Mathbox for Brendan Leahy < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mblfinlem2 Structured version   Visualization version   GIF version

Theorem mblfinlem2 35044
 Description: Lemma for ismblfin 35047, effectively one direction of the same fact for open sets, made necessary by Viaclovsky's slightly different definition of outer measure. Note that unlike the main theorem, this holds for sets of infinite measure. (Contributed by Brendan Leahy, 21-Feb-2018.) (Revised by Brendan Leahy, 13-Jul-2018.)
Assertion
Ref Expression
mblfinlem2 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
Distinct variable groups:   𝐴,𝑠   𝑀,𝑠

Proof of Theorem mblfinlem2
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑚 𝑛 𝑝 𝑡 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 retop 23374 . . . 4 (topGen‘ran (,)) ∈ Top
2 0cld 21650 . . . 4 ((topGen‘ran (,)) ∈ Top → ∅ ∈ (Clsd‘(topGen‘ran (,))))
31, 2ax-mp 5 . . 3 ∅ ∈ (Clsd‘(topGen‘ran (,)))
4 simpl3 1190 . . . . 5 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝐴 = ∅) → 𝑀 < (vol*‘𝐴))
5 fveq2 6661 . . . . . 6 (𝐴 = ∅ → (vol*‘𝐴) = (vol*‘∅))
65adantl 485 . . . . 5 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝐴 = ∅) → (vol*‘𝐴) = (vol*‘∅))
74, 6breqtrd 5078 . . . 4 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝐴 = ∅) → 𝑀 < (vol*‘∅))
8 0ss 4333 . . . 4 ∅ ⊆ 𝐴
97, 8jctil 523 . . 3 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝐴 = ∅) → (∅ ⊆ 𝐴𝑀 < (vol*‘∅)))
10 sseq1 3978 . . . . 5 (𝑠 = ∅ → (𝑠𝐴 ↔ ∅ ⊆ 𝐴))
11 fveq2 6661 . . . . . 6 (𝑠 = ∅ → (vol*‘𝑠) = (vol*‘∅))
1211breq2d 5064 . . . . 5 (𝑠 = ∅ → (𝑀 < (vol*‘𝑠) ↔ 𝑀 < (vol*‘∅)))
1310, 12anbi12d 633 . . . 4 (𝑠 = ∅ → ((𝑠𝐴𝑀 < (vol*‘𝑠)) ↔ (∅ ⊆ 𝐴𝑀 < (vol*‘∅))))
1413rspcev 3609 . . 3 ((∅ ∈ (Clsd‘(topGen‘ran (,))) ∧ (∅ ⊆ 𝐴𝑀 < (vol*‘∅))) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
153, 9, 14sylancr 590 . 2 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝐴 = ∅) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
16 mblfinlem1 35043 . . . 4 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝐴 ≠ ∅) → ∃𝑓 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})
17163ad2antl1 1182 . . 3 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝐴 ≠ ∅) → ∃𝑓 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})
18 simpl3 1190 . . . . . . . . 9 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → 𝑀 < (vol*‘𝐴))
19 f1ofo 6613 . . . . . . . . . . . . . . 15 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 𝑓:ℕ–onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})
20 rnco2 6093 . . . . . . . . . . . . . . . . 17 ran ([,] ∘ 𝑓) = ([,] “ ran 𝑓)
21 forn 6584 . . . . . . . . . . . . . . . . . 18 (𝑓:ℕ–onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ran 𝑓 = {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})
2221imaeq2d 5916 . . . . . . . . . . . . . . . . 17 (𝑓:ℕ–onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ([,] “ ran 𝑓) = ([,] “ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}))
2320, 22syl5eq 2871 . . . . . . . . . . . . . . . 16 (𝑓:ℕ–onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ran ([,] ∘ 𝑓) = ([,] “ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}))
2423unieqd 4838 . . . . . . . . . . . . . . 15 (𝑓:ℕ–onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ran ([,] ∘ 𝑓) = ([,] “ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}))
2519, 24syl 17 . . . . . . . . . . . . . 14 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ran ([,] ∘ 𝑓) = ([,] “ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}))
2625adantl 485 . . . . . . . . . . . . 13 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ran ([,] ∘ 𝑓) = ([,] “ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}))
27 oveq1 7156 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑢 → (𝑥 / (2↑𝑦)) = (𝑢 / (2↑𝑦)))
28 oveq1 7156 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑢 → (𝑥 + 1) = (𝑢 + 1))
2928oveq1d 7164 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑢 → ((𝑥 + 1) / (2↑𝑦)) = ((𝑢 + 1) / (2↑𝑦)))
3027, 29opeq12d 4797 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑢 → ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ = ⟨(𝑢 / (2↑𝑦)), ((𝑢 + 1) / (2↑𝑦))⟩)
31 oveq2 7157 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑣 → (2↑𝑦) = (2↑𝑣))
3231oveq2d 7165 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑣 → (𝑢 / (2↑𝑦)) = (𝑢 / (2↑𝑣)))
3331oveq2d 7165 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑣 → ((𝑢 + 1) / (2↑𝑦)) = ((𝑢 + 1) / (2↑𝑣)))
