| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cnconst2 23291 | . . . 4
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌) ∧ 𝑥 ∈ 𝑌) → (𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆)) | 
| 2 | 1 | 3expa 1119 | . . 3
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝑌) → (𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆)) | 
| 3 | 2 | fmpttd 7135 | . 2
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑥 ∈ 𝑌 ↦ (𝑋 × {𝑥})):𝑌⟶(𝑅 Cn 𝑆)) | 
| 4 |  | eqid 2737 | . . . . . 6
⊢ ∪ 𝑅 =
∪ 𝑅 | 
| 5 |  | eqid 2737 | . . . . . 6
⊢ {𝑧 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑧)
∈ Comp} = {𝑧 ∈
𝒫 ∪ 𝑅 ∣ (𝑅 ↾t 𝑧) ∈ Comp} | 
| 6 |  | eqid 2737 | . . . . . 6
⊢ (𝑘 ∈ {𝑧 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑧)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) = (𝑘 ∈ {𝑧 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑧)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) | 
| 7 | 4, 5, 6 | xkobval 23594 | . . . . 5
⊢ ran
(𝑘 ∈ {𝑧 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑧)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) = {𝑦 ∣ ∃𝑘 ∈ 𝒫 ∪ 𝑅∃𝑣 ∈ 𝑆 ((𝑅 ↾t 𝑘) ∈ Comp ∧ 𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})} | 
| 8 | 7 | eqabri 2885 | . . . 4
⊢ (𝑦 ∈ ran (𝑘 ∈ {𝑧 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑧)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ↔ ∃𝑘 ∈ 𝒫 ∪ 𝑅∃𝑣 ∈ 𝑆 ((𝑅 ↾t 𝑘) ∈ Comp ∧ 𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) | 
| 9 | 2 | ad5ant15 759 | . . . . . . . . . . . 12
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) ∧ 𝑥 ∈ 𝑌) → (𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆)) | 
| 10 |  | simplr 769 | . . . . . . . . . . . . . 14
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) ∧ 𝑥 ∈ 𝑌) → 𝑘 = ∅) | 
| 11 | 10 | imaeq2d 6078 | . . . . . . . . . . . . 13
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) ∧ 𝑥 ∈ 𝑌) → ((𝑋 × {𝑥}) “ 𝑘) = ((𝑋 × {𝑥}) “ ∅)) | 
| 12 |  | ima0 6095 | . . . . . . . . . . . . . 14
⊢ ((𝑋 × {𝑥}) “ ∅) =
∅ | 
| 13 |  | 0ss 4400 | . . . . . . . . . . . . . 14
⊢ ∅
⊆ 𝑣 | 
| 14 | 12, 13 | eqsstri 4030 | . . . . . . . . . . . . 13
⊢ ((𝑋 × {𝑥}) “ ∅) ⊆ 𝑣 | 
| 15 | 11, 14 | eqsstrdi 4028 | . . . . . . . . . . . 12
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) ∧ 𝑥 ∈ 𝑌) → ((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣) | 
| 16 |  | imaeq1 6073 | . . . . . . . . . . . . . 14
⊢ (𝑓 = (𝑋 × {𝑥}) → (𝑓 “ 𝑘) = ((𝑋 × {𝑥}) “ 𝑘)) | 
| 17 | 16 | sseq1d 4015 | . . . . . . . . . . . . 13
⊢ (𝑓 = (𝑋 × {𝑥}) → ((𝑓 “ 𝑘) ⊆ 𝑣 ↔ ((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣)) | 
| 18 | 17 | elrab 3692 | . . . . . . . . . . . 12
⊢ ((𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} ↔ ((𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆) ∧ ((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣)) | 
| 19 | 9, 15, 18 | sylanbrc 583 | . . . . . . . . . . 11
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) ∧ 𝑥 ∈ 𝑌) → (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) | 
| 20 | 19 | ralrimiva 3146 | . . . . . . . . . 10
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) → ∀𝑥 ∈ 𝑌 (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) | 
| 21 |  | rabid2 3470 | . . . . . . . . . 10
⊢ (𝑌 = {𝑥 ∈ 𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}} ↔ ∀𝑥 ∈ 𝑌 (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) | 
| 22 | 20, 21 | sylibr 234 | . . . . . . . . 9
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) → 𝑌 = {𝑥 ∈ 𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}}) | 
| 23 |  | simpllr 776 | . . . . . . . . . . 11
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → 𝑆 ∈ (TopOn‘𝑌)) | 
