Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mblfinlem2 Structured version   Visualization version   GIF version

Theorem mblfinlem2 37016
Description: Lemma for ismblfin 37019, effectively one direction of the same fact for open sets, made necessary by Viaclovsky's slightly different definition of outer measure. Note that unlike the main theorem, this holds for sets of infinite measure. (Contributed by Brendan Leahy, 21-Feb-2018.) (Revised by Brendan Leahy, 13-Jul-2018.)
Assertion
Ref Expression
mblfinlem2 ((𝐴 ∈ (topGenβ€˜ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*β€˜π΄)) β†’ βˆƒπ‘  ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑠 βŠ† 𝐴 ∧ 𝑀 < (vol*β€˜π‘ )))
Distinct variable groups:   𝐴,𝑠   𝑀,𝑠

Proof of Theorem mblfinlem2
Dummy variables π‘Ž 𝑏 𝑐 𝑓 π‘š 𝑛 𝑝 𝑑 𝑒 𝑣 π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 retop 24600 . . . 4 (topGenβ€˜ran (,)) ∈ Top
2 0cld 22864 . . . 4 ((topGenβ€˜ran (,)) ∈ Top β†’ βˆ… ∈ (Clsdβ€˜(topGenβ€˜ran (,))))
31, 2ax-mp 5 . . 3 βˆ… ∈ (Clsdβ€˜(topGenβ€˜ran (,)))
4 simpl3 1190 . . . . 5 (((𝐴 ∈ (topGenβ€˜ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*β€˜π΄)) ∧ 𝐴 = βˆ…) β†’ 𝑀 < (vol*β€˜π΄))
5 fveq2 6881 . . . . . 6 (𝐴 = βˆ… β†’ (vol*β€˜π΄) = (vol*β€˜βˆ…))
65adantl 481 . . . . 5 (((𝐴 ∈ (topGenβ€˜ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*β€˜π΄)) ∧ 𝐴 = βˆ…) β†’ (vol*β€˜π΄) = (vol*β€˜βˆ…))
74, 6breqtrd 5164 . . . 4 (((𝐴 ∈ (topGenβ€˜ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*β€˜π΄)) ∧ 𝐴 = βˆ…) β†’ 𝑀 < (vol*β€˜βˆ…))
8 0ss 4388 . . . 4 βˆ… βŠ† 𝐴
97, 8jctil 519 . . 3 (((𝐴 ∈ (topGenβ€˜ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*β€˜π΄)) ∧ 𝐴 = βˆ…) β†’ (βˆ… βŠ† 𝐴 ∧ 𝑀 < (vol*β€˜βˆ…)))
10 sseq1 3999 . . . . 5 (𝑠 = βˆ… β†’ (𝑠 βŠ† 𝐴 ↔ βˆ… βŠ† 𝐴))
11 fveq2 6881 . . . . . 6 (𝑠 = βˆ… β†’ (vol*β€˜π‘ ) = (vol*β€˜βˆ…))
1211breq2d 5150 . . . . 5 (𝑠 = βˆ… β†’ (𝑀 < (vol*β€˜π‘ ) ↔ 𝑀 < (vol*β€˜βˆ…)))
1310, 12anbi12d 630 . . . 4 (𝑠 = βˆ… β†’ ((𝑠 βŠ† 𝐴 ∧ 𝑀 < (vol*β€˜π‘ )) ↔ (βˆ… βŠ† 𝐴 ∧ 𝑀 < (vol*β€˜βˆ…))))
1413rspcev 3604 . . 3 ((βˆ… ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ (βˆ… βŠ† 𝐴 ∧ 𝑀 < (vol*β€˜βˆ…))) β†’ βˆƒπ‘  ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑠 βŠ† 𝐴 ∧ 𝑀 < (vol*β€˜π‘ )))
153, 9, 14sylancr 586 . 2 (((𝐴 ∈ (topGenβ€˜ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*β€˜π΄)) ∧ 𝐴 = βˆ…) β†’ βˆƒπ‘  ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑠 βŠ† 𝐴 ∧ 𝑀 < (vol*β€˜π‘ )))
16 mblfinlem1 37015 . . . 4 ((𝐴 ∈ (topGenβ€˜ran (,)) ∧ 𝐴 β‰  βˆ…) β†’ βˆƒπ‘“ 𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)})
17163ad2antl1 1182 . . 3 (((𝐴 ∈ (topGenβ€˜ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*β€˜π΄)) ∧ 𝐴 β‰  βˆ…) β†’ βˆƒπ‘“ 𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)})
18 simpl3 1190 . . . . . . . . 9 (((𝐴 ∈ (topGenβ€˜ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*β€˜π΄)) ∧ 𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)}) β†’ 𝑀 < (vol*β€˜π΄))
19 f1ofo 6830 . . . . . . . . . . . . . . 15 (𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ 𝑓:ℕ–ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)})
20 rnco2 6242 . . . . . . . . . . . . . . . . 17 ran ([,] ∘ 𝑓) = ([,] β€œ ran 𝑓)
21 forn 6798 . . . . . . . . . . . . . . . . . 18 (𝑓:ℕ–ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ ran 𝑓 = {π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)})
2221imaeq2d 6049 . . . . . . . . . . . . . . . . 17 (𝑓:ℕ–ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ ([,] β€œ ran 𝑓) = ([,] β€œ {π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)}))
2320, 22eqtrid 2776 . . . . . . . . . . . . . . . 16 (𝑓:ℕ–ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ ran ([,] ∘ 𝑓) = ([,] β€œ {π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)}))
2423unieqd 4912 . . . . . . . . . . . . . . 15 (𝑓:ℕ–ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ βˆͺ ran ([,] ∘ 𝑓) = βˆͺ ([,] β€œ {π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)}))
2519, 24syl 17 . . . . . . . . . . . . . 14 (𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ βˆͺ ran ([,] ∘ 𝑓) = βˆͺ ([,] β€œ {π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)}))
2625adantl 481 . . . . . . . . . . . . 13 (((𝐴 ∈ (topGenβ€˜ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*β€˜π΄)) ∧ 𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)}) β†’ βˆͺ ran ([,] ∘ 𝑓) = βˆͺ ([,] β€œ {π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)}))
27 oveq1 7408 . . . . . . . . . . . . . . . . 17 (π‘₯ = 𝑒 β†’ (π‘₯ / (2↑𝑦)) = (𝑒 / (2↑𝑦)))
28 oveq1 7408 . . . . . . . . . . . . . . . . . 18 (π‘₯ = 𝑒 β†’ (π‘₯ + 1) = (𝑒 + 1))
2928oveq1d 7416 . . . . . . . . . . . . . . . . 17 (π‘₯ = 𝑒 β†’ ((π‘₯ + 1) / (2↑𝑦)) = ((𝑒 + 1) / (2↑𝑦)))
3027, 29opeq12d 4873 . . . . . . . . . . . . . . . 16 (π‘₯ = 𝑒 β†’ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩ = ⟨(𝑒 / (2↑𝑦)), ((𝑒 + 1) / (2↑𝑦))⟩)
31 oveq2 7409 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑣 β†’ (2↑𝑦) = (2↑𝑣))
3231oveq2d 7417 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑣 β†’ (𝑒 / (2↑𝑦)) = (𝑒 / (2↑𝑣)))
3331oveq2d 7417 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑣 β†’ ((𝑒 + 1) / (2↑𝑦)) = ((𝑒 + 1) / (2↑𝑣)))
3432, 33opeq12d 4873 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑣 β†’ ⟨(𝑒 / (2↑𝑦)), ((𝑒 + 1) / (2↑𝑦))⟩ = ⟨(𝑒 / (2↑𝑣)), ((𝑒 + 1) / (2↑𝑣))⟩)
3530, 34cbvmpov 7496 . . . . . . . . . . . . . . 15 (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) = (𝑒 ∈ β„€, 𝑣 ∈ β„•0 ↦ ⟨(𝑒 / (2↑𝑣)), ((𝑒 + 1) / (2↑𝑣))⟩)
36 fveq2 6881 . . . . . . . . . . . . . . . . . . 19 (π‘Ž = 𝑧 β†’ ([,]β€˜π‘Ž) = ([,]β€˜π‘§))
3736sseq1d 4005 . . . . . . . . . . . . . . . . . 18 (π‘Ž = 𝑧 β†’ (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) ↔ ([,]β€˜π‘§) βŠ† ([,]β€˜π‘)))
38 eqeq1 2728 . . . . . . . . . . . . . . . . . 18 (π‘Ž = 𝑧 β†’ (π‘Ž = 𝑐 ↔ 𝑧 = 𝑐))
3937, 38imbi12d 344 . . . . . . . . . . . . . . . . 17 (π‘Ž = 𝑧 β†’ ((([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐) ↔ (([,]β€˜π‘§) βŠ† ([,]β€˜π‘) β†’ 𝑧 = 𝑐)))
4039ralbidv 3169 . . . . . . . . . . . . . . . 16 (π‘Ž = 𝑧 β†’ (βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐) ↔ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘§) βŠ† ([,]β€˜π‘) β†’ 𝑧 = 𝑐)))
4140cbvrabv 3434 . . . . . . . . . . . . . . 15 {π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} = {𝑧 ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘§) βŠ† ([,]β€˜π‘) β†’ 𝑧 = 𝑐)}
42 ssrab2 4069 . . . . . . . . . . . . . . . 16 {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} βŠ† ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩)
4342a1i 11 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (topGenβ€˜ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*β€˜π΄)) β†’ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} βŠ† ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩))
4435, 41, 43dyadmbllem 25450 . . . . . . . . . . . . . 14 ((𝐴 ∈ (topGenβ€˜ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*β€˜π΄)) β†’ βˆͺ ([,] β€œ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴}) = βˆͺ ([,] β€œ {π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)}))
4544adantr 480 . . . . . . . . . . . . 13 (((𝐴 ∈ (topGenβ€˜ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*β€˜π΄)) ∧ 𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)}) β†’ βˆͺ ([,] β€œ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴}) = βˆͺ ([,] β€œ {π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)}))
4626, 45eqtr4d 2767 . . . . . . . . . . . 12 (((𝐴 ∈ (topGenβ€˜ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*β€˜π΄)) ∧ 𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)}) β†’ βˆͺ ran ([,] ∘ 𝑓) = βˆͺ ([,] β€œ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴}))
47 opnmbllem0 37014 . . . . . . . . . . . . . 14 (𝐴 ∈ (topGenβ€˜ran (,)) β†’ βˆͺ ([,] β€œ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴}) = 𝐴)
48473ad2ant1 1130 . . . . . . . . . . . . 13 ((𝐴 ∈ (topGenβ€˜ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*β€˜π΄)) β†’ βˆͺ ([,] β€œ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴}) = 𝐴)
4948adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ (topGenβ€˜ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*β€˜π΄)) ∧ 𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)}) β†’ βˆͺ ([,] β€œ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴}) = 𝐴)
5046, 49eqtrd 2764 . . . . . . . . . . 11 (((𝐴 ∈ (topGenβ€˜ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*β€˜π΄)) ∧ 𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)}) β†’ βˆͺ ran ([,] ∘ 𝑓) = 𝐴)
5150fveq2d 6885 . . . . . . . . . 10 (((𝐴 ∈ (topGenβ€˜ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*β€˜π΄)) ∧ 𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)}) β†’ (vol*β€˜βˆͺ ran ([,] ∘ 𝑓)) = (vol*β€˜π΄))
52 f1of 6823 . . . . . . . . . . . . 13 (𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ 𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)})
53 ssrab2 4069 . . . . . . . . . . . . . 14 {π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} βŠ† {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴}
5435dyadf 25442 . . . . . . . . . . . . . . . 16 (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩):(β„€ Γ— β„•0)⟢( ≀ ∩ (ℝ Γ— ℝ))
55 frn 6714 . . . . . . . . . . . . . . . 16 ((π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩):(β„€ Γ— β„•0)⟢( ≀ ∩ (ℝ Γ— ℝ)) β†’ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) βŠ† ( ≀ ∩ (ℝ Γ— ℝ)))
5654, 55ax-mp 5 . . . . . . . . . . . . . . 15 ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) βŠ† ( ≀ ∩ (ℝ Γ— ℝ))
5742, 56sstri 3983 . . . . . . . . . . . . . 14 {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} βŠ† ( ≀ ∩ (ℝ Γ— ℝ))
5853, 57sstri 3983 . . . . . . . . . . . . 13 {π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} βŠ† ( ≀ ∩ (ℝ Γ— ℝ))
59 fss 6724 . . . . . . . . . . . . 13 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ {π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} βŠ† ( ≀ ∩ (ℝ Γ— ℝ))) β†’ 𝑓:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)))
6052, 58, 59sylancl 585 . . . . . . . . . . . 12 (𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ 𝑓:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)))
6153, 42sstri 3983 . . . . . . . . . . . . . . . . . . . 20 {π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} βŠ† ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩)
62 ffvelcdm 7073 . . . . . . . . . . . . . . . . . . . 20 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ π‘š ∈ β„•) β†’ (π‘“β€˜π‘š) ∈ {π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)})
6361, 62sselid 3972 . . . . . . . . . . . . . . . . . . 19 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ π‘š ∈ β„•) β†’ (π‘“β€˜π‘š) ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩))
6463adantrr 714 . . . . . . . . . . . . . . . . . 18 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ (π‘š ∈ β„• ∧ 𝑧 ∈ β„•)) β†’ (π‘“β€˜π‘š) ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩))
65 ffvelcdm 7073 . . . . . . . . . . . . . . . . . . . 20 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑧 ∈ β„•) β†’ (π‘“β€˜π‘§) ∈ {π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)})
6661, 65sselid 3972 . . . . . . . . . . . . . . . . . . 19 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑧 ∈ β„•) β†’ (π‘“β€˜π‘§) ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩))
6766adantrl 713 . . . . . . . . . . . . . . . . . 18 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ (π‘š ∈ β„• ∧ 𝑧 ∈ β„•)) β†’ (π‘“β€˜π‘§) ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩))
6835dyaddisj 25447 . . . . . . . . . . . . . . . . . 18 (((π‘“β€˜π‘š) ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∧ (π‘“β€˜π‘§) ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩)) β†’ (([,]β€˜(π‘“β€˜π‘š)) βŠ† ([,]β€˜(π‘“β€˜π‘§)) ∨ ([,]β€˜(π‘“β€˜π‘§)) βŠ† ([,]β€˜(π‘“β€˜π‘š)) ∨ (((,)β€˜(π‘“β€˜π‘š)) ∩ ((,)β€˜(π‘“β€˜π‘§))) = βˆ…))
6964, 67, 68syl2anc 583 . . . . . . . . . . . . . . . . 17 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ (π‘š ∈ β„• ∧ 𝑧 ∈ β„•)) β†’ (([,]β€˜(π‘“β€˜π‘š)) βŠ† ([,]β€˜(π‘“β€˜π‘§)) ∨ ([,]β€˜(π‘“β€˜π‘§)) βŠ† ([,]β€˜(π‘“β€˜π‘š)) ∨ (((,)β€˜(π‘“β€˜π‘š)) ∩ ((,)β€˜(π‘“β€˜π‘§))) = βˆ…))
7052, 69sylan 579 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ (π‘š ∈ β„• ∧ 𝑧 ∈ β„•)) β†’ (([,]β€˜(π‘“β€˜π‘š)) βŠ† ([,]β€˜(π‘“β€˜π‘§)) ∨ ([,]β€˜(π‘“β€˜π‘§)) βŠ† ([,]β€˜(π‘“β€˜π‘š)) ∨ (((,)β€˜(π‘“β€˜π‘š)) ∩ ((,)β€˜(π‘“β€˜π‘§))) = βˆ…))
71 df-3or 1085 . . . . . . . . . . . . . . . 16 ((([,]β€˜(π‘“β€˜π‘š)) βŠ† ([,]β€˜(π‘“β€˜π‘§)) ∨ ([,]β€˜(π‘“β€˜π‘§)) βŠ† ([,]β€˜(π‘“β€˜π‘š)) ∨ (((,)β€˜(π‘“β€˜π‘š)) ∩ ((,)β€˜(π‘“β€˜π‘§))) = βˆ…) ↔ ((([,]β€˜(π‘“β€˜π‘š)) βŠ† ([,]β€˜(π‘“β€˜π‘§)) ∨ ([,]β€˜(π‘“β€˜π‘§)) βŠ† ([,]β€˜(π‘“β€˜π‘š))) ∨ (((,)β€˜(π‘“β€˜π‘š)) ∩ ((,)β€˜(π‘“β€˜π‘§))) = βˆ…))
7270, 71sylib 217 . . . . . . . . . . . . . . 15 ((𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ (π‘š ∈ β„• ∧ 𝑧 ∈ β„•)) β†’ ((([,]β€˜(π‘“β€˜π‘š)) βŠ† ([,]β€˜(π‘“β€˜π‘§)) ∨ ([,]β€˜(π‘“β€˜π‘§)) βŠ† ([,]β€˜(π‘“β€˜π‘š))) ∨ (((,)β€˜(π‘“β€˜π‘š)) ∩ ((,)β€˜(π‘“β€˜π‘§))) = βˆ…))
73 elrabi 3669 . . . . . . . . . . . . . . . . . . . . . 22 ((π‘“β€˜π‘§) ∈ {π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ (π‘“β€˜π‘§) ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴})
74 fveq2 6881 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (π‘Ž = (π‘“β€˜π‘š) β†’ ([,]β€˜π‘Ž) = ([,]β€˜(π‘“β€˜π‘š)))
