MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrivcvg Structured version   Visualization version   GIF version

Theorem ntrivcvg 15945
Description: A non-trivially converging infinite product converges. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
ntrivcvg.1 𝑍 = (ℤ𝑀)
ntrivcvg.2 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
ntrivcvg.3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
Assertion
Ref Expression
ntrivcvg (𝜑 → seq𝑀( · , 𝐹) ∈ dom ⇝ )
Distinct variable groups:   𝑘,𝐹,𝑛,𝑦   𝜑,𝑘,𝑦   𝑘,𝑀,𝑛,𝑦   𝜑,𝑛,𝑦   𝑘,𝑍,𝑦
Allowed substitution hint:   𝑍(𝑛)

Proof of Theorem ntrivcvg
StepHypRef Expression
1 ntrivcvg.2 . 2 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
2 uzm1 12941 . . . . . . . . 9 (𝑛 ∈ (ℤ𝑀) → (𝑛 = 𝑀 ∨ (𝑛 − 1) ∈ (ℤ𝑀)))
3 ntrivcvg.1 . . . . . . . . 9 𝑍 = (ℤ𝑀)
42, 3eleq2s 2862 . . . . . . . 8 (𝑛𝑍 → (𝑛 = 𝑀 ∨ (𝑛 − 1) ∈ (ℤ𝑀)))
54ad2antlr 726 . . . . . . 7 (((𝜑𝑛𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → (𝑛 = 𝑀 ∨ (𝑛 − 1) ∈ (ℤ𝑀)))
6 seqeq1 14055 . . . . . . . . . . 11 (𝑛 = 𝑀 → seq𝑛( · , 𝐹) = seq𝑀( · , 𝐹))
76breq1d 5176 . . . . . . . . . 10 (𝑛 = 𝑀 → (seq𝑛( · , 𝐹) ⇝ 𝑦 ↔ seq𝑀( · , 𝐹) ⇝ 𝑦))
8 seqex 14054 . . . . . . . . . . 11 seq𝑀( · , 𝐹) ∈ V
9 vex 3492 . . . . . . . . . . 11 𝑦 ∈ V
108, 9breldm 5933 . . . . . . . . . 10 (seq𝑀( · , 𝐹) ⇝ 𝑦 → seq𝑀( · , 𝐹) ∈ dom ⇝ )
117, 10biimtrdi 253 . . . . . . . . 9 (𝑛 = 𝑀 → (seq𝑛( · , 𝐹) ⇝ 𝑦 → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
1211adantld 490 . . . . . . . 8 (𝑛 = 𝑀 → (((𝜑𝑛𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
13 simplr 768 . . . . . . . . . . . . 13 ((((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → (𝑛 − 1) ∈ 𝑍)
14 ntrivcvg.3 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1514ad5ant15 758 . . . . . . . . . . . . 13 (((((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
16 uzssz 12924 . . . . . . . . . . . . . . . . . . . 20 (ℤ𝑀) ⊆ ℤ
173, 16eqsstri 4043 . . . . . . . . . . . . . . . . . . 19 𝑍 ⊆ ℤ
18 simplr 768 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → 𝑛𝑍)
1917, 18sselid 4006 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → 𝑛 ∈ ℤ)
2019zcnd 12748 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → 𝑛 ∈ ℂ)
21 1cnd 11285 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → 1 ∈ ℂ)
2220, 21npcand 11651 . . . . . . . . . . . . . . . 16 (((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → ((𝑛 − 1) + 1) = 𝑛)
2322seqeq1d 14058 . . . . . . . . . . . . . . 15 (((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → seq((𝑛 − 1) + 1)( · , 𝐹) = seq𝑛( · , 𝐹))
2423breq1d 5176 . . . . . . . . . . . . . 14 (((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → (seq((𝑛 − 1) + 1)( · , 𝐹) ⇝ 𝑦 ↔ seq𝑛( · , 𝐹) ⇝ 𝑦))
2524biimpar 477 . . . . . . . . . . . . 13 ((((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq((𝑛 − 1) + 1)( · , 𝐹) ⇝ 𝑦)
263, 13, 15, 25clim2prod 15936 . . . . . . . . . . . 12 ((((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ⇝ ((seq𝑀( · , 𝐹)‘(𝑛 − 1)) · 𝑦))
27 ovex 7481 . . . . . . . . . . . . 13 ((seq𝑀( · , 𝐹)‘(𝑛 − 1)) · 𝑦) ∈ V
288, 27breldm 5933 . . . . . . . . . . . 12 (seq𝑀( · , 𝐹) ⇝ ((seq𝑀( · , 𝐹)‘(𝑛 − 1)) · 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ )
2926, 28syl 17 . . . . . . . . . . 11 ((((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ )
3029an32s 651 . . . . . . . . . 10 ((((𝜑𝑛𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑛 − 1) ∈ 𝑍) → seq𝑀( · , 𝐹) ∈ dom ⇝ )
3130expcom 413 . . . . . . . . 9 ((𝑛 − 1) ∈ 𝑍 → (((𝜑𝑛𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
323eqcomi 2749 . . . . . . . . 9 (ℤ𝑀) = 𝑍
3331, 32eleq2s 2862 . . . . . . . 8 ((𝑛 − 1) ∈ (ℤ𝑀) → (((𝜑𝑛𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
3412, 33jaoi 856 . . . . . . 7 ((𝑛 = 𝑀 ∨ (𝑛 − 1) ∈ (ℤ𝑀)) → (((𝜑𝑛𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
355, 34mpcom 38 . . . . . 6 (((𝜑𝑛𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ )
3635ex 412 . . . . 5 ((𝜑𝑛𝑍) → (seq𝑛( · , 𝐹) ⇝ 𝑦 → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
3736adantld 490 . . . 4 ((𝜑𝑛𝑍) → ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
3837exlimdv 1932 . . 3 ((𝜑𝑛𝑍) → (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
3938rexlimdva 3161 . 2 (𝜑 → (∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
401, 39mpd 15 1 (𝜑 → seq𝑀( · , 𝐹) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846   = wceq 1537  wex 1777  wcel 2108  wne 2946  wrex 3076   class class class wbr 5166  dom cdm 5700  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  cmin 11520  cz 12639  cuz 12903  seqcseq 14052  cli 15530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534
This theorem is referenced by:  iprodclim2  16047  iprodcl  16049
  Copyright terms: Public domain W3C validator