MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkoccn Structured version   Visualization version   GIF version

Theorem xkoccn 23504
Description: The "constant function" function which maps 𝑥𝑌 to the constant function 𝑧𝑋𝑥 is a continuous function from 𝑋 into the space of continuous functions from 𝑌 to 𝑋. This can also be understood as the currying of the first projection function. (The currying of the second projection function is 𝑥𝑌 ↦ (𝑧𝑋𝑧), which we already know is continuous because it is a constant function.) (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
xkoccn ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑥𝑌 ↦ (𝑋 × {𝑥})) ∈ (𝑆 Cn (𝑆ko 𝑅)))
Distinct variable groups:   𝑥,𝑅   𝑥,𝑆   𝑥,𝑋   𝑥,𝑌

Proof of Theorem xkoccn
Dummy variables 𝑓 𝑘 𝑣 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnconst2 23168 . . . 4 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌) ∧ 𝑥𝑌) → (𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆))
213expa 1118 . . 3 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑥𝑌) → (𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆))
32fmpttd 7049 . 2 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑥𝑌 ↦ (𝑋 × {𝑥})):𝑌⟶(𝑅 Cn 𝑆))
4 eqid 2729 . . . . . 6 𝑅 = 𝑅
5 eqid 2729 . . . . . 6 {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp} = {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}
6 eqid 2729 . . . . . 6 (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) = (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
74, 5, 6xkobval 23471 . . . . 5 ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) = {𝑦 ∣ ∃𝑘 ∈ 𝒫 𝑅𝑣𝑆 ((𝑅t 𝑘) ∈ Comp ∧ 𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})}
87eqabri 2871 . . . 4 (𝑦 ∈ ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ↔ ∃𝑘 ∈ 𝒫 𝑅𝑣𝑆 ((𝑅t 𝑘) ∈ Comp ∧ 𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
92ad5ant15 758 . . . . . . . . . . . 12 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) ∧ 𝑥𝑌) → (𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆))
10 simplr 768 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) ∧ 𝑥𝑌) → 𝑘 = ∅)
1110imaeq2d 6011 . . . . . . . . . . . . 13 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) ∧ 𝑥𝑌) → ((𝑋 × {𝑥}) “ 𝑘) = ((𝑋 × {𝑥}) “ ∅))
12 ima0 6028 . . . . . . . . . . . . . 14 ((𝑋 × {𝑥}) “ ∅) = ∅
13 0ss 4351 . . . . . . . . . . . . . 14 ∅ ⊆ 𝑣
1412, 13eqsstri 3982 . . . . . . . . . . . . 13 ((𝑋 × {𝑥}) “ ∅) ⊆ 𝑣
1511, 14eqsstrdi 3980 . . . . . . . . . . . 12 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) ∧ 𝑥𝑌) → ((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣)
16 imaeq1 6006 . . . . . . . . . . . . . 14 (𝑓 = (𝑋 × {𝑥}) → (𝑓𝑘) = ((𝑋 × {𝑥}) “ 𝑘))
1716sseq1d 3967 . . . . . . . . . . . . 13 (𝑓 = (𝑋 × {𝑥}) → ((𝑓𝑘) ⊆ 𝑣 ↔ ((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣))
1817elrab 3648 . . . . . . . . . . . 12 ((𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} ↔ ((𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆) ∧ ((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣))
199, 15, 18sylanbrc 583 . . . . . . . . . . 11 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) ∧ 𝑥𝑌) → (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
2019ralrimiva 3121 . . . . . . . . . 10 (((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) → ∀𝑥𝑌 (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
21 rabid2 3428 . . . . . . . . . 10 (𝑌 = {𝑥𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}} ↔ ∀𝑥𝑌 (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
2220, 21sylibr 234 . . . . . . . . 9 (((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) → 𝑌 = {𝑥𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}})
23 simpllr 775 . . . . . . . . . . 11 ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝑆 ∈ (TopOn‘𝑌))
24 toponmax 22811 . . . . . . . . . . 11 (𝑆 ∈ (TopOn‘𝑌) → 𝑌𝑆)
2523, 24syl 17 . . . . . . . . . 10 ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝑌𝑆)
2625adantr 480 . . . . . . . . 9 (((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) → 𝑌𝑆)
2722, 26eqeltrrd 2829 . . . . . . . 8 (((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) → {𝑥𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}} ∈ 𝑆)
28 ifnefalse 4488 . . . . . . . . . . . . . . 15 (𝑘 ≠ ∅ → if(𝑘 = ∅, 𝑌, 𝑣) = 𝑣)