7574sseq1d 4005 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (π‘Ž = (π‘“β€˜π‘š) β†’ (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) ↔ ([,]β€˜(π‘“β€˜π‘š)) βŠ† ([,]β€˜π‘)))
76 eqeq1 2728 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (π‘Ž = (π‘“β€˜π‘š) β†’ (π‘Ž = 𝑐 ↔ (π‘“β€˜π‘š) = 𝑐))
7775, 76imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . 25 (π‘Ž = (π‘“β€˜π‘š) β†’ ((([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐) ↔ (([,]β€˜(π‘“β€˜π‘š)) βŠ† ([,]β€˜π‘) β†’ (π‘“β€˜π‘š) = 𝑐)))
7877ralbidv 3169 . . . . . . . . . . . . . . . . . . . . . . . 24 (π‘Ž = (π‘“β€˜π‘š) β†’ (βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐) ↔ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜(π‘“β€˜π‘š)) βŠ† ([,]β€˜π‘) β†’ (π‘“β€˜π‘š) = 𝑐)))
7978elrab 3675 . . . . . . . . . . . . . . . . . . . . . . 23 ((π‘“β€˜π‘š) ∈ {π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ↔ ((π‘“β€˜π‘š) ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∧ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜(π‘“β€˜π‘š)) βŠ† ([,]β€˜π‘) β†’ (π‘“β€˜π‘š) = 𝑐)))
8079simprbi 496 . . . . . . . . . . . . . . . . . . . . . 22 ((π‘“β€˜π‘š) ∈ {π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜(π‘“β€˜π‘š)) βŠ† ([,]β€˜π‘) β†’ (π‘“β€˜π‘š) = 𝑐))
81 fveq2 6881 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 = (π‘“β€˜π‘§) β†’ ([,]β€˜π‘) = ([,]β€˜(π‘“β€˜π‘§)))
8281sseq2d 4006 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 = (π‘“β€˜π‘§) β†’ (([,]β€˜(π‘“β€˜π‘š)) βŠ† ([,]β€˜π‘) ↔ ([,]β€˜(π‘“β€˜π‘š)) βŠ† ([,]β€˜(π‘“β€˜π‘§))))
83 eqeq2 2736 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 = (π‘“β€˜π‘§) β†’ ((π‘“β€˜π‘š) = 𝑐 ↔ (π‘“β€˜π‘š) = (π‘“β€˜π‘§)))
8482, 83imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑐 = (π‘“β€˜π‘§) β†’ ((([,]β€˜(π‘“β€˜π‘š)) βŠ† ([,]β€˜π‘) β†’ (π‘“β€˜π‘š) = 𝑐) ↔ (([,]β€˜(π‘“β€˜π‘š)) βŠ† ([,]β€˜(π‘“β€˜π‘§)) β†’ (π‘“β€˜π‘š) = (π‘“β€˜π‘§))))
8584rspcva 3602 . . . . . . . . . . . . . . . . . . . . . 22 (((π‘“β€˜π‘§) ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∧ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜(π‘“β€˜π‘š)) βŠ† ([,]β€˜π‘) β†’ (π‘“β€˜π‘š) = 𝑐)) β†’ (([,]β€˜(π‘“β€˜π‘š)) βŠ† ([,]β€˜(π‘“β€˜π‘§)) β†’ (π‘“β€˜π‘š) = (π‘“β€˜π‘§)))
8673, 80, 85syl2anr 596 . . . . . . . . . . . . . . . . . . . . 21 (((π‘“β€˜π‘š) ∈ {π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ (π‘“β€˜π‘§) ∈ {π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)}) β†’ (([,]β€˜(π‘“β€˜π‘š)) βŠ† ([,]β€˜(π‘“β€˜π‘§)) β†’ (π‘“β€˜π‘š) = (π‘“β€˜π‘§)))
87 elrabi 3669 . . . . . . . . . . . . . . . . . . . . . . 23 ((π‘“β€˜π‘š) ∈ {π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ (π‘“β€˜π‘š) ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴})
88 fveq2 6881 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (π‘Ž = (π‘“β€˜π‘§) β†’ ([,]β€˜π‘Ž) = ([,]β€˜(π‘“β€˜π‘§)))
8988sseq1d 4005 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (π‘Ž = (π‘“β€˜π‘§) β†’ (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) ↔ ([,]β€˜(π‘“β€˜π‘§)) βŠ† ([,]β€˜π‘)))
90 eqeq1 2728 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (π‘Ž = (π‘“β€˜π‘§) β†’ (π‘Ž = 𝑐 ↔ (π‘“β€˜π‘§) = 𝑐))
9189, 90imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (π‘Ž = (π‘“β€˜π‘§) β†’ ((([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐) ↔ (([,]β€˜(π‘“β€˜π‘§)) βŠ† ([,]β€˜π‘) β†’ (π‘“β€˜π‘§) = 𝑐)))
9291ralbidv 3169 . . . . . . . . . . . . . . . . . . . . . . . . 25 (π‘Ž = (π‘“β€˜π‘§) β†’ (βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐) ↔ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜(π‘“β€˜π‘§)) βŠ† ([,]β€˜π‘) β†’ (π‘“β€˜π‘§) = 𝑐)))
9392elrab 3675 . . . . . . . . . . . . . . . . . . . . . . . 24 ((π‘“β€˜π‘§) ∈ {π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ↔ ((π‘“β€˜π‘§) ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∧ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜(π‘“β€˜π‘§)) βŠ† ([,]β€˜π‘) β†’ (π‘“β€˜π‘§) = 𝑐)))
9493simprbi 496 . . . . . . . . . . . . . . . . . . . . . . 23 ((π‘“β€˜π‘§) ∈ {π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜(π‘“β€˜π‘§)) βŠ† ([,]β€˜π‘) β†’ (π‘“β€˜π‘§) = 𝑐))
95 fveq2 6881 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑐 = (π‘“β€˜π‘š) β†’ ([,]β€˜π‘) = ([,]β€˜(π‘“β€˜π‘š)))
9695sseq2d 4006 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 = (π‘“β€˜π‘š) β†’ (([,]β€˜(π‘“β€˜π‘§)) βŠ† ([,]β€˜π‘) ↔ ([,]β€˜(π‘“β€˜π‘§)) βŠ† ([,]β€˜(π‘“β€˜π‘š))))
97 eqeq2 2736 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 = (π‘“β€˜π‘š) β†’ ((π‘“β€˜π‘§) = 𝑐 ↔ (π‘“β€˜π‘§) = (π‘“β€˜π‘š)))
9896, 97imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 = (π‘“β€˜π‘š) β†’ ((([,]β€˜(π‘“β€˜π‘§)) βŠ† ([,]β€˜π‘) β†’ (π‘“β€˜π‘§) = 𝑐) ↔ (([,]β€˜(π‘“β€˜π‘§)) βŠ† ([,]β€˜(π‘“β€˜π‘š)) β†’ (π‘“β€˜π‘§) = (π‘“β€˜π‘š))))
9998rspcva 3602 . . . . . . . . . . . . . . . . . . . . . . 23 (((π‘“β€˜π‘š) ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∧ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜(π‘“β€˜π‘§)) βŠ† ([,]β€˜π‘) β†’ (π‘“β€˜π‘§) = 𝑐)) β†’ (([,]β€˜(π‘“β€˜π‘§)) βŠ† ([,]β€˜(π‘“β€˜π‘š)) β†’ (π‘“β€˜π‘§) = (π‘“β€˜π‘š)))
10087, 94, 99syl2an 595 . . . . . . . . . . . . . . . . . . . . . 22 (((π‘“β€˜π‘š) ∈ {π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ (π‘“β€˜π‘§) ∈ {π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)}) β†’ (([,]β€˜(π‘“β€˜π‘§)) βŠ† ([,]β€˜(π‘“β€˜π‘š)) β†’ (π‘“β€˜π‘§) = (π‘“β€˜π‘š)))
101 eqcom 2731 . . . . . . . . . . . . . . . . . . . . . 22 ((π‘“β€˜π‘§) = (π‘“β€˜π‘š) ↔ (π‘“β€˜π‘š) = (π‘“β€˜π‘§))
102100, 101imbitrdi 250 . . . . . . . . . . . . . . . . . . . . 21 (((π‘“β€˜π‘š) ∈ {π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ (π‘“β€˜π‘§) ∈ {π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)}) β†’ (([,]β€˜(π‘“β€˜π‘§)) βŠ† ([,]β€˜(π‘“β€˜π‘š)) β†’ (π‘“β€˜π‘š) = (π‘“β€˜π‘§)))
10386, 102jaod 856 . . . . . . . . . . . . . . . . . . . 20 (((π‘“β€˜π‘š) ∈ {π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ (π‘“β€˜π‘§) ∈ {π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)}) β†’ ((([,]β€˜(π‘“β€˜π‘š)) βŠ† ([,]β€˜(π‘“β€˜π‘§)) ∨ ([,]β€˜(π‘“β€˜π‘§)) βŠ† ([,]β€˜(π‘“β€˜π‘š))) β†’ (π‘“β€˜π‘š) = (π‘“β€˜π‘§)))
10462, 65, 103syl2an 595 . . . . . . . . . . . . . . . . . . 19 (((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ π‘š ∈ β„•) ∧ (𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑧 ∈ β„•)) β†’ ((([,]β€˜(π‘“β€˜π‘š)) βŠ† ([,]β€˜(π‘“β€˜π‘§)) ∨ ([,]β€˜(π‘“β€˜π‘§)) βŠ† ([,]β€˜(π‘“β€˜π‘š))) β†’ (π‘“β€˜π‘š) = (π‘“β€˜π‘§)))
105104anandis 675 . . . . . . . . . . . . . . . . . 18 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ (π‘š ∈ β„• ∧ 𝑧 ∈ β„•)) β†’ ((([,]β€˜(π‘“β€˜π‘š)) βŠ† ([,]β€˜(π‘“β€˜π‘§)) ∨ ([,]β€˜(π‘“β€˜π‘§)) βŠ† ([,]β€˜(π‘“β€˜π‘š))) β†’ (π‘“β€˜π‘š) = (π‘“β€˜π‘§)))
10652, 105sylan 579 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ (π‘š ∈ β„• ∧ 𝑧 ∈ β„•)) β†’ ((([,]β€˜(π‘“β€˜π‘š)) βŠ† ([,]β€˜(π‘“β€˜π‘§)) ∨ ([,]β€˜(π‘“β€˜π‘§)) βŠ† ([,]β€˜(π‘“β€˜π‘š))) β†’ (π‘“β€˜π‘š) = (π‘“β€˜π‘§)))
107 f1of1 6822 . . . . . . . . . . . . . . . . . 18 (𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ 𝑓:ℕ–1-1β†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)})
108 f1veqaeq 7248 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ–1-1β†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ (π‘š ∈ β„• ∧ 𝑧 ∈ β„•)) β†’ ((π‘“β€˜π‘š) = (π‘“β€˜π‘§) β†’ π‘š = 𝑧))
109107, 108sylan 579 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ (π‘š ∈ β„• ∧ 𝑧 ∈ β„•)) β†’ ((π‘“β€˜π‘š) = (π‘“β€˜π‘§) β†’ π‘š = 𝑧))
110106, 109syld 47 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ (π‘š ∈ β„• ∧ 𝑧 ∈ β„•)) β†’ ((([,]β€˜(π‘“β€˜π‘š)) βŠ† ([,]β€˜(π‘“β€˜π‘§)) ∨ ([,]β€˜(π‘“β€˜π‘§)) βŠ† ([,]β€˜(π‘“β€˜π‘š))) β†’ π‘š = 𝑧))
111110orim1d 962 . . . . . . . . . . . . . . 15 ((𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ (π‘š ∈ β„• ∧ 𝑧 ∈ β„•)) β†’ (((([,]β€˜(π‘“β€˜π‘š)) βŠ† ([,]β€˜(π‘“β€˜π‘§)) ∨ ([,]β€˜(π‘“β€˜π‘§)) βŠ† ([,]β€˜(π‘“β€˜π‘š))) ∨ (((,)β€˜(π‘“β€˜π‘š)) ∩ ((,)β€˜(π‘“β€˜π‘§))) = βˆ…) β†’ (π‘š = 𝑧 ∨ (((,)β€˜(π‘“β€˜π‘š)) ∩ ((,)β€˜(π‘“β€˜π‘§))) = βˆ…)))
11272, 111mpd 15 . . . . . . . . . . . . . 14 ((𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ (π‘š ∈ β„• ∧ 𝑧 ∈ β„•)) β†’ (π‘š = 𝑧 ∨ (((,)β€˜(π‘“β€˜π‘š)) ∩ ((,)β€˜(π‘“β€˜π‘§))) = βˆ…))
113112ralrimivva 3192 . . . . . . . . . . . . 13 (𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ βˆ€π‘š ∈ β„• βˆ€π‘§ ∈ β„• (π‘š = 𝑧 ∨ (((,)β€˜(π‘“β€˜π‘š)) ∩ ((,)β€˜(π‘“β€˜π‘§))) = βˆ…))
114 eqeq1 2728 . . . . . . . . . . . . . . . . 17 (π‘š = 𝑧 β†’ (π‘š = 𝑝 ↔ 𝑧 = 𝑝))
115 2fveq3 6886 . . . . . . . . . . . . . . . . . . 19 (π‘š = 𝑧 β†’ ((,)β€˜(π‘“β€˜π‘š)) = ((,)β€˜(π‘“β€˜π‘§)))
116115ineq1d 4203 . . . . . . . . . . . . . . . . . 18 (π‘š = 𝑧 β†’ (((,)β€˜(π‘“β€˜π‘š)) ∩ ((,)β€˜(π‘“β€˜π‘))) = (((,)β€˜(π‘“β€˜π‘§)) ∩ ((,)β€˜(π‘“β€˜π‘))))
117116eqeq1d 2726 . . . . . . . . . . . . . . . . 17 (π‘š = 𝑧 β†’ ((((,)β€˜(π‘“β€˜π‘š)) ∩ ((,)β€˜(π‘“β€˜π‘))) = βˆ… ↔ (((,)β€˜(π‘“β€˜π‘§)) ∩ ((,)β€˜(π‘“β€˜π‘))) = βˆ…))
118114, 117orbi12d 915 . . . . . . . . . . . . . . . 16 (π‘š = 𝑧 β†’ ((π‘š = 𝑝 ∨ (((,)β€˜(π‘“β€˜π‘š)) ∩ ((,)β€˜(π‘“β€˜π‘))) = βˆ…) ↔ (𝑧 = 𝑝 ∨ (((,)β€˜(π‘“β€˜π‘§)) ∩ ((,)β€˜(π‘“β€˜π‘))) = βˆ…)))
119118ralbidv 3169 . . . . . . . . . . . . . . 15 (π‘š = 𝑧 β†’ (βˆ€π‘ ∈ β„• (π‘š = 𝑝 ∨ (((,)β€˜(π‘“β€˜π‘š)) ∩ ((,)β€˜(π‘“β€˜π‘))) = βˆ…) ↔ βˆ€π‘ ∈ β„• (𝑧 = 𝑝 ∨ (((,)β€˜(π‘“β€˜π‘§)) ∩ ((,)β€˜(π‘“β€˜π‘))) = βˆ…)))
120119cbvralvw 3226 . . . . . . . . . . . . . 14 (βˆ€π‘š ∈ β„• βˆ€π‘ ∈ β„• (π‘š = 𝑝 ∨ (((,)β€˜(π‘“β€˜π‘š)) ∩ ((,)β€˜(π‘“β€˜π‘))) = βˆ…) ↔ βˆ€π‘§ ∈ β„• βˆ€π‘ ∈ β„• (𝑧 = 𝑝 ∨ (((,)β€˜(π‘“β€˜π‘§)) ∩ ((,)β€˜(π‘“β€˜π‘))) = βˆ…))
121 eqeq2 2736 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑝 β†’ (π‘š = 𝑧 ↔ π‘š = 𝑝))
122 2fveq3 6886 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑝 β†’ ((,)β€˜(π‘“β€˜π‘§)) = ((,)β€˜(π‘“β€˜π‘)))
123122ineq2d 4204 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑝 β†’ (((,)β€˜(π‘“β€˜π‘š)) ∩ ((,)β€˜(π‘“β€˜π‘§))) = (((,)β€˜(π‘“β€˜π‘š)) ∩ ((,)β€˜(π‘“β€˜π‘))))
124123eqeq1d 2726 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑝 β†’ ((((,)β€˜(π‘“β€˜π‘š)) ∩ ((,)β€˜(π‘“β€˜π‘§))) = βˆ… ↔ (((,)β€˜(π‘“β€˜π‘š)) ∩ ((,)β€˜(π‘“β€˜π‘))) = βˆ…))
125121, 124orbi12d 915 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑝 β†’ ((π‘š = 𝑧 ∨ (((,)β€˜(π‘“β€˜π‘š)) ∩ ((,)β€˜(π‘“β€˜π‘§))) = βˆ…) ↔ (π‘š = 𝑝 ∨ (((,)β€˜(π‘“β€˜π‘š)) ∩ ((,)β€˜(π‘“β€˜π‘))) = βˆ…)))
126125cbvralvw 3226 . . . . . . . . . . . . . . 15 (βˆ€π‘§ ∈ β„• (π‘š = 𝑧 ∨ (((,)β€˜(π‘“β€˜π‘š)) ∩ ((,)β€˜(π‘“β€˜π‘§))) = βˆ…) ↔ βˆ€π‘ ∈ β„• (π‘š = 𝑝 ∨ (((,)β€˜(π‘“β€˜π‘š)) ∩ ((,)β€˜(π‘“β€˜π‘))) = βˆ…))
127126ralbii 3085 . . . . . . . . . . . . . 14 (βˆ€π‘š ∈ β„• βˆ€π‘§ ∈ β„• (π‘š = 𝑧 ∨ (((,)β€˜(π‘“β€˜π‘š)) ∩ ((,)β€˜(π‘“β€˜π‘§))) = βˆ…) ↔ βˆ€π‘š ∈ β„• βˆ€π‘ ∈ β„• (π‘š = 𝑝 ∨ (((,)β€˜(π‘“β€˜π‘š)) ∩ ((,)β€˜(π‘“β€˜π‘))) = βˆ…))
128122disjor 5118 . . . . . . . . . . . . . 14 (Disj 𝑧 ∈ β„• ((,)β€˜(π‘“β€˜π‘§)) ↔ βˆ€π‘§ ∈ β„• βˆ€π‘ ∈ β„• (𝑧 = 𝑝 ∨ (((,)β€˜(π‘“β€˜π‘§)) ∩ ((,)β€˜(π‘“β€˜π‘))) = βˆ…))
129120, 127, 1283bitr4ri 304 . . . . . . . . . . . . 13 (Disj 𝑧 ∈ β„• ((,)β€˜(π‘“β€˜π‘§)) ↔ βˆ€π‘š ∈ β„• βˆ€π‘§ ∈ β„• (π‘š = 𝑧 ∨ (((,)β€˜(π‘“β€˜π‘š)) ∩ ((,)β€˜(π‘“β€˜π‘§))) = βˆ…))
130113, 129sylibr 233 . . . . . . . . . . . 12 (𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ Disj 𝑧 ∈ β„• ((,)β€˜(π‘“β€˜π‘§)))
131 eqid 2724 . . . . . . . . . . . 12 seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)) = seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))
13260, 130, 131uniiccvol 25431 . . . . . . . . . . 11 (𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ (vol*β€˜βˆͺ ran ([,] ∘ 𝑓)) = sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < ))
133132adantl 481 . . . . . . . . . 10 (((𝐴 ∈ (topGenβ€˜ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*β€˜π΄)) ∧ 𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)}) β†’ (vol*β€˜βˆͺ ran ([,] ∘ 𝑓)) = sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < ))
13451, 133eqtr3d 2766 . . . . . . . . 9 (((𝐴 ∈ (topGenβ€˜ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*β€˜π΄)) ∧ 𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)}) β†’ (vol*β€˜π΄) = sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < ))
13518, 134breqtrd 5164 . . . . . . . 8 (((𝐴 ∈ (topGenβ€˜ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*β€˜π΄)) ∧ 𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)}) β†’ 𝑀 < sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < ))
136 absf 15281 . . . . . . . . . . . 12 abs:β„‚βŸΆβ„
137 subf 11459 . . . . . . . . . . . 12 βˆ’ :(β„‚ Γ— β„‚)βŸΆβ„‚
138 fco 6731 . . . . . . . . . . . 12 ((abs:β„‚βŸΆβ„ ∧ βˆ’ :(β„‚ Γ— β„‚)βŸΆβ„‚) β†’ (abs ∘ βˆ’ ):(β„‚ Γ— β„‚)βŸΆβ„)
139136, 137, 138mp2an 689 . . . . . . . . . . 11 (abs ∘ βˆ’ ):(β„‚ Γ— β„‚)βŸΆβ„
140 zre 12559 . . . . . . . . . . . . . . . . . . 19 (π‘₯ ∈ β„€ β†’ π‘₯ ∈ ℝ)
141 2re 12283 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℝ
142 reexpcl 14041 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℝ ∧ 𝑦 ∈ β„•0) β†’ (2↑𝑦) ∈ ℝ)
143141, 142mpan 687 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ β„•0 β†’ (2↑𝑦) ∈ ℝ)
144 2cn 12284 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ β„‚
145 2ne0 12313 . . . . . . . . . . . . . . . . . . . . 21 2 β‰  0
146 nn0z 12580 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ β„•0 β†’ 𝑦 ∈ β„€)
147 expne0i 14057 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ β„‚ ∧ 2 β‰  0 ∧ 𝑦 ∈ β„€) β†’ (2↑𝑦) β‰  0)
