Step | Hyp | Ref
| Expression |
1 | | cnconst2 21968 |
. . . 4
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌) ∧ 𝑥 ∈ 𝑌) → (𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆)) |
2 | 1 | 3expa 1116 |
. . 3
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝑌) → (𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆)) |
3 | 2 | fmpttd 6863 |
. 2
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑥 ∈ 𝑌 ↦ (𝑋 × {𝑥})):𝑌⟶(𝑅 Cn 𝑆)) |
4 | | eqid 2759 |
. . . . . 6
⊢ ∪ 𝑅 =
∪ 𝑅 |
5 | | eqid 2759 |
. . . . . 6
⊢ {𝑧 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑧)
∈ Comp} = {𝑧 ∈
𝒫 ∪ 𝑅 ∣ (𝑅 ↾t 𝑧) ∈ Comp} |
6 | | eqid 2759 |
. . . . . 6
⊢ (𝑘 ∈ {𝑧 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑧)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) = (𝑘 ∈ {𝑧 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑧)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) |
7 | 4, 5, 6 | xkobval 22271 |
. . . . 5
⊢ ran
(𝑘 ∈ {𝑧 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑧)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) = {𝑦 ∣ ∃𝑘 ∈ 𝒫 ∪ 𝑅∃𝑣 ∈ 𝑆 ((𝑅 ↾t 𝑘) ∈ Comp ∧ 𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})} |
8 | 7 | abeq2i 2886 |
. . . 4
⊢ (𝑦 ∈ ran (𝑘 ∈ {𝑧 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑧)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ↔ ∃𝑘 ∈ 𝒫 ∪ 𝑅∃𝑣 ∈ 𝑆 ((𝑅 ↾t 𝑘) ∈ Comp ∧ 𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) |
9 | 2 | ad5ant15 759 |
. . . . . . . . . . . 12
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) ∧ 𝑥 ∈ 𝑌) → (𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆)) |
10 | | simplr 769 |
. . . . . . . . . . . . . 14
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) ∧ 𝑥 ∈ 𝑌) → 𝑘 = ∅) |
11 | 10 | imaeq2d 5894 |
. . . . . . . . . . . . 13
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) ∧ 𝑥 ∈ 𝑌) → ((𝑋 × {𝑥}) “ 𝑘) = ((𝑋 × {𝑥}) “ ∅)) |
12 | | ima0 5910 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 × {𝑥}) “ ∅) =
∅ |
13 | | 0ss 4286 |
. . . . . . . . . . . . . 14
⊢ ∅
⊆ 𝑣 |
14 | 12, 13 | eqsstri 3922 |
. . . . . . . . . . . . 13
⊢ ((𝑋 × {𝑥}) “ ∅) ⊆ 𝑣 |
15 | 11, 14 | eqsstrdi 3942 |
. . . . . . . . . . . 12
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) ∧ 𝑥 ∈ 𝑌) → ((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣) |
16 | | imaeq1 5889 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = (𝑋 × {𝑥}) → (𝑓 “ 𝑘) = ((𝑋 × {𝑥}) “ 𝑘)) |
17 | 16 | sseq1d 3919 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑋 × {𝑥}) → ((𝑓 “ 𝑘) ⊆ 𝑣 ↔ ((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣)) |
18 | 17 | elrab 3600 |
. . . . . . . . . . . 12
⊢ ((𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} ↔ ((𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆) ∧ ((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣)) |
19 | 9, 15, 18 | sylanbrc 587 |
. . . . . . . . . . 11
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) ∧ 𝑥 ∈ 𝑌) → (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) |
20 | 19 | ralrimiva 3111 |
. . . . . . . . . 10
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) → ∀𝑥 ∈ 𝑌 (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) |
21 | | rabid2 3297 |
. . . . . . . . . 10
⊢ (𝑌 = {𝑥 ∈ 𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}} ↔ ∀𝑥 ∈ 𝑌 (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) |
22 | 20, 21 | sylibr 237 |
. . . . . . . . 9
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) → 𝑌 = {𝑥 ∈ 𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}}) |