3432, 33opeq12d 4797 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑣 → ⟨(𝑢 / (2↑𝑦)), ((𝑢 + 1) / (2↑𝑦))⟩ = ⟨(𝑢 / (2↑𝑣)), ((𝑢 + 1) / (2↑𝑣))⟩)
3530, 34cbvmpov 7242 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) = (𝑢 ∈ ℤ, 𝑣 ∈ ℕ0 ↦ ⟨(𝑢 / (2↑𝑣)), ((𝑢 + 1) / (2↑𝑣))⟩)
36 fveq2 6661 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑧 → ([,]‘𝑎) = ([,]‘𝑧))
3736sseq1d 3984 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑧 → (([,]‘𝑎) ⊆ ([,]‘𝑐) ↔ ([,]‘𝑧) ⊆ ([,]‘𝑐)))
38 eqeq1 2828 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑧 → (𝑎 = 𝑐𝑧 = 𝑐))
3937, 38imbi12d 348 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑧 → ((([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐) ↔ (([,]‘𝑧) ⊆ ([,]‘𝑐) → 𝑧 = 𝑐)))
4039ralbidv 3192 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑧 → (∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐) ↔ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑧) ⊆ ([,]‘𝑐) → 𝑧 = 𝑐)))
4140cbvrabv 3477 . . . . . . . . . . . . . . 15 {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} = {𝑧 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑧) ⊆ ([,]‘𝑐) → 𝑧 = 𝑐)}
42 ssrab2 4042 . . . . . . . . . . . . . . . 16 {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ⊆ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
4342a1i 11 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) → {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ⊆ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩))
4435, 41, 43dyadmbllem 24210 . . . . . . . . . . . . . 14 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) → ([,] “ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴}) = ([,] “ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}))
4544adantr 484 . . . . . . . . . . . . 13 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ([,] “ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴}) = ([,] “ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}))
4626, 45eqtr4d 2862 . . . . . . . . . . . 12 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ran ([,] ∘ 𝑓) = ([,] “ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴}))
47 opnmbllem0 35042 . . . . . . . . . . . . . 14 (𝐴 ∈ (topGen‘ran (,)) → ([,] “ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴}) = 𝐴)
48473ad2ant1 1130 . . . . . . . . . . . . 13 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) → ([,] “ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴}) = 𝐴)
4948adantr 484 . . . . . . . . . . . 12 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ([,] “ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴}) = 𝐴)
5046, 49eqtrd 2859 . . . . . . . . . . 11 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ran ([,] ∘ 𝑓) = 𝐴)
5150fveq2d 6665 . . . . . . . . . 10 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → (vol*‘ ran ([,] ∘ 𝑓)) = (vol*‘𝐴))
52 f1of 6606 . . . . . . . . . . . . 13 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})
53 ssrab2 4042 . . . . . . . . . . . . . 14 {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ⊆ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴}
5435dyadf 24202 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩):(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ))
55 frn 6509 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩):(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) → ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ⊆ ( ≤ ∩ (ℝ × ℝ)))
5654, 55ax-mp 5 . . . . . . . . . . . . . . 15 ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ⊆ ( ≤ ∩ (ℝ × ℝ))
5742, 56sstri 3962 . . . . . . . . . . . . . 14 {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ⊆ ( ≤ ∩ (ℝ × ℝ))
5853, 57sstri 3962 . . . . . . . . . . . . 13 {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ⊆ ( ≤ ∩ (ℝ × ℝ))
59 fss 6517 . . . . . . . . . . . . 13 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ⊆ ( ≤ ∩ (ℝ × ℝ))) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
6052, 58, 59sylancl 589 . . . . . . . . . . . 12 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
6153, 42sstri 3962 . . . . . . . . . . . . . . . . . . . 20 {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ⊆ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
62 ffvelrn 6840 . . . . . . . . . . . . . . . . . . . 20 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → (𝑓𝑚) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})