148144, 145, 146, 147mp3an12i 1461 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ β„•0 β†’ (2↑𝑦) β‰  0)
149143, 148jca 511 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ β„•0 β†’ ((2↑𝑦) ∈ ℝ ∧ (2↑𝑦) β‰  0))
150 redivcl 11930 . . . . . . . . . . . . . . . . . . . . 21 ((π‘₯ ∈ ℝ ∧ (2↑𝑦) ∈ ℝ ∧ (2↑𝑦) β‰  0) β†’ (π‘₯ / (2↑𝑦)) ∈ ℝ)
151 peano2re 11384 . . . . . . . . . . . . . . . . . . . . . 22 (π‘₯ ∈ ℝ β†’ (π‘₯ + 1) ∈ ℝ)
152 redivcl 11930 . . . . . . . . . . . . . . . . . . . . . 22 (((π‘₯ + 1) ∈ ℝ ∧ (2↑𝑦) ∈ ℝ ∧ (2↑𝑦) β‰  0) β†’ ((π‘₯ + 1) / (2↑𝑦)) ∈ ℝ)
153151, 152syl3an1 1160 . . . . . . . . . . . . . . . . . . . . 21 ((π‘₯ ∈ ℝ ∧ (2↑𝑦) ∈ ℝ ∧ (2↑𝑦) β‰  0) β†’ ((π‘₯ + 1) / (2↑𝑦)) ∈ ℝ)
154150, 153opelxpd 5705 . . . . . . . . . . . . . . . . . . . 20 ((π‘₯ ∈ ℝ ∧ (2↑𝑦) ∈ ℝ ∧ (2↑𝑦) β‰  0) β†’ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩ ∈ (ℝ Γ— ℝ))
1551543expb 1117 . . . . . . . . . . . . . . . . . . 19 ((π‘₯ ∈ ℝ ∧ ((2↑𝑦) ∈ ℝ ∧ (2↑𝑦) β‰  0)) β†’ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩ ∈ (ℝ Γ— ℝ))
156140, 149, 155syl2an 595 . . . . . . . . . . . . . . . . . 18 ((π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„•0) β†’ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩ ∈ (ℝ Γ— ℝ))
157156rgen2 3189 . . . . . . . . . . . . . . . . 17 βˆ€π‘₯ ∈ β„€ βˆ€π‘¦ ∈ β„•0 ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩ ∈ (ℝ Γ— ℝ)
158 eqid 2724 . . . . . . . . . . . . . . . . . 18 (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) = (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩)
159158fmpo 8047 . . . . . . . . . . . . . . . . 17 (βˆ€π‘₯ ∈ β„€ βˆ€π‘¦ ∈ β„•0 ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩ ∈ (ℝ Γ— ℝ) ↔ (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩):(β„€ Γ— β„•0)⟢(ℝ Γ— ℝ))
160157, 159mpbi 229 . . . . . . . . . . . . . . . 16 (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩):(β„€ Γ— β„•0)⟢(ℝ Γ— ℝ)
161 frn 6714 . . . . . . . . . . . . . . . 16 ((π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩):(β„€ Γ— β„•0)⟢(ℝ Γ— ℝ) β†’ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) βŠ† (ℝ Γ— ℝ))
162160, 161ax-mp 5 . . . . . . . . . . . . . . 15 ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) βŠ† (ℝ Γ— ℝ)
16342, 162sstri 3983 . . . . . . . . . . . . . 14 {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} βŠ† (ℝ Γ— ℝ)
16453, 163sstri 3983 . . . . . . . . . . . . 13 {π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} βŠ† (ℝ Γ— ℝ)
165 ax-resscn 11163 . . . . . . . . . . . . . 14 ℝ βŠ† β„‚
166 xpss12 5681 . . . . . . . . . . . . . 14 ((ℝ βŠ† β„‚ ∧ ℝ βŠ† β„‚) β†’ (ℝ Γ— ℝ) βŠ† (β„‚ Γ— β„‚))
167165, 165, 166mp2an 689 . . . . . . . . . . . . 13 (ℝ Γ— ℝ) βŠ† (β„‚ Γ— β„‚)
168164, 167sstri 3983 . . . . . . . . . . . 12 {π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} βŠ† (β„‚ Γ— β„‚)
169 fss 6724 . . . . . . . . . . . 12 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ {π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} βŠ† (β„‚ Γ— β„‚)) β†’ 𝑓:β„•βŸΆ(β„‚ Γ— β„‚))
170168, 169mpan2 688 . . . . . . . . . . 11 (𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ 𝑓:β„•βŸΆ(β„‚ Γ— β„‚))
171 fco 6731 . . . . . . . . . . 11 (((abs ∘ βˆ’ ):(β„‚ Γ— β„‚)βŸΆβ„ ∧ 𝑓:β„•βŸΆ(β„‚ Γ— β„‚)) β†’ ((abs ∘ βˆ’ ) ∘ 𝑓):β„•βŸΆβ„)
172139, 170, 171sylancr 586 . . . . . . . . . 10 (𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ ((abs ∘ βˆ’ ) ∘ 𝑓):β„•βŸΆβ„)
173 nnuz 12862 . . . . . . . . . . 11 β„• = (β„€β‰₯β€˜1)
174 1z 12589 . . . . . . . . . . . 12 1 ∈ β„€
175174a1i 11 . . . . . . . . . . 11 (((abs ∘ βˆ’ ) ∘ 𝑓):β„•βŸΆβ„ β†’ 1 ∈ β„€)
176 ffvelcdm 7073 . . . . . . . . . . 11 ((((abs ∘ βˆ’ ) ∘ 𝑓):β„•βŸΆβ„ ∧ 𝑛 ∈ β„•) β†’ (((abs ∘ βˆ’ ) ∘ 𝑓)β€˜π‘›) ∈ ℝ)
177173, 175, 176serfre 13994 . . . . . . . . . 10 (((abs ∘ βˆ’ ) ∘ 𝑓):β„•βŸΆβ„ β†’ seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)):β„•βŸΆβ„)
178 frn 6714 . . . . . . . . . . 11 (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)):β„•βŸΆβ„ β†’ ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)) βŠ† ℝ)
179 ressxr 11255 . . . . . . . . . . 11 ℝ βŠ† ℝ*
180178, 179sstrdi 3986 . . . . . . . . . 10 (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)):β„•βŸΆβ„ β†’ ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)) βŠ† ℝ*)
18152, 172, 177, 1804syl 19 . . . . . . . . 9 (𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)) βŠ† ℝ*)
182 rexr 11257 . . . . . . . . . 10 (𝑀 ∈ ℝ β†’ 𝑀 ∈ ℝ*)
1831823ad2ant2 1131 . . . . . . . . 9 ((𝐴 ∈ (topGenβ€˜ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*β€˜π΄)) β†’ 𝑀 ∈ ℝ*)
184 supxrlub 13301 . . . . . . . . 9 ((ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)) βŠ† ℝ* ∧ 𝑀 ∈ ℝ*) β†’ (𝑀 < sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < ) ↔ βˆƒπ‘§ ∈ ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))𝑀 < 𝑧))
185181, 183, 184syl2anr 596 . . . . . . . 8 (((𝐴 ∈ (topGenβ€˜ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*β€˜π΄)) ∧ 𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)}) β†’ (𝑀 < sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)), ℝ*, < ) ↔ βˆƒπ‘§ ∈ ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))𝑀 < 𝑧))
186135, 185mpbid 231 . . . . . . 7 (((𝐴 ∈ (topGenβ€˜ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*β€˜π΄)) ∧ 𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)}) β†’ βˆƒπ‘§ ∈ ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))𝑀 < 𝑧)
187 seqfn 13975 . . . . . . . . . 10 (1 ∈ β„€ β†’ seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)) Fn (β„€β‰₯β€˜1))
188174, 187ax-mp 5 . . . . . . . . 9 seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)) Fn (β„€β‰₯β€˜1)
189173fneq2i 6637 . . . . . . . . 9 (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)) Fn β„• ↔ seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)) Fn (β„€β‰₯β€˜1))
190188, 189mpbir 230 . . . . . . . 8 seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)) Fn β„•
191 breq2 5142 . . . . . . . . 9 (𝑧 = (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›) β†’ (𝑀 < 𝑧 ↔ 𝑀 < (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›)))
192191rexrn 7078 . . . . . . . 8 (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓)) Fn β„• β†’ (βˆƒπ‘§ ∈ ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))𝑀 < 𝑧 ↔ βˆƒπ‘› ∈ β„• 𝑀 < (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›)))
193190, 192ax-mp 5 . . . . . . 7 (βˆƒπ‘§ ∈ ran seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))𝑀 < 𝑧 ↔ βˆƒπ‘› ∈ β„• 𝑀 < (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›))
194186, 193sylib 217 . . . . . 6 (((𝐴 ∈ (topGenβ€˜ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*β€˜π΄)) ∧ 𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)}) β†’ βˆƒπ‘› ∈ β„• 𝑀 < (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›))
19560ffvelcdmda 7076 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑧 ∈ β„•) β†’ (π‘“β€˜π‘§) ∈ ( ≀ ∩ (ℝ Γ— ℝ)))
196 0le0 12310 . . . . . . . . . . . . . . . . . 18 0 ≀ 0
197 df-br 5139 . . . . . . . . . . . . . . . . . 18 (0 ≀ 0 ↔ ⟨0, 0⟩ ∈ ≀ )
198196, 197mpbi 229 . . . . . . . . . . . . . . . . 17 ⟨0, 0⟩ ∈ ≀
199 0re 11213 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
200 opelxpi 5703 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 0 ∈ ℝ) β†’ ⟨0, 0⟩ ∈ (ℝ Γ— ℝ))
201199, 199, 200mp2an 689 . . . . . . . . . . . . . . . . 17 ⟨0, 0⟩ ∈ (ℝ Γ— ℝ)
202 elin 3956 . . . . . . . . . . . . . . . . 17 (⟨0, 0⟩ ∈ ( ≀ ∩ (ℝ Γ— ℝ)) ↔ (⟨0, 0⟩ ∈ ≀ ∧ ⟨0, 0⟩ ∈ (ℝ Γ— ℝ)))
203198, 201, 202mpbir2an 708 . . . . . . . . . . . . . . . 16 ⟨0, 0⟩ ∈ ( ≀ ∩ (ℝ Γ— ℝ))
204 ifcl 4565 . . . . . . . . . . . . . . . 16 (((π‘“β€˜π‘§) ∈ ( ≀ ∩ (ℝ Γ— ℝ)) ∧ ⟨0, 0⟩ ∈ ( ≀ ∩ (ℝ Γ— ℝ))) β†’ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩) ∈ ( ≀ ∩ (ℝ Γ— ℝ)))
205195, 203, 204sylancl 585 . . . . . . . . . . . . . . 15 ((𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑧 ∈ β„•) β†’ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩) ∈ ( ≀ ∩ (ℝ Γ— ℝ)))
206205fmpttd 7106 . . . . . . . . . . . . . 14 (𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)):β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)))
207 df-ov 7404 . . . . . . . . . . . . . . . . . . . . . 22 (0(,)0) = ((,)β€˜βŸ¨0, 0⟩)
208 iooid 13349 . . . . . . . . . . . . . . . . . . . . . 22 (0(,)0) = βˆ…
209207, 208eqtr3i 2754 . . . . . . . . . . . . . . . . . . . . 21 ((,)β€˜βŸ¨0, 0⟩) = βˆ…
210209ineq1i 4200 . . . . . . . . . . . . . . . . . . . 20 (((,)β€˜βŸ¨0, 0⟩) ∩ ((,)β€˜(π‘“β€˜π‘§))) = (βˆ… ∩ ((,)β€˜(π‘“β€˜π‘§)))
211 0in 4385 . . . . . . . . . . . . . . . . . . . 20 (βˆ… ∩ ((,)β€˜(π‘“β€˜π‘§))) = βˆ…
212210, 211eqtri 2752 . . . . . . . . . . . . . . . . . . 19 (((,)β€˜βŸ¨0, 0⟩) ∩ ((,)β€˜(π‘“β€˜π‘§))) = βˆ…
213212olci 863 . . . . . . . . . . . . . . . . . 18 (π‘š = 𝑧 ∨ (((,)β€˜βŸ¨0, 0⟩) ∩ ((,)β€˜(π‘“β€˜π‘§))) = βˆ…)
214 ineq1 4197 . . . . . . . . . . . . . . . . . . . . 21 (((,)β€˜(π‘“β€˜π‘š)) = if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)) β†’ (((,)β€˜(π‘“β€˜π‘š)) ∩ ((,)β€˜(π‘“β€˜π‘§))) = (if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)) ∩ ((,)β€˜(π‘“β€˜π‘§))))
215214eqeq1d 2726 . . . . . . . . . . . . . . . . . . . 20 (((,)β€˜(π‘“β€˜π‘š)) = if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)) β†’ ((((,)β€˜(π‘“β€˜π‘š)) ∩ ((,)β€˜(π‘“β€˜π‘§))) = βˆ… ↔ (if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)) ∩ ((,)β€˜(π‘“β€˜π‘§))) = βˆ…))
216215orbi2d 912 . . . . . . . . . . . . . . . . . . 19 (((,)β€˜(π‘“β€˜π‘š)) = if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)) β†’ ((π‘š = 𝑧 ∨ (((,)β€˜(π‘“β€˜π‘š)) ∩ ((,)β€˜(π‘“β€˜π‘§))) = βˆ…) ↔ (π‘š = 𝑧 ∨ (if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)) ∩ ((,)β€˜(π‘“β€˜π‘§))) = βˆ…)))
217 ineq1 4197 . . . . . . . . . . . . . . . . . . . . 21 (((,)β€˜βŸ¨0, 0⟩) = if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)) β†’ (((,)β€˜βŸ¨0, 0⟩) ∩ ((,)β€˜(π‘“β€˜π‘§))) = (if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)) ∩ ((,)β€˜(π‘“β€˜π‘§))))
218217eqeq1d 2726 . . . . . . . . . . . . . . . . . . . 20 (((,)β€˜βŸ¨0, 0⟩) = if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)) β†’ ((((,)β€˜βŸ¨0, 0⟩) ∩ ((,)β€˜(π‘“β€˜π‘§))) = βˆ… ↔ (if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)) ∩ ((,)β€˜(π‘“β€˜π‘§))) = βˆ…))
219218orbi2d 912 . . . . . . . . . . . . . . . . . . 19 (((,)β€˜βŸ¨0, 0⟩) = if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)) β†’ ((π‘š = 𝑧 ∨ (((,)β€˜βŸ¨0, 0⟩) ∩ ((,)β€˜(π‘“β€˜π‘§))) = βˆ…) ↔ (π‘š = 𝑧 ∨ (if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)) ∩ ((,)β€˜(π‘“β€˜π‘§))) = βˆ…)))
220216, 219ifboth 4559 . . . . . . . . . . . . . . . . . 18 (((π‘š = 𝑧 ∨ (((,)β€˜(π‘“β€˜π‘š)) ∩ ((,)β€˜(π‘“β€˜π‘§))) = βˆ…) ∧ (π‘š = 𝑧 ∨ (((,)β€˜βŸ¨0, 0⟩) ∩ ((,)β€˜(π‘“β€˜π‘§))) = βˆ…)) β†’ (π‘š = 𝑧 ∨ (if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)) ∩ ((,)β€˜(π‘“β€˜π‘§))) = βˆ…))
221112, 213, 220sylancl 585 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ (π‘š ∈ β„• ∧ 𝑧 ∈ β„•)) β†’ (π‘š = 𝑧 ∨ (if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)) ∩ ((,)β€˜(π‘“β€˜π‘§))) = βˆ…))
222209ineq2i 4201 . . . . . . . . . . . . . . . . . . 19 (if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)) ∩ ((,)β€˜βŸ¨0, 0⟩)) = (if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)) ∩ βˆ…)
223 in0 4383 . . . . . . . . . . . . . . . . . . 19 (if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)) ∩ βˆ…) = βˆ…
224222, 223eqtri 2752 . . . . . . . . . . . . . . . . . 18 (if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)) ∩ ((,)β€˜βŸ¨0, 0⟩)) = βˆ…
225224olci 863 . . . . . . . . . . . . . . . . 17 (π‘š = 𝑧 ∨ (if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)) ∩ ((,)β€˜βŸ¨0, 0⟩)) = βˆ…)
226 ineq2 4198 . . . . . . . . . . . . . . . . . . . 20 (((,)β€˜(π‘“β€˜π‘§)) = if(𝑧 ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘§)), ((,)β€˜βŸ¨0, 0⟩)) β†’ (if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)) ∩ ((,)β€˜(π‘“β€˜π‘§))) = (if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘§)), ((,)β€˜βŸ¨0, 0⟩))))
227226eqeq1d 2726 . . . . . . . . . . . . . . . . . . 19 (((,)β€˜(π‘“β€˜π‘§)) = if(𝑧 ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘§)), ((,)β€˜βŸ¨0, 0⟩)) β†’ ((if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)) ∩ ((,)β€˜(π‘“β€˜π‘§))) = βˆ… ↔ (if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘§)), ((,)β€˜βŸ¨0, 0⟩))) = βˆ…))
228227orbi2d 912 . . . . . . . . . . . . . . . . . 18 (((,)β€˜(π‘“β€˜π‘§)) = if(𝑧 ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘§)), ((,)β€˜βŸ¨0, 0⟩)) β†’ ((π‘š = 𝑧 ∨ (if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)) ∩ ((,)β€˜(π‘“β€˜π‘§))) = βˆ…) ↔ (π‘š = 𝑧 ∨ (if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘§)), ((,)β€˜βŸ¨0, 0⟩))) = βˆ…)))
229 ineq2 4198 . . . . . . . . . . . . . . . . . . . 20 (((,)β€˜βŸ¨0, 0⟩) = if(𝑧 ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘§)), ((,)β€˜βŸ¨0, 0⟩)) β†’ (if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)) ∩ ((,)β€˜βŸ¨0, 0⟩)) = (if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘§)), ((,)β€˜βŸ¨0, 0⟩))))
230229eqeq1d 2726 . . . . . . . . . . . . . . . . . . 19 (((,)β€˜βŸ¨0, 0⟩) = if(𝑧 ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘§)), ((,)β€˜βŸ¨0, 0⟩)) β†’ ((if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)) ∩ ((,)β€˜βŸ¨0, 0⟩)) = βˆ… ↔ (if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘§)), ((,)β€˜βŸ¨0, 0⟩))) = βˆ…))
