MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkoccn Structured version   Visualization version   GIF version

Theorem xkoccn 22770
Description: The "constant function" function which maps 𝑥𝑌 to the constant function 𝑧𝑋𝑥 is a continuous function from 𝑋 into the space of continuous functions from 𝑌 to 𝑋. This can also be understood as the currying of the first projection function. (The currying of the second projection function is 𝑥𝑌 ↦ (𝑧𝑋𝑧), which we already know is continuous because it is a constant function.) (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
xkoccn ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑥𝑌 ↦ (𝑋 × {𝑥})) ∈ (𝑆 Cn (𝑆ko 𝑅)))
Distinct variable groups:   𝑥,𝑅   𝑥,𝑆   𝑥,𝑋   𝑥,𝑌

Proof of Theorem xkoccn
Dummy variables 𝑓 𝑘 𝑣 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnconst2 22434 . . . 4 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌) ∧ 𝑥𝑌) → (𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆))
213expa 1117 . . 3 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑥𝑌) → (𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆))
32fmpttd 6989 . 2 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑥𝑌 ↦ (𝑋 × {𝑥})):𝑌⟶(𝑅 Cn 𝑆))
4 eqid 2738 . . . . . 6 𝑅 = 𝑅
5 eqid 2738 . . . . . 6 {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp} = {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}
6 eqid 2738 . . . . . 6 (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) = (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
74, 5, 6xkobval 22737 . . . . 5 ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) = {𝑦 ∣ ∃𝑘 ∈ 𝒫 𝑅𝑣𝑆 ((𝑅t 𝑘) ∈ Comp ∧ 𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})}
87abeq2i 2875 . . . 4 (𝑦 ∈ ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ↔ ∃𝑘 ∈ 𝒫 𝑅𝑣𝑆 ((𝑅t 𝑘) ∈ Comp ∧ 𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
92ad5ant15 756 . . . . . . . . . . . 12 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) ∧ 𝑥𝑌) → (𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆))
10 simplr 766 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) ∧ 𝑥𝑌) → 𝑘 = ∅)
1110imaeq2d 5969 . . . . . . . . . . . . 13 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) ∧ 𝑥𝑌) → ((𝑋 × {𝑥}) “ 𝑘) = ((𝑋 × {𝑥}) “ ∅))
12 ima0 5985 . . . . . . . . . . . . . 14 ((𝑋 × {𝑥}) “ ∅) = ∅
13 0ss 4330 . . . . . . . . . . . . . 14 ∅ ⊆ 𝑣
1412, 13eqsstri 3955 . . . . . . . . . . . . 13 ((𝑋 × {𝑥}) “ ∅) ⊆ 𝑣
1511, 14eqsstrdi 3975 . . . . . . . . . . . 12 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) ∧ 𝑥𝑌) → ((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣)
16 imaeq1 5964 . . . . . . . . . . . . . 14 (𝑓 = (𝑋 × {𝑥}) → (𝑓𝑘) = ((𝑋 × {𝑥}) “ 𝑘))
1716sseq1d 3952 . . . . . . . . . . . . 13 (𝑓 = (𝑋 × {𝑥}) → ((𝑓𝑘) ⊆ 𝑣 ↔ ((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣))
1817elrab 3624 . . . . . . . . . . . 12 ((𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} ↔ ((𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆) ∧ ((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣))
199, 15, 18sylanbrc 583 . . . . . . . . . . 11 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) ∧ 𝑥𝑌) → (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
2019ralrimiva 3103 . . . . . . . . . 10 (((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) → ∀𝑥𝑌 (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
21 rabid2 3314 . . . . . . . . . 10 (𝑌 = {𝑥𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}} ↔ ∀𝑥𝑌 (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
2220, 21sylibr 233 . . . . . . . . 9 (((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) → 𝑌 = {𝑥𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}})
23 simpllr 773 . . . . . . . . . . 11 ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝑆 ∈ (TopOn‘𝑌))
24 toponmax 22075 . . . . . . . . . . 11 (𝑆 ∈ (TopOn‘𝑌) → 𝑌𝑆)
2523, 24syl 17 . . . . . . . . . 10 ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝑌𝑆)
2625adantr 481 . . . . . . . . 9 (((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) → 𝑌𝑆)
2722, 26eqeltrrd 2840 . . . . . . . 8 (((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) → {𝑥𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}} ∈ 𝑆)
28 ifnefalse 4471 . . . . . . . . . . . . . . 15 (𝑘 ≠ ∅ → if(𝑘 = ∅, 𝑌, 𝑣) = 𝑣)