6361, 62sseldi 3951 . . . . . . . . . . . . . . . . . . 19 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → (𝑓𝑚) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩))
6463adantrr 716 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → (𝑓𝑚) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩))
65 ffvelrn 6840 . . . . . . . . . . . . . . . . . . . 20 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → (𝑓𝑧) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})
6661, 65sseldi 3951 . . . . . . . . . . . . . . . . . . 19 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → (𝑓𝑧) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩))
6766adantrl 715 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → (𝑓𝑧) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩))
6835dyaddisj 24207 . . . . . . . . . . . . . . . . . 18 (((𝑓𝑚) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∧ (𝑓𝑧) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)) → (([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚)) ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅))
6964, 67, 68syl2anc 587 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → (([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚)) ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅))
7052, 69sylan 583 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → (([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚)) ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅))
71 df-3or 1085 . . . . . . . . . . . . . . . 16 ((([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚)) ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅) ↔ ((([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚))) ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅))
7270, 71sylib 221 . . . . . . . . . . . . . . 15 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚))) ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅))
73 elrabi 3661 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓𝑧) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (𝑓𝑧) ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴})
74 fveq2 6661 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = (𝑓𝑚) → ([,]‘𝑎) = ([,]‘(𝑓𝑚)))
7574sseq1d 3984 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = (𝑓𝑚) → (([,]‘𝑎) ⊆ ([,]‘𝑐) ↔ ([,]‘(𝑓𝑚)) ⊆ ([,]‘𝑐)))
76 eqeq1 2828 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = (𝑓𝑚) → (𝑎 = 𝑐 ↔ (𝑓𝑚) = 𝑐))
7775, 76imbi12d 348 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 = (𝑓𝑚) → ((([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐) ↔ (([,]‘(𝑓𝑚)) ⊆ ([,]‘𝑐) → (𝑓𝑚) = 𝑐)))
7877ralbidv 3192 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = (𝑓𝑚) → (∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐) ↔ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘(𝑓𝑚)) ⊆ ([,]‘𝑐) → (𝑓𝑚) = 𝑐)))
7978elrab 3666 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓𝑚) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ↔ ((𝑓𝑚) ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∧ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘(𝑓𝑚)) ⊆ ([,]‘𝑐) → (𝑓𝑚) = 𝑐)))
8079simprbi 500 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓𝑚) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘(𝑓𝑚)) ⊆ ([,]‘𝑐) → (𝑓𝑚) = 𝑐))
81 fveq2 6661 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 = (𝑓𝑧) → ([,]‘𝑐) = ([,]‘(𝑓𝑧)))
8281sseq2d 3985 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 = (𝑓𝑧) → (([,]‘(𝑓𝑚)) ⊆ ([,]‘𝑐) ↔ ([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧))))
83 eqeq2 2836 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 = (𝑓𝑧) → ((𝑓𝑚) = 𝑐 ↔ (𝑓𝑚) = (𝑓𝑧)))
8482, 83imbi12d 348 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑐 = (𝑓𝑧) → ((([,]‘(𝑓𝑚)) ⊆ ([,]‘𝑐) → (𝑓𝑚) = 𝑐) ↔ (([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) → (𝑓𝑚) = (𝑓𝑧))))
8584rspcva 3607 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑓𝑧) ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∧ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘(𝑓𝑚)) ⊆ ([,]‘𝑐) → (𝑓𝑚) = 𝑐)) → (([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) → (𝑓𝑚) = (𝑓𝑧)))
8673, 80, 85syl2anr 599 . . . . . . . . . . . . . . . . . . . . 21 (((𝑓𝑚) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑓𝑧) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → (([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) → (𝑓𝑚) = (𝑓𝑧)))
87 elrabi 3661 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓𝑚) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (𝑓𝑚) ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴})