231230orbi2d 912 . . . . . . . . . . . . . . . . . 18 (((,)β€˜βŸ¨0, 0⟩) = if(𝑧 ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘§)), ((,)β€˜βŸ¨0, 0⟩)) β†’ ((π‘š = 𝑧 ∨ (if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)) ∩ ((,)β€˜βŸ¨0, 0⟩)) = βˆ…) ↔ (π‘š = 𝑧 ∨ (if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘§)), ((,)β€˜βŸ¨0, 0⟩))) = βˆ…)))
232228, 231ifboth 4559 . . . . . . . . . . . . . . . . 17 (((π‘š = 𝑧 ∨ (if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)) ∩ ((,)β€˜(π‘“β€˜π‘§))) = βˆ…) ∧ (π‘š = 𝑧 ∨ (if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)) ∩ ((,)β€˜βŸ¨0, 0⟩)) = βˆ…)) β†’ (π‘š = 𝑧 ∨ (if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘§)), ((,)β€˜βŸ¨0, 0⟩))) = βˆ…))
233221, 225, 232sylancl 585 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ (π‘š ∈ β„• ∧ 𝑧 ∈ β„•)) β†’ (π‘š = 𝑧 ∨ (if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘§)), ((,)β€˜βŸ¨0, 0⟩))) = βˆ…))
234233ralrimivva 3192 . . . . . . . . . . . . . . 15 (𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ βˆ€π‘š ∈ β„• βˆ€π‘§ ∈ β„• (π‘š = 𝑧 ∨ (if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘§)), ((,)β€˜βŸ¨0, 0⟩))) = βˆ…))
235 disjeq2 5107 . . . . . . . . . . . . . . . . 17 (βˆ€π‘š ∈ β„• ((,)β€˜((𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))β€˜π‘š)) = if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)) β†’ (Disj π‘š ∈ β„• ((,)β€˜((𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))β€˜π‘š)) ↔ Disj π‘š ∈ β„• if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩))))
236 eleq1w 2808 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = π‘š β†’ (𝑧 ∈ (1...𝑛) ↔ π‘š ∈ (1...𝑛)))
237 fveq2 6881 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = π‘š β†’ (π‘“β€˜π‘§) = (π‘“β€˜π‘š))
238236, 237ifbieq1d 4544 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = π‘š β†’ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩) = if(π‘š ∈ (1...𝑛), (π‘“β€˜π‘š), ⟨0, 0⟩))
239 eqid 2724 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)) = (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))
240 fvex 6894 . . . . . . . . . . . . . . . . . . . . 21 (π‘“β€˜π‘š) ∈ V
241 opex 5454 . . . . . . . . . . . . . . . . . . . . 21 ⟨0, 0⟩ ∈ V
242240, 241ifex 4570 . . . . . . . . . . . . . . . . . . . 20 if(π‘š ∈ (1...𝑛), (π‘“β€˜π‘š), ⟨0, 0⟩) ∈ V
243238, 239, 242fvmpt 6988 . . . . . . . . . . . . . . . . . . 19 (π‘š ∈ β„• β†’ ((𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))β€˜π‘š) = if(π‘š ∈ (1...𝑛), (π‘“β€˜π‘š), ⟨0, 0⟩))
244243fveq2d 6885 . . . . . . . . . . . . . . . . . 18 (π‘š ∈ β„• β†’ ((,)β€˜((𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))β€˜π‘š)) = ((,)β€˜if(π‘š ∈ (1...𝑛), (π‘“β€˜π‘š), ⟨0, 0⟩)))
245 fvif 6897 . . . . . . . . . . . . . . . . . 18 ((,)β€˜if(π‘š ∈ (1...𝑛), (π‘“β€˜π‘š), ⟨0, 0⟩)) = if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩))
246244, 245eqtrdi 2780 . . . . . . . . . . . . . . . . 17 (π‘š ∈ β„• β†’ ((,)β€˜((𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))β€˜π‘š)) = if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)))
247235, 246mprg 3059 . . . . . . . . . . . . . . . 16 (Disj π‘š ∈ β„• ((,)β€˜((𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))β€˜π‘š)) ↔ Disj π‘š ∈ β„• if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)))
248 eleq1w 2808 . . . . . . . . . . . . . . . . . 18 (π‘š = 𝑧 β†’ (π‘š ∈ (1...𝑛) ↔ 𝑧 ∈ (1...𝑛)))
249248, 115ifbieq1d 4544 . . . . . . . . . . . . . . . . 17 (π‘š = 𝑧 β†’ if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)) = if(𝑧 ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘§)), ((,)β€˜βŸ¨0, 0⟩)))
250249disjor 5118 . . . . . . . . . . . . . . . 16 (Disj π‘š ∈ β„• if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)) ↔ βˆ€π‘š ∈ β„• βˆ€π‘§ ∈ β„• (π‘š = 𝑧 ∨ (if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘§)), ((,)β€˜βŸ¨0, 0⟩))) = βˆ…))
251247, 250bitri 275 . . . . . . . . . . . . . . 15 (Disj π‘š ∈ β„• ((,)β€˜((𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))β€˜π‘š)) ↔ βˆ€π‘š ∈ β„• βˆ€π‘§ ∈ β„• (π‘š = 𝑧 ∨ (if(π‘š ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘š)), ((,)β€˜βŸ¨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)β€˜(π‘“β€˜π‘§)), ((,)β€˜βŸ¨0, 0⟩))) = βˆ…))
252234, 251sylibr 233 . . . . . . . . . . . . . 14 (𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ Disj π‘š ∈ β„• ((,)β€˜((𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))β€˜π‘š)))
253 eqid 2724 . . . . . . . . . . . . . 14 seq1( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)))) = seq1( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))))
254206, 252, 253uniiccvol 25431 . . . . . . . . . . . . 13 (𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ (vol*β€˜βˆͺ ran ([,] ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)))) = sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)))), ℝ*, < ))
255254adantr 480 . . . . . . . . . . . 12 ((𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) β†’ (vol*β€˜βˆͺ ran ([,] ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)))) = sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)))), ℝ*, < ))
256 rexpssxrxp 11256 . . . . . . . . . . . . . . . . . . . . 21 (ℝ Γ— ℝ) βŠ† (ℝ* Γ— ℝ*)
257164, 256sstri 3983 . . . . . . . . . . . . . . . . . . . 20 {π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} βŠ† (ℝ* Γ— ℝ*)
258257, 65sselid 3972 . . . . . . . . . . . . . . . . . . 19 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑧 ∈ β„•) β†’ (π‘“β€˜π‘§) ∈ (ℝ* Γ— ℝ*))
259 0xr 11258 . . . . . . . . . . . . . . . . . . . 20 0 ∈ ℝ*
260 opelxpi 5703 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ ℝ* ∧ 0 ∈ ℝ*) β†’ ⟨0, 0⟩ ∈ (ℝ* Γ— ℝ*))
261259, 259, 260mp2an 689 . . . . . . . . . . . . . . . . . . 19 ⟨0, 0⟩ ∈ (ℝ* Γ— ℝ*)
262 ifcl 4565 . . . . . . . . . . . . . . . . . . 19 (((π‘“β€˜π‘§) ∈ (ℝ* Γ— ℝ*) ∧ ⟨0, 0⟩ ∈ (ℝ* Γ— ℝ*)) β†’ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩) ∈ (ℝ* Γ— ℝ*))
263258, 261, 262sylancl 585 . . . . . . . . . . . . . . . . . 18 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑧 ∈ β„•) β†’ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩) ∈ (ℝ* Γ— ℝ*))
264 eqidd 2725 . . . . . . . . . . . . . . . . . 18 (𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)) = (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)))
265 iccf 13422 . . . . . . . . . . . . . . . . . . . 20 [,]:(ℝ* Γ— ℝ*)βŸΆπ’« ℝ*
266265a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ [,]:(ℝ* Γ— ℝ*)βŸΆπ’« ℝ*)
267266feqmptd 6950 . . . . . . . . . . . . . . . . . 18 (𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ [,] = (π‘š ∈ (ℝ* Γ— ℝ*) ↦ ([,]β€˜π‘š)))
268 fveq2 6881 . . . . . . . . . . . . . . . . . 18 (π‘š = if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩) β†’ ([,]β€˜π‘š) = ([,]β€˜if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)))
269263, 264, 267, 268fmptco 7119 . . . . . . . . . . . . . . . . 17 (𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ ([,] ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))) = (𝑧 ∈ β„• ↦ ([,]β€˜if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))))
27052, 269syl 17 . . . . . . . . . . . . . . . 16 (𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ ([,] ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))) = (𝑧 ∈ β„• ↦ ([,]β€˜if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))))
271270rneqd 5927 . . . . . . . . . . . . . . 15 (𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ ran ([,] ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))) = ran (𝑧 ∈ β„• ↦ ([,]β€˜if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))))
272271unieqd 4912 . . . . . . . . . . . . . 14 (𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ βˆͺ ran ([,] ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))) = βˆͺ ran (𝑧 ∈ β„• ↦ ([,]β€˜if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))))
273 peano2nn 12221 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ β„• β†’ (𝑛 + 1) ∈ β„•)
274273, 173eleqtrdi 2835 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ β„• β†’ (𝑛 + 1) ∈ (β„€β‰₯β€˜1))
275 fzouzsplit 13664 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 + 1) ∈ (β„€β‰₯β€˜1) β†’ (β„€β‰₯β€˜1) = ((1..^(𝑛 + 1)) βˆͺ (β„€β‰₯β€˜(𝑛 + 1))))
276274, 275syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ β„• β†’ (β„€β‰₯β€˜1) = ((1..^(𝑛 + 1)) βˆͺ (β„€β‰₯β€˜(𝑛 + 1))))
277173, 276eqtrid 2776 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ β„• β†’ β„• = ((1..^(𝑛 + 1)) βˆͺ (β„€β‰₯β€˜(𝑛 + 1))))
278 nnz 12576 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ β„• β†’ 𝑛 ∈ β„€)
279 fzval3 13698 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ β„€ β†’ (1...𝑛) = (1..^(𝑛 + 1)))
280278, 279syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ β„• β†’ (1...𝑛) = (1..^(𝑛 + 1)))
281280uneq1d 4154 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ β„• β†’ ((1...𝑛) βˆͺ (β„€β‰₯β€˜(𝑛 + 1))) = ((1..^(𝑛 + 1)) βˆͺ (β„€β‰₯β€˜(𝑛 + 1))))
282277, 281eqtr4d 2767 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ β„• β†’ β„• = ((1...𝑛) βˆͺ (β„€β‰₯β€˜(𝑛 + 1))))
283 fvif 6897 . . . . . . . . . . . . . . . . . 18 ([,]β€˜if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)) = if(𝑧 ∈ (1...𝑛), ([,]β€˜(π‘“β€˜π‘§)), ([,]β€˜βŸ¨0, 0⟩))
284283a1i 11 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ β„• β†’ ([,]β€˜if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)) = if(𝑧 ∈ (1...𝑛), ([,]β€˜(π‘“β€˜π‘§)), ([,]β€˜βŸ¨0, 0⟩)))
285282, 284iuneq12d 5015 . . . . . . . . . . . . . . . 16 (𝑛 ∈ β„• β†’ βˆͺ 𝑧 ∈ β„• ([,]β€˜if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)) = βˆͺ 𝑧 ∈ ((1...𝑛) βˆͺ (β„€β‰₯β€˜(𝑛 + 1)))if(𝑧 ∈ (1...𝑛), ([,]β€˜(π‘“β€˜π‘§)), ([,]β€˜βŸ¨0, 0⟩)))
286 fvex 6894 . . . . . . . . . . . . . . . . 17 ([,]β€˜if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)) ∈ V
287286dfiun3 5955 . . . . . . . . . . . . . . . 16 βˆͺ 𝑧 ∈ β„• ([,]β€˜if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)) = βˆͺ ran (𝑧 ∈ β„• ↦ ([,]β€˜if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)))
288 iunxun 5087 . . . . . . . . . . . . . . . 16 βˆͺ 𝑧 ∈ ((1...𝑛) βˆͺ (β„€β‰₯β€˜(𝑛 + 1)))if(𝑧 ∈ (1...𝑛), ([,]β€˜(π‘“β€˜π‘§)), ([,]β€˜βŸ¨0, 0⟩)) = (βˆͺ 𝑧 ∈ (1...𝑛)if(𝑧 ∈ (1...𝑛), ([,]β€˜(π‘“β€˜π‘§)), ([,]β€˜βŸ¨0, 0⟩)) βˆͺ βˆͺ 𝑧 ∈ (β„€β‰₯β€˜(𝑛 + 1))if(𝑧 ∈ (1...𝑛), ([,]β€˜(π‘“β€˜π‘§)), ([,]β€˜βŸ¨0, 0⟩)))
289285, 287, 2883eqtr3g 2787 . . . . . . . . . . . . . . 15 (𝑛 ∈ β„• β†’ βˆͺ ran (𝑧 ∈ β„• ↦ ([,]β€˜if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))) = (βˆͺ 𝑧 ∈ (1...𝑛)if(𝑧 ∈ (1...𝑛), ([,]β€˜(π‘“β€˜π‘§)), ([,]β€˜βŸ¨0, 0⟩)) βˆͺ βˆͺ 𝑧 ∈ (β„€β‰₯β€˜(𝑛 + 1))if(𝑧 ∈ (1...𝑛), ([,]β€˜(π‘“β€˜π‘§)), ([,]β€˜βŸ¨0, 0⟩))))
290 iftrue 4526 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (1...𝑛) β†’ if(𝑧 ∈ (1...𝑛), ([,]β€˜(π‘“β€˜π‘§)), ([,]β€˜βŸ¨0, 0⟩)) = ([,]β€˜(π‘“β€˜π‘§)))
291290iuneq2i 5008 . . . . . . . . . . . . . . . . 17 βˆͺ 𝑧 ∈ (1...𝑛)if(𝑧 ∈ (1...𝑛), ([,]β€˜(π‘“β€˜π‘§)), ([,]β€˜βŸ¨0, 0⟩)) = βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§))
292291a1i 11 . . . . . . . . . . . . . . . 16 (𝑛 ∈ β„• β†’ βˆͺ 𝑧 ∈ (1...𝑛)if(𝑧 ∈ (1...𝑛), ([,]β€˜(π‘“β€˜π‘§)), ([,]β€˜βŸ¨0, 0⟩)) = βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§)))
293 uznfz 13581 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ (β„€β‰₯β€˜(𝑛 + 1)) β†’ Β¬ 𝑧 ∈ (1...((𝑛 + 1) βˆ’ 1)))
294293adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ β„• ∧ 𝑧 ∈ (β„€β‰₯β€˜(𝑛 + 1))) β†’ Β¬ 𝑧 ∈ (1...((𝑛 + 1) βˆ’ 1)))
295 nncn 12217 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ β„• β†’ 𝑛 ∈ β„‚)
296 ax-1cn 11164 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ β„‚
297 pncan 11463 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ β„‚ ∧ 1 ∈ β„‚) β†’ ((𝑛 + 1) βˆ’ 1) = 𝑛)
298295, 296, 297sylancl 585 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ β„• β†’ ((𝑛 + 1) βˆ’ 1) = 𝑛)
299298oveq2d 7417 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ β„• β†’ (1...((𝑛 + 1) βˆ’ 1)) = (1...𝑛))
300299eleq2d 2811 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ β„• β†’ (𝑧 ∈ (1...((𝑛 + 1) βˆ’ 1)) ↔ 𝑧 ∈ (1...𝑛)))
301300notbid 318 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ β„• β†’ (Β¬ 𝑧 ∈ (1...((𝑛 + 1) βˆ’ 1)) ↔ Β¬ 𝑧 ∈ (1...𝑛)))
302301adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ β„• ∧ 𝑧 ∈ (β„€β‰₯β€˜(𝑛 + 1))) β†’ (Β¬ 𝑧 ∈ (1...((𝑛 + 1) βˆ’ 1)) ↔ Β¬ 𝑧 ∈ (1...𝑛)))
303294, 302mpbid 231 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ β„• ∧ 𝑧 ∈ (β„€β‰₯β€˜(𝑛 + 1))) β†’ Β¬ 𝑧 ∈ (1...𝑛))
304303iffalsed 4531 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ β„• ∧ 𝑧 ∈ (β„€β‰₯β€˜(𝑛 + 1))) β†’ if(𝑧 ∈ (1...𝑛), ([,]β€˜(π‘“β€˜π‘§)), ([,]β€˜βŸ¨0, 0⟩)) = ([,]β€˜βŸ¨0, 0⟩))
305304iuneq2dv 5011 . . . . . . . . . . . . . . . 16 (𝑛 ∈ β„• β†’ βˆͺ 𝑧 ∈ (β„€β‰₯β€˜(𝑛 + 1))if(𝑧 ∈ (1...𝑛), ([,]β€˜(π‘“β€˜π‘§)), ([,]β€˜βŸ¨0, 0⟩)) = βˆͺ 𝑧 ∈ (β„€β‰₯β€˜(𝑛 + 1))([,]β€˜βŸ¨0, 0⟩))
306292, 305uneq12d 4156 . . . . . . . . . . . . . . 15 (𝑛 ∈ β„• β†’ (βˆͺ 𝑧 ∈ (1...𝑛)if(𝑧 ∈ (1...𝑛), ([,]β€˜(π‘“β€˜π‘§)), ([,]β€˜βŸ¨0, 0⟩)) βˆͺ βˆͺ 𝑧 ∈ (β„€β‰₯β€˜(𝑛 + 1))if(𝑧 ∈ (1...𝑛), ([,]β€˜(π‘“β€˜π‘§)), ([,]β€˜βŸ¨0, 0⟩))) = (βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§)) βˆͺ βˆͺ 𝑧 ∈ (β„€β‰₯β€˜(𝑛 + 1))([,]β€˜βŸ¨0, 0⟩)))
307289, 306eqtrd 2764 . . . . . . . . . . . . . 14 (𝑛 ∈ β„• β†’ βˆͺ ran (𝑧 ∈ β„• ↦ ([,]β€˜if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))) = (βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§)) βˆͺ βˆͺ 𝑧 ∈ (β„€β‰₯β€˜(𝑛 + 1))([,]β€˜βŸ¨0, 0⟩)))
