Proof of Theorem ntrivcvg
| Step | Hyp | Ref
| Expression |
| 1 | | ntrivcvg.2 |
. 2
⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦)) |
| 2 | | uzm1 12890 |
. . . . . . . . 9
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (𝑛 = 𝑀 ∨ (𝑛 − 1) ∈
(ℤ≥‘𝑀))) |
| 3 | | ntrivcvg.1 |
. . . . . . . . 9
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 4 | 2, 3 | eleq2s 2852 |
. . . . . . . 8
⊢ (𝑛 ∈ 𝑍 → (𝑛 = 𝑀 ∨ (𝑛 − 1) ∈
(ℤ≥‘𝑀))) |
| 5 | 4 | ad2antlr 727 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → (𝑛 = 𝑀 ∨ (𝑛 − 1) ∈
(ℤ≥‘𝑀))) |
| 6 | | seqeq1 14022 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑀 → seq𝑛( · , 𝐹) = seq𝑀( · , 𝐹)) |
| 7 | 6 | breq1d 5129 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑀 → (seq𝑛( · , 𝐹) ⇝ 𝑦 ↔ seq𝑀( · , 𝐹) ⇝ 𝑦)) |
| 8 | | seqex 14021 |
. . . . . . . . . . 11
⊢ seq𝑀( · , 𝐹) ∈ V |
| 9 | | vex 3463 |
. . . . . . . . . . 11
⊢ 𝑦 ∈ V |
| 10 | 8, 9 | breldm 5888 |
. . . . . . . . . 10
⊢ (seq𝑀( · , 𝐹) ⇝ 𝑦 → seq𝑀( · , 𝐹) ∈ dom ⇝ ) |
| 11 | 7, 10 | biimtrdi 253 |
. . . . . . . . 9
⊢ (𝑛 = 𝑀 → (seq𝑛( · , 𝐹) ⇝ 𝑦 → seq𝑀( · , 𝐹) ∈ dom ⇝ )) |
| 12 | 11 | adantld 490 |
. . . . . . . 8
⊢ (𝑛 = 𝑀 → (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ )) |
| 13 | | simplr 768 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → (𝑛 − 1) ∈ 𝑍) |
| 14 | | ntrivcvg.3 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| 15 | 14 | ad5ant15 758 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| 16 | | uzssz 12873 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(ℤ≥‘𝑀) ⊆ ℤ |
| 17 | 3, 16 | eqsstri 4005 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑍 ⊆
ℤ |
| 18 | | simplr 768 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → 𝑛 ∈ 𝑍) |
| 19 | 17, 18 | sselid 3956 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → 𝑛 ∈ ℤ) |
| 20 | 19 | zcnd 12698 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → 𝑛 ∈ ℂ) |
| 21 | | 1cnd 11230 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → 1 ∈ ℂ) |
| 22 | 20, 21 | npcand 11598 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → ((𝑛 − 1) + 1) = 𝑛) |
| 23 | 22 | seqeq1d 14025 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → seq((𝑛 − 1) + 1)( · , 𝐹) = seq𝑛( · , 𝐹)) |
| 24 | 23 | breq1d 5129 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → (seq((𝑛 − 1) + 1)( · , 𝐹) ⇝ 𝑦 ↔ seq𝑛( · , 𝐹) ⇝ 𝑦)) |
| 25 | 24 | biimpar 477 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq((𝑛 − 1) + 1)( · , 𝐹) ⇝ 𝑦) |
| 26 | 3, 13, 15, 25 | clim2prod 15904 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ⇝ ((seq𝑀( · , 𝐹)‘(𝑛 − 1)) · 𝑦)) |
| 27 | | ovex 7438 |
. . . . . . . . . . . . 13
⊢
((seq𝑀( · ,
𝐹)‘(𝑛 − 1)) · 𝑦) ∈ V |
| 28 | 8, 27 | breldm 5888 |
. . . . . . . . . . . 12
⊢ (seq𝑀( · , 𝐹) ⇝ ((seq𝑀( · , 𝐹)‘(𝑛 − 1)) · 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ ) |
| 29 | 26, 28 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ ) |
| 30 | 29 | an32s 652 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑛 − 1) ∈ 𝑍) → seq𝑀( · , 𝐹) ∈ dom ⇝ ) |
| 31 | 30 | expcom 413 |
. . . . . . . . 9
⊢ ((𝑛 − 1) ∈ 𝑍 → (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ )) |
| 32 | 3 | eqcomi 2744 |
. . . . . . . . 9
⊢
(ℤ≥‘𝑀) = 𝑍 |
| 33 | 31, 32 | eleq2s 2852 |
. . . . . . . 8
⊢ ((𝑛 − 1) ∈
(ℤ≥‘𝑀) → (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ )) |
| 34 | 12, 33 | jaoi 857 |
. . . . . . 7
⊢ ((𝑛 = 𝑀 ∨ (𝑛 − 1) ∈
(ℤ≥‘𝑀)) → (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ )) |
| 35 | 5, 34 | mpcom 38 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ ) |
| 36 | 35 | ex 412 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (seq𝑛( · , 𝐹) ⇝ 𝑦 → seq𝑀( · , 𝐹) ∈ dom ⇝ )) |
| 37 | 36 | adantld 490 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ )) |
| 38 | 37 | exlimdv 1933 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ )) |
| 39 | 38 | rexlimdva 3141 |
. 2
⊢ (𝜑 → (∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ )) |
| 40 | 1, 39 | mpd 15 |
1
⊢ (𝜑 → seq𝑀( · , 𝐹) ∈ dom ⇝ ) |