2928ad2antlr 724 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → if(𝑘 = ∅, 𝑌, 𝑣) = 𝑣)
3029eleq2d 2824 . . . . . . . . . . . . 13 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → (𝑥 ∈ if(𝑘 = ∅, 𝑌, 𝑣) ↔ 𝑥𝑣))
31 vex 3436 . . . . . . . . . . . . . . . 16 𝑥 ∈ V
3231snss 4719 . . . . . . . . . . . . . . 15 (𝑥𝑣 ↔ {𝑥} ⊆ 𝑣)
3330, 32bitrdi 287 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → (𝑥 ∈ if(𝑘 = ∅, 𝑌, 𝑣) ↔ {𝑥} ⊆ 𝑣))
34 df-ima 5602 . . . . . . . . . . . . . . . . 17 ((𝑋 × {𝑥}) “ 𝑘) = ran ((𝑋 × {𝑥}) ↾ 𝑘)
35 simplrl 774 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝑘 ∈ 𝒫 𝑅)
3635ad2antrr 723 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → 𝑘 ∈ 𝒫 𝑅)
3736elpwid 4544 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → 𝑘 𝑅)
38 toponuni 22063 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ (TopOn‘𝑋) → 𝑋 = 𝑅)
3938ad5antr 731 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → 𝑋 = 𝑅)
4037, 39sseqtrrd 3962 . . . . . . . . . . . . . . . . . . 19 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → 𝑘𝑋)
41 xpssres 5928 . . . . . . . . . . . . . . . . . . 19 (𝑘𝑋 → ((𝑋 × {𝑥}) ↾ 𝑘) = (𝑘 × {𝑥}))
4240, 41syl 17 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → ((𝑋 × {𝑥}) ↾ 𝑘) = (𝑘 × {𝑥}))
4342rneqd 5847 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → ran ((𝑋 × {𝑥}) ↾ 𝑘) = ran (𝑘 × {𝑥}))
4434, 43eqtrid 2790 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → ((𝑋 × {𝑥}) “ 𝑘) = ran (𝑘 × {𝑥}))
45 rnxp 6073 . . . . . . . . . . . . . . . . 17 (𝑘 ≠ ∅ → ran (𝑘 × {𝑥}) = {𝑥})
4645ad2antlr 724 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → ran (𝑘 × {𝑥}) = {𝑥})
4744, 46eqtrd 2778 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → ((𝑋 × {𝑥}) “ 𝑘) = {𝑥})
4847sseq1d 3952 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → (((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣 ↔ {𝑥} ⊆ 𝑣))
492ad5ant15 756 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → (𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆))
5049biantrurd 533 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → (((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣 ↔ ((𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆) ∧ ((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣)))
5133, 48, 503bitr2d 307 . . . . . . . . . . . . 13 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → (𝑥 ∈ if(𝑘 = ∅, 𝑌, 𝑣) ↔ ((𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆) ∧ ((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣)))
5230, 51bitr3d 280 . . . . . . . . . . . 12 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → (𝑥𝑣 ↔ ((𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆) ∧ ((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣)))
5352, 18bitr4di 289 . . . . . . . . . . 11 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → (𝑥𝑣 ↔ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
5453rabbi2dva 4151 . . . . . . . . . 10 (((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) → (𝑌𝑣) = {𝑥𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}})
55 simplrr 775 . . . . . . . . . . . . 13 ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝑣𝑆)
56 toponss 22076 . . . . . . . . . . . . 13 ((𝑆 ∈ (TopOn‘𝑌) ∧ 𝑣𝑆) → 𝑣𝑌)
5723, 55, 56syl2anc 584 . . . . . . . . . . . 12 ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝑣𝑌)
5857adantr 481 . . . . . . . . . . 11 (((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) → 𝑣𝑌)
59 sseqin2 4149 . . . . . . . . . . 11 (𝑣𝑌 ↔ (𝑌𝑣) = 𝑣)
6058, 59sylib 217 . . . . . . . . . 10 (((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) → (𝑌𝑣) = 𝑣)
6154, 60eqtr3d 2780 . . . . . . . . 9 (((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) → {𝑥𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}} = 𝑣)
6255adantr 481 . . . . . . . . 9 (((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) → 𝑣𝑆)
6361, 62eqeltrd 2839 . . . . . . . 8 (((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) → {𝑥𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}} ∈ 𝑆)
6427, 63pm2.61dane 3032 . . . . . . 7 ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) → {𝑥𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}} ∈ 𝑆)