308272, 307sylan9eq 2784 . . . . . . . . . . . . 13 ((𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) β†’ βˆͺ ran ([,] ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))) = (βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§)) βˆͺ βˆͺ 𝑧 ∈ (β„€β‰₯β€˜(𝑛 + 1))([,]β€˜βŸ¨0, 0⟩)))
309308fveq2d 6885 . . . . . . . . . . . 12 ((𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) β†’ (vol*β€˜βˆͺ ran ([,] ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)))) = (vol*β€˜(βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§)) βˆͺ βˆͺ 𝑧 ∈ (β„€β‰₯β€˜(𝑛 + 1))([,]β€˜βŸ¨0, 0⟩))))
310 xrltso 13117 . . . . . . . . . . . . . . 15 < Or ℝ*
311310a1i 11 . . . . . . . . . . . . . 14 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) β†’ < Or ℝ*)
312 elnnuz 12863 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ β„• ↔ 𝑛 ∈ (β„€β‰₯β€˜1))
313312biimpi 215 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ β„• β†’ 𝑛 ∈ (β„€β‰₯β€˜1))
314313adantl 481 . . . . . . . . . . . . . . . 16 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) β†’ 𝑛 ∈ (β„€β‰₯β€˜1))
315 elfznn 13527 . . . . . . . . . . . . . . . . . 18 (𝑒 ∈ (1...𝑛) β†’ 𝑒 ∈ β„•)
316172ffvelcdmda 7076 . . . . . . . . . . . . . . . . . 18 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑒 ∈ β„•) β†’ (((abs ∘ βˆ’ ) ∘ 𝑓)β€˜π‘’) ∈ ℝ)
317315, 316sylan2 592 . . . . . . . . . . . . . . . . 17 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑒 ∈ (1...𝑛)) β†’ (((abs ∘ βˆ’ ) ∘ 𝑓)β€˜π‘’) ∈ ℝ)
318317adantlr 712 . . . . . . . . . . . . . . . 16 (((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑒 ∈ (1...𝑛)) β†’ (((abs ∘ βˆ’ ) ∘ 𝑓)β€˜π‘’) ∈ ℝ)
319 readdcl 11189 . . . . . . . . . . . . . . . . 17 ((𝑒 ∈ ℝ ∧ 𝑣 ∈ ℝ) β†’ (𝑒 + 𝑣) ∈ ℝ)
320319adantl 481 . . . . . . . . . . . . . . . 16 (((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ (𝑒 ∈ ℝ ∧ 𝑣 ∈ ℝ)) β†’ (𝑒 + 𝑣) ∈ ℝ)
321314, 318, 320seqcl 13985 . . . . . . . . . . . . . . 15 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) β†’ (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›) ∈ ℝ)
322321rexrd 11261 . . . . . . . . . . . . . 14 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) β†’ (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›) ∈ ℝ*)
323 eqidd 2725 . . . . . . . . . . . . . . . . . . . . 21 (π‘š ∈ (1...𝑛) β†’ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)) = (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)))
324 iftrue 4526 . . . . . . . . . . . . . . . . . . . . . 22 (π‘š ∈ (1...𝑛) β†’ if(π‘š ∈ (1...𝑛), (π‘“β€˜π‘š), ⟨0, 0⟩) = (π‘“β€˜π‘š))
325238, 324sylan9eqr 2786 . . . . . . . . . . . . . . . . . . . . 21 ((π‘š ∈ (1...𝑛) ∧ 𝑧 = π‘š) β†’ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩) = (π‘“β€˜π‘š))
326 elfznn 13527 . . . . . . . . . . . . . . . . . . . . 21 (π‘š ∈ (1...𝑛) β†’ π‘š ∈ β„•)
327240a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (π‘š ∈ (1...𝑛) β†’ (π‘“β€˜π‘š) ∈ V)
328323, 325, 326, 327fvmptd 6995 . . . . . . . . . . . . . . . . . . . 20 (π‘š ∈ (1...𝑛) β†’ ((𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))β€˜π‘š) = (π‘“β€˜π‘š))
329328adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ π‘š ∈ (1...𝑛)) β†’ ((𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))β€˜π‘š) = (π‘“β€˜π‘š))
330329fveq2d 6885 . . . . . . . . . . . . . . . . . 18 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ π‘š ∈ (1...𝑛)) β†’ ((abs ∘ βˆ’ )β€˜((𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))β€˜π‘š)) = ((abs ∘ βˆ’ )β€˜(π‘“β€˜π‘š)))
331 fvex 6894 . . . . . . . . . . . . . . . . . . . . . 22 (π‘“β€˜π‘§) ∈ V
332331, 241ifex 4570 . . . . . . . . . . . . . . . . . . . . 21 if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩) ∈ V
333332, 239fnmpti 6683 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)) Fn β„•
334 fvco2 6978 . . . . . . . . . . . . . . . . . . . 20 (((𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)) Fn β„• ∧ π‘š ∈ β„•) β†’ (((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)))β€˜π‘š) = ((abs ∘ βˆ’ )β€˜((𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))β€˜π‘š)))
335333, 326, 334sylancr 586 . . . . . . . . . . . . . . . . . . 19 (π‘š ∈ (1...𝑛) β†’ (((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)))β€˜π‘š) = ((abs ∘ βˆ’ )β€˜((𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))β€˜π‘š)))
336335adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ π‘š ∈ (1...𝑛)) β†’ (((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)))β€˜π‘š) = ((abs ∘ βˆ’ )β€˜((𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))β€˜π‘š)))
337 ffn 6707 . . . . . . . . . . . . . . . . . . 19 (𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ 𝑓 Fn β„•)
338 fvco2 6978 . . . . . . . . . . . . . . . . . . 19 ((𝑓 Fn β„• ∧ π‘š ∈ β„•) β†’ (((abs ∘ βˆ’ ) ∘ 𝑓)β€˜π‘š) = ((abs ∘ βˆ’ )β€˜(π‘“β€˜π‘š)))
339337, 326, 338syl2an 595 . . . . . . . . . . . . . . . . . 18 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ π‘š ∈ (1...𝑛)) β†’ (((abs ∘ βˆ’ ) ∘ 𝑓)β€˜π‘š) = ((abs ∘ βˆ’ )β€˜(π‘“β€˜π‘š)))
340330, 336, 3393eqtr4d 2774 . . . . . . . . . . . . . . . . 17 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ π‘š ∈ (1...𝑛)) β†’ (((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)))β€˜π‘š) = (((abs ∘ βˆ’ ) ∘ 𝑓)β€˜π‘š))
341340adantlr 712 . . . . . . . . . . . . . . . 16 (((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ π‘š ∈ (1...𝑛)) β†’ (((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)))β€˜π‘š) = (((abs ∘ βˆ’ ) ∘ 𝑓)β€˜π‘š))
342314, 341seqfveq 13989 . . . . . . . . . . . . . . 15 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) β†’ (seq1( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))))β€˜π‘›) = (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›))
343174a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ 1 ∈ β„€)
344168, 65sselid 3972 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑧 ∈ β„•) β†’ (π‘“β€˜π‘§) ∈ (β„‚ Γ— β„‚))
345 0cn 11203 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ β„‚
346 opelxpi 5703 . . . . . . . . . . . . . . . . . . . . . . 23 ((0 ∈ β„‚ ∧ 0 ∈ β„‚) β†’ ⟨0, 0⟩ ∈ (β„‚ Γ— β„‚))
347345, 345, 346mp2an 689 . . . . . . . . . . . . . . . . . . . . . 22 ⟨0, 0⟩ ∈ (β„‚ Γ— β„‚)
348 ifcl 4565 . . . . . . . . . . . . . . . . . . . . . 22 (((π‘“β€˜π‘§) ∈ (β„‚ Γ— β„‚) ∧ ⟨0, 0⟩ ∈ (β„‚ Γ— β„‚)) β†’ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩) ∈ (β„‚ Γ— β„‚))
349344, 347, 348sylancl 585 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑧 ∈ β„•) β†’ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩) ∈ (β„‚ Γ— β„‚))
350349fmpttd 7106 . . . . . . . . . . . . . . . . . . . 20 (𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)):β„•βŸΆ(β„‚ Γ— β„‚))
351 fco 6731 . . . . . . . . . . . . . . . . . . . 20 (((abs ∘ βˆ’ ):(β„‚ Γ— β„‚)βŸΆβ„ ∧ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)):β„•βŸΆ(β„‚ Γ— β„‚)) β†’ ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))):β„•βŸΆβ„)
352139, 350, 351sylancr 586 . . . . . . . . . . . . . . . . . . 19 (𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))):β„•βŸΆβ„)
353352ffvelcdmda 7076 . . . . . . . . . . . . . . . . . 18 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ π‘š ∈ β„•) β†’ (((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)))β€˜π‘š) ∈ ℝ)
354173, 343, 353serfre 13994 . . . . . . . . . . . . . . . . 17 (𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ seq1( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)))):β„•βŸΆβ„)
355354ffnd 6708 . . . . . . . . . . . . . . . 16 (𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ seq1( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)))) Fn β„•)
356 fnfvelrn 7072 . . . . . . . . . . . . . . . 16 ((seq1( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)))) Fn β„• ∧ 𝑛 ∈ β„•) β†’ (seq1( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))))β€˜π‘›) ∈ ran seq1( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)))))
357355, 356sylan 579 . . . . . . . . . . . . . . 15 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) β†’ (seq1( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))))β€˜π‘›) ∈ ran seq1( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)))))
358342, 357eqeltrrd 2826 . . . . . . . . . . . . . 14 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) β†’ (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›) ∈ ran seq1( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)))))
359354frnd 6715 . . . . . . . . . . . . . . . . 17 (𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ ran seq1( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)))) βŠ† ℝ)
360359adantr 480 . . . . . . . . . . . . . . . 16 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) β†’ ran seq1( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)))) βŠ† ℝ)
361360sselda 3974 . . . . . . . . . . . . . . 15 (((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ π‘š ∈ ran seq1( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))))) β†’ π‘š ∈ ℝ)
362321adantr 480 . . . . . . . . . . . . . . 15 (((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ π‘š ∈ ran seq1( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))))) β†’ (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›) ∈ ℝ)
363 readdcl 11189 . . . . . . . . . . . . . . . . . . . . . . 23 ((π‘š ∈ ℝ ∧ 𝑒 ∈ ℝ) β†’ (π‘š + 𝑒) ∈ ℝ)
364363adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑛 < 𝑑) ∧ (π‘š ∈ ℝ ∧ 𝑒 ∈ ℝ)) β†’ (π‘š + 𝑒) ∈ ℝ)
365 recn 11196 . . . . . . . . . . . . . . . . . . . . . . . 24 (π‘š ∈ ℝ β†’ π‘š ∈ β„‚)
366 recn 11196 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑒 ∈ ℝ β†’ 𝑒 ∈ β„‚)
367 recn 11196 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑣 ∈ ℝ β†’ 𝑣 ∈ β„‚)
368 addass 11193 . . . . . . . . . . . . . . . . . . . . . . . 24 ((π‘š ∈ β„‚ ∧ 𝑒 ∈ β„‚ ∧ 𝑣 ∈ β„‚) β†’ ((π‘š + 𝑒) + 𝑣) = (π‘š + (𝑒 + 𝑣)))
369365, 366, 367, 368syl3an 1157 . . . . . . . . . . . . . . . . . . . . . . 23 ((π‘š ∈ ℝ ∧ 𝑒 ∈ ℝ ∧ 𝑣 ∈ ℝ) β†’ ((π‘š + 𝑒) + 𝑣) = (π‘š + (𝑒 + 𝑣)))
370369adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑛 < 𝑑) ∧ (π‘š ∈ ℝ ∧ 𝑒 ∈ ℝ ∧ 𝑣 ∈ ℝ)) β†’ ((π‘š + 𝑒) + 𝑣) = (π‘š + (𝑒 + 𝑣)))
371 nnltp1le 12615 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ β„• ∧ 𝑑 ∈ β„•) β†’ (𝑛 < 𝑑 ↔ (𝑛 + 1) ≀ 𝑑))
372371biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ β„• ∧ 𝑑 ∈ β„•) ∧ 𝑛 < 𝑑) β†’ (𝑛 + 1) ≀ 𝑑)
373273nnzd 12582 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ β„• β†’ (𝑛 + 1) ∈ β„€)
374 nnz 12576 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑑 ∈ β„• β†’ 𝑑 ∈ β„€)
375 eluz 12833 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑛 + 1) ∈ β„€ ∧ 𝑑 ∈ β„€) β†’ (𝑑 ∈ (β„€β‰₯β€˜(𝑛 + 1)) ↔ (𝑛 + 1) ≀ 𝑑))
376373, 374, 375syl2an 595 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ β„• ∧ 𝑑 ∈ β„•) β†’ (𝑑 ∈ (β„€β‰₯β€˜(𝑛 + 1)) ↔ (𝑛 + 1) ≀ 𝑑))
377376adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ β„• ∧ 𝑑 ∈ β„•) ∧ 𝑛 < 𝑑) β†’ (𝑑 ∈ (β„€β‰₯β€˜(𝑛 + 1)) ↔ (𝑛 + 1) ≀ 𝑑))
378372, 377mpbird 257 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ β„• ∧ 𝑑 ∈ β„•) ∧ 𝑛 < 𝑑) β†’ 𝑑 ∈ (β„€β‰₯β€˜(𝑛 + 1)))
379378adantlll 715 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑛 < 𝑑) β†’ 𝑑 ∈ (β„€β‰₯β€˜(𝑛 + 1)))
380313ad3antlr 728 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑛 < 𝑑) β†’ 𝑛 ∈ (β„€β‰₯β€˜1))
381 simplll 772 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑛 < 𝑑) β†’ 𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)})
382 elfznn 13527 . . . . . . . . . . . . . . . . . . . . . . 23 (π‘š ∈ (1...𝑑) β†’ π‘š ∈ β„•)
383381, 382, 353syl2an 595 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑛 < 𝑑) ∧ π‘š ∈ (1...𝑑)) β†’ (((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)))β€˜π‘š) ∈ ℝ)
384364, 370, 379, 380, 383seqsplit 13998 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑛 < 𝑑) β†’ (seq1( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))))β€˜π‘‘) = ((seq1( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))))β€˜π‘›) + (seq(𝑛 + 1)( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))))β€˜π‘‘)))
385342ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑛 < 𝑑) β†’ (seq1( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))))β€˜π‘›) = (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›))
386 elfzelz 13498 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (π‘š ∈ ((𝑛 + 1)...𝑑) β†’ π‘š ∈ β„€)
387386adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑛 ∈ β„• ∧ 𝑑 ∈ β„•) ∧ 𝑛 < 𝑑) ∧ π‘š ∈ ((𝑛 + 1)...𝑑)) β†’ π‘š ∈ β„€)
388 0red 11214 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑛 ∈ β„• ∧ 𝑑 ∈ β„•) ∧ 𝑛 < 𝑑) ∧ π‘š ∈ ((𝑛 + 1)...𝑑)) β†’ 0 ∈ ℝ)
389273nnred 12224 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑛 ∈ β„• β†’ (𝑛 + 1) ∈ ℝ)
390389ad3antrrr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑛 ∈ β„• ∧ 𝑑 ∈ β„•) ∧ 𝑛 < 𝑑) ∧ π‘š ∈ ((𝑛 + 1)...𝑑)) β†’ (𝑛 + 1) ∈ ℝ)
391386zred 12663 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (π‘š ∈ ((𝑛 + 1)...𝑑) β†’ π‘š ∈ ℝ)
392391adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑛 ∈ β„• ∧ 𝑑 ∈ β„•) ∧ 𝑛 < 𝑑) ∧ π‘š ∈ ((𝑛 + 1)...𝑑)) β†’ π‘š ∈ ℝ)
393273nngt0d 12258 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑛 ∈ β„• β†’ 0 < (𝑛 + 1))
394393ad3antrrr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑛 ∈ β„• ∧ 𝑑 ∈ β„•) ∧ 𝑛 < 𝑑) ∧ π‘š ∈ ((𝑛 + 1)...𝑑)) β†’ 0 < (𝑛 + 1))
395 elfzle1 13501 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (π‘š ∈ ((𝑛 + 1)...𝑑) β†’ (𝑛 + 1) ≀ π‘š)