| 24 |  | toponmax 22932 | . . . . . . . . . . 11
⊢ (𝑆 ∈ (TopOn‘𝑌) → 𝑌 ∈ 𝑆) | 
| 25 | 23, 24 | syl 17 | . . . . . . . . . 10
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → 𝑌 ∈ 𝑆) | 
| 26 | 25 | adantr 480 | . . . . . . . . 9
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) → 𝑌 ∈ 𝑆) | 
| 27 | 22, 26 | eqeltrrd 2842 | . . . . . . . 8
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) → {𝑥 ∈ 𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}} ∈ 𝑆) | 
| 28 |  | ifnefalse 4537 | . . . . . . . . . . . . . . 15
⊢ (𝑘 ≠ ∅ → if(𝑘 = ∅, 𝑌, 𝑣) = 𝑣) | 
| 29 | 28 | ad2antlr 727 | . . . . . . . . . . . . . 14
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥 ∈ 𝑌) → if(𝑘 = ∅, 𝑌, 𝑣) = 𝑣) | 
| 30 | 29 | eleq2d 2827 | . . . . . . . . . . . . 13
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥 ∈ 𝑌) → (𝑥 ∈ if(𝑘 = ∅, 𝑌, 𝑣) ↔ 𝑥 ∈ 𝑣)) | 
| 31 |  | vex 3484 | . . . . . . . . . . . . . . . 16
⊢ 𝑥 ∈ V | 
| 32 | 31 | snss 4785 | . . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝑣 ↔ {𝑥} ⊆ 𝑣) | 
| 33 | 30, 32 | bitrdi 287 | . . . . . . . . . . . . . 14
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥 ∈ 𝑌) → (𝑥 ∈ if(𝑘 = ∅, 𝑌, 𝑣) ↔ {𝑥} ⊆ 𝑣)) | 
| 34 |  | df-ima 5698 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑋 × {𝑥}) “ 𝑘) = ran ((𝑋 × {𝑥}) ↾ 𝑘) | 
| 35 |  | simplrl 777 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → 𝑘 ∈ 𝒫 ∪ 𝑅) | 
| 36 | 35 | ad2antrr 726 | . . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥 ∈ 𝑌) → 𝑘 ∈ 𝒫 ∪ 𝑅) | 
| 37 | 36 | elpwid 4609 | . . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥 ∈ 𝑌) → 𝑘 ⊆ ∪ 𝑅) | 
| 38 |  | toponuni 22920 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑅 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝑅) | 
| 39 | 38 | ad5antr 734 | . . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥 ∈ 𝑌) → 𝑋 = ∪ 𝑅) | 
| 40 | 37, 39 | sseqtrrd 4021 | . . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥 ∈ 𝑌) → 𝑘 ⊆ 𝑋) | 
| 41 |  | xpssres 6036 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ⊆ 𝑋 → ((𝑋 × {𝑥}) ↾ 𝑘) = (𝑘 × {𝑥})) | 
| 42 | 40, 41 | syl 17 | . . . . . . . . . . . . . . . . . 18
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥 ∈ 𝑌) → ((𝑋 × {𝑥}) ↾ 𝑘) = (𝑘 × {𝑥})) | 
| 43 | 42 | rneqd 5949 | . . . . . . . . . . . . . . . . 17
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥 ∈ 𝑌) → ran ((𝑋 × {𝑥}) ↾ 𝑘) = ran (𝑘 × {𝑥})) | 
| 44 | 34, 43 | eqtrid 2789 | . . . . . . . . . . . . . . . 16
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥 ∈ 𝑌) → ((𝑋 × {𝑥}) “ 𝑘) = ran (𝑘 × {𝑥})) | 
| 45 |  | rnxp 6190 | . . . . . . . . . . . . . . . . 17
⊢ (𝑘 ≠ ∅ → ran (𝑘 × {𝑥}) = {𝑥}) | 
| 46 | 45 | ad2antlr 727 | . . . . . . . . . . . . . . . 16
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥 ∈ 𝑌) → ran (𝑘 × {𝑥}) = {𝑥}) | 
| 47 | 44, 46 | eqtrd 2777 | . . . . . . . . . . . . . . 15
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥 ∈ 𝑌) → ((𝑋 × {𝑥}) “ 𝑘) = {𝑥}) | 
| 48 | 47 | sseq1d 4015 | . . . . . . . . . . . . . 14
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥 ∈ 𝑌) → (((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣 ↔ {𝑥} ⊆ 𝑣)) | 
| 49 | 2 | ad5ant15 759 | . . . . . . . . . . . . . . 15
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥 ∈ 𝑌) → (𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆)) | 
| 50 | 49 | biantrurd 532 | . . . . . . . . . . . . . 14
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥 ∈ 𝑌) → (((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣 ↔ ((𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆) ∧ ((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣))) | 
| 51 | 33, 48, 50 | 3bitr2d 307 | . . . . . . . . . . . . 13
