𝜑 → (𝐹s 𝑉) ∈ DivRing)
16 fedgmul.c . . . . . 6 𝐶 = ((subringAlg ‘𝐹)‘𝑉)
17 eqid 2730 . . . . . 6 (𝐹s 𝑉) = (𝐹s 𝑉)
1816, 17sralvec 33588 . . . . 5 ((𝐹 ∈ DivRing ∧ (𝐹s 𝑉) ∈ DivRing ∧ 𝑉 ∈ (SubRing‘𝐹)) → 𝐶 ∈ LVec)
191, 15, 3, 18syl3anc 1373 . . . 4 (𝜑𝐶 ∈ LVec)
20 eqid 2730 . . . . 5 (LBasis‘𝐶) = (LBasis‘𝐶)
2120lbsex 21082 . . . 4 (𝐶 ∈ LVec → (LBasis‘𝐶) ≠ ∅)
2219, 21syl 17 . . 3 (𝜑 → (LBasis‘𝐶) ≠ ∅)
23 n0 4319 . . 3 ((LBasis‘𝐶) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (LBasis‘𝐶))
2422, 23sylib 218 . 2 (𝜑 → ∃𝑥 𝑥 ∈ (LBasis‘𝐶))
25 fedgmul.1 . . . . . . 7 (𝜑𝐸 ∈ DivRing)
26 fedgmul.b . . . . . . . 8 𝐵 = ((subringAlg ‘𝐸)‘𝑈)
2726, 4sralvec 33588 . . . . . . 7 ((𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ (SubRing‘𝐸)) → 𝐵 ∈ LVec)
2825, 1, 2, 27syl3anc 1373 . . . . . 6 (𝜑𝐵 ∈ LVec)
29 eqid 2730 . . . . . . 7 (LBasis‘𝐵) = (LBasis‘𝐵)
3029lbsex 21082 . . . . . 6 (𝐵 ∈ LVec → (LBasis‘𝐵) ≠ ∅)
3128, 30syl 17 . . . . 5 (𝜑 → (LBasis‘𝐵) ≠ ∅)
32 n0 4319 . . . . 5 ((LBasis‘𝐵) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (LBasis‘𝐵))
3331, 32sylib 218 . . . 4 (𝜑 → ∃𝑦 𝑦 ∈ (LBasis‘𝐵))
3433adantr 480 . . 3 ((𝜑𝑥 ∈ (LBasis‘𝐶)) → ∃𝑦 𝑦 ∈ (LBasis‘𝐵))
35 drngring 20652 . . . . . . . . . . . . . . 15 (𝐸 ∈ DivRing → 𝐸 ∈ Ring)
3625, 35syl 17 . . . . . . . . . . . . . 14 (𝜑𝐸 ∈ Ring)
3736ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → 𝐸 ∈ Ring)
38 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑥 ∈ (LBasis‘𝐶))
39 eqid 2730 . . . . . . . . . . . . . . . . . 18 (Base‘𝐶) = (Base‘𝐶)
4039, 20lbsss 20991 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (LBasis‘𝐶) → 𝑥 ⊆ (Base‘𝐶))
4138, 40syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑥 ⊆ (Base‘𝐶))
42 eqid 2730 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘𝐸) = (Base‘𝐸)
4342subrgss 20488 . . . . . . . . . . . . . . . . . . . . 21 (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ⊆ (Base‘𝐸))
442, 43syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑈 ⊆ (Base‘𝐸))
454, 42ressbas2 17215 . . . . . . . . . . . . . . . . . . . 20 (𝑈 ⊆ (Base‘𝐸) → 𝑈 = (Base‘𝐹))
4644, 45syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑈 = (Base‘𝐹))
4716a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐶 = ((subringAlg ‘𝐹)‘𝑉))
48 eqid 2730 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘𝐹) = (Base‘𝐹)
4948subrgss 20488 . . . . . . . . . . . . . . . . . . . . 21 (𝑉 ∈ (SubRing‘𝐹) → 𝑉 ⊆ (Base‘𝐹))
503, 49syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑉 ⊆ (Base‘𝐹))
5147, 50srabase 21091 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (Base‘𝐹) = (Base‘𝐶))
5246, 51eqtrd 2765 . . . . . . . . . . . . . . . . . 18 (𝜑𝑈 = (Base‘𝐶))
5352, 44eqsstrrd 3985 . . . . . . . . . . . . . . . . 17 (𝜑 → (Base‘𝐶) ⊆ (Base‘𝐸))
5453ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (Base‘𝐶) ⊆ (Base‘𝐸))
5541, 54sstrd 3960 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑥 ⊆ (Base‘𝐸))
5655ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → 𝑥 ⊆ (Base‘𝐸))
57 simpr 484 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → 𝑖𝑥)
5856, 57sseldd 3950 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → 𝑖 ∈ (Base‘𝐸))
59 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑦 ∈ (LBasis‘𝐵))
60 eqid 2730 . . . . . . . . . . . . . . . . . 18 (Base‘𝐵) = (Base‘𝐵)
6160, 29lbsss 20991 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (LBasis‘𝐵) → 𝑦 ⊆ (Base‘𝐵))
6259, 61syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑦 ⊆ (Base‘𝐵))
6326a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 = ((subringAlg ‘𝐸)‘𝑈))
6463, 44srabase 21091 . . . . . . . . . . . . . . . . 17 (𝜑 → (Base‘𝐸) = (Base‘𝐵))
6564ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (Base‘𝐸) = (Base‘𝐵))
6662, 65sseqtrrd 3987 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑦 ⊆ (Base‘𝐸))
6766ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → 𝑦 ⊆ (Base‘𝐸))
68 simplr 768 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → 𝑗𝑦)
6967, 68sseldd 3950 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → 𝑗 ∈ (Base‘𝐸))
70 eqid 2730 . . . . . . . . . . . . . 14 (.r𝐸) = (.r𝐸)
7142, 70ringcl 20166 . . . . . . . . . . . . 13 ((𝐸 ∈ Ring ∧ 𝑖 ∈ (Base‘𝐸) ∧ 𝑗 ∈ (Base‘𝐸)) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐸))
7237, 58, 69, 71syl3anc 1373 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐸))
73 fedgmul.a . . . . . . . . . . . . . . 15 𝐴 = ((subringAlg ‘𝐸)‘𝑉)
7473a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐴 = ((subringAlg ‘𝐸)‘𝑉))
757simpld 494 . . . . . . . . . . . . . . 15 (𝜑𝑉 ∈ (SubRing‘𝐸))
7642subrgss 20488 . . . . . . . . . . . . . . 15 (𝑉 ∈ (SubRing‘𝐸) → 𝑉 ⊆ (Base‘𝐸))
7775, 76syl 17 . . . . . . . . . . . . . 14 (𝜑𝑉 ⊆ (Base‘𝐸))
7874, 77srabase 21091 . . . . . . . . . . . . 13 (𝜑 → (Base‘𝐸) = (Base‘𝐴))
7978ad4antr 732 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → (Base‘𝐸) = (Base‘𝐴))
8072, 79eleqtrd 2831 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐴))
8180anasss 466 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ (𝑗𝑦𝑖𝑥)) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐴))
8281ralrimivva 3181 . . . . . . . . 9 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ∀𝑗𝑦𝑖𝑥 (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐴))
83 oveq2 7398 . . . . . . . . . . 11 (𝑤 = 𝑗 → (𝑡(.r𝐸)𝑤) = (𝑡(.r𝐸)𝑗))
84 oveq1 7397 . . . . . . . . . . 11 (𝑡 = 𝑖 → (𝑡(.r𝐸)𝑗) = (𝑖(.r𝐸)𝑗))
8583, 84cbvmpov 7487 . . . . . . . . . 10 (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) = (𝑗𝑦, 𝑖𝑥 ↦ (𝑖(.r𝐸)𝑗))