396395adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑛 ∈ β„• ∧ 𝑑 ∈ β„•) ∧ 𝑛 < 𝑑) ∧ π‘š ∈ ((𝑛 + 1)...𝑑)) β†’ (𝑛 + 1) ≀ π‘š)
397388, 390, 392, 394, 396ltletrd 11371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑛 ∈ β„• ∧ 𝑑 ∈ β„•) ∧ 𝑛 < 𝑑) ∧ π‘š ∈ ((𝑛 + 1)...𝑑)) β†’ 0 < π‘š)
398 elnnz 12565 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (π‘š ∈ β„• ↔ (π‘š ∈ β„€ ∧ 0 < π‘š))
399387, 397, 398sylanbrc 582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑛 ∈ β„• ∧ 𝑑 ∈ β„•) ∧ 𝑛 < 𝑑) ∧ π‘š ∈ ((𝑛 + 1)...𝑑)) β†’ π‘š ∈ β„•)
400333, 399, 334sylancr 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑛 ∈ β„• ∧ 𝑑 ∈ β„•) ∧ 𝑛 < 𝑑) ∧ π‘š ∈ ((𝑛 + 1)...𝑑)) β†’ (((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)))β€˜π‘š) = ((abs ∘ βˆ’ )β€˜((𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))β€˜π‘š)))
401 eqidd 2725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑛 ∈ β„• ∧ π‘š ∈ ((𝑛 + 1)...𝑑)) β†’ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)) = (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)))
402 nnre 12216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑛 ∈ β„• β†’ 𝑛 ∈ ℝ)
403402adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑛 ∈ β„• ∧ π‘š ∈ ((𝑛 + 1)...𝑑)) β†’ 𝑛 ∈ ℝ)
404389adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑛 ∈ β„• ∧ π‘š ∈ ((𝑛 + 1)...𝑑)) β†’ (𝑛 + 1) ∈ ℝ)
405391adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑛 ∈ β„• ∧ π‘š ∈ ((𝑛 + 1)...𝑑)) β†’ π‘š ∈ ℝ)
406402ltp1d 12141 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑛 ∈ β„• β†’ 𝑛 < (𝑛 + 1))
407406adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑛 ∈ β„• ∧ π‘š ∈ ((𝑛 + 1)...𝑑)) β†’ 𝑛 < (𝑛 + 1))
408395adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑛 ∈ β„• ∧ π‘š ∈ ((𝑛 + 1)...𝑑)) β†’ (𝑛 + 1) ≀ π‘š)
409403, 404, 405, 407, 408ltletrd 11371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑛 ∈ β„• ∧ π‘š ∈ ((𝑛 + 1)...𝑑)) β†’ 𝑛 < π‘š)
410409adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑛 ∈ β„• ∧ π‘š ∈ ((𝑛 + 1)...𝑑)) ∧ 𝑧 = π‘š) β†’ 𝑛 < π‘š)
411403, 405ltnled 11358 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑛 ∈ β„• ∧ π‘š ∈ ((𝑛 + 1)...𝑑)) β†’ (𝑛 < π‘š ↔ Β¬ π‘š ≀ 𝑛))
412 breq1 5141 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (π‘š = 𝑧 β†’ (π‘š ≀ 𝑛 ↔ 𝑧 ≀ 𝑛))
413412equcoms 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑧 = π‘š β†’ (π‘š ≀ 𝑛 ↔ 𝑧 ≀ 𝑛))
414413notbid 318 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑧 = π‘š β†’ (Β¬ π‘š ≀ 𝑛 ↔ Β¬ 𝑧 ≀ 𝑛))
415411, 414sylan9bb 509 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑛 ∈ β„• ∧ π‘š ∈ ((𝑛 + 1)...𝑑)) ∧ 𝑧 = π‘š) β†’ (𝑛 < π‘š ↔ Β¬ 𝑧 ≀ 𝑛))
416410, 415mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑛 ∈ β„• ∧ π‘š ∈ ((𝑛 + 1)...𝑑)) ∧ 𝑧 = π‘š) β†’ Β¬ 𝑧 ≀ 𝑛)
417 elfzle2 13502 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑧 ∈ (1...𝑛) β†’ 𝑧 ≀ 𝑛)
418416, 417nsyl 140 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑛 ∈ β„• ∧ π‘š ∈ ((𝑛 + 1)...𝑑)) ∧ 𝑧 = π‘š) β†’ Β¬ 𝑧 ∈ (1...𝑛))
419418iffalsed 4531 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑛 ∈ β„• ∧ π‘š ∈ ((𝑛 + 1)...𝑑)) ∧ 𝑧 = π‘š) β†’ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩) = ⟨0, 0⟩)
420386adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑛 ∈ β„• ∧ π‘š ∈ ((𝑛 + 1)...𝑑)) β†’ π‘š ∈ β„€)
421 0red 11214 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑛 ∈ β„• ∧ π‘š ∈ ((𝑛 + 1)...𝑑)) β†’ 0 ∈ ℝ)
422393adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑛 ∈ β„• ∧ π‘š ∈ ((𝑛 + 1)...𝑑)) β†’ 0 < (𝑛 + 1))
423421, 404, 405, 422, 408ltletrd 11371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑛 ∈ β„• ∧ π‘š ∈ ((𝑛 + 1)...𝑑)) β†’ 0 < π‘š)
424420, 423, 398sylanbrc 582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑛 ∈ β„• ∧ π‘š ∈ ((𝑛 + 1)...𝑑)) β†’ π‘š ∈ β„•)
425241a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑛 ∈ β„• ∧ π‘š ∈ ((𝑛 + 1)...𝑑)) β†’ ⟨0, 0⟩ ∈ V)
426401, 419, 424, 425fvmptd 6995 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑛 ∈ β„• ∧ π‘š ∈ ((𝑛 + 1)...𝑑)) β†’ ((𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))β€˜π‘š) = ⟨0, 0⟩)
427426ad4ant14 749 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑛 ∈ β„• ∧ 𝑑 ∈ β„•) ∧ 𝑛 < 𝑑) ∧ π‘š ∈ ((𝑛 + 1)...𝑑)) β†’ ((𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))β€˜π‘š) = ⟨0, 0⟩)
428427fveq2d 6885 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑛 ∈ β„• ∧ 𝑑 ∈ β„•) ∧ 𝑛 < 𝑑) ∧ π‘š ∈ ((𝑛 + 1)...𝑑)) β†’ ((abs ∘ βˆ’ )β€˜((𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))β€˜π‘š)) = ((abs ∘ βˆ’ )β€˜βŸ¨0, 0⟩))
429400, 428eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑛 ∈ β„• ∧ 𝑑 ∈ β„•) ∧ 𝑛 < 𝑑) ∧ π‘š ∈ ((𝑛 + 1)...𝑑)) β†’ (((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)))β€˜π‘š) = ((abs ∘ βˆ’ )β€˜βŸ¨0, 0⟩))
430 fvco3 6980 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (( βˆ’ :(β„‚ Γ— β„‚)βŸΆβ„‚ ∧ ⟨0, 0⟩ ∈ (β„‚ Γ— β„‚)) β†’ ((abs ∘ βˆ’ )β€˜βŸ¨0, 0⟩) = (absβ€˜( βˆ’ β€˜βŸ¨0, 0⟩)))
431137, 347, 430mp2an 689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((abs ∘ βˆ’ )β€˜βŸ¨0, 0⟩) = (absβ€˜( βˆ’ β€˜βŸ¨0, 0⟩))
432 df-ov 7404 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (0 βˆ’ 0) = ( βˆ’ β€˜βŸ¨0, 0⟩)
433 0m0e0 12329 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (0 βˆ’ 0) = 0
434432, 433eqtr3i 2754 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ( βˆ’ β€˜βŸ¨0, 0⟩) = 0
435434fveq2i 6884 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (absβ€˜( βˆ’ β€˜βŸ¨0, 0⟩)) = (absβ€˜0)
436 abs0 15229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (absβ€˜0) = 0
437435, 436eqtri 2752 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (absβ€˜( βˆ’ β€˜βŸ¨0, 0⟩)) = 0
438431, 437eqtri 2752 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((abs ∘ βˆ’ )β€˜βŸ¨0, 0⟩) = 0
439429, 438eqtrdi 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑛 ∈ β„• ∧ 𝑑 ∈ β„•) ∧ 𝑛 < 𝑑) ∧ π‘š ∈ ((𝑛 + 1)...𝑑)) β†’ (((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)))β€˜π‘š) = 0)
440 elfzuz 13494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (π‘š ∈ ((𝑛 + 1)...𝑑) β†’ π‘š ∈ (β„€β‰₯β€˜(𝑛 + 1)))
441 c0ex 11205 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 0 ∈ V
442441fvconst2 7197 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (π‘š ∈ (β„€β‰₯β€˜(𝑛 + 1)) β†’ (((β„€β‰₯β€˜(𝑛 + 1)) Γ— {0})β€˜π‘š) = 0)
443440, 442syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (π‘š ∈ ((𝑛 + 1)...𝑑) β†’ (((β„€β‰₯β€˜(𝑛 + 1)) Γ— {0})β€˜π‘š) = 0)
444443adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑛 ∈ β„• ∧ 𝑑 ∈ β„•) ∧ 𝑛 < 𝑑) ∧ π‘š ∈ ((𝑛 + 1)...𝑑)) β†’ (((β„€β‰₯β€˜(𝑛 + 1)) Γ— {0})β€˜π‘š) = 0)
445439, 444eqtr4d 2767 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑛 ∈ β„• ∧ 𝑑 ∈ β„•) ∧ 𝑛 < 𝑑) ∧ π‘š ∈ ((𝑛 + 1)...𝑑)) β†’ (((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)))β€˜π‘š) = (((β„€β‰₯β€˜(𝑛 + 1)) Γ— {0})β€˜π‘š))
446378, 445seqfveq 13989 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ β„• ∧ 𝑑 ∈ β„•) ∧ 𝑛 < 𝑑) β†’ (seq(𝑛 + 1)( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))))β€˜π‘‘) = (seq(𝑛 + 1)( + , ((β„€β‰₯β€˜(𝑛 + 1)) Γ— {0}))β€˜π‘‘))
447 eqid 2724 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (β„€β‰₯β€˜(𝑛 + 1)) = (β„€β‰₯β€˜(𝑛 + 1))
448447ser0 14017 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑑 ∈ (β„€β‰₯β€˜(𝑛 + 1)) β†’ (seq(𝑛 + 1)( + , ((β„€β‰₯β€˜(𝑛 + 1)) Γ— {0}))β€˜π‘‘) = 0)
449378, 448syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ β„• ∧ 𝑑 ∈ β„•) ∧ 𝑛 < 𝑑) β†’ (seq(𝑛 + 1)( + , ((β„€β‰₯β€˜(𝑛 + 1)) Γ— {0}))β€˜π‘‘) = 0)
450446, 449eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ β„• ∧ 𝑑 ∈ β„•) ∧ 𝑛 < 𝑑) β†’ (seq(𝑛 + 1)( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))))β€˜π‘‘) = 0)
451450adantlll 715 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑛 < 𝑑) β†’ (seq(𝑛 + 1)( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))))β€˜π‘‘) = 0)
452385, 451oveq12d 7419 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑛 < 𝑑) β†’ ((seq1( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))))β€˜π‘›) + (seq(𝑛 + 1)( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))))β€˜π‘‘)) = ((seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›) + 0))
453172ffvelcdmda 7076 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ π‘š ∈ β„•) β†’ (((abs ∘ βˆ’ ) ∘ 𝑓)β€˜π‘š) ∈ ℝ)
454326, 453sylan2 592 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ π‘š ∈ (1...𝑛)) β†’ (((abs ∘ βˆ’ ) ∘ 𝑓)β€˜π‘š) ∈ ℝ)
455454adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ π‘š ∈ (1...𝑛)) β†’ (((abs ∘ βˆ’ ) ∘ 𝑓)β€˜π‘š) ∈ ℝ)
456 readdcl 11189 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((π‘š ∈ ℝ ∧ 𝑣 ∈ ℝ) β†’ (π‘š + 𝑣) ∈ ℝ)
457456adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ (π‘š ∈ ℝ ∧ 𝑣 ∈ ℝ)) β†’ (π‘š + 𝑣) ∈ ℝ)
458314, 455, 457seqcl 13985 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) β†’ (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›) ∈ ℝ)
459458ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑛 < 𝑑) β†’ (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›) ∈ ℝ)
460459recnd 11239 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑛 < 𝑑) β†’ (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›) ∈ β„‚)
461460addridd 11411 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑛 < 𝑑) β†’ ((seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›) + 0) = (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›))
462452, 461eqtrd 2764 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑛 < 𝑑) β†’ ((seq1( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))))β€˜π‘›) + (seq(𝑛 + 1)( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))))β€˜π‘‘)) = (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›))
463384, 462eqtrd 2764 . . . . . . . . . . . . . . . . . . . 20 ((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑛 < 𝑑) β†’ (seq1( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))))β€˜π‘‘) = (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›))
464453ad5ant15 756 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑛 < 𝑑) ∧ π‘š ∈ β„•) β†’ (((abs ∘ βˆ’ ) ∘ 𝑓)β€˜π‘š) ∈ ℝ)
465326, 464sylan2 592 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑛 < 𝑑) ∧ π‘š ∈ (1...𝑛)) β†’ (((abs ∘ βˆ’ ) ∘ 𝑓)β€˜π‘š) ∈ ℝ)
466380, 465, 364seqcl 13985 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑛 < 𝑑) β†’ (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›) ∈ ℝ)
467466leidd 11777 . . . . . . . . . . . . . . . . . . . 20 ((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑛 < 𝑑) β†’ (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›) ≀ (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›))
468463, 467eqbrtrd 5160 . . . . . . . . . . . . . . . . . . 19 ((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑛 < 𝑑) β†’ (seq1( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))))β€˜π‘‘) ≀ (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›))
469 elnnuz 12863 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 ∈ β„• ↔ 𝑑 ∈ (β„€β‰₯β€˜1))
470469biimpi 215 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 ∈ β„• β†’ 𝑑 ∈ (β„€β‰₯β€˜1))
471470ad2antlr 724 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑑 ≀ 𝑛) β†’ 𝑑 ∈ (β„€β‰₯β€˜1))
472 eqidd 2725 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑑 ≀ 𝑛) ∧ π‘š ∈ (1...𝑑)) β†’ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)) = (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)))
473 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑑 ≀ 𝑛) ∧ π‘š ∈ (1...𝑑)) ∧ 𝑧 = π‘š) β†’ 𝑧 = π‘š)
474 elfzle1 13501 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (π‘š ∈ (1...𝑑) β†’ 1 ≀ π‘š)
475474adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑛 ∈ β„• ∧ 𝑑 ∈ β„•) ∧ 𝑑 ≀ 𝑛) ∧ π‘š ∈ (1...𝑑)) β†’ 1 ≀ π‘š)
476382nnred 12224 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (π‘š ∈ (1...𝑑) β†’ π‘š ∈ ℝ)
477476adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑛 ∈ β„• ∧ 𝑑 ∈ β„•) ∧ 𝑑 ≀ 𝑛) ∧ π‘š ∈ (1...𝑑)) β†’ π‘š ∈ ℝ)
478 nnre 12216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑑 ∈ β„• β†’ 𝑑 ∈ ℝ)
479478ad3antlr 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑛 ∈ β„• ∧ 𝑑 ∈ β„•) ∧ 𝑑 ≀ 𝑛) ∧ π‘š ∈ (1...𝑑)) β†’ 𝑑 ∈ ℝ)
480402ad3antrrr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑛 ∈ β„• ∧ 𝑑 ∈ β„•) ∧ 𝑑 ≀ 𝑛) ∧ π‘š ∈ (1...𝑑)) β†’ 𝑛 ∈ ℝ)
481 elfzle2 13502 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (π‘š ∈ (1...𝑑) β†’ π‘š ≀ 𝑑)
482481adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑛 ∈ β„• ∧ 𝑑 ∈ β„•) ∧ 𝑑 ≀ 𝑛) ∧ π‘š ∈ (1...𝑑)) β†’ π‘š ≀ 𝑑)
483 simplr 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑛 ∈ β„• ∧ 𝑑 ∈ β„•) ∧ 𝑑 ≀ 𝑛) ∧ π‘š ∈ (1...𝑑)) β†’ 𝑑 ≀ 𝑛)
484477, 479, 480, 482, 483letrd 11368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑛 ∈ β„• ∧ 𝑑 ∈ β„•) ∧ 𝑑 ≀ 𝑛) ∧ π‘š ∈ (1...𝑑)) β†’ π‘š ≀ 𝑛)
485 elfzelz 13498 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (π‘š ∈ (1...𝑑) β†’ π‘š ∈ β„€)
486278ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑛 ∈ β„• ∧ 𝑑 ∈ β„•) ∧ 𝑑 ≀ 𝑛) β†’ 𝑛 ∈ β„€)
487 elfz 13487 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((π‘š ∈ β„€ ∧ 1 ∈ β„€ ∧ 𝑛 ∈ β„€) β†’ (π‘š ∈ (1...𝑛) ↔ (1 ≀ π‘š ∧ π‘š ≀ 𝑛)))
488174, 487mp3an2 1445 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((π‘š ∈ β„€ ∧ 𝑛 ∈ β„€) β†’ (π‘š ∈ (1...𝑛) ↔ (1 ≀ π‘š ∧ π‘š ≀ 𝑛)))
489485, 486, 488syl2anr 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑛 ∈ β„• ∧ 𝑑 ∈ β„•) ∧ 𝑑 ≀ 𝑛) ∧ π‘š ∈ (1...𝑑)) β†’ (π‘š ∈ (1...𝑛) ↔ (1 ≀ π‘š ∧ π‘š ≀ 𝑛)))
