MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkoccn Structured version   Visualization version   GIF version

Theorem xkoccn 22224
Description: The "constant function" function which maps 𝑥𝑌 to the constant function 𝑧𝑋𝑥 is a continuous function from 𝑋 into the space of continuous functions from 𝑌 to 𝑋. This can also be understood as the currying of the first projection function. (The currying of the second projection function is 𝑥𝑌 ↦ (𝑧𝑋𝑧), which we already know is continuous because it is a constant function.) (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
xkoccn ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑥𝑌 ↦ (𝑋 × {𝑥})) ∈ (𝑆 Cn (𝑆ko 𝑅)))
Distinct variable groups:   𝑥,𝑅   𝑥,𝑆   𝑥,𝑋   𝑥,𝑌

Proof of Theorem xkoccn
Dummy variables 𝑓 𝑘 𝑣 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnconst2 21888 . . . 4 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌) ∧ 𝑥𝑌) → (𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆))
213expa 1115 . . 3 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑥𝑌) → (𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆))
32fmpttd 6856 . 2 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑥𝑌 ↦ (𝑋 × {𝑥})):𝑌⟶(𝑅 Cn 𝑆))
4 eqid 2798 . . . . . 6 𝑅 = 𝑅
5 eqid 2798 . . . . . 6 {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp} = {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}
6 eqid 2798 . . . . . 6 (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) = (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
74, 5, 6xkobval 22191 . . . . 5 ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) = {𝑦 ∣ ∃𝑘 ∈ 𝒫 𝑅𝑣𝑆 ((𝑅t 𝑘) ∈ Comp ∧ 𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})}
87abeq2i 2925 . . . 4 (𝑦 ∈ ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ↔ ∃𝑘 ∈ 𝒫 𝑅𝑣𝑆 ((𝑅t 𝑘) ∈ Comp ∧ 𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
92ad5ant15 758 . . . . . . . . . . . 12 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) ∧ 𝑥𝑌) → (𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆))
10 simplr 768 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) ∧ 𝑥𝑌) → 𝑘 = ∅)
1110imaeq2d 5896 . . . . . . . . . . . . 13 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) ∧ 𝑥𝑌) → ((𝑋 × {𝑥}) “ 𝑘) = ((𝑋 × {𝑥}) “ ∅))
12 ima0 5912 . . . . . . . . . . . . . 14 ((𝑋 × {𝑥}) “ ∅) = ∅
13 0ss 4304 . . . . . . . . . . . . . 14 ∅ ⊆ 𝑣
1412, 13eqsstri 3949 . . . . . . . . . . . . 13 ((𝑋 × {𝑥}) “ ∅) ⊆ 𝑣
1511, 14eqsstrdi 3969 . . . . . . . . . . . 12 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) ∧ 𝑥𝑌) → ((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣)
16 imaeq1 5891 . . . . . . . . . . . . . 14 (𝑓 = (𝑋 × {𝑥}) → (𝑓𝑘) = ((𝑋 × {𝑥}) “ 𝑘))
1716sseq1d 3946 . . . . . . . . . . . . 13 (𝑓 = (𝑋 × {𝑥}) → ((𝑓𝑘) ⊆ 𝑣 ↔ ((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣))
1817elrab 3628 . . . . . . . . . . . 12 ((𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} ↔ ((𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆) ∧ ((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣))
199, 15, 18sylanbrc 586 . . . . . . . . . . 11 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) ∧ 𝑥𝑌) → (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
2019ralrimiva 3149 . . . . . . . . . 10 (((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) → ∀𝑥𝑌 (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
21 rabid2 3334 . . . . . . . . . 10 (𝑌 = {𝑥𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}} ↔ ∀𝑥𝑌 (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
2220, 21sylibr 237 . . . . . . . . 9 (((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) → 𝑌 = {𝑥𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}})
23 simpllr 775 . . . . . . . . . . 11 ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝑆 ∈ (TopOn‘𝑌))
24 toponmax 21531 . . . . . . . . . . 11 (𝑆 ∈ (TopOn‘𝑌) → 𝑌𝑆)
2523, 24syl 17 . . . . . . . . . 10 ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝑌𝑆)
2625adantr 484 . . . . . . . . 9 (((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) → 𝑌𝑆)
2722, 26eqeltrrd 2891 . . . . . . . 8 (((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 = ∅) → {𝑥𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}} ∈ 𝑆)
28 ifnefalse 4437 . . . . . . . . . . . . . . 15 (𝑘 ≠ ∅ → if(𝑘 = ∅, 𝑌, 𝑣) = 𝑣)