8685fmpo 8050 . . . . . . . . 9 (∀𝑗𝑦𝑖𝑥 (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐴) ↔ (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)):(𝑦 × 𝑥)⟶(Base‘𝐴))
8782, 86sylib 218 . . . . . . . 8 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)):(𝑦 × 𝑥)⟶(Base‘𝐴))
88 eqid 2730 . . . . . . . . . . . . . 14 (Base‘(Scalar‘𝐵)) = (Base‘(Scalar‘𝐵))
89 eqid 2730 . . . . . . . . . . . . . 14 ( ·𝑠𝐵) = ( ·𝑠𝐵)
90 eqid 2730 . . . . . . . . . . . . . 14 (+g𝐵) = (+g𝐵)
91 eqid 2730 . . . . . . . . . . . . . 14 (0g‘(Scalar‘𝐵)) = (0g‘(Scalar‘𝐵))
9228ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝐵 ∈ LVec)
9392ad5antr 734 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝐵 ∈ LVec)
9429lbslinds 21749 . . . . . . . . . . . . . . . 16 (LBasis‘𝐵) ⊆ (LIndS‘𝐵)
9594, 59sselid 3947 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑦 ∈ (LIndS‘𝐵))
9695ad5antr 734 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝑦 ∈ (LIndS‘𝐵))
9768ad3antrrr 730 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝑗𝑦)
98 simpllr 775 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝑣𝑦)
9963, 44srasca 21094 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐸s 𝑈) = (Scalar‘𝐵))
1004, 99eqtrid 2777 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐹 = (Scalar‘𝐵))
101100fveq2d 6865 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (Base‘𝐹) = (Base‘(Scalar‘𝐵)))
102101, 51eqtr3d 2767 . . . . . . . . . . . . . . . . . 18 (𝜑 → (Base‘(Scalar‘𝐵)) = (Base‘𝐶))
103102ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (Base‘(Scalar‘𝐵)) = (Base‘𝐶))
10441, 103sseqtrrd 3987 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑥 ⊆ (Base‘(Scalar‘𝐵)))
105104ad5antr 734 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝑥 ⊆ (Base‘(Scalar‘𝐵)))
106 simp-4r 783 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝑖𝑥)
107105, 106sseldd 3950 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝑖 ∈ (Base‘(Scalar‘𝐵)))
108 simplr 768 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝑢𝑥)
109105, 108sseldd 3950 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝑢 ∈ (Base‘(Scalar‘𝐵)))
11019ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝐶 ∈ LVec)
111 eqid 2730 . . . . . . . . . . . . . . . . . . . . 21 (LSpan‘𝐶) = (LSpan‘𝐶)
11239, 20, 111islbs4 21748 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (LBasis‘𝐶) ↔ (𝑥 ∈ (LIndS‘𝐶) ∧ ((LSpan‘𝐶)‘𝑥) = (Base‘𝐶)))
11338, 112sylib 218 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑥 ∈ (LIndS‘𝐶) ∧ ((LSpan‘𝐶)‘𝑥) = (Base‘𝐶)))
114113simpld 494 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝑥 ∈ (LIndS‘𝐶))
115 eqid 2730 . . . . . . . . . . . . . . . . . . 19 (0g𝐶) = (0g𝐶)
1161150nellinds 33348 . . . . . . . . . . . . . . . . . 18 ((𝐶 ∈ LVec ∧ 𝑥 ∈ (LIndS‘𝐶)) → ¬ (0g𝐶) ∈ 𝑥)
117110, 114, 116syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ¬ (0g𝐶) ∈ 𝑥)
118117ad5antr 734 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → ¬ (0g𝐶) ∈ 𝑥)
119 nelne2 3024 . . . . . . . . . . . . . . . 16 ((𝑖𝑥 ∧ ¬ (0g𝐶) ∈ 𝑥) → 𝑖 ≠ (0g𝐶))
120106, 118, 119syl2anc 584 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝑖 ≠ (0g𝐶))
121100fveq2d 6865 . . . . . . . . . . . . . . . . 17 (𝜑 → (0g𝐹) = (0g‘(Scalar‘𝐵)))
12216, 1, 3drgext0g 33592 . . . . . . . . . . . . . . . . 17 (𝜑 → (0g𝐹) = (0g𝐶))
123121, 122eqtr3d 2767 . . . . . . . . . . . . . . . 16 (𝜑 → (0g‘(Scalar‘𝐵)) = (0g𝐶))
124123ad7antr 738 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (0g‘(Scalar‘𝐵)) = (0g𝐶))
125120, 124neeqtrrd 3000 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → 𝑖 ≠ (0g‘(Scalar‘𝐵)))
126 simpr 484 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢))
127 ovexd 7425 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (𝑖(.r𝐸)𝑗) ∈ V)
12885ovmpt4g 7539 . . . . . . . . . . . . . . . . 17 ((𝑗𝑦𝑖𝑥 ∧ (𝑖(.r𝐸)𝑗) ∈ V) → (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑖(.r𝐸)𝑗))
12997, 106, 127, 128syl3anc 1373 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑖(.r𝐸)𝑗))
13026, 25, 2drgextvsca 33593 . . . . . . . . . . . . . . . . . 18 (𝜑 → (.r𝐸) = ( ·𝑠𝐵))
131130oveqd 7407 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑖(.r𝐸)𝑗) = (𝑖( ·𝑠𝐵)𝑗))
132131ad7antr 738 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (𝑖(.r𝐸)𝑗) = (𝑖( ·𝑠𝐵)𝑗))
133129, 132eqtrd 2765 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑖( ·𝑠𝐵)𝑗))
13485a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑣𝑦) ∧ 𝑢𝑥) → (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) = (𝑗𝑦, 𝑖𝑥 ↦ (𝑖(.r𝐸)𝑗)))
135 simprr 772 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗 = 𝑣𝑖 = 𝑢)) → 𝑖 = 𝑢)
136 simprl 770 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗 = 𝑣𝑖 = 𝑢)) → 𝑗 = 𝑣)
137135, 136oveq12d 7408 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗 = 𝑣𝑖 = 𝑢)) → (𝑖(.r𝐸)𝑗) = (𝑢(.r𝐸)𝑣))
138 simplr 768 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑣𝑦) ∧ 𝑢𝑥) → 𝑣𝑦)
139 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑣𝑦) ∧ 𝑢𝑥) → 𝑢𝑥)
140 ovexd 7425 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑣𝑦) ∧ 𝑢𝑥) → (𝑢(.r𝐸)𝑣) ∈ V)
141134, 137, 138, 139, 140ovmpod 7544 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑣𝑦) ∧ 𝑢𝑥) → (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) = (𝑢(.r𝐸)𝑣))
142141adantllr 719 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) → (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) = (𝑢(.r𝐸)𝑣))
143142adantl3r 750 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) → (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) = (𝑢(.r𝐸)𝑣))