490475, 484, 489mpbir2and 710 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑛 ∈ β„• ∧ 𝑑 ∈ β„•) ∧ 𝑑 ≀ 𝑛) ∧ π‘š ∈ (1...𝑑)) β†’ π‘š ∈ (1...𝑛))
491490ad5ant2345 1367 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑑 ≀ 𝑛) ∧ π‘š ∈ (1...𝑑)) β†’ π‘š ∈ (1...𝑛))
492491adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑑 ≀ 𝑛) ∧ π‘š ∈ (1...𝑑)) ∧ 𝑧 = π‘š) β†’ π‘š ∈ (1...𝑛))
493473, 492eqeltrd 2825 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑑 ≀ 𝑛) ∧ π‘š ∈ (1...𝑑)) ∧ 𝑧 = π‘š) β†’ 𝑧 ∈ (1...𝑛))
494 iftrue 4526 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ (1...𝑛) β†’ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩) = (π‘“β€˜π‘§))
495493, 494syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑑 ≀ 𝑛) ∧ π‘š ∈ (1...𝑑)) ∧ 𝑧 = π‘š) β†’ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩) = (π‘“β€˜π‘§))
496237adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑑 ≀ 𝑛) ∧ π‘š ∈ (1...𝑑)) ∧ 𝑧 = π‘š) β†’ (π‘“β€˜π‘§) = (π‘“β€˜π‘š))
497495, 496eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑑 ≀ 𝑛) ∧ π‘š ∈ (1...𝑑)) ∧ 𝑧 = π‘š) β†’ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩) = (π‘“β€˜π‘š))
498382adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑑 ≀ 𝑛) ∧ π‘š ∈ (1...𝑑)) β†’ π‘š ∈ β„•)
499240a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑑 ≀ 𝑛) ∧ π‘š ∈ (1...𝑑)) β†’ (π‘“β€˜π‘š) ∈ V)
500472, 497, 498, 499fvmptd 6995 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑑 ≀ 𝑛) ∧ π‘š ∈ (1...𝑑)) β†’ ((𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))β€˜π‘š) = (π‘“β€˜π‘š))
501500fveq2d 6885 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑑 ≀ 𝑛) ∧ π‘š ∈ (1...𝑑)) β†’ ((abs ∘ βˆ’ )β€˜((𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))β€˜π‘š)) = ((abs ∘ βˆ’ )β€˜(π‘“β€˜π‘š)))
502333, 382, 334sylancr 586 . . . . . . . . . . . . . . . . . . . . . . 23 (π‘š ∈ (1...𝑑) β†’ (((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)))β€˜π‘š) = ((abs ∘ βˆ’ )β€˜((𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))β€˜π‘š)))
503502adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑑 ≀ 𝑛) ∧ π‘š ∈ (1...𝑑)) β†’ (((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)))β€˜π‘š) = ((abs ∘ βˆ’ )β€˜((𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))β€˜π‘š)))
504 simplll 772 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑑 ≀ 𝑛) β†’ 𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)})
505 fvco3 6980 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ π‘š ∈ β„•) β†’ (((abs ∘ βˆ’ ) ∘ 𝑓)β€˜π‘š) = ((abs ∘ βˆ’ )β€˜(π‘“β€˜π‘š)))
506504, 382, 505syl2an 595 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑑 ≀ 𝑛) ∧ π‘š ∈ (1...𝑑)) β†’ (((abs ∘ βˆ’ ) ∘ 𝑓)β€˜π‘š) = ((abs ∘ βˆ’ )β€˜(π‘“β€˜π‘š)))
507501, 503, 5063eqtr4d 2774 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑑 ≀ 𝑛) ∧ π‘š ∈ (1...𝑑)) β†’ (((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)))β€˜π‘š) = (((abs ∘ βˆ’ ) ∘ 𝑓)β€˜π‘š))
508471, 507seqfveq 13989 . . . . . . . . . . . . . . . . . . . 20 ((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑑 ≀ 𝑛) β†’ (seq1( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))))β€˜π‘‘) = (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘‘))
509 eluz 12833 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑑 ∈ β„€ ∧ 𝑛 ∈ β„€) β†’ (𝑛 ∈ (β„€β‰₯β€˜π‘‘) ↔ 𝑑 ≀ 𝑛))
510374, 278, 509syl2anr 596 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ β„• ∧ 𝑑 ∈ β„•) β†’ (𝑛 ∈ (β„€β‰₯β€˜π‘‘) ↔ 𝑑 ≀ 𝑛))
511510biimpar 477 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ β„• ∧ 𝑑 ∈ β„•) ∧ 𝑑 ≀ 𝑛) β†’ 𝑛 ∈ (β„€β‰₯β€˜π‘‘))
512511adantlll 715 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑑 ≀ 𝑛) β†’ 𝑛 ∈ (β„€β‰₯β€˜π‘‘))
513504, 326, 453syl2an 595 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑑 ≀ 𝑛) ∧ π‘š ∈ (1...𝑛)) β†’ (((abs ∘ βˆ’ ) ∘ 𝑓)β€˜π‘š) ∈ ℝ)
514 elfzelz 13498 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (π‘š ∈ ((𝑑 + 1)...𝑛) β†’ π‘š ∈ β„€)
515514adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ β„• ∧ π‘š ∈ ((𝑑 + 1)...𝑛)) β†’ π‘š ∈ β„€)
516 0red 11214 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ β„• ∧ π‘š ∈ ((𝑑 + 1)...𝑛)) β†’ 0 ∈ ℝ)
517 peano2nn 12221 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑑 ∈ β„• β†’ (𝑑 + 1) ∈ β„•)
518517nnred 12224 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑑 ∈ β„• β†’ (𝑑 + 1) ∈ ℝ)
519518adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ β„• ∧ π‘š ∈ ((𝑑 + 1)...𝑛)) β†’ (𝑑 + 1) ∈ ℝ)
520514zred 12663 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (π‘š ∈ ((𝑑 + 1)...𝑛) β†’ π‘š ∈ ℝ)
521520adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ β„• ∧ π‘š ∈ ((𝑑 + 1)...𝑛)) β†’ π‘š ∈ ℝ)
522517nngt0d 12258 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑑 ∈ β„• β†’ 0 < (𝑑 + 1))
523522adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ β„• ∧ π‘š ∈ ((𝑑 + 1)...𝑛)) β†’ 0 < (𝑑 + 1))
524 elfzle1 13501 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (π‘š ∈ ((𝑑 + 1)...𝑛) β†’ (𝑑 + 1) ≀ π‘š)
525524adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 ∈ β„• ∧ π‘š ∈ ((𝑑 + 1)...𝑛)) β†’ (𝑑 + 1) ≀ π‘š)
526516, 519, 521, 523, 525ltletrd 11371 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 ∈ β„• ∧ π‘š ∈ ((𝑑 + 1)...𝑛)) β†’ 0 < π‘š)
527515, 526, 398sylanbrc 582 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑑 ∈ β„• ∧ π‘š ∈ ((𝑑 + 1)...𝑛)) β†’ π‘š ∈ β„•)
528527adantlr 712 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑑 ∈ β„• ∧ 𝑑 ≀ 𝑛) ∧ π‘š ∈ ((𝑑 + 1)...𝑛)) β†’ π‘š ∈ β„•)
529528adantlll 715 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑑 ≀ 𝑛) ∧ π‘š ∈ ((𝑑 + 1)...𝑛)) β†’ π‘š ∈ β„•)
530170ffvelcdmda 7076 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ π‘š ∈ β„•) β†’ (π‘“β€˜π‘š) ∈ (β„‚ Γ— β„‚))
531 ffvelcdm 7073 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (( βˆ’ :(β„‚ Γ— β„‚)βŸΆβ„‚ ∧ (π‘“β€˜π‘š) ∈ (β„‚ Γ— β„‚)) β†’ ( βˆ’ β€˜(π‘“β€˜π‘š)) ∈ β„‚)
532137, 530, 531sylancr 586 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ π‘š ∈ β„•) β†’ ( βˆ’ β€˜(π‘“β€˜π‘š)) ∈ β„‚)
533532absge0d 15388 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ π‘š ∈ β„•) β†’ 0 ≀ (absβ€˜( βˆ’ β€˜(π‘“β€˜π‘š))))
534 fvco3 6980 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (( βˆ’ :(β„‚ Γ— β„‚)βŸΆβ„‚ ∧ (π‘“β€˜π‘š) ∈ (β„‚ Γ— β„‚)) β†’ ((abs ∘ βˆ’ )β€˜(π‘“β€˜π‘š)) = (absβ€˜( βˆ’ β€˜(π‘“β€˜π‘š))))
535137, 530, 534sylancr 586 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ π‘š ∈ β„•) β†’ ((abs ∘ βˆ’ )β€˜(π‘“β€˜π‘š)) = (absβ€˜( βˆ’ β€˜(π‘“β€˜π‘š))))
536505, 535eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ π‘š ∈ β„•) β†’ (((abs ∘ βˆ’ ) ∘ 𝑓)β€˜π‘š) = (absβ€˜( βˆ’ β€˜(π‘“β€˜π‘š))))
537533, 536breqtrrd 5166 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ π‘š ∈ β„•) β†’ 0 ≀ (((abs ∘ βˆ’ ) ∘ 𝑓)β€˜π‘š))
538537ad5ant15 756 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑑 ≀ 𝑛) ∧ π‘š ∈ β„•) β†’ 0 ≀ (((abs ∘ βˆ’ ) ∘ 𝑓)β€˜π‘š))
539529, 538syldan 590 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑑 ≀ 𝑛) ∧ π‘š ∈ ((𝑑 + 1)...𝑛)) β†’ 0 ≀ (((abs ∘ βˆ’ ) ∘ 𝑓)β€˜π‘š))
540471, 512, 513, 539sermono 13997 . . . . . . . . . . . . . . . . . . . 20 ((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑑 ≀ 𝑛) β†’ (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘‘) ≀ (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›))
541508, 540eqbrtrd 5160 . . . . . . . . . . . . . . . . . . 19 ((((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) ∧ 𝑑 ≀ 𝑛) β†’ (seq1( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))))β€˜π‘‘) ≀ (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›))
542402ad2antlr 724 . . . . . . . . . . . . . . . . . . 19 (((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) β†’ 𝑛 ∈ ℝ)
543478adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) β†’ 𝑑 ∈ ℝ)
544468, 541, 542, 543ltlecasei 11319 . . . . . . . . . . . . . . . . . 18 (((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ 𝑑 ∈ β„•) β†’ (seq1( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))))β€˜π‘‘) ≀ (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›))
545544ralrimiva 3138 . . . . . . . . . . . . . . . . 17 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) β†’ βˆ€π‘‘ ∈ β„• (seq1( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))))β€˜π‘‘) ≀ (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›))
546 breq1 5141 . . . . . . . . . . . . . . . . . . . 20 (π‘š = (seq1( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))))β€˜π‘‘) β†’ (π‘š ≀ (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›) ↔ (seq1( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))))β€˜π‘‘) ≀ (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›)))
547546ralrn 7079 . . . . . . . . . . . . . . . . . . 19 (seq1( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)))) Fn β„• β†’ (βˆ€π‘š ∈ ran seq1( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))))π‘š ≀ (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›) ↔ βˆ€π‘‘ ∈ β„• (seq1( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))))β€˜π‘‘) ≀ (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›)))
548355, 547syl 17 . . . . . . . . . . . . . . . . . 18 (𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ (βˆ€π‘š ∈ ran seq1( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))))π‘š ≀ (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›) ↔ βˆ€π‘‘ ∈ β„• (seq1( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))))β€˜π‘‘) ≀ (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›)))
549548adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) β†’ (βˆ€π‘š ∈ ran seq1( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))))π‘š ≀ (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›) ↔ βˆ€π‘‘ ∈ β„• (seq1( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))))β€˜π‘‘) ≀ (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›)))
550545, 549mpbird 257 . . . . . . . . . . . . . . . 16 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) β†’ βˆ€π‘š ∈ ran seq1( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))))π‘š ≀ (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›))
551550r19.21bi 3240 . . . . . . . . . . . . . . 15 (((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ π‘š ∈ ran seq1( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))))) β†’ π‘š ≀ (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›))
552361, 362, 551lensymd 11362 . . . . . . . . . . . . . 14 (((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) ∧ π‘š ∈ ran seq1( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩))))) β†’ Β¬ (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›) < π‘š)
553311, 322, 358, 552supmax 9458 . . . . . . . . . . . . 13 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) β†’ sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)))), ℝ*, < ) = (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›))
55452, 553sylan 579 . . . . . . . . . . . 12 ((𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) β†’ sup(ran seq1( + , ((abs ∘ βˆ’ ) ∘ (𝑧 ∈ β„• ↦ if(𝑧 ∈ (1...𝑛), (π‘“β€˜π‘§), ⟨0, 0⟩)))), ℝ*, < ) = (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›))
555255, 309, 5543eqtr3rd 2773 . . . . . . . . . . 11 ((𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) β†’ (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›) = (vol*β€˜(βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§)) βˆͺ βˆͺ 𝑧 ∈ (β„€β‰₯β€˜(𝑛 + 1))([,]β€˜βŸ¨0, 0⟩))))
556 elfznn 13527 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (1...𝑛) β†’ 𝑧 ∈ β„•)
557164, 65sselid 3972 . . . . . . . . . . . . . . . . 17 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑧 ∈ β„•) β†’ (π‘“β€˜π‘§) ∈ (ℝ Γ— ℝ))
558 1st2nd2 8007 . . . . . . . . . . . . . . . . . . . 20 ((π‘“β€˜π‘§) ∈ (ℝ Γ— ℝ) β†’ (π‘“β€˜π‘§) = ⟨(1st β€˜(π‘“β€˜π‘§)), (2nd β€˜(π‘“β€˜π‘§))⟩)
559558fveq2d 6885 . . . . . . . . . . . . . . . . . . 19 ((π‘“β€˜π‘§) ∈ (ℝ Γ— ℝ) β†’ ([,]β€˜(π‘“β€˜π‘§)) = ([,]β€˜βŸ¨(1st β€˜(π‘“β€˜π‘§)), (2nd β€˜(π‘“β€˜π‘§))⟩))
560 df-ov 7404 . . . . . . . . . . . . . . . . . . 19 ((1st β€˜(π‘“β€˜π‘§))[,](2nd β€˜(π‘“β€˜π‘§))) = ([,]β€˜βŸ¨(1st β€˜(π‘“β€˜π‘§)), (2nd β€˜(π‘“β€˜π‘§))⟩)
561559, 560eqtr4di 2782 . . . . . . . . . . . . . . . . . 18 ((π‘“β€˜π‘§) ∈ (ℝ Γ— ℝ) β†’ ([,]β€˜(π‘“β€˜π‘§)) = ((1st β€˜(π‘“β€˜π‘§))[,](2nd β€˜(π‘“β€˜π‘§))))
562 xp1st 8000 . . . . . . . . . . . . . . . . . . 19 ((π‘“β€˜π‘§) ∈ (ℝ Γ— ℝ) β†’ (1st β€˜(π‘“β€˜π‘§)) ∈ ℝ)
563 xp2nd 8001 . . . . . . . . . . . . . . . . . . 19 ((π‘“β€˜π‘§) ∈ (ℝ Γ— ℝ) β†’ (2nd β€˜(π‘“β€˜π‘§)) ∈ ℝ)
564 iccssre 13403 . . . . . . . . . . . . . . . . . . 19 (((1st β€˜(π‘“β€˜π‘§)) ∈ ℝ ∧ (2nd β€˜(π‘“β€˜π‘§)) ∈ ℝ) β†’ ((1st β€˜(π‘“β€˜π‘§))[,](2nd β€˜(π‘“β€˜π‘§))) βŠ† ℝ)
565562, 563, 564syl2anc 583 . . . . . . . . . . . . . . . . . 18 ((π‘“β€˜π‘§) ∈ (ℝ Γ— ℝ) β†’ ((1st β€˜(π‘“β€˜π‘§))[,](2nd β€˜(π‘“β€˜π‘§))) βŠ† ℝ)
566561, 565eqsstrd 4012 . . . . . . . . . . . . . . . . 17 ((π‘“β€˜π‘§) ∈ (ℝ Γ— ℝ) β†’ ([,]β€˜(π‘“β€˜π‘§)) βŠ† ℝ)
567557, 566syl 17 . . . . . . . . . . . . . . . 16 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑧 ∈ β„•) β†’ ([,]β€˜(π‘“β€˜π‘§)) βŠ† ℝ)
56852, 556, 567syl2an 595 . . . . . . . . . . . . . . 15 ((𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑧 ∈ (1...𝑛)) β†’ ([,]β€˜(π‘“β€˜π‘§)) βŠ† ℝ)
569568ralrimiva 3138 . . . . . . . . . . . . . 14 (𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ βˆ€π‘§ ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§)) βŠ† ℝ)
570 iunss 5038 . . . . . . . . . . . . . 14 (βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§)) βŠ† ℝ ↔ βˆ€π‘§ ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§)) βŠ† ℝ)