23 | | simpllr 776 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → 𝑆 ∈ (TopOn‘𝑌)) |
24 | | toponmax 21611 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ (TopOn‘𝑌) → 𝑌 ∈ 𝑆) |
25 | 23, 24 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → 𝑌 ∈ 𝑆) |
26 | 25 | adantr 485 |
. . . . . . . . 9
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) → 𝑌 ∈ 𝑆) |
27 | 22, 26 | eqeltrrd 2852 |
. . . . . . . 8
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) → {𝑥 ∈ 𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}} ∈ 𝑆) |
28 | | ifnefalse 4425 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ≠ ∅ → if(𝑘 = ∅, 𝑌, 𝑣) = 𝑣) |
29 | 28 | ad2antlr 727 |
. . . . . . . . . . . . . 14
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥 ∈ 𝑌) → if(𝑘 = ∅, 𝑌, 𝑣) = 𝑣) |
30 | 29 | eleq2d 2836 |
. . . . . . . . . . . . 13
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥 ∈ 𝑌) → (𝑥 ∈ if(𝑘 = ∅, 𝑌, 𝑣) ↔ 𝑥 ∈ 𝑣)) |
31 | | vex 3411 |
. . . . . . . . . . . . . . . 16
⊢ 𝑥 ∈ V |
32 | 31 | snss 4669 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝑣 ↔ {𝑥} ⊆ 𝑣) |
33 | 30, 32 | bitrdi 290 |
. . . . . . . . . . . . . 14
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥 ∈ 𝑌) → (𝑥 ∈ if(𝑘 = ∅, 𝑌, 𝑣) ↔ {𝑥} ⊆ 𝑣)) |
34 | | df-ima 5530 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑋 × {𝑥}) “ 𝑘) = ran ((𝑋 × {𝑥}) ↾ 𝑘) |
35 | | simplrl 777 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → 𝑘 ∈ 𝒫 ∪ 𝑅) |
36 | 35 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥 ∈ 𝑌) → 𝑘 ∈ 𝒫 ∪ 𝑅) |
37 | 36 | elpwid 4498 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥 ∈ 𝑌) → 𝑘 ⊆ ∪ 𝑅) |
38 | | toponuni 21599 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑅 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝑅) |
39 | 38 | ad5antr 734 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥 ∈ 𝑌) → 𝑋 = ∪ 𝑅) |
40 | 37, 39 | sseqtrrd 3929 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥 ∈ 𝑌) → 𝑘 ⊆ 𝑋) |
41 | | xpssres 5853 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ⊆ 𝑋 → ((𝑋 × {𝑥}) ↾ 𝑘) = (𝑘 × {𝑥})) |
42 | 40, 41 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥 ∈ 𝑌) → ((𝑋 × {𝑥}) ↾ 𝑘) = (𝑘 × {𝑥})) |
43 | 42 | rneqd 5772 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥 ∈ 𝑌) → ran ((𝑋 × {𝑥}) ↾ 𝑘) = ran (𝑘 × {𝑥})) |
44 | 34, 43 | syl5eq 2806 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥 ∈ 𝑌) → ((𝑋 × {𝑥}) “ 𝑘) = ran (𝑘 × {𝑥})) |
45 | | rnxp 5992 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ≠ ∅ → ran (𝑘 × {𝑥}) = {𝑥}) |
46 | 45 | ad2antlr 727 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥 ∈ 𝑌) → ran (𝑘 × {𝑥}) = {𝑥}) |
47 | 44, 46 | eqtrd 2794 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥 ∈ 𝑌) → ((𝑋 × {𝑥}) “ 𝑘) = {𝑥}) |
48 | 47 | sseq1d 3919 |
. . . . . . . . . . . . . 14
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥 ∈ 𝑌) → (((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣 ↔ {𝑥} ⊆ 𝑣)) |
49 | 2 | ad5ant15 759 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥 ∈ 𝑌) → (𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆)) |
50 | 49 | biantrurd 537 |
. . . . . . . . . . . . . 14
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥 ∈ 𝑌) → (((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣 ↔ ((𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆) ∧ ((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣))) |
51 | 33, 48, 50 | 3bitr2d 311 |
. . . . . . . . . . . . 13
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥 ∈ 𝑌) → (𝑥 ∈ if(𝑘 = ∅, 𝑌, 𝑣) ↔ ((𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆) ∧ ((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣))) |
