MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrivcvg Structured version   Visualization version   GIF version

Theorem ntrivcvg 15609
Description: A non-trivially converging infinite product converges. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
ntrivcvg.1 𝑍 = (ℤ𝑀)
ntrivcvg.2 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
ntrivcvg.3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
Assertion
Ref Expression
ntrivcvg (𝜑 → seq𝑀( · , 𝐹) ∈ dom ⇝ )
Distinct variable groups:   𝑘,𝐹,𝑛,𝑦   𝜑,𝑘,𝑦   𝑘,𝑀,𝑛,𝑦   𝜑,𝑛,𝑦   𝑘,𝑍,𝑦
Allowed substitution hint:   𝑍(𝑛)

Proof of Theorem ntrivcvg
StepHypRef Expression
1 ntrivcvg.2 . 2 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
2 uzm1 12616 . . . . . . . . 9 (𝑛 ∈ (ℤ𝑀) → (𝑛 = 𝑀 ∨ (𝑛 − 1) ∈ (ℤ𝑀)))
3 ntrivcvg.1 . . . . . . . . 9 𝑍 = (ℤ𝑀)
42, 3eleq2s 2857 . . . . . . . 8 (𝑛𝑍 → (𝑛 = 𝑀 ∨ (𝑛 − 1) ∈ (ℤ𝑀)))
54ad2antlr 724 . . . . . . 7 (((𝜑𝑛𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → (𝑛 = 𝑀 ∨ (𝑛 − 1) ∈ (ℤ𝑀)))
6 seqeq1 13724 . . . . . . . . . . 11 (𝑛 = 𝑀 → seq𝑛( · , 𝐹) = seq𝑀( · , 𝐹))
76breq1d 5084 . . . . . . . . . 10 (𝑛 = 𝑀 → (seq𝑛( · , 𝐹) ⇝ 𝑦 ↔ seq𝑀( · , 𝐹) ⇝ 𝑦))
8 seqex 13723 . . . . . . . . . . 11 seq𝑀( · , 𝐹) ∈ V
9 vex 3436 . . . . . . . . . . 11 𝑦 ∈ V
108, 9breldm 5817 . . . . . . . . . 10 (seq𝑀( · , 𝐹) ⇝ 𝑦 → seq𝑀( · , 𝐹) ∈ dom ⇝ )
117, 10syl6bi 252 . . . . . . . . 9 (𝑛 = 𝑀 → (seq𝑛( · , 𝐹) ⇝ 𝑦 → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
1211adantld 491 . . . . . . . 8 (𝑛 = 𝑀 → (((𝜑𝑛𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
13 simplr 766 . . . . . . . . . . . . 13 ((((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → (𝑛 − 1) ∈ 𝑍)
14 ntrivcvg.3 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1514ad5ant15 756 . . . . . . . . . . . . 13 (((((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
16 uzssz 12603 . . . . . . . . . . . . . . . . . . . 20 (ℤ𝑀) ⊆ ℤ
173, 16eqsstri 3955 . . . . . . . . . . . . . . . . . . 19 𝑍 ⊆ ℤ
18 simplr 766 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → 𝑛𝑍)
1917, 18sselid 3919 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → 𝑛 ∈ ℤ)
2019zcnd 12427 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → 𝑛 ∈ ℂ)
21 1cnd 10970 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → 1 ∈ ℂ)
2220, 21npcand 11336 . . . . . . . . . . . . . . . 16 (((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → ((𝑛 − 1) + 1) = 𝑛)
2322seqeq1d 13727 . . . . . . . . . . . . . . 15 (((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → seq((𝑛 − 1) + 1)( · , 𝐹) = seq𝑛( · , 𝐹))
2423breq1d 5084 . . . . . . . . . . . . . 14 (((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → (seq((𝑛 − 1) + 1)( · , 𝐹) ⇝ 𝑦 ↔ seq𝑛( · , 𝐹) ⇝ 𝑦))
2524biimpar 478 . . . . . . . . . . . . 13 ((((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq((𝑛 − 1) + 1)( · , 𝐹) ⇝ 𝑦)
263, 13, 15, 25clim2prod 15600 . . . . . . . . . . . 12 ((((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ⇝ ((seq𝑀( · , 𝐹)‘(𝑛 − 1)) · 𝑦))
27 ovex 7308 . . . . . . . . . . . . 13 ((seq𝑀( · , 𝐹)‘(𝑛 − 1)) · 𝑦) ∈ V
288, 27breldm 5817 . . . . . . . . . . . 12 (seq𝑀( · , 𝐹) ⇝ ((seq𝑀( · , 𝐹)‘(𝑛 − 1)) · 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ )
2926, 28syl 17 . . . . . . . . . . 11 ((((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ )
3029an32s 649 . . . . . . . . . 10 ((((𝜑𝑛𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑛 − 1) ∈ 𝑍) → seq𝑀( · , 𝐹) ∈ dom ⇝ )
3130expcom 414 . . . . . . . . 9 ((𝑛 − 1) ∈ 𝑍 → (((𝜑𝑛𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
323eqcomi 2747 . . . . . . . . 9 (ℤ𝑀) = 𝑍
3331, 32eleq2s 2857 . . . . . . . 8 ((𝑛 − 1) ∈ (ℤ𝑀) → (((𝜑𝑛𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
3412, 33jaoi 854 . . . . . . 7 ((𝑛 = 𝑀 ∨ (𝑛 − 1) ∈ (ℤ𝑀)) → (((𝜑𝑛𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
355, 34mpcom 38 . . . . . 6 (((𝜑𝑛𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ )
3635ex 413 . . . . 5 ((𝜑𝑛𝑍) → (seq𝑛( · , 𝐹) ⇝ 𝑦 → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
3736adantld 491 . . . 4 ((𝜑𝑛𝑍) → ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
3837exlimdv 1936 . . 3 ((𝜑𝑛𝑍) → (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
3938rexlimdva 3213 . 2 (𝜑 → (∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
401, 39mpd 15 1 (𝜑 → seq𝑀( · , 𝐹) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844   = wceq 1539  wex 1782  wcel 2106  wne 2943  wrex 3065   class class class wbr 5074  dom cdm 5589  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cmin 11205  cz 12319  cuz 12582  seqcseq 13721  cli 15193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197
This theorem is referenced by:  iprodclim2  15709  iprodcl  15711
  Copyright terms: Public domain W3C validator