2928ad2antlr 726 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → if(𝑘 = ∅, 𝑌, 𝑣) = 𝑣)
3029eleq2d 2875 . . . . . . . . . . . . 13 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → (𝑥 ∈ if(𝑘 = ∅, 𝑌, 𝑣) ↔ 𝑥𝑣))
31 vex 3444 . . . . . . . . . . . . . . . 16 𝑥 ∈ V
3231snss 4679 . . . . . . . . . . . . . . 15 (𝑥𝑣 ↔ {𝑥} ⊆ 𝑣)
3330, 32syl6bb 290 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → (𝑥 ∈ if(𝑘 = ∅, 𝑌, 𝑣) ↔ {𝑥} ⊆ 𝑣))
34 df-ima 5532 . . . . . . . . . . . . . . . . 17 ((𝑋 × {𝑥}) “ 𝑘) = ran ((𝑋 × {𝑥}) ↾ 𝑘)
35 simplrl 776 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝑘 ∈ 𝒫 𝑅)
3635ad2antrr 725 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → 𝑘 ∈ 𝒫 𝑅)
3736elpwid 4508 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → 𝑘 𝑅)
38 toponuni 21519 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ (TopOn‘𝑋) → 𝑋 = 𝑅)
3938ad5antr 733 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → 𝑋 = 𝑅)
4037, 39sseqtrrd 3956 . . . . . . . . . . . . . . . . . . 19 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → 𝑘𝑋)
41 xpssres 5855 . . . . . . . . . . . . . . . . . . 19 (𝑘𝑋 → ((𝑋 × {𝑥}) ↾ 𝑘) = (𝑘 × {𝑥}))
4240, 41syl 17 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → ((𝑋 × {𝑥}) ↾ 𝑘) = (𝑘 × {𝑥}))
4342rneqd 5772 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → ran ((𝑋 × {𝑥}) ↾ 𝑘) = ran (𝑘 × {𝑥}))
4434, 43syl5eq 2845 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → ((𝑋 × {𝑥}) “ 𝑘) = ran (𝑘 × {𝑥}))
45 rnxp 5994 . . . . . . . . . . . . . . . . 17 (𝑘 ≠ ∅ → ran (𝑘 × {𝑥}) = {𝑥})
4645ad2antlr 726 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → ran (𝑘 × {𝑥}) = {𝑥})
4744, 46eqtrd 2833 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → ((𝑋 × {𝑥}) “ 𝑘) = {𝑥})
4847sseq1d 3946 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → (((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣 ↔ {𝑥} ⊆ 𝑣))
492ad5ant15 758 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → (𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆))
5049biantrurd 536 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → (((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣 ↔ ((𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆) ∧ ((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣)))
5133, 48, 503bitr2d 310 . . . . . . . . . . . . 13 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → (𝑥 ∈ if(𝑘 = ∅, 𝑌, 𝑣) ↔ ((𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆) ∧ ((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣)))
5230, 51bitr3d 284 . . . . . . . . . . . 12 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → (𝑥𝑣 ↔ ((𝑋 × {𝑥}) ∈ (𝑅 Cn 𝑆) ∧ ((𝑋 × {𝑥}) “ 𝑘) ⊆ 𝑣)))
5352, 18syl6bbr 292 . . . . . . . . . . 11 ((((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) ∧ 𝑥𝑌) → (𝑥𝑣 ↔ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
5453rabbi2dva 4144 . . . . . . . . . 10 (((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) → (𝑌𝑣) = {𝑥𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}})
55 simplrr 777 . . . . . . . . . . . . 13 ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝑣𝑆)
56 toponss 21532 . . . . . . . . . . . . 13 ((𝑆 ∈ (TopOn‘𝑌) ∧ 𝑣𝑆) → 𝑣𝑌)
5723, 55, 56syl2anc 587 . . . . . . . . . . . 12 ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) → 𝑣𝑌)
5857adantr 484 . . . . . . . . . . 11 (((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) → 𝑣𝑌)
59 sseqin2 4142 . . . . . . . . . . 11 (𝑣𝑌 ↔ (𝑌𝑣) = 𝑣)
6058, 59sylib 221 . . . . . . . . . 10 (((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) → (𝑌𝑣) = 𝑣)
6154, 60eqtr3d 2835 . . . . . . . . 9 (((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) → {𝑥𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}} = 𝑣)
6255adantr 484 . . . . . . . . 9 (((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) → 𝑣𝑆)
6361, 62eqeltrd 2890 . . . . . . . 8 (((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) ∧ 𝑘 ≠ ∅) → {𝑥𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}} ∈ 𝑆)
6427, 63pm2.61dane 3074 . . . . . . 7 ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) → {𝑥𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}} ∈ 𝑆)
65 imaeq2 5892 . . . . . . . . 9 (𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} → ((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) = ((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