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥 ∈ 𝑌) → (𝑥 ∈ if(𝑘 = ∅, 𝑌, 𝑣) ↔ ((𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆) ∧ ((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣))) | 
| 52 | 30, 51 | bitr3d 281 | . . . . . . . . . . . 12
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥 ∈ 𝑌) → (𝑥 ∈ 𝑣 ↔ ((𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆) ∧ ((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣))) | 
| 53 | 52, 18 | bitr4di 289 | . . . . . . . . . . 11
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥 ∈ 𝑌) → (𝑥 ∈ 𝑣 ↔ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) | 
| 54 | 53 | rabbi2dva 4226 | . . . . . . . . . 10
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) → (𝑌 ∩ 𝑣) = {𝑥 ∈ 𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}}) | 
| 55 |  | simplrr 778 | . . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → 𝑣 ∈ 𝑆) | 
| 56 |  | toponss 22933 | . . . . . . . . . . . . 13
⊢ ((𝑆 ∈ (TopOn‘𝑌) ∧ 𝑣 ∈ 𝑆) → 𝑣 ⊆ 𝑌) | 
| 57 | 23, 55, 56 | syl2anc 584 | . . . . . . . . . . . 12
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → 𝑣 ⊆ 𝑌) | 
| 58 | 57 | adantr 480 | . . . . . . . . . . 11
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) → 𝑣 ⊆ 𝑌) | 
| 59 |  | sseqin2 4223 | . . . . . . . . . . 11
⊢ (𝑣 ⊆ 𝑌 ↔ (𝑌 ∩ 𝑣) = 𝑣) | 
| 60 | 58, 59 | sylib 218 | . . . . . . . . . 10
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) → (𝑌 ∩ 𝑣) = 𝑣) | 
| 61 | 54, 60 | eqtr3d 2779 | . . . . . . . . 9
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) → {𝑥 ∈ 𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}} = 𝑣) | 
| 62 | 55 | adantr 480 | . . . . . . . . 9
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) → 𝑣 ∈ 𝑆) | 
| 63 | 61, 62 | eqeltrd 2841 | . . . . . . . 8
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) → {𝑥 ∈ 𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}} ∈ 𝑆) | 
| 64 | 27, 63 | pm2.61dane 3029 | . . . . . . 7
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → {𝑥 ∈ 𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}} ∈ 𝑆) | 
| 65 |  | imaeq2 6074 | . . . . . . . . 9
⊢ (𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} → (◡(𝑥 ∈ 𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) = (◡(𝑥 ∈ 𝑌 ↦ (𝑋 × {𝑥})) “ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) | 
| 66 |  | eqid 2737 | . . . . . . . . . 10
⊢ (𝑥 ∈ 𝑌 ↦ (𝑋 × {𝑥})) = (𝑥 ∈ 𝑌 ↦ (𝑋 × {𝑥})) | 
| 67 | 66 | mptpreima 6258 | . . . . . . . . 9
⊢ (◡(𝑥 ∈ 𝑌 ↦ (𝑋 × {𝑥})) “ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) = {𝑥 ∈ 𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}} | 
| 68 | 65, 67 | eqtrdi 2793 | . . . . . . . 8
⊢ (𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} → (◡(𝑥 ∈ 𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) = {𝑥 ∈ 𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}}) | 
| 69 | 68 | eleq1d 2826 | . . . . . . 7
⊢ (𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} → ((◡(𝑥 ∈ 𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) ∈ 𝑆 ↔ {𝑥 ∈ 𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}} ∈ 𝑆)) | 
| 70 | 64, 69 | syl5ibrcom 247 | . . . . . 6
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → (𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} → (◡(𝑥 ∈ 𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) ∈ 𝑆)) | 
| 71 | 70 | expimpd 453 | . . . . 5
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) → (((𝑅 ↾t 𝑘) ∈ Comp ∧ 𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) → (◡(𝑥 ∈ 𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) ∈ 𝑆)) | 
| 72 | 71 | rexlimdvva 3213 | . . . 4