2928ad2antlr 727 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → if(𝑘 = ∅, 𝑌, 𝑣) = 𝑣)
3029eleq2d 2814 . . . . . . . . . . . . 13 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → (𝑥 ∈ if(𝑘 = ∅, 𝑌, 𝑣) ↔ 𝑥𝑣))
31 vex 3440 . . . . . . . . . . . . . . . 16 𝑥 ∈ V
3231snss 4736 . . . . . . . . . . . . . . 15 (𝑥𝑣 ↔ {𝑥} ⊆ 𝑣)
3330, 32bitrdi 287 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → (𝑥 ∈ if(𝑘 = ∅, 𝑌, 𝑣) ↔ {𝑥} ⊆ 𝑣))
34 df-ima 5632 . . . . . . . . . . . . . . . . 17 ((𝑋 × {𝑥}) “ 𝑘) = ran ((𝑋 × {𝑥}) ↾ 𝑘)
35 simplrl 776 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝑘 ∈ 𝒫 𝑅)
3635ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → 𝑘 ∈ 𝒫 𝑅)
3736elpwid 4560 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → 𝑘 𝑅)
38 toponuni 22799 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ (TopOn‘𝑋) → 𝑋 = 𝑅)
3938ad5antr 734 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → 𝑋 = 𝑅)
4037, 39sseqtrrd 3973 . . . . . . . . . . . . . . . . . . 19 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → 𝑘𝑋)
41 xpssres 5969 . . . . . . . . . . . . . . . . . . 19 (𝑘𝑋 → ((𝑋 × {𝑥}) ↾ 𝑘) = (𝑘 × {𝑥}))
4240, 41syl 17 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → ((𝑋 × {𝑥}) ↾ 𝑘) = (𝑘 × {𝑥}))
4342rneqd 5880 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → ran ((𝑋 × {𝑥}) ↾ 𝑘) = ran (𝑘 × {𝑥}))
4434, 43eqtrid 2776 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → ((𝑋 × {𝑥}) “ 𝑘) = ran (𝑘 × {𝑥}))
45 rnxp 6119 . . . . . . . . . . . . . . . . 17 (𝑘 ≠ ∅ → ran (𝑘 × {𝑥}) = {𝑥})
4645ad2antlr 727 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → ran (𝑘 × {𝑥}) = {𝑥})
4744, 46eqtrd 2764 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → ((𝑋 × {𝑥}) “ 𝑘) = {𝑥})
4847sseq1d 3967 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → (((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣 ↔ {𝑥} ⊆ 𝑣))
492ad5ant15 758 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → (𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆))
5049biantrurd 532 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → (((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣 ↔ ((𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆) ∧ ((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣)))
5133, 48, 503bitr2d 307 . . . . . . . . . . . . 13 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → (𝑥 ∈ if(𝑘 = ∅, 𝑌, 𝑣) ↔ ((𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆) ∧ ((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣)))
5230, 51bitr3d 281 . . . . . . . . . . . 12 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → (𝑥𝑣 ↔ ((𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆) ∧ ((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣)))
5352, 18bitr4di 289 . . . . . . . . . . 11 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → (𝑥𝑣 ↔ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
5453rabbi2dva 4177 . . . . . . . . . 10 (((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) → (𝑌𝑣) = {𝑥𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}})
55 simplrr 777 . . . . . . . . . . . . 13 ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝑣𝑆)
56 toponss 22812 . . . . . . . . . . . . 13 ((𝑆 ∈ (TopOn‘𝑌) ∧ 𝑣𝑆) → 𝑣𝑌)
5723, 55, 56syl2anc 584 . . . . . . . . . . . 12 ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝑣𝑌)
5857adantr 480 . . . . . . . . . . 11 (((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) → 𝑣𝑌)
59 sseqin2 4174 . . . . . . . . . . 11 (𝑣𝑌 ↔ (𝑌𝑣) = 𝑣)
6058, 59sylib 218 . . . . . . . . . 10 (((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) → (𝑌𝑣) = 𝑣)
6154, 60eqtr3d 2766 . . . . . . . . 9 (((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) → {𝑥𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}} = 𝑣)
6255adantr 480 . . . . . . . . 9 (((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) → 𝑣𝑆)
6361, 62eqeltrd 2828 . . . . . . . 8 (((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) → {𝑥𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}} ∈ 𝑆)
6427, 63pm2.61dane 3012 . . . . . . 7 ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) → {𝑥𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}} ∈ 𝑆)