66 eqid 2798 . . . . . . . . . 10 (𝑥𝑌 ↦ (𝑋 × {𝑥})) = (𝑥𝑌 ↦ (𝑋 × {𝑥}))
6766mptpreima 6059 . . . . . . . . 9 ((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) = {𝑥𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}}
6865, 67eqtrdi 2849 . . . . . . . 8 (𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} → ((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) = {𝑥𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}})
6968eleq1d 2874 . . . . . . 7 (𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} → (((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) ∈ 𝑆 ↔ {𝑥𝑌 ∣ (𝑋 × {𝑥}) ∈ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}} ∈ 𝑆))
7064, 69syl5ibrcom 250 . . . . . 6 ((((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) ∧ (𝑅t 𝑘) ∈ Comp) → (𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} → ((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) ∈ 𝑆))
7170expimpd 457 . . . . 5 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑘 ∈ 𝒫 𝑅𝑣𝑆)) → (((𝑅t 𝑘) ∈ Comp ∧ 𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) → ((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) ∈ 𝑆))
7271rexlimdvva 3253 . . . 4 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (∃𝑘 ∈ 𝒫 𝑅𝑣𝑆 ((𝑅t 𝑘) ∈ Comp ∧ 𝑦 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) → ((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) ∈ 𝑆))
738, 72syl5bi 245 . . 3 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑦 ∈ ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) → ((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) ∈ 𝑆))
7473ralrimiv 3148 . 2 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ∀𝑦 ∈ ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) ∈ 𝑆)
75 simpr 488 . . 3 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → 𝑆 ∈ (TopOn‘𝑌))
76 ovex 7168 . . . . . 6 (𝑅 Cn 𝑆) ∈ V
7776pwex 5246 . . . . 5 𝒫 (𝑅 Cn 𝑆) ∈ V
784, 5, 6xkotf 22190 . . . . . 6 (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}):({𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp} × 𝑆)⟶𝒫 (𝑅 Cn 𝑆)
79 frn 6493 . . . . . 6 ((𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}):({𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp} × 𝑆)⟶𝒫 (𝑅 Cn 𝑆) → ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑆))
8078, 79ax-mp 5 . . . . 5 ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑆)
8177, 80ssexi 5190 . . . 4 ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ∈ V
8281a1i 11 . . 3 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ∈ V)
83 topontop 21518 . . . 4 (𝑅 ∈ (TopOn‘𝑋) → 𝑅 ∈ Top)
84 topontop 21518 . . . 4 (𝑆 ∈ (TopOn‘𝑌) → 𝑆 ∈ Top)
854, 5, 6xkoval 22192 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))))
8683, 84, 85syl2an 598 . . 3 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑆ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))))
87 eqid 2798 . . . . 5 (𝑆ko 𝑅) = (𝑆ko 𝑅)
8887xkotopon 22205 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑆)))
8983, 84, 88syl2an 598 . . 3 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑆ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑆)))
9075, 82, 86, 89subbascn 21859 . 2 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ((𝑥𝑌 ↦ (𝑋 × {𝑥})) ∈ (𝑆 Cn (𝑆ko 𝑅)) ↔ ((𝑥𝑌 ↦ (𝑋 × {𝑥})):𝑌⟶(𝑅 Cn 𝑆) ∧ ∀𝑦 ∈ ran (𝑘 ∈ {𝑧 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑧) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})((𝑥𝑌 ↦ (𝑋 × {𝑥})) “ 𝑦) ∈ 𝑆)))
913, 74, 90mpbir2and 712 1 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑥𝑌 ↦ (𝑋 × {𝑥})) ∈ (𝑆 Cn (𝑆ko 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  {crab 3110  Vcvv 3441  cin 3880  wss 3881  c0 4243  ifcif 4425  𝒫 cpw 4497  {csn 4525   cuni 4800  cmpt 5110   × cxp 5517  ccnv 5518  ran crn 5520  cres 5521  cima 5522  wf 6320  cfv 6324  (class class class)co 7135  cmpo 7137  ficfi 8858  t crest 16686  topGenctg 16703  Topctop 21498  TopOnctopon 21515   Cn ccn 21829  Compccmp 21991  ko cxko 22166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-fin 8496  df-fi 8859  df-rest 16688  df-topgen 16709  df-top 21499  df-topon 21516  df-bases 21551  df-cn 21832  df-cnp 21833  df-cmp 21992  df-xko 22168
This theorem is referenced by:  cnmptkc  22284  xkofvcn  22289
  Copyright terms: Public domain W3C validator