52 | 30, 51 | bitr3d 284 |
. . . . . . . . . . . 12
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥 ∈ 𝑌) → (𝑥 ∈ 𝑣 ↔ ((𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆) ∧ ((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣))) |
53 | 52, 18 | bitr4di 293 |
. . . . . . . . . . 11
⊢
((((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥 ∈ 𝑌) → (𝑥 ∈ 𝑣 ↔ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) |
54 | 53 | rabbi2dva 4118 |
. . . . . . . . . 10
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) → (𝑌 ∩ 𝑣) = {𝑥 ∈ 𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}}) |
55 | | simplrr 778 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → 𝑣 ∈ 𝑆) |
56 | | toponss 21612 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈ (TopOn‘𝑌) ∧ 𝑣 ∈ 𝑆) → 𝑣 ⊆ 𝑌) |
57 | 23, 55, 56 | syl2anc 588 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → 𝑣 ⊆ 𝑌) |
58 | 57 | adantr 485 |
. . . . . . . . . . 11
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) → 𝑣 ⊆ 𝑌) |
59 | | sseqin2 4116 |
. . . . . . . . . . 11
⊢ (𝑣 ⊆ 𝑌 ↔ (𝑌 ∩ 𝑣) = 𝑣) |
60 | 58, 59 | sylib 221 |
. . . . . . . . . 10
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) → (𝑌 ∩ 𝑣) = 𝑣) |
61 | 54, 60 | eqtr3d 2796 |
. . . . . . . . 9
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) → {𝑥 ∈ 𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}} = 𝑣) |
62 | 55 | adantr 485 |
. . . . . . . . 9
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) → 𝑣 ∈ 𝑆) |
63 | 61, 62 | eqeltrd 2851 |
. . . . . . . 8
⊢
(((((𝑅 ∈
(TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) → {𝑥 ∈ 𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}} ∈ 𝑆) |
64 | 27, 63 | pm2.61dane 3036 |
. . . . . . 7
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → {𝑥 ∈ 𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}} ∈ 𝑆) |
65 | | imaeq2 5890 |
. . . . . . . . 9
⊢ (𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} → (◡(𝑥 ∈ 𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) = (◡(𝑥 ∈ 𝑌 ↦ (𝑋 × {𝑥})) “ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) |
66 | | eqid 2759 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑌 ↦ (𝑋 × {𝑥})) = (𝑥 ∈ 𝑌 ↦ (𝑋 × {𝑥})) |
67 | 66 | mptpreima 6060 |
. . . . . . . . 9
⊢ (◡(𝑥 ∈ 𝑌 ↦ (𝑋 × {𝑥})) “ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) = {𝑥 ∈ 𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}} |
68 | 65, 67 | eqtrdi 2810 |
. . . . . . . 8
⊢ (𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} → (◡(𝑥 ∈ 𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) = {𝑥 ∈ 𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}}) |
69 | 68 | eleq1d 2835 |
. . . . . . 7
⊢ (𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} → ((◡(𝑥 ∈ 𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) ∈ 𝑆 ↔ {𝑥 ∈ 𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}} ∈ 𝑆)) |
70 | 64, 69 | syl5ibrcom 250 |
. . . . . 6
⊢ ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) ∧ (𝑅 ↾t 𝑘) ∈ Comp) → (𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} → (◡(𝑥 ∈ 𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) ∈ 𝑆)) |
71 | 70 | expimpd 458 |
. . . . 5
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ 𝑣 ∈ 𝑆)) → (((𝑅 ↾t 𝑘) ∈ Comp ∧ 𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) → (◡(𝑥 ∈ 𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) ∈ 𝑆)) |
72 | 71 | rexlimdvva 3216 |
. . . 4