88 fveq2 6661 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 = (𝑓𝑧) → ([,]‘𝑎) = ([,]‘(𝑓𝑧)))
8988sseq1d 3984 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = (𝑓𝑧) → (([,]‘𝑎) ⊆ ([,]‘𝑐) ↔ ([,]‘(𝑓𝑧)) ⊆ ([,]‘𝑐)))
90 eqeq1 2828 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = (𝑓𝑧) → (𝑎 = 𝑐 ↔ (𝑓𝑧) = 𝑐))
9189, 90imbi12d 348 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = (𝑓𝑧) → ((([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐) ↔ (([,]‘(𝑓𝑧)) ⊆ ([,]‘𝑐) → (𝑓𝑧) = 𝑐)))
9291ralbidv 3192 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 = (𝑓𝑧) → (∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐) ↔ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘(𝑓𝑧)) ⊆ ([,]‘𝑐) → (𝑓𝑧) = 𝑐)))
9392elrab 3666 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓𝑧) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ↔ ((𝑓𝑧) ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∧ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘(𝑓𝑧)) ⊆ ([,]‘𝑐) → (𝑓𝑧) = 𝑐)))
9493simprbi 500 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓𝑧) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘(𝑓𝑧)) ⊆ ([,]‘𝑐) → (𝑓𝑧) = 𝑐))
95 fveq2 6661 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑐 = (𝑓𝑚) → ([,]‘𝑐) = ([,]‘(𝑓𝑚)))
9695sseq2d 3985 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 = (𝑓𝑚) → (([,]‘(𝑓𝑧)) ⊆ ([,]‘𝑐) ↔ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚))))
97 eqeq2 2836 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 = (𝑓𝑚) → ((𝑓𝑧) = 𝑐 ↔ (𝑓𝑧) = (𝑓𝑚)))
9896, 97imbi12d 348 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 = (𝑓𝑚) → ((([,]‘(𝑓𝑧)) ⊆ ([,]‘𝑐) → (𝑓𝑧) = 𝑐) ↔ (([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚)) → (𝑓𝑧) = (𝑓𝑚))))
9998rspcva 3607 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑓𝑚) ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∧ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘(𝑓𝑧)) ⊆ ([,]‘𝑐) → (𝑓𝑧) = 𝑐)) → (([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚)) → (𝑓𝑧) = (𝑓𝑚)))
10087, 94, 99syl2an 598 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑓𝑚) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑓𝑧) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → (([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚)) → (𝑓𝑧) = (𝑓𝑚)))
101 eqcom 2831 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓𝑧) = (𝑓𝑚) ↔ (𝑓𝑚) = (𝑓𝑧))
102100, 101syl6ib 254 . . . . . . . . . . . . . . . . . . . . 21 (((𝑓𝑚) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑓𝑧) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → (([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚)) → (𝑓𝑚) = (𝑓𝑧)))
10386, 102jaod 856 . . . . . . . . . . . . . . . . . . . 20 (((𝑓𝑚) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑓𝑧) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ((([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚))) → (𝑓𝑚) = (𝑓𝑧)))
10462, 65, 103syl2an 598 . . . . . . . . . . . . . . . . . . 19 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) ∧ (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ)) → ((([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚))) → (𝑓𝑚) = (𝑓𝑧)))
105104anandis 677 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚))) → (𝑓𝑚) = (𝑓𝑧)))
10652, 105sylan 583 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚))) → (𝑓𝑚) = (𝑓𝑧)))
107 f1of1 6605 . . . . . . . . . . . . . . . . . 18 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 𝑓:ℕ–1-1→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})
108 f1veqaeq 7007 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ–1-1→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑓𝑚) = (𝑓𝑧) → 𝑚 = 𝑧))
109107, 108sylan 583 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑓𝑚) = (𝑓𝑧) → 𝑚 = 𝑧))
110106, 109syld 47 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚))) → 𝑚 = 𝑧))
111110orim1d 963 . . . . . . . . . . . . . . 15 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → (((([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚))) ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅) → (𝑚 = 𝑧 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅)))
11272, 111mpd 15 . . . . . . . . . . . . . 14 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → (𝑚 = 𝑧 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅))
113112ralrimivva 3186 . . . . . . . . . . . . 13 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ∀𝑚 ∈ ℕ ∀𝑧 ∈ ℕ (𝑚 = 𝑧 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅))