144143adantr 480 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) = (𝑢(.r𝐸)𝑣))
145130oveqd 7407 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑢(.r𝐸)𝑣) = (𝑢( ·𝑠𝐵)𝑣))
146145ad7antr 738 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (𝑢(.r𝐸)𝑣) = (𝑢( ·𝑠𝐵)𝑣))
147144, 146eqtrd 2765 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) = (𝑢( ·𝑠𝐵)𝑣))
148126, 133, 1473eqtr3d 2773 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (𝑖( ·𝑠𝐵)𝑗) = (𝑢( ·𝑠𝐵)𝑣))
14988, 89, 90, 91, 93, 96, 97, 98, 107, 109, 125, 148linds2eq 33359 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) ∧ (𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢)) → (𝑗 = 𝑣𝑖 = 𝑢))
150149ex 412 . . . . . . . . . . . 12 (((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ 𝑣𝑦) ∧ 𝑢𝑥) → ((𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) → (𝑗 = 𝑣𝑖 = 𝑢)))
151150anasss 466 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) ∧ (𝑣𝑦𝑢𝑥)) → ((𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) → (𝑗 = 𝑣𝑖 = 𝑢)))
152151ralrimivva 3181 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → ∀𝑣𝑦𝑢𝑥 ((𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) → (𝑗 = 𝑣𝑖 = 𝑢)))
153152anasss 466 . . . . . . . . 9 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ (𝑗𝑦𝑖𝑥)) → ∀𝑣𝑦𝑢𝑥 ((𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) → (𝑗 = 𝑣𝑖 = 𝑢)))
154153ralrimivva 3181 . . . . . . . 8 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ∀𝑗𝑦𝑖𝑥𝑣𝑦𝑢𝑥 ((𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) → (𝑗 = 𝑣𝑖 = 𝑢)))
155 f1opr 7448 . . . . . . . 8 ((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)):(𝑦 × 𝑥)–1-1→(Base‘𝐴) ↔ ((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)):(𝑦 × 𝑥)⟶(Base‘𝐴) ∧ ∀𝑗𝑦𝑖𝑥𝑣𝑦𝑢𝑥 ((𝑗(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑖) = (𝑣(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))𝑢) → (𝑗 = 𝑣𝑖 = 𝑢))))
15687, 154, 155sylanbrc 583 . . . . . . 7 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)):(𝑦 × 𝑥)–1-1→(Base‘𝐴))
15759, 38xpexd 7730 . . . . . . 7 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑦 × 𝑥) ∈ V)
158 f1rnen 32560 . . . . . . 7 (((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)):(𝑦 × 𝑥)–1-1→(Base‘𝐴) ∧ (𝑦 × 𝑥) ∈ V) → ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) ≈ (𝑦 × 𝑥))
159156, 157, 158syl2anc 584 . . . . . 6 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) ≈ (𝑦 × 𝑥))
160 hasheni 14320 . . . . . 6 (ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) ≈ (𝑦 × 𝑥) → (♯‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))) = (♯‘(𝑦 × 𝑥)))
161159, 160syl 17 . . . . 5 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (♯‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))) = (♯‘(𝑦 × 𝑥)))
162 hashxpe 32739 . . . . . 6 ((𝑦 ∈ (LBasis‘𝐵) ∧ 𝑥 ∈ (LBasis‘𝐶)) → (♯‘(𝑦 × 𝑥)) = ((♯‘𝑦) ·e (♯‘𝑥)))
16359, 38, 162syl2anc 584 . . . . 5 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (♯‘(𝑦 × 𝑥)) = ((♯‘𝑦) ·e (♯‘𝑥)))
164161, 163eqtrd 2765 . . . 4 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (♯‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))) = ((♯‘𝑦) ·e (♯‘𝑥)))
16573, 12sralvec 33588 . . . . . . 7 ((𝐸 ∈ DivRing ∧ 𝐾 ∈ DivRing ∧ 𝑉 ∈ (SubRing‘𝐸)) → 𝐴 ∈ LVec)
16625, 14, 75, 165syl3anc 1373 . . . . . 6 (𝜑𝐴 ∈ LVec)
167166ad2antrr 726 . . . . 5 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝐴 ∈ LVec)
168 lveclmod 21020 . . . . . . . . 9 (𝐴 ∈ LVec → 𝐴 ∈ LMod)
169166, 168syl 17 . . . . . . . 8 (𝜑𝐴 ∈ LMod)
170169ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝐴 ∈ LMod)
17125ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴)) → 𝐸 ∈ DivRing)
1721ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴)) → 𝐹 ∈ DivRing)
17314ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴)) → 𝐾 ∈ DivRing)
1742ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴)) → 𝑈 ∈ (SubRing‘𝐸))
1753ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴)) → 𝑉 ∈ (SubRing‘𝐹))
176 fveq2 6861 . . . . . . . . . . . 12 (𝑤 = 𝑗 → (𝑓𝑤) = (𝑓𝑗))
177176fveq1d 6863 . . . . . . . . . . 11 (𝑤 = 𝑗 → ((𝑓𝑤)‘𝑣) = ((𝑓𝑗)‘𝑣))
178 fveq2 6861 . . . . . . . . . . 11 (𝑣 = 𝑖 → ((𝑓𝑗)‘𝑣) = ((𝑓𝑗)‘𝑖))
179177, 178cbvmpov 7487 . . . . . . . . . 10 (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) = (𝑗𝑦, 𝑖𝑥 ↦ ((𝑓𝑗)‘𝑖))
180 simp-4r 783 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴)) → 𝑥 ∈ (LBasis‘𝐶))
181 simpllr 775 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴)) → 𝑦 ∈ (LBasis‘𝐵))
182 simplr 768 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴)) → 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥))))
183 simpr 484 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴)) → (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴))
18473, 26, 16, 4, 12, 171, 172, 173, 174, 175, 85, 179, 180, 181, 182, 183fedgmullem2 33633 . . . . . . . . 9 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) ∧ (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴)) → 𝑐 = ((𝑦 × 𝑥) × {(0g‘(Scalar‘𝐴))}))
185184ex 412 . . . . . . . 8 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))) → ((𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴) → 𝑐 = ((𝑦 × 𝑥) × {(0g‘(Scalar‘𝐴))})))
186185ralrimiva 3126 . . . . . . 7 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ∀𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))((𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴) → 𝑐 = ((𝑦 × 𝑥) × {(0g‘(Scalar‘𝐴))})))