65 imaeq2 5965 . . . . . . . . 9 (𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} → ((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) = ((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
66 eqid 2738 . . . . . . . . . 10 (𝑥𝑌 ↦ (𝑋 × {𝑥})) = (𝑥𝑌 ↦ (𝑋 × {𝑥}))
6766mptpreima 6141 . . . . . . . . 9 ((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) = {𝑥𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}}
6865, 67eqtrdi 2794 . . . . . . . 8 (𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} → ((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) = {𝑥𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}})
6968eleq1d 2823 . . . . . . 7 (𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} → (((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) ∈ 𝑆 ↔ {𝑥𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}} ∈ 𝑆))
7064, 69syl5ibrcom 246 . . . . . 6 ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) → (𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} → ((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) ∈ 𝑆))
7170expimpd 454 . . . . 5 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) → (((𝑅t 𝑘) ∈ Comp ∧ 𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) → ((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) ∈ 𝑆))
7271rexlimdvva 3223 . . . 4 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (∃𝑘 ∈ 𝒫 𝑅𝑣𝑆 ((𝑅t 𝑘) ∈ Comp ∧ 𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) → ((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) ∈ 𝑆))
738, 72syl5bi 241 . . 3 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑦 ∈ ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) → ((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) ∈ 𝑆))
7473ralrimiv 3102 . 2 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ∀𝑦 ∈ ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) ∈ 𝑆)
75 simpr 485 . . 3 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → 𝑆 ∈ (TopOn‘𝑌))
76 ovex 7308 . . . . . 6 (𝑅 Cn 𝑆) ∈ V
7776pwex 5303 . . . . 5 𝒫 (𝑅 Cn 𝑆) ∈ V
784, 5, 6xkotf 22736 . . . . . 6 (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}):({𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp} × 𝑆)⟶𝒫 (𝑅 Cn 𝑆)
79 frn 6607 . . . . . 6 ((𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}):({𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp} × 𝑆)⟶𝒫 (𝑅 Cn 𝑆) → ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑆))
8078, 79ax-mp 5 . . . . 5 ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑆)
8177, 80ssexi 5246 . . . 4 ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ∈ V
8281a1i 11 . . 3 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ∈ V)
83 topontop 22062 . . . 4 (𝑅 ∈ (TopOn‘𝑋) → 𝑅 ∈ Top)
84 topontop 22062 . . . 4 (𝑆 ∈ (TopOn‘𝑌) → 𝑆 ∈ Top)
854, 5, 6xkoval 22738 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))))
8683, 84, 85syl2an 596 . . 3 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑆ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))))
87 eqid 2738 . . . . 5 (𝑆ko 𝑅) = (𝑆ko 𝑅)
8887xkotopon 22751 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑆)))
8983, 84, 88syl2an 596 . . 3 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑆ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑆)))
9075, 82, 86, 89subbascn 22405 . 2 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ((𝑥𝑌 ↦ (𝑋 × {𝑥})) ∈ (𝑆 Cn (𝑆ko 𝑅)) ↔ ((𝑥𝑌 ↦ (𝑋 × {𝑥})):𝑌⟶(𝑅 Cn 𝑆) ∧ ∀𝑦 ∈ ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) ∈ 𝑆)))
913, 74, 90mpbir2and 710 1 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑥𝑌 ↦ (𝑋 × {𝑥})) ∈ (𝑆 Cn (𝑆ko 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  cin 3886  wss 3887  c0 4256  ifcif 4459  𝒫 cpw 4533  {csn 4561   cuni 4839  cmpt 5157   × cxp 5587  ccnv 5588  ran crn 5590  cres 5591  cima 5592  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277  ficfi 9169  t crest 17131  topGenctg 17148  Topctop 22042  TopOnctopon 22059   Cn ccn 22375  Compccmp 22537  ko cxko 22712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-fin 8737  df-fi 9170  df-rest 17133  df-topgen 17154  df-top 22043  df-topon 22060  df-bases 22096  df-cn 22378  df-cnp 22379  df-cmp 22538  df-xko 22714
This theorem is referenced by:  cnmptkc  22830  xkofvcn  22835
  Copyright terms: Public domain W3C validator