114 eqeq1 2828 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑧 → (𝑚 = 𝑝𝑧 = 𝑝))
115 2fveq3 6666 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑧 → ((,)‘(𝑓𝑚)) = ((,)‘(𝑓𝑧)))
116115ineq1d 4173 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑧 → (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑝))) = (((,)‘(𝑓𝑧)) ∩ ((,)‘(𝑓𝑝))))
117116eqeq1d 2826 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑧 → ((((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑝))) = ∅ ↔ (((,)‘(𝑓𝑧)) ∩ ((,)‘(𝑓𝑝))) = ∅))
118114, 117orbi12d 916 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑧 → ((𝑚 = 𝑝 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑝))) = ∅) ↔ (𝑧 = 𝑝 ∨ (((,)‘(𝑓𝑧)) ∩ ((,)‘(𝑓𝑝))) = ∅)))
119118ralbidv 3192 . . . . . . . . . . . . . . 15 (𝑚 = 𝑧 → (∀𝑝 ∈ ℕ (𝑚 = 𝑝 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑝))) = ∅) ↔ ∀𝑝 ∈ ℕ (𝑧 = 𝑝 ∨ (((,)‘(𝑓𝑧)) ∩ ((,)‘(𝑓𝑝))) = ∅)))
120119cbvralvw 3434 . . . . . . . . . . . . . 14 (∀𝑚 ∈ ℕ ∀𝑝 ∈ ℕ (𝑚 = 𝑝 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑝))) = ∅) ↔ ∀𝑧 ∈ ℕ ∀𝑝 ∈ ℕ (𝑧 = 𝑝 ∨ (((,)‘(𝑓𝑧)) ∩ ((,)‘(𝑓𝑝))) = ∅))
121 eqeq2 2836 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑝 → (𝑚 = 𝑧𝑚 = 𝑝))
122 2fveq3 6666 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑝 → ((,)‘(𝑓𝑧)) = ((,)‘(𝑓𝑝)))
123122ineq2d 4174 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑝 → (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑝))))
124123eqeq1d 2826 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑝 → ((((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅ ↔ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑝))) = ∅))
125121, 124orbi12d 916 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑝 → ((𝑚 = 𝑧 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅) ↔ (𝑚 = 𝑝 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑝))) = ∅)))
126125cbvralvw 3434 . . . . . . . . . . . . . . 15 (∀𝑧 ∈ ℕ (𝑚 = 𝑧 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅) ↔ ∀𝑝 ∈ ℕ (𝑚 = 𝑝 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑝))) = ∅))
127126ralbii 3160 . . . . . . . . . . . . . 14 (∀𝑚 ∈ ℕ ∀𝑧 ∈ ℕ (𝑚 = 𝑧 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅) ↔ ∀𝑚 ∈ ℕ ∀𝑝 ∈ ℕ (𝑚 = 𝑝 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑝))) = ∅))
128122disjor 5032 . . . . . . . . . . . . . 14 (Disj 𝑧 ∈ ℕ ((,)‘(𝑓𝑧)) ↔ ∀𝑧 ∈ ℕ ∀𝑝 ∈ ℕ (𝑧 = 𝑝 ∨ (((,)‘(𝑓𝑧)) ∩ ((,)‘(𝑓𝑝))) = ∅))
129120, 127, 1283bitr4ri 307 . . . . . . . . . . . . 13 (Disj 𝑧 ∈ ℕ ((,)‘(𝑓𝑧)) ↔ ∀𝑚 ∈ ℕ ∀𝑧 ∈ ℕ (𝑚 = 𝑧 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅))
130113, 129sylibr 237 . . . . . . . . . . . 12 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → Disj 𝑧 ∈ ℕ ((,)‘(𝑓𝑧)))
131 eqid 2824 . . . . . . . . . . . 12 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
13260, 130, 131uniiccvol 24191 . . . . . . . . . . 11 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (vol*‘ ran ([,] ∘ 𝑓)) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
133132adantl 485 . . . . . . . . . 10 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → (vol*‘ ran ([,] ∘ 𝑓)) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
13451, 133eqtr3d 2861 . . . . . . . . 9 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → (vol*‘𝐴) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
13518, 134breqtrd 5078 . . . . . . . 8 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → 𝑀 < sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
136 absf 14697 . . . . . . . . . . . 12 abs:ℂ⟶ℝ
137 subf 10886 . . . . . . . . . . . 12 − :(ℂ × ℂ)⟶ℂ
138 fco 6521 . . . . . . . . . . . 12 ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ)
139136, 137, 138mp2an 691 . . . . . . . . . . 11 (abs ∘ − ):(ℂ × ℂ)⟶ℝ
140 zre 11982 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
141 2re 11708 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℝ
142 reexpcl 13451 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℝ ∧ 𝑦 ∈ ℕ0) → (2↑𝑦) ∈ ℝ)
143141, 142mpan 689 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℕ0 → (2↑𝑦) ∈ ℝ)
144 2cn 11709 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℂ
145 2ne0 11738 . . . . . . . . . . . . . . . . . . . . 21 2 ≠ 0
146 nn0z 12002 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
147 expne0i 13466 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 𝑦 ∈ ℤ) → (2↑𝑦) ≠ 0)
148144, 145, 146, 147mp3an12i 1462 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℕ0 → (2↑𝑦) ≠ 0)