187 eqid 2730 . . . . . . . . 9 (Base‘𝐴) = (Base‘𝐴)
188 eqid 2730 . . . . . . . . 9 (Scalar‘𝐴) = (Scalar‘𝐴)
189 eqid 2730 . . . . . . . . 9 ( ·𝑠𝐴) = ( ·𝑠𝐴)
190 eqid 2730 . . . . . . . . 9 (0g𝐴) = (0g𝐴)
191 eqid 2730 . . . . . . . . 9 (0g‘(Scalar‘𝐴)) = (0g‘(Scalar‘𝐴))
192 eqid 2730 . . . . . . . . 9 (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥))) = (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))
193187, 188, 189, 190, 191, 192islindf4 21754 . . . . . . . 8 ((𝐴 ∈ LMod ∧ (𝑦 × 𝑥) ∈ V ∧ (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)):(𝑦 × 𝑥)⟶(Base‘𝐴)) → ((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) LIndF 𝐴 ↔ ∀𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))((𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴) → 𝑐 = ((𝑦 × 𝑥) × {(0g‘(Scalar‘𝐴))}))))
194193biimpar 477 . . . . . . 7 (((𝐴 ∈ LMod ∧ (𝑦 × 𝑥) ∈ V ∧ (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)):(𝑦 × 𝑥)⟶(Base‘𝐴)) ∧ ∀𝑐 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑦 × 𝑥)))((𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (0g𝐴) → 𝑐 = ((𝑦 × 𝑥) × {(0g‘(Scalar‘𝐴))}))) → (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) LIndF 𝐴)
195170, 157, 87, 186, 194syl31anc 1375 . . . . . 6 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) LIndF 𝐴)
19672anasss 466 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ (𝑗𝑦𝑖𝑥)) → (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐸))
197196ralrimivva 3181 . . . . . . . . . 10 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ∀𝑗𝑦𝑖𝑥 (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐸))
19885rnmposs 32605 . . . . . . . . . 10 (∀𝑗𝑦𝑖𝑥 (𝑖(.r𝐸)𝑗) ∈ (Base‘𝐸) → ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) ⊆ (Base‘𝐸))
199197, 198syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) ⊆ (Base‘𝐸))
20078ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (Base‘𝐸) = (Base‘𝐴))
201199, 200sseqtrd 3986 . . . . . . . 8 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) ⊆ (Base‘𝐴))
202 eqid 2730 . . . . . . . . 9 (LSpan‘𝐴) = (LSpan‘𝐴)
203187, 202lspssv 20896 . . . . . . . 8 ((𝐴 ∈ LMod ∧ ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) ⊆ (Base‘𝐴)) → ((LSpan‘𝐴)‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))) ⊆ (Base‘𝐴))
204170, 201, 203syl2anc 584 . . . . . . 7 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ((LSpan‘𝐴)‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))) ⊆ (Base‘𝐴))
205 simpl 482 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → ((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)))
206205ad4antr 732 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑗𝑦) → ((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)))
207 elmapi 8825 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦) → 𝑎:𝑦⟶(Base‘(Scalar‘𝐵)))
208207ad4antlr 733 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑗𝑦) → 𝑎:𝑦⟶(Base‘(Scalar‘𝐵)))
209 simpr 484 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑗𝑦) → 𝑗𝑦)
210208, 209ffvelcdmd 7060 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑗𝑦) → (𝑎𝑗) ∈ (Base‘(Scalar‘𝐵)))
211113simprd 495 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ((LSpan‘𝐶)‘𝑥) = (Base‘𝐶))
212206, 211syl 17 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑗𝑦) → ((LSpan‘𝐶)‘𝑥) = (Base‘𝐶))
213102ad7antr 738 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑗𝑦) → (Base‘(Scalar‘𝐵)) = (Base‘𝐶))
214212, 213eqtr4d 2768 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑗𝑦) → ((LSpan‘𝐶)‘𝑥) = (Base‘(Scalar‘𝐵)))
215210, 214eleqtrrd 2832 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑗𝑦) → (𝑎𝑗) ∈ ((LSpan‘𝐶)‘𝑥))
216 eqid 2730 . . . . . . . . . . . . . . . . 17 (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶))
217 eqid 2730 . . . . . . . . . . . . . . . . 17 (Scalar‘𝐶) = (Scalar‘𝐶)
218 eqid 2730 . . . . . . . . . . . . . . . . 17 (0g‘(Scalar‘𝐶)) = (0g‘(Scalar‘𝐶))
219 eqid 2730 . . . . . . . . . . . . . . . . 17 ( ·𝑠𝐶) = ( ·𝑠𝐶)
220 lveclmod 21020 . . . . . . . . . . . . . . . . . . 19 (𝐶 ∈ LVec → 𝐶 ∈ LMod)
22119, 220syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐶 ∈ LMod)
222221ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝐶 ∈ LMod)
223111, 39, 216, 217, 218, 219, 222, 41ellspds 33346 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ((𝑎𝑗) ∈ ((LSpan‘𝐶)‘𝑥) ↔ ∃𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖))))))
224223biimpa 476 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ (𝑎𝑗) ∈ ((LSpan‘𝐶)‘𝑥)) → ∃𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖)))))
225206, 215, 224syl2anc 584 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑗𝑦) → ∃𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖)))))
226225ralrimiva 3126 . . . . . . . . . . . . 13 (((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) → ∀𝑗𝑦𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖)))))
227 fveq2 6861 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑗 → (𝑎𝑤) = (𝑎𝑗))
228 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 = 𝑖 → (𝑏𝑣) = (𝑏𝑖))
229 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 = 𝑖𝑣 = 𝑖)
230228, 229oveq12d 7408 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = 𝑖 → ((𝑏𝑣)( ·𝑠𝐶)𝑣) = ((𝑏𝑖)( ·𝑠𝐶)𝑖))
231230cbvmptv 5214 . . . . . . . . . . . . . . . . . . . 20 (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣)) = (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖))
232231oveq2i 7401 . . . . . . . . . . . . . . . . . . 19 (𝐶 Σg (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣))) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖)))