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (∃𝑘 ∈ 𝒫 ∪ 𝑅∃𝑣 ∈ 𝑆 ((𝑅 ↾t 𝑘) ∈ Comp ∧ 𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) → (◡(𝑥 ∈ 𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) ∈ 𝑆)) |
73 | 8, 72 | syl5bi 245 |
. . 3
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑦 ∈ ran (𝑘 ∈ {𝑧 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑧)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) → (◡(𝑥 ∈ 𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) ∈ 𝑆)) |
74 | 73 | ralrimiv 3110 |
. 2
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ∀𝑦 ∈ ran (𝑘 ∈ {𝑧 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑧)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})(◡(𝑥 ∈ 𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) ∈ 𝑆) |
75 | | simpr 489 |
. . 3
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → 𝑆 ∈ (TopOn‘𝑌)) |
76 | | ovex 7176 |
. . . . . 6
⊢ (𝑅 Cn 𝑆) ∈ V |
77 | 76 | pwex 5242 |
. . . . 5
⊢ 𝒫
(𝑅 Cn 𝑆) ∈ V |
78 | 4, 5, 6 | xkotf 22270 |
. . . . . 6
⊢ (𝑘 ∈ {𝑧 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑧)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}):({𝑧 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑧)
∈ Comp} × 𝑆)⟶𝒫 (𝑅 Cn 𝑆) |
79 | | frn 6497 |
. . . . . 6
⊢ ((𝑘 ∈ {𝑧 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑧)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}):({𝑧 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑧)
∈ Comp} × 𝑆)⟶𝒫 (𝑅 Cn 𝑆) → ran (𝑘 ∈ {𝑧 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑧)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑆)) |
80 | 78, 79 | ax-mp 5 |
. . . . 5
⊢ ran
(𝑘 ∈ {𝑧 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑧)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑆) |
81 | 77, 80 | ssexi 5185 |
. . . 4
⊢ ran
(𝑘 ∈ {𝑧 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑧)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ∈ V |
82 | 81 | a1i 11 |
. . 3
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ran (𝑘 ∈ {𝑧 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑧)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ∈ V) |
83 | | topontop 21598 |
. . . 4
⊢ (𝑅 ∈ (TopOn‘𝑋) → 𝑅 ∈ Top) |
84 | | topontop 21598 |
. . . 4
⊢ (𝑆 ∈ (TopOn‘𝑌) → 𝑆 ∈ Top) |
85 | 4, 5, 6 | xkoval 22272 |
. . . 4
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ↑ko 𝑅) = (topGen‘(fi‘ran
(𝑘 ∈ {𝑧 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑧)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})))) |
86 | 83, 84, 85 | syl2an 599 |
. . 3
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑆 ↑ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑧 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑧)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})))) |
87 | | eqid 2759 |
. . . . 5
⊢ (𝑆 ↑ko 𝑅) = (𝑆 ↑ko 𝑅) |
88 | 87 | xkotopon 22285 |
. . . 4
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ↑ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑆))) |
89 | 83, 84, 88 | syl2an 599 |
. . 3
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑆 ↑ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑆))) |
90 | 75, 82, 86, 89 | subbascn 21939 |
. 2
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ((𝑥 ∈ 𝑌 ↦ (𝑋 × {𝑥})) ∈ (𝑆 Cn (𝑆 ↑ko 𝑅)) ↔ ((𝑥 ∈ 𝑌 ↦ (𝑋 × {𝑥})):𝑌⟶(𝑅 Cn 𝑆) ∧ ∀𝑦 ∈ ran (𝑘 ∈ {𝑧 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑧)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})(◡(𝑥 ∈ 𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) ∈ 𝑆))) |
91 | 3, 74, 90 | mpbir2and 713 |
1
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑥 ∈ 𝑌 ↦ (𝑋 × {𝑥})) ∈ (𝑆 Cn (𝑆 ↑ko 𝑅))) |