65 imaeq2 6007 . . . . . . . . 9 (𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} → ((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) = ((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
66 eqid 2729 . . . . . . . . . 10 (𝑥𝑌 ↦ (𝑋 × {𝑥})) = (𝑥𝑌 ↦ (𝑋 × {𝑥}))
6766mptpreima 6187 . . . . . . . . 9 ((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) = {𝑥𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}}
6865, 67eqtrdi 2780 . . . . . . . 8 (𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} → ((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) = {𝑥𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}})
6968eleq1d 2813 . . . . . . 7 (𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} → (((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) ∈ 𝑆 ↔ {𝑥𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}} ∈ 𝑆))
7064, 69syl5ibrcom 247 . . . . . 6 ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) → (𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} → ((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) ∈ 𝑆))
7170expimpd 453 . . . . 5 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) → (((𝑅t 𝑘) ∈ Comp ∧ 𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) → ((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) ∈ 𝑆))
7271rexlimdvva 3186 . . . 4 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (∃𝑘 ∈ 𝒫 𝑅𝑣𝑆 ((𝑅t 𝑘) ∈ Comp ∧ 𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) → ((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) ∈ 𝑆))
738, 72biimtrid 242 . . 3 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑦 ∈ ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) → ((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) ∈ 𝑆))
7473ralrimiv 3120 . 2 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ∀𝑦 ∈ ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) ∈ 𝑆)
75 simpr 484 . . 3 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → 𝑆 ∈ (TopOn‘𝑌))
76 ovex 7382 . . . . . 6 (𝑅 Cn 𝑆) ∈ V
7776pwex 5319 . . . . 5 𝒫 (𝑅 Cn 𝑆) ∈ V
784, 5, 6xkotf 23470 . . . . . 6 (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}):({𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp} × 𝑆)⟶𝒫 (𝑅 Cn 𝑆)
79 frn 6659 . . . . . 6 ((𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}):({𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp} × 𝑆)⟶𝒫 (𝑅 Cn 𝑆) → ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑆))
8078, 79ax-mp 5 . . . . 5 ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑆)
8177, 80ssexi 5261 . . . 4 ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ∈ V
8281a1i 11 . . 3 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ∈ V)
83 topontop 22798 . . . 4 (𝑅 ∈ (TopOn‘𝑋) → 𝑅 ∈ Top)
84 topontop 22798 . . . 4 (𝑆 ∈ (TopOn‘𝑌) → 𝑆 ∈ Top)
854, 5, 6xkoval 23472 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))))
8683, 84, 85syl2an 596 . . 3 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑆ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))))
87 eqid 2729 . . . . 5 (𝑆ko 𝑅) = (𝑆ko 𝑅)
8887xkotopon 23485 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑆)))
8983, 84, 88syl2an 596 . . 3 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑆ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑆)))
9075, 82, 86, 89subbascn 23139 . 2 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ((𝑥𝑌 ↦ (𝑋 × {𝑥})) ∈ (𝑆 Cn (𝑆ko 𝑅)) ↔ ((𝑥𝑌 ↦ (𝑋 × {𝑥})):𝑌⟶(𝑅 Cn 𝑆) ∧ ∀𝑦 ∈ ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) ∈ 𝑆)))
913, 74, 90mpbir2and 713 1 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑥𝑌 ↦ (𝑋 × {𝑥})) ∈ (𝑆 Cn (𝑆ko 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3394  Vcvv 3436  cin 3902  wss 3903  c0 4284  ifcif 4476  𝒫 cpw 4551  {csn 4577   cuni 4858  cmpt 5173   × cxp 5617  ccnv 5618  ran crn 5620  cres 5621  cima 5622  wf 6478  cfv 6482  (class class class)co 7349  cmpo 7351  ficfi 9300  t crest 17324  topGenctg 17341  Topctop 22778  TopOnctopon 22795   Cn ccn 23109  Compccmp 23271  ko cxko 23446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-1o 8388  df-2o 8389  df-map 8755  df-en 8873  df-dom 8874  df-fin 8876  df-fi 9301  df-rest 17326  df-topgen 17347  df-top 22779  df-topon 22796  df-bases 22831  df-cn 23112  df-cnp 23113  df-cmp 23272  df-xko 23448
This theorem is referenced by:  cnmptkc  23564  xkofvcn  23569
  Copyright terms: Public domain W3C validator