233232a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑗 → (𝐶 Σg (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣))) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖))))
234227, 233eqeq12d 2746 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑗 → ((𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣))) ↔ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖)))))
235234anbi2d 630 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑗 → ((𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣)))) ↔ (𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖))))))
236235rexbidv 3158 . . . . . . . . . . . . . . 15 (𝑤 = 𝑗 → (∃𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣)))) ↔ ∃𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖))))))
237236cbvralvw 3216 . . . . . . . . . . . . . 14 (∀𝑤𝑦𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣)))) ↔ ∀𝑗𝑦𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖)))))
238 vex 3454 . . . . . . . . . . . . . . 15 𝑦 ∈ V
239 breq1 5113 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑓𝑤) → (𝑏 finSupp (0g‘(Scalar‘𝐶)) ↔ (𝑓𝑤) finSupp (0g‘(Scalar‘𝐶))))
240 fveq1 6860 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = (𝑓𝑤) → (𝑏𝑣) = ((𝑓𝑤)‘𝑣))
241240oveq1d 7405 . . . . . . . . . . . . . . . . . . 19 (𝑏 = (𝑓𝑤) → ((𝑏𝑣)( ·𝑠𝐶)𝑣) = (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))
242241mpteq2dv 5204 . . . . . . . . . . . . . . . . . 18 (𝑏 = (𝑓𝑤) → (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣)) = (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣)))
243242oveq2d 7406 . . . . . . . . . . . . . . . . 17 (𝑏 = (𝑓𝑤) → (𝐶 Σg (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣))) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))
244243eqeq2d 2741 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑓𝑤) → ((𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣))) ↔ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣)))))
245239, 244anbi12d 632 . . . . . . . . . . . . . . 15 (𝑏 = (𝑓𝑤) → ((𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣)))) ↔ ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))))
246238, 245ac6s 10444 . . . . . . . . . . . . . 14 (∀𝑤𝑦𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ ((𝑏𝑣)( ·𝑠𝐶)𝑣)))) → ∃𝑓(𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))))
247237, 246sylbir 235 . . . . . . . . . . . . 13 (∀𝑗𝑦𝑏 ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥)(𝑏 finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ ((𝑏𝑖)( ·𝑠𝐶)𝑖)))) → ∃𝑓(𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))))
248226, 247syl 17 . . . . . . . . . . . 12 (((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) → ∃𝑓(𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))))
249 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥))
250 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → 𝑗𝑦)
251249, 250ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → (𝑓𝑗) ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥))
252 elmapi 8825 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓𝑗) ∈ ((Base‘(Scalar‘𝐶)) ↑m 𝑥) → (𝑓𝑗):𝑥⟶(Base‘(Scalar‘𝐶)))
253251, 252syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ 𝑗𝑦) ∧ 𝑖𝑥) → (𝑓𝑗):𝑥⟶(Base‘(Scalar‘𝐶)))
254253anasss 466 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ (𝑗𝑦𝑖𝑥)) → (𝑓𝑗):𝑥⟶(Base‘(Scalar‘𝐶)))
255 simprr 772 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ (𝑗𝑦𝑖𝑥)) → 𝑖𝑥)
256254, 255ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ (𝑗𝑦𝑖𝑥)) → ((𝑓𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐶)))
25774, 77srasca 21094 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐸s 𝑉) = (Scalar‘𝐴))
25812, 257eqtrid 2777 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐾 = (Scalar‘𝐴))
25947, 50srasca 21094 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐹s 𝑉) = (Scalar‘𝐶))
26013, 259eqtr3d 2767 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐾 = (Scalar‘𝐶))
261258, 260eqtr3d 2767 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (Scalar‘𝐴) = (Scalar‘𝐶))
262261fveq2d 6865 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐶)))
263262ad4antr 732 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ (𝑗𝑦𝑖𝑥)) → (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐶)))
264256, 263eleqtrrd 2832 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ (𝑗𝑦𝑖𝑥)) → ((𝑓𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)))
265264ralrimivva 3181 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) → ∀𝑗𝑦𝑖𝑥 ((𝑓𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)))
266179fmpo 8050 . . . . . . . . . . . . . . . . . . 19 (∀𝑗𝑦𝑖𝑥 ((𝑓𝑗)‘𝑖) ∈ (Base‘(Scalar‘𝐴)) ↔ (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)):(𝑦 × 𝑥)⟶(Base‘(Scalar‘𝐴)))
267265, 266sylib 218 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) → (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)):(𝑦 × 𝑥)⟶(Base‘(Scalar‘𝐴)))
268 fvexd 6876 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) → (Base‘(Scalar‘𝐴)) ∈ V)
269157adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) → (𝑦 × 𝑥) ∈ V)
270268, 269elmapd 8816 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) → ((𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥)) ↔ (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)):(𝑦 × 𝑥)⟶(Base‘(Scalar‘𝐴))))