149143, 148jca 515 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℕ0 → ((2↑𝑦) ∈ ℝ ∧ (2↑𝑦) ≠ 0))
150 redivcl 11357 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℝ ∧ (2↑𝑦) ∈ ℝ ∧ (2↑𝑦) ≠ 0) → (𝑥 / (2↑𝑦)) ∈ ℝ)
151 peano2re 10811 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
152 redivcl 11357 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 + 1) ∈ ℝ ∧ (2↑𝑦) ∈ ℝ ∧ (2↑𝑦) ≠ 0) → ((𝑥 + 1) / (2↑𝑦)) ∈ ℝ)
153151, 152syl3an1 1160 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℝ ∧ (2↑𝑦) ∈ ℝ ∧ (2↑𝑦) ≠ 0) → ((𝑥 + 1) / (2↑𝑦)) ∈ ℝ)
154150, 153opelxpd 5580 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℝ ∧ (2↑𝑦) ∈ ℝ ∧ (2↑𝑦) ≠ 0) → ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ ∈ (ℝ × ℝ))
1551543expb 1117 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ ∧ ((2↑𝑦) ∈ ℝ ∧ (2↑𝑦) ≠ 0)) → ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ ∈ (ℝ × ℝ))
156140, 149, 155syl2an 598 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ ∈ (ℝ × ℝ))
157156rgen2 3198 . . . . . . . . . . . . . . . . 17 𝑥 ∈ ℤ ∀𝑦 ∈ ℕ0 ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ ∈ (ℝ × ℝ)
158 eqid 2824 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
159158fmpo 7761 . . . . . . . . . . . . . . . . 17 (∀𝑥 ∈ ℤ ∀𝑦 ∈ ℕ0 ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ ∈ (ℝ × ℝ) ↔ (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩):(ℤ × ℕ0)⟶(ℝ × ℝ))
160157, 159mpbi 233 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩):(ℤ × ℕ0)⟶(ℝ × ℝ)
161 frn 6509 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩):(ℤ × ℕ0)⟶(ℝ × ℝ) → ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ⊆ (ℝ × ℝ))
162160, 161ax-mp 5 . . . . . . . . . . . . . . 15 ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ⊆ (ℝ × ℝ)
16342, 162sstri 3962 . . . . . . . . . . . . . 14 {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ⊆ (ℝ × ℝ)
16453, 163sstri 3962 . . . . . . . . . . . . 13 {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ⊆ (ℝ × ℝ)
165 ax-resscn 10592 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
166 xpss12 5557 . . . . . . . . . . . . . 14 ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℝ × ℝ) ⊆ (ℂ × ℂ))
167165, 165, 166mp2an 691 . . . . . . . . . . . . 13 (ℝ × ℝ) ⊆ (ℂ × ℂ)
168164, 167sstri 3962 . . . . . . . . . . . 12 {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ⊆ (ℂ × ℂ)
169 fss 6517 . . . . . . . . . . . 12 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ⊆ (ℂ × ℂ)) → 𝑓:ℕ⟶(ℂ × ℂ))
170168, 169mpan2 690 . . . . . . . . . . 11 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 𝑓:ℕ⟶(ℂ × ℂ))
171 fco 6521 . . . . . . . . . . 11 (((abs ∘ − ):(ℂ × ℂ)⟶ℝ ∧ 𝑓:ℕ⟶(ℂ × ℂ)) → ((abs ∘ − ) ∘ 𝑓):ℕ⟶ℝ)
172139, 170, 171sylancr 590 . . . . . . . . . 10 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ((abs ∘ − ) ∘ 𝑓):ℕ⟶ℝ)
173 nnuz 12278 . . . . . . . . . . 11 ℕ = (ℤ‘1)
174 1z 12009 . . . . . . . . . . . 12 1 ∈ ℤ
175174a1i 11 . . . . . . . . . . 11 (((abs ∘ − ) ∘ 𝑓):ℕ⟶ℝ → 1 ∈ ℤ)
176 ffvelrn 6840 . . . . . . . . . . 11 ((((abs ∘ − ) ∘ 𝑓):ℕ⟶ℝ ∧ 𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝑓)‘𝑛) ∈ ℝ)
177173, 175, 176serfre 13404 . . . . . . . . . 10 (((abs ∘ − ) ∘ 𝑓):ℕ⟶ℝ → seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶ℝ)
178 frn 6509 . . . . . . . . . . 11 (seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶ℝ → ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ)
179 ressxr 10683 . . . . . . . . . . 11 ℝ ⊆ ℝ*
180178, 179sstrdi 3965 . . . . . . . . . 10 (seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶ℝ → ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ*)
18152, 172, 177, 1804syl 19 . . . . . . . . 9 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ*)
182 rexr 10685 . . . . . . . . . 10 (𝑀 ∈ ℝ → 𝑀 ∈ ℝ*)
1831823ad2ant2 1131 . . . . . . . . 9 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) → 𝑀 ∈ ℝ*)
184 supxrlub 12715 . . . . . . . . 9 ((ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ*𝑀 ∈ ℝ*) → (𝑀 < sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ↔ ∃𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝑓))𝑀 < 𝑧))
185181, 183, 184syl2anr 599 . . . . . . . 8 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → (𝑀 < sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ↔ ∃𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝑓))𝑀 < 𝑧))
186135, 185mpbid 235 . . . . . . 7 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ∃𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝑓))𝑀 < 𝑧)