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (∃𝑘 ∈ 𝒫 ∪ 𝑅∃𝑣 ∈ 𝑆 ((𝑅 ↾t 𝑘) ∈ Comp ∧ 𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) → (◡(𝑥 ∈ 𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) ∈ 𝑆)) | 
| 73 | 8, 72 | biimtrid 242 | . . 3
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑦 ∈ ran (𝑘 ∈ {𝑧 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑧)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) → (◡(𝑥 ∈ 𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) ∈ 𝑆)) | 
| 74 | 73 | ralrimiv 3145 | . 2
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ∀𝑦 ∈ ran (𝑘 ∈ {𝑧 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑧)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})(◡(𝑥 ∈ 𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) ∈ 𝑆) | 
| 75 |  | simpr 484 | . . 3
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → 𝑆 ∈ (TopOn‘𝑌)) | 
| 76 |  | ovex 7464 | . . . . . 6
⊢ (𝑅 Cn 𝑆) ∈ V | 
| 77 | 76 | pwex 5380 | . . . . 5
⊢ 𝒫
(𝑅 Cn 𝑆) ∈ V | 
| 78 | 4, 5, 6 | xkotf 23593 | . . . . . 6
⊢ (𝑘 ∈ {𝑧 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑧)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}):({𝑧 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑧)
∈ Comp} × 𝑆)⟶𝒫 (𝑅 Cn 𝑆) | 
| 79 |  | frn 6743 | . . . . . 6
⊢ ((𝑘 ∈ {𝑧 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑧)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}):({𝑧 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑧)
∈ Comp} × 𝑆)⟶𝒫 (𝑅 Cn 𝑆) → ran (𝑘 ∈ {𝑧 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑧)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑆)) | 
| 80 | 78, 79 | ax-mp 5 | . . . . 5
⊢ ran
(𝑘 ∈ {𝑧 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑧)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑆) | 
| 81 | 77, 80 | ssexi 5322 | . . . 4
⊢ ran
(𝑘 ∈ {𝑧 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑧)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ∈ V | 
| 82 | 81 | a1i 11 | . . 3
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ran (𝑘 ∈ {𝑧 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑧)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ∈ V) | 
| 83 |  | topontop 22919 | . . . 4
⊢ (𝑅 ∈ (TopOn‘𝑋) → 𝑅 ∈ Top) | 
| 84 |  | topontop 22919 | . . . 4
⊢ (𝑆 ∈ (TopOn‘𝑌) → 𝑆 ∈ Top) | 
| 85 | 4, 5, 6 | xkoval 23595 | . . . 4
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ↑ko 𝑅) = (topGen‘(fi‘ran
(𝑘 ∈ {𝑧 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑧)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})))) | 
| 86 | 83, 84, 85 | syl2an 596 | . . 3
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑆 ↑ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑧 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑧)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})))) | 
| 87 |  | eqid 2737 | . . . . 5
⊢ (𝑆 ↑ko 𝑅) = (𝑆 ↑ko 𝑅) | 
| 88 | 87 | xkotopon 23608 | . . . 4
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ↑ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑆))) | 
| 89 | 83, 84, 88 | syl2an 596 | . . 3
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑆 ↑ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑆))) | 
| 90 | 75, 82, 86, 89 | subbascn 23262 | . 2
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ((𝑥 ∈ 𝑌 ↦ (𝑋 × {𝑥})) ∈ (𝑆 Cn (𝑆 ↑ko 𝑅)) ↔ ((𝑥 ∈ 𝑌 ↦ (𝑋 × {𝑥})):𝑌⟶(𝑅 Cn 𝑆) ∧ ∀𝑦 ∈ ran (𝑘 ∈ {𝑧 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑧)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})(◡(𝑥 ∈ 𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) ∈ 𝑆))) | 
| 91 | 3, 74, 90 | mpbir2and 713 | 1
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑥 ∈ 𝑌 ↦ (𝑋 × {𝑥})) ∈ (𝑆 Cn (𝑆 ↑ko 𝑅))) |