271267, 270mpbird 257 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) → (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥)))
272271ad5ant15 758 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) → (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥)))
273272adantr 480 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥)))
274273adantl3r 750 . . . . . . . . . . . . . 14 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥)))
275 simpr 484 . . . . . . . . . . . . . . . 16 ((((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) ∧ 𝑐 = (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣))) → 𝑐 = (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)))
276275breq1d 5120 . . . . . . . . . . . . . . 15 ((((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) ∧ 𝑐 = (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣))) → (𝑐 finSupp (0g‘(Scalar‘𝐴)) ↔ (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) finSupp (0g‘(Scalar‘𝐴))))
277275oveq1d 7405 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) ∧ 𝑐 = (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣))) → (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))) = ((𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) ∘f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))
278277oveq2d 7406 . . . . . . . . . . . . . . . 16 ((((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) ∧ 𝑐 = (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣))) → (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) = (𝐴 Σg ((𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) ∘f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))))
279278eqeq2d 2741 . . . . . . . . . . . . . . 15 ((((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) ∧ 𝑐 = (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣))) → (𝑧 = (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))) ↔ 𝑧 = (𝐴 Σg ((𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) ∘f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))))
280276, 279anbi12d 632 . . . . . . . . . . . . . 14 ((((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) ∧ 𝑐 = (𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣))) → ((𝑐 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))) ↔ ((𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg ((𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) ∘f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))))))
28125ad8antr 740 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝐸 ∈ DivRing)
2821ad8antr 740 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝐹 ∈ DivRing)
28314ad8antr 740 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝐾 ∈ DivRing)
2842ad8antr 740 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝑈 ∈ (SubRing‘𝐸))
2853ad8antr 740 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝑉 ∈ (SubRing‘𝐹))
28638ad6antr 736 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝑥 ∈ (LBasis‘𝐶))
28759ad6antr 736 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝑦 ∈ (LBasis‘𝐵))
288 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → 𝑧 ∈ (Base‘𝐴))
289288ad5antr 734 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝑧 ∈ (Base‘𝐴))
290207ad5antlr 735 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝑎:𝑦⟶(Base‘(Scalar‘𝐵)))
291 simp-4r 783 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝑎 finSupp (0g‘(Scalar‘𝐵)))
292 simpllr 775 . . . . . . . . . . . . . . . 16 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤))))
293 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑗𝑤 = 𝑗)
294227, 293oveq12d 7408 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑗 → ((𝑎𝑤)( ·𝑠𝐵)𝑤) = ((𝑎𝑗)( ·𝑠𝐵)𝑗))
295294cbvmptv 5214 . . . . . . . . . . . . . . . . 17 (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)) = (𝑗𝑦 ↦ ((𝑎𝑗)( ·𝑠𝐵)𝑗))
296295oveq2i 7401 . . . . . . . . . . . . . . . 16 (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤))) = (𝐵 Σg (𝑗𝑦 ↦ ((𝑎𝑗)( ·𝑠𝐵)𝑗)))
297292, 296eqtrdi 2781 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝑧 = (𝐵 Σg (𝑗𝑦 ↦ ((𝑎𝑗)( ·𝑠𝐵)𝑗))))
298 simplr 768 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥))
299 simpr 484 . . . . . . . . . . . . . . . . . 18 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣)))))
300176breq1d 5120 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑗 → ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ↔ (𝑓𝑗) finSupp (0g‘(Scalar‘𝐶))))
301 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 = 𝑖 → ((𝑓𝑤)‘𝑣) = ((𝑓𝑤)‘𝑖))
302301, 229oveq12d 7408 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑣 = 𝑖 → (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣) = (((𝑓𝑤)‘𝑖)( ·𝑠𝐶)𝑖))
303302cbvmptv 5214 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣)) = (𝑖𝑥 ↦ (((𝑓𝑤)‘𝑖)( ·𝑠𝐶)𝑖))
304176fveq1d 6863 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = 𝑗 → ((𝑓𝑤)‘𝑖) = ((𝑓𝑗)‘𝑖))
305304oveq1d 7405 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = 𝑗 → (((𝑓𝑤)‘𝑖)( ·𝑠𝐶)𝑖) = (((𝑓𝑗)‘𝑖)( ·𝑠𝐶)𝑖))
306305mpteq2dv 5204 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 𝑗 → (𝑖𝑥 ↦ (((𝑓𝑤)‘𝑖)( ·𝑠𝐶)𝑖)) = (𝑖𝑥 ↦ (((𝑓𝑗)‘𝑖)( ·𝑠𝐶)𝑖)))
307303, 306eqtrid 2777 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = 𝑗 → (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣)) = (𝑖𝑥 ↦ (((𝑓𝑗)‘𝑖)( ·𝑠𝐶)𝑖)))
308307oveq2d 7406 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = 𝑗 → (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))) = (𝐶 Σg (𝑖𝑥 ↦ (((𝑓𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