187 seqfn 13385 . . . . . . . . . 10 (1 ∈ ℤ → seq1( + , ((abs ∘ − ) ∘ 𝑓)) Fn (ℤ‘1))
188174, 187ax-mp 5 . . . . . . . . 9 seq1( + , ((abs ∘ − ) ∘ 𝑓)) Fn (ℤ‘1)
189173fneq2i 6439 . . . . . . . . 9 (seq1( + , ((abs ∘ − ) ∘ 𝑓)) Fn ℕ ↔ seq1( + , ((abs ∘ − ) ∘ 𝑓)) Fn (ℤ‘1))
190188, 189mpbir 234 . . . . . . . 8 seq1( + , ((abs ∘ − ) ∘ 𝑓)) Fn ℕ
191 breq2 5056 . . . . . . . . 9 (𝑧 = (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) → (𝑀 < 𝑧𝑀 < (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛)))
192191rexrn 6844 . . . . . . . 8 (seq1( + , ((abs ∘ − ) ∘ 𝑓)) Fn ℕ → (∃𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝑓))𝑀 < 𝑧 ↔ ∃𝑛 ∈ ℕ 𝑀 < (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛)))
193190, 192ax-mp 5 . . . . . . 7 (∃𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝑓))𝑀 < 𝑧 ↔ ∃𝑛 ∈ ℕ 𝑀 < (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
194186, 193sylib 221 . . . . . 6 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ∃𝑛 ∈ ℕ 𝑀 < (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
19560ffvelrnda 6842 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → (𝑓𝑧) ∈ ( ≤ ∩ (ℝ × ℝ)))
196 0le0 11735 . . . . . . . . . . . . . . . . . 18 0 ≤ 0
197 df-br 5053 . . . . . . . . . . . . . . . . . 18 (0 ≤ 0 ↔ ⟨0, 0⟩ ∈ ≤ )
198196, 197mpbi 233 . . . . . . . . . . . . . . . . 17 ⟨0, 0⟩ ∈ ≤
199 0re 10641 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
200 opelxpi 5579 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 0 ∈ ℝ) → ⟨0, 0⟩ ∈ (ℝ × ℝ))
201199, 199, 200mp2an 691 . . . . . . . . . . . . . . . . 17 ⟨0, 0⟩ ∈ (ℝ × ℝ)
202 elin 3935 . . . . . . . . . . . . . . . . 17 (⟨0, 0⟩ ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ (⟨0, 0⟩ ∈ ≤ ∧ ⟨0, 0⟩ ∈ (ℝ × ℝ)))
203198, 201, 202mpbir2an 710 . . . . . . . . . . . . . . . 16 ⟨0, 0⟩ ∈ ( ≤ ∩ (ℝ × ℝ))
204 ifcl 4494 . . . . . . . . . . . . . . . 16 (((𝑓𝑧) ∈ ( ≤ ∩ (ℝ × ℝ)) ∧ ⟨0, 0⟩ ∈ ( ≤ ∩ (ℝ × ℝ))) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) ∈ ( ≤ ∩ (ℝ × ℝ)))
205195, 203, 204sylancl 589 . . . . . . . . . . . . . . 15 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) ∈ ( ≤ ∩ (ℝ × ℝ)))
206205fmpttd 6870 . . . . . . . . . . . . . 14 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
207 df-ov 7152 . . . . . . . . . . . . . . . . . . . . . 22 (0(,)0) = ((,)‘⟨0, 0⟩)
208 iooid 12763 . . . . . . . . . . . . . . . . . . . . . 22 (0(,)0) = ∅
209207, 208eqtr3i 2849 . . . . . . . . . . . . . . . . . . . . 21 ((,)‘⟨0, 0⟩) = ∅
210209ineq1i 4170 . . . . . . . . . . . . . . . . . . . 20 (((,)‘⟨0, 0⟩) ∩ ((,)‘(𝑓𝑧))) = (∅ ∩ ((,)‘(𝑓𝑧)))
211 0in 4330 . . . . . . . . . . . . . . . . . . . 20 (∅ ∩ ((,)‘(𝑓𝑧))) = ∅
212210, 211eqtri 2847 . . . . . . . . . . . . . . . . . . 19 (((,)‘⟨0, 0⟩) ∩ ((,)‘(𝑓𝑧))) = ∅
213212olci 863 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑧 ∨ (((,)‘⟨0, 0⟩) ∩ ((,)‘(𝑓𝑧))) = ∅)
214 ineq1 4166 . . . . . . . . . . . . . . . . . . . . 21 (((,)‘(𝑓𝑚)) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) → (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))))
215214eqeq1d 2826 . . . . . . . . . . . . . . . . . . . 20 (((,)‘(𝑓𝑚)) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) → ((((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅ ↔ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))) = ∅))
216215orbi2d 913 . . . . . . . . . . . . . . . . . . 19 (((,)‘(𝑓𝑚)) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) → ((𝑚 = 𝑧 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅) ↔ (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))) = ∅)))
217 ineq1 4166 . . . . . . . . . . . . . . . . . . . . 21 (((,)‘⟨0, 0⟩) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) → (((,)‘⟨0, 0⟩) ∩ ((,)‘(𝑓𝑧))) = (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))))
218217eqeq1d 2826 . . . . . . . . . . . . . . . . . . . 20 (((,)‘⟨0, 0⟩) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) → ((((,)‘⟨0, 0⟩) ∩ ((,)‘(𝑓𝑧))) = ∅ ↔ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))) = ∅))
219218orbi2d 913 . . . . . . . . . . . . . . . . . . 19 (((,)‘⟨0, 0⟩) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) → ((𝑚 = 𝑧 ∨ (((,)‘⟨0, 0⟩) ∩ ((,)‘(𝑓𝑧))) = ∅) ↔ (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))) = ∅)))
220216, 219ifboth 4488 . . . . . . . . . . . . . . . . . 18 (((𝑚 = 𝑧 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅) ∧ (𝑚 = 𝑧 ∨ (((,)‘⟨0, 0⟩) ∩ ((,)‘(𝑓𝑧))) = ∅)) → (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))) = ∅))
221112, 213, 220sylancl 589 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))) = ∅))