571569, 570sylibr 233 . . . . . . . . . . . . 13 (𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§)) βŠ† ℝ)
572571adantr 480 . . . . . . . . . . . 12 ((𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) β†’ βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§)) βŠ† ℝ)
573 uzid 12834 . . . . . . . . . . . . . . . 16 ((𝑛 + 1) ∈ β„€ β†’ (𝑛 + 1) ∈ (β„€β‰₯β€˜(𝑛 + 1)))
574 ne0i 4326 . . . . . . . . . . . . . . . 16 ((𝑛 + 1) ∈ (β„€β‰₯β€˜(𝑛 + 1)) β†’ (β„€β‰₯β€˜(𝑛 + 1)) β‰  βˆ…)
575 iunconst 4996 . . . . . . . . . . . . . . . 16 ((β„€β‰₯β€˜(𝑛 + 1)) β‰  βˆ… β†’ βˆͺ 𝑧 ∈ (β„€β‰₯β€˜(𝑛 + 1))([,]β€˜βŸ¨0, 0⟩) = ([,]β€˜βŸ¨0, 0⟩))
576373, 573, 574, 5754syl 19 . . . . . . . . . . . . . . 15 (𝑛 ∈ β„• β†’ βˆͺ 𝑧 ∈ (β„€β‰₯β€˜(𝑛 + 1))([,]β€˜βŸ¨0, 0⟩) = ([,]β€˜βŸ¨0, 0⟩))
577 iccid 13366 . . . . . . . . . . . . . . . . 17 (0 ∈ ℝ* β†’ (0[,]0) = {0})
578259, 577ax-mp 5 . . . . . . . . . . . . . . . 16 (0[,]0) = {0}
579 df-ov 7404 . . . . . . . . . . . . . . . 16 (0[,]0) = ([,]β€˜βŸ¨0, 0⟩)
580578, 579eqtr3i 2754 . . . . . . . . . . . . . . 15 {0} = ([,]β€˜βŸ¨0, 0⟩)
581576, 580eqtr4di 2782 . . . . . . . . . . . . . 14 (𝑛 ∈ β„• β†’ βˆͺ 𝑧 ∈ (β„€β‰₯β€˜(𝑛 + 1))([,]β€˜βŸ¨0, 0⟩) = {0})
582 snssi 4803 . . . . . . . . . . . . . . 15 (0 ∈ ℝ β†’ {0} βŠ† ℝ)
583199, 582ax-mp 5 . . . . . . . . . . . . . 14 {0} βŠ† ℝ
584581, 583eqsstrdi 4028 . . . . . . . . . . . . 13 (𝑛 ∈ β„• β†’ βˆͺ 𝑧 ∈ (β„€β‰₯β€˜(𝑛 + 1))([,]β€˜βŸ¨0, 0⟩) βŠ† ℝ)
585584adantl 481 . . . . . . . . . . . 12 ((𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) β†’ βˆͺ 𝑧 ∈ (β„€β‰₯β€˜(𝑛 + 1))([,]β€˜βŸ¨0, 0⟩) βŠ† ℝ)
586581fveq2d 6885 . . . . . . . . . . . . . 14 (𝑛 ∈ β„• β†’ (vol*β€˜βˆͺ 𝑧 ∈ (β„€β‰₯β€˜(𝑛 + 1))([,]β€˜βŸ¨0, 0⟩)) = (vol*β€˜{0}))
587586adantl 481 . . . . . . . . . . . . 13 ((𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) β†’ (vol*β€˜βˆͺ 𝑧 ∈ (β„€β‰₯β€˜(𝑛 + 1))([,]β€˜βŸ¨0, 0⟩)) = (vol*β€˜{0}))
588 ovolsn 25346 . . . . . . . . . . . . . 14 (0 ∈ ℝ β†’ (vol*β€˜{0}) = 0)
589199, 588ax-mp 5 . . . . . . . . . . . . 13 (vol*β€˜{0}) = 0
590587, 589eqtrdi 2780 . . . . . . . . . . . 12 ((𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) β†’ (vol*β€˜βˆͺ 𝑧 ∈ (β„€β‰₯β€˜(𝑛 + 1))([,]β€˜βŸ¨0, 0⟩)) = 0)
591 ovolunnul 25351 . . . . . . . . . . . 12 ((βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§)) βŠ† ℝ ∧ βˆͺ 𝑧 ∈ (β„€β‰₯β€˜(𝑛 + 1))([,]β€˜βŸ¨0, 0⟩) βŠ† ℝ ∧ (vol*β€˜βˆͺ 𝑧 ∈ (β„€β‰₯β€˜(𝑛 + 1))([,]β€˜βŸ¨0, 0⟩)) = 0) β†’ (vol*β€˜(βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§)) βˆͺ βˆͺ 𝑧 ∈ (β„€β‰₯β€˜(𝑛 + 1))([,]β€˜βŸ¨0, 0⟩))) = (vol*β€˜βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§))))
592572, 585, 590, 591syl3anc 1368 . . . . . . . . . . 11 ((𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) β†’ (vol*β€˜(βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§)) βˆͺ βˆͺ 𝑧 ∈ (β„€β‰₯β€˜(𝑛 + 1))([,]β€˜βŸ¨0, 0⟩))) = (vol*β€˜βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§))))
593555, 592eqtrd 2764 . . . . . . . . . 10 ((𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) β†’ (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›) = (vol*β€˜βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§))))
594593breq2d 5150 . . . . . . . . 9 ((𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) β†’ (𝑀 < (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›) ↔ 𝑀 < (vol*β€˜βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§)))))
595594biimpd 228 . . . . . . . 8 ((𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑛 ∈ β„•) β†’ (𝑀 < (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›) β†’ 𝑀 < (vol*β€˜βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§)))))
596595reximdva 3160 . . . . . . 7 (𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ (βˆƒπ‘› ∈ β„• 𝑀 < (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›) β†’ βˆƒπ‘› ∈ β„• 𝑀 < (vol*β€˜βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§)))))
597596adantl 481 . . . . . 6 (((𝐴 ∈ (topGenβ€˜ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*β€˜π΄)) ∧ 𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)}) β†’ (βˆƒπ‘› ∈ β„• 𝑀 < (seq1( + , ((abs ∘ βˆ’ ) ∘ 𝑓))β€˜π‘›) β†’ βˆƒπ‘› ∈ β„• 𝑀 < (vol*β€˜βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§)))))
598194, 597mpd 15 . . . . 5 (((𝐴 ∈ (topGenβ€˜ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*β€˜π΄)) ∧ 𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)}) β†’ βˆƒπ‘› ∈ β„• 𝑀 < (vol*β€˜βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§))))
599 fzfi 13934 . . . . . . . . . 10 (1...𝑛) ∈ Fin
600 icccld 24605 . . . . . . . . . . . . . . 15 (((1st β€˜(π‘“β€˜π‘§)) ∈ ℝ ∧ (2nd β€˜(π‘“β€˜π‘§)) ∈ ℝ) β†’ ((1st β€˜(π‘“β€˜π‘§))[,](2nd β€˜(π‘“β€˜π‘§))) ∈ (Clsdβ€˜(topGenβ€˜ran (,))))
601562, 563, 600syl2anc 583 . . . . . . . . . . . . . 14 ((π‘“β€˜π‘§) ∈ (ℝ Γ— ℝ) β†’ ((1st β€˜(π‘“β€˜π‘§))[,](2nd β€˜(π‘“β€˜π‘§))) ∈ (Clsdβ€˜(topGenβ€˜ran (,))))
602561, 601eqeltrd 2825 . . . . . . . . . . . . 13 ((π‘“β€˜π‘§) ∈ (ℝ Γ— ℝ) β†’ ([,]β€˜(π‘“β€˜π‘§)) ∈ (Clsdβ€˜(topGenβ€˜ran (,))))
603557, 602syl 17 . . . . . . . . . . . 12 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑧 ∈ β„•) β†’ ([,]β€˜(π‘“β€˜π‘§)) ∈ (Clsdβ€˜(topGenβ€˜ran (,))))
604556, 603sylan2 592 . . . . . . . . . . 11 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑧 ∈ (1...𝑛)) β†’ ([,]β€˜(π‘“β€˜π‘§)) ∈ (Clsdβ€˜(topGenβ€˜ran (,))))
605604ralrimiva 3138 . . . . . . . . . 10 (𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ βˆ€π‘§ ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§)) ∈ (Clsdβ€˜(topGenβ€˜ran (,))))
606 uniretop 24601 . . . . . . . . . . 11 ℝ = βˆͺ (topGenβ€˜ran (,))
607606iuncld 22871 . . . . . . . . . 10 (((topGenβ€˜ran (,)) ∈ Top ∧ (1...𝑛) ∈ Fin ∧ βˆ€π‘§ ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§)) ∈ (Clsdβ€˜(topGenβ€˜ran (,)))) β†’ βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§)) ∈ (Clsdβ€˜(topGenβ€˜ran (,))))
6081, 599, 605, 607mp3an12i 1461 . . . . . . . . 9 (𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§)) ∈ (Clsdβ€˜(topGenβ€˜ran (,))))
609608adantr 480 . . . . . . . 8 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ (𝑛 ∈ β„• ∧ 𝑀 < (vol*β€˜βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§))))) β†’ βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§)) ∈ (Clsdβ€˜(topGenβ€˜ran (,))))
610 fveq2 6881 . . . . . . . . . . . . . . . 16 (𝑏 = (π‘“β€˜π‘§) β†’ ([,]β€˜π‘) = ([,]β€˜(π‘“β€˜π‘§)))
611610sseq1d 4005 . . . . . . . . . . . . . . 15 (𝑏 = (π‘“β€˜π‘§) β†’ (([,]β€˜π‘) βŠ† 𝐴 ↔ ([,]β€˜(π‘“β€˜π‘§)) βŠ† 𝐴))
612611elrab 3675 . . . . . . . . . . . . . 14 ((π‘“β€˜π‘§) ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ↔ ((π‘“β€˜π‘§) ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∧ ([,]β€˜(π‘“β€˜π‘§)) βŠ† 𝐴))
613612simprbi 496 . . . . . . . . . . . . 13 ((π‘“β€˜π‘§) ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} β†’ ([,]β€˜(π‘“β€˜π‘§)) βŠ† 𝐴)
61465, 73, 6133syl 18 . . . . . . . . . . . 12 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑧 ∈ β„•) β†’ ([,]β€˜(π‘“β€˜π‘§)) βŠ† 𝐴)
615556, 614sylan2 592 . . . . . . . . . . 11 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ 𝑧 ∈ (1...𝑛)) β†’ ([,]β€˜(π‘“β€˜π‘§)) βŠ† 𝐴)
616615ralrimiva 3138 . . . . . . . . . 10 (𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ βˆ€π‘§ ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§)) βŠ† 𝐴)
617 iunss 5038 . . . . . . . . . 10 (βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§)) βŠ† 𝐴 ↔ βˆ€π‘§ ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§)) βŠ† 𝐴)
618616, 617sylibr 233 . . . . . . . . 9 (𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} β†’ βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§)) βŠ† 𝐴)
619618adantr 480 . . . . . . . 8 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ (𝑛 ∈ β„• ∧ 𝑀 < (vol*β€˜βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§))))) β†’ βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§)) βŠ† 𝐴)
620 simprr 770 . . . . . . . 8 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ (𝑛 ∈ β„• ∧ 𝑀 < (vol*β€˜βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§))))) β†’ 𝑀 < (vol*β€˜βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§))))
621 sseq1 3999 . . . . . . . . . 10 (𝑠 = βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§)) β†’ (𝑠 βŠ† 𝐴 ↔ βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§)) βŠ† 𝐴))
622 fveq2 6881 . . . . . . . . . . 11 (𝑠 = βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§)) β†’ (vol*β€˜π‘ ) = (vol*β€˜βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§))))
623622breq2d 5150 . . . . . . . . . 10 (𝑠 = βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§)) β†’ (𝑀 < (vol*β€˜π‘ ) ↔ 𝑀 < (vol*β€˜βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§)))))
624621, 623anbi12d 630 . . . . . . . . 9 (𝑠 = βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§)) β†’ ((𝑠 βŠ† 𝐴 ∧ 𝑀 < (vol*β€˜π‘ )) ↔ (βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§)) βŠ† 𝐴 ∧ 𝑀 < (vol*β€˜βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§))))))
625624rspcev 3604 . . . . . . . 8 ((βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§)) ∈ (Clsdβ€˜(topGenβ€˜ran (,))) ∧ (βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§)) βŠ† 𝐴 ∧ 𝑀 < (vol*β€˜βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§))))) β†’ βˆƒπ‘  ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑠 βŠ† 𝐴 ∧ 𝑀 < (vol*β€˜π‘ )))
626609, 619, 620, 625syl12anc 834 . . . . . . 7 ((𝑓:β„•βŸΆ{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ (𝑛 ∈ β„• ∧ 𝑀 < (vol*β€˜βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§))))) β†’ βˆƒπ‘  ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑠 βŠ† 𝐴 ∧ 𝑀 < (vol*β€˜π‘ )))
62752, 626sylan 579 . . . . . 6 ((𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)} ∧ (𝑛 ∈ β„• ∧ 𝑀 < (vol*β€˜βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§))))) β†’ βˆƒπ‘  ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑠 βŠ† 𝐴 ∧ 𝑀 < (vol*β€˜π‘ )))
628627adantll 711 . . . . 5 ((((𝐴 ∈ (topGenβ€˜ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*β€˜π΄)) ∧ 𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)}) ∧ (𝑛 ∈ β„• ∧ 𝑀 < (vol*β€˜βˆͺ 𝑧 ∈ (1...𝑛)([,]β€˜(π‘“β€˜π‘§))))) β†’ βˆƒπ‘  ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑠 βŠ† 𝐴 ∧ 𝑀 < (vol*β€˜π‘ )))
629598, 628rexlimddv 3153 . . . 4 (((𝐴 ∈ (topGenβ€˜ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*β€˜π΄)) ∧ 𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)}) β†’ βˆƒπ‘  ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑠 βŠ† 𝐴 ∧ 𝑀 < (vol*β€˜π‘ )))
630629adantlr 712 . . 3 ((((𝐴 ∈ (topGenβ€˜ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*β€˜π΄)) ∧ 𝐴 β‰  βˆ…) ∧ 𝑓:ℕ–1-1-ontoβ†’{π‘Ž ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} ∣ βˆ€π‘ ∈ {𝑏 ∈ ran (π‘₯ ∈ β„€, 𝑦 ∈ β„•0 ↦ ⟨(π‘₯ / (2↑𝑦)), ((π‘₯ + 1) / (2↑𝑦))⟩) ∣ ([,]β€˜π‘) βŠ† 𝐴} (([,]β€˜π‘Ž) βŠ† ([,]β€˜π‘) β†’ π‘Ž = 𝑐)}) β†’ βˆƒπ‘  ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑠 βŠ† 𝐴 ∧ 𝑀 < (vol*β€˜π‘ )))
63117, 630exlimddv 1930 . 2 (((𝐴 ∈ (topGenβ€˜ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*β€˜π΄)) ∧ 𝐴 β‰  βˆ…) β†’ βˆƒπ‘  ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑠 βŠ† 𝐴 ∧ 𝑀 < (vol*β€˜π‘ )))
63215, 631pm2.61dane 3021 1 ((𝐴 ∈ (topGenβ€˜ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*β€˜π΄)) β†’ βˆƒπ‘  ∈ (Clsdβ€˜(topGenβ€˜ran (,)))(𝑠 βŠ† 𝐴 ∧ 𝑀 < (vol*β€˜π‘ )))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∨ wo 844   ∨ w3o 1083   ∧ w3a 1084   = wceq 1533  βˆƒwex 1773   ∈ wcel 2098   β‰  wne 2932  βˆ€wral 3053  βˆƒwrex 3062  {crab 3424  Vcvv 3466   βˆͺ cun 3938   ∩ cin 3939   βŠ† wss 3940  βˆ…c0 4314  ifcif 4520  π’« cpw 4594  {csn 4620  βŸ¨cop 4626  βˆͺ cuni 4899  βˆͺ ciun 4987  Disj wdisj 5103   class class class wbr 5138   ↦ cmpt 5221   Or wor 5577   Γ— cxp 5664  ran crn 5667   β€œ cima 5669   ∘ ccom 5670   Fn wfn 6528  βŸΆwf 6529  β€“1-1β†’wf1 6530  β€“ontoβ†’wfo 6531  β€“1-1-ontoβ†’wf1o 6532  β€˜cfv 6533  (class class class)co 7401   ∈ cmpo 7403  1st c1st 7966  2nd c2nd 7967  Fincfn 8935  supcsup 9431  β„‚cc 11104  β„cr 11105  0cc0 11106  1c1 11107   + caddc 11109  β„*cxr 11244   < clt 11245   ≀ cle 11246   βˆ’ cmin 11441   / cdiv 11868  β„•cn 12209  2c2 12264  β„•0cn0 12469  β„€cz 12555  β„€β‰₯cuz 12819  (,)cioo 13321  [,]cicc 13324  ...cfz 13481  ..^cfzo 13624  seqcseq 13963  β†‘cexp 14024  abscabs 15178  topGenctg 17382  Topctop 22717  Clsdccld 22842  vol*covol 25313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-iin 4990  df-disj 5104  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-oadd 8465  df-omul 8466  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-dju 9892  df-card 9930  df-acn 9933  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-n0 12470  df-z 12556  df-uz 12820  df-q 12930  df-rp 12972  df-xneg 13089  df-xadd 13090  df-xmul 13091  df-ioo 13325  df-ico 13327  df-icc 13328  df-fz 13482  df-fzo 13625  df-fl 13754  df-seq 13964  df-exp 14025  df-hash 14288  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-clim 15429  df-rlim 15430  df-sum 15630  df-rest 17367  df-topgen 17388  df-psmet 21220  df-xmet 21221  df-met 21222  df-bl 21223  df-mopn 21224  df-top 22718  df-topon 22735  df-bases 22771  df-cld 22845  df-cmp 23213  df-conn 23238  df-ovol 25315  df-vol 25316
This theorem is referenced by:  mblfinlem4  37018  ismblfin  37019
  Copyright terms: Public domain W3C validator