309227, 308eqeq12d 2746 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑗 → ((𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))) ↔ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ (((𝑓𝑗)‘𝑖)( ·𝑠𝐶)𝑖)))))
310300, 309anbi12d 632 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑗 → (((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣)))) ↔ ((𝑓𝑗) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ (((𝑓𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))))
311310cbvralvw 3216 . . . . . . . . . . . . . . . . . 18 (∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣)))) ↔ ∀𝑗𝑦 ((𝑓𝑗) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ (((𝑓𝑗)‘𝑖)( ·𝑠𝐶)𝑖)))))
312299, 311sylib 218 . . . . . . . . . . . . . . . . 17 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → ∀𝑗𝑦 ((𝑓𝑗) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ (((𝑓𝑗)‘𝑖)( ·𝑠𝐶)𝑖)))))
313312r19.21bi 3230 . . . . . . . . . . . . . . . 16 ((((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) ∧ 𝑗𝑦) → ((𝑓𝑗) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ (((𝑓𝑗)‘𝑖)( ·𝑠𝐶)𝑖)))))
314313simpld 494 . . . . . . . . . . . . . . 15 ((((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) ∧ 𝑗𝑦) → (𝑓𝑗) finSupp (0g‘(Scalar‘𝐶)))
315313simprd 495 . . . . . . . . . . . . . . 15 ((((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) ∧ 𝑗𝑦) → (𝑎𝑗) = (𝐶 Σg (𝑖𝑥 ↦ (((𝑓𝑗)‘𝑖)( ·𝑠𝐶)𝑖))))
31673, 26, 16, 4, 12, 281, 282, 283, 284, 285, 85, 179, 286, 287, 289, 290, 291, 297, 298, 314, 315fedgmullem1 33632 . . . . . . . . . . . . . 14 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → ((𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg ((𝑤𝑦, 𝑣𝑥 ↦ ((𝑓𝑤)‘𝑣)) ∘f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))))
317274, 280, 316rspcedvd 3593 . . . . . . . . . . . . 13 (((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ 𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥)) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣))))) → ∃𝑐 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥))(𝑐 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))))
318317anasss 466 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) ∧ (𝑓:𝑦⟶((Base‘(Scalar‘𝐶)) ↑m 𝑥) ∧ ∀𝑤𝑦 ((𝑓𝑤) finSupp (0g‘(Scalar‘𝐶)) ∧ (𝑎𝑤) = (𝐶 Σg (𝑣𝑥 ↦ (((𝑓𝑤)‘𝑣)( ·𝑠𝐶)𝑣)))))) → ∃𝑐 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥))(𝑐 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))))
319248, 318exlimddv 1935 . . . . . . . . . . 11 (((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ 𝑎 finSupp (0g‘(Scalar‘𝐵))) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))) → ∃𝑐 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥))(𝑐 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))))
320319anasss 466 . . . . . . . . . 10 ((((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) ∧ 𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)) ∧ (𝑎 finSupp (0g‘(Scalar‘𝐵)) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤))))) → ∃𝑐 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥))(𝑐 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))))
321 eqid 2730 . . . . . . . . . . . . . . . . 17 (LSpan‘𝐵) = (LSpan‘𝐵)
32260, 29, 321islbs4 21748 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (LBasis‘𝐵) ↔ (𝑦 ∈ (LIndS‘𝐵) ∧ ((LSpan‘𝐵)‘𝑦) = (Base‘𝐵)))
32359, 322sylib 218 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑦 ∈ (LIndS‘𝐵) ∧ ((LSpan‘𝐵)‘𝑦) = (Base‘𝐵)))
324323simprd 495 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ((LSpan‘𝐵)‘𝑦) = (Base‘𝐵))
325324adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → ((LSpan‘𝐵)‘𝑦) = (Base‘𝐵))
32678, 64eqtr3d 2767 . . . . . . . . . . . . . 14 (𝜑 → (Base‘𝐴) = (Base‘𝐵))
327326ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → (Base‘𝐴) = (Base‘𝐵))
328325, 327eqtr4d 2768 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → ((LSpan‘𝐵)‘𝑦) = (Base‘𝐴))
329288, 328eleqtrrd 2832 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → 𝑧 ∈ ((LSpan‘𝐵)‘𝑦))
330 eqid 2730 . . . . . . . . . . . . 13 (Scalar‘𝐵) = (Scalar‘𝐵)
331 lveclmod 21020 . . . . . . . . . . . . . . 15 (𝐵 ∈ LVec → 𝐵 ∈ LMod)
33228, 331syl 17 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ LMod)
333332ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → 𝐵 ∈ LMod)
334321, 60, 88, 330, 91, 89, 333, 62ellspds 33346 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑧 ∈ ((LSpan‘𝐵)‘𝑦) ↔ ∃𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)(𝑎 finSupp (0g‘(Scalar‘𝐵)) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤))))))
335334biimpa 476 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ ((LSpan‘𝐵)‘𝑦)) → ∃𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)(𝑎 finSupp (0g‘(Scalar‘𝐵)) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))))
336205, 329, 335syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → ∃𝑎 ∈ ((Base‘(Scalar‘𝐵)) ↑m 𝑦)(𝑎 finSupp (0g‘(Scalar‘𝐵)) ∧ 𝑧 = (𝐵 Σg (𝑤𝑦 ↦ ((𝑎𝑤)( ·𝑠𝐵)𝑤)))))
337320, 336r19.29a 3142 . . . . . . . . 9 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → ∃𝑐 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥))(𝑐 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))))
338 eqid 2730 . . . . . . . . . . 11 (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴))
339202, 187, 338, 188, 191, 189, 87, 170, 157ellspd 21718 . . . . . . . . . 10 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑧 ∈ ((LSpan‘𝐴)‘((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) “ (𝑦 × 𝑥))) ↔ ∃𝑐 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥))(𝑐 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))))))
340339adantr 480 . . . . . . . . 9 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → (𝑧 ∈ ((LSpan‘𝐴)‘((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) “ (𝑦 × 𝑥))) ↔ ∃𝑐 ∈ ((Base‘(Scalar‘𝐴)) ↑m (𝑦 × 𝑥))(𝑐 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑧 = (𝐴 Σg (𝑐f ( ·𝑠𝐴)(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))))))
341337, 340mpbird 257 . . . . . . . 8 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → 𝑧 ∈ ((LSpan‘𝐴)‘((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) “ (𝑦 × 𝑥))))
34287ffnd 6692 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) Fn (𝑦 × 𝑥))
343342adantr 480 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) Fn (𝑦 × 𝑥))
344 fnima 6651 . . . . . . . . . 10 ((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) Fn (𝑦 × 𝑥) → ((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) “ (𝑦 × 𝑥)) = ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))
345343, 344syl 17 . . . . . . . . 9 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → ((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) “ (𝑦 × 𝑥)) = ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))
346345fveq2d 6865 . . . . . . . 8 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → ((LSpan‘𝐴)‘((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) “ (𝑦 × 𝑥))) = ((LSpan‘𝐴)‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))
347341, 346eleqtrd 2831 . . . . . . 7 ((((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) ∧ 𝑧 ∈ (Base‘𝐴)) → 𝑧 ∈ ((LSpan‘𝐴)‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))
348204, 347eqelssd 3971 . . . . . 6 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ((LSpan‘𝐴)‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))) = (Base‘𝐴))
349 eqid 2730 . . . . . . 7 (Base‘(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))) = (Base‘(𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)))
350 drngnzr 20664 . . . . . . . . . 10 (𝐾 ∈ DivRing → 𝐾 ∈ NzRing)
35114, 350syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ NzRing)
352258, 351eqeltrrd 2830 . . . . . . . 8 (𝜑 → (Scalar‘𝐴) ∈ NzRing)
353352ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (Scalar‘𝐴) ∈ NzRing)
354187, 349, 188, 189, 190, 191, 202, 170, 353, 157, 156lindflbs 33357 . . . . . 6 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) ∈ (LBasis‘𝐴) ↔ ((𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) LIndF 𝐴 ∧ ((LSpan‘𝐴)‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))) = (Base‘𝐴))))
355195, 348, 354mpbir2and 713 . . . . 5 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) ∈ (LBasis‘𝐴))
356 eqid 2730 . . . . . 6 (LBasis‘𝐴) = (LBasis‘𝐴)
357356dimval 33603 . . . . 5 ((𝐴 ∈ LVec ∧ ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤)) ∈ (LBasis‘𝐴)) → (dim‘𝐴) = (♯‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))
358167, 355, 357syl2anc 584 . . . 4 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (dim‘𝐴) = (♯‘ran (𝑤𝑦, 𝑡𝑥 ↦ (𝑡(.r𝐸)𝑤))))
35929dimval 33603 . . . . . 6 ((𝐵 ∈ LVec ∧ 𝑦 ∈ (LBasis‘𝐵)) → (dim‘𝐵) = (♯‘𝑦))
36092, 59, 359syl2anc 584 . . . . 5 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (dim‘𝐵) = (♯‘𝑦))
36120dimval 33603 . . . . . 6 ((𝐶 ∈ LVec ∧ 𝑥 ∈ (LBasis‘𝐶)) → (dim‘𝐶) = (♯‘𝑥))
362110, 38, 361syl2anc 584 . . . . 5 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (dim‘𝐶) = (♯‘𝑥))
363360, 362oveq12d 7408 . . . 4 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → ((dim‘𝐵) ·e (dim‘𝐶)) = ((♯‘𝑦) ·e (♯‘𝑥)))
364164, 358, 3633eqtr4d 2775 . . 3 (((𝜑𝑥 ∈ (LBasis‘𝐶)) ∧ 𝑦 ∈ (LBasis‘𝐵)) → (dim‘𝐴) = ((dim‘𝐵) ·e (dim‘𝐶)))
36534, 364exlimddv 1935 . 2 ((𝜑𝑥 ∈ (LBasis‘𝐶)) → (dim‘𝐴) = ((dim‘𝐵) ·e (dim‘𝐶)))
36624, 365exlimddv 1935 1 (𝜑 → (dim‘𝐴) = ((dim‘𝐵) ·e (dim‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  wss 3917  c0 4299  {csn 4592   class class class wbr 5110  cmpt 5191   × cxp 5639  ran crn 5642  cima 5644   Fn wfn 6509  wf 6510  1-1wf1 6511  cfv 6514  (class class class)co 7390  cmpo 7392  f cof 7654  m cmap 8802  cen 8918   finSupp cfsupp 9319   ·e cxmu 13078  chash 14302  Basecbs 17186  s cress 17207  +gcplusg 17227  .rcmulr 17228  Scalarcsca 17230   ·𝑠 cvsca 17231  0gc0g 17409   Σg cgsu 17410  Ringcrg 20149  NzRingcnzr 20428  SubRingcsubrg 20485  DivRingcdr 20645  LModclmod 20773  LSpanclspn 20884  LBasisclbs 20988  LVecclvec 21016  subringAlg csra 21085   freeLMod cfrlm 21662   LIndF clindf 21720  LIndSclinds 21721  dimcldim 33601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-reg 9552  ax-inf2 9601  ax-ac2 10423  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-rpss 7702  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-r1 9724  df-rank 9725  df-dju 9861  df-card 9899  df-acn 9902  df-ac 10076  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-xmul 13081  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ocomp 17248  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-mri 17556  df-acs 17557  df-proset 18262  df-drs 18263  df-poset 18281  df-ipo 18494  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-nzr 20429  df-subrng 20462  df-subrg 20486  df-drng 20647  df-lmod 20775  df-lss 20845  df-lsp 20885  df-lmhm 20936  df-lbs 20989  df-lvec 21017  df-sra 21087  df-rgmod 21088  df-dsmm 21648  df-frlm 21663  df-uvc 21699  df-lindf 21722  df-linds 21723  df-dim 33602
This theorem is referenced by:  extdgmul  33666
  Copyright terms: Public domain W3C validator