222209ineq2i 4171 . . . . . . . . . . . . . . . . . . 19 (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘⟨0, 0⟩)) = (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ∅)
223 in0 4328 . . . . . . . . . . . . . . . . . . 19 (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ∅) = ∅
224222, 223eqtri 2847 . . . . . . . . . . . . . . . . . 18 (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘⟨0, 0⟩)) = ∅
225224olci 863 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘⟨0, 0⟩)) = ∅)
226 ineq2 4168 . . . . . . . . . . . . . . . . . . . 20 (((,)‘(𝑓𝑧)) = if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩)) → (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))) = (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))))
227226eqeq1d 2826 . . . . . . . . . . . . . . . . . . 19 (((,)‘(𝑓𝑧)) = if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩)) → ((if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))) = ∅ ↔ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))) = ∅))
228227orbi2d 913 . . . . . . . . . . . . . . . . . 18 (((,)‘(𝑓𝑧)) = if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩)) → ((𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))) = ∅) ↔ (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))) = ∅)))
229 ineq2 4168 . . . . . . . . . . . . . . . . . . . 20 (((,)‘⟨0, 0⟩) = if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩)) → (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘⟨0, 0⟩)) = (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))))
230229eqeq1d 2826 . . . . . . . . . . . . . . . . . . 19 (((,)‘⟨0, 0⟩) = if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩)) → ((if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘⟨0, 0⟩)) = ∅ ↔ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))) = ∅))
231230orbi2d 913 . . . . . . . . . . . . . . . . . 18 (((,)‘⟨0, 0⟩) = if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩)) → ((𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘⟨0, 0⟩)) = ∅) ↔ (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))) = ∅)))
232228, 231ifboth 4488 . . . . . . . . . . . . . . . . 17 (((𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))) = ∅) ∧ (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘⟨0, 0⟩)) = ∅)) → (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))) = ∅))
233221, 225, 232sylancl 589 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))) = ∅))
234233ralrimivva 3186 . . . . . . . . . . . . . . 15 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ∀𝑚 ∈ ℕ ∀𝑧 ∈ ℕ (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))) = ∅))
235 disjeq2 5021 . . . . . . . . . . . . . . . . 17 (∀𝑚 ∈ ℕ ((,)‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) → (Disj 𝑚 ∈ ℕ ((,)‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)) ↔ Disj 𝑚 ∈ ℕ if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩))))
236 eleq1w 2898 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑚 → (𝑧 ∈ (1...𝑛) ↔ 𝑚 ∈ (1...𝑛)))
237 fveq2 6661 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑚 → (𝑓𝑧) = (𝑓𝑚))
238236, 237ifbieq1d 4473 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑚 → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) = if(𝑚 ∈ (1...𝑛), (𝑓𝑚), ⟨0, 0⟩))
239 eqid 2824 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) = (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))
240 fvex 6674 . . . . . . . . . . . . . . . . . . . . 21 (𝑓𝑚) ∈ V
241 opex 5343 . . . . . . . . . . . . . . . . . . . . 21 ⟨0, 0⟩ ∈ V
242240, 241ifex 4498 . . . . . . . . . . . . . . . . . . . 20 if(𝑚 ∈ (1...𝑛), (𝑓𝑚), ⟨0, 0⟩) ∈ V
243238, 239, 242fvmpt 6759 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ ℕ → ((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚) = if(𝑚 ∈ (1...𝑛), (𝑓𝑚), ⟨0, 0⟩))
244243fveq2d 6665 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → ((,)‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)) = ((,)‘if(𝑚 ∈ (1...𝑛), (𝑓𝑚), ⟨0, 0⟩)))
245 fvif 6677 . . . . . . . . . . . . . . . . . 18 ((,)‘if(𝑚 ∈ (1...𝑛), (𝑓𝑚), ⟨0, 0⟩)) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩))
246244, 245syl6eq 2875 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → ((,)‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)))
247235, 246mprg 3147 . . . . . . . . . . . . . . . 16 (Disj 𝑚 ∈ ℕ ((,)‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)) ↔ Disj 𝑚 ∈ ℕ if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)))
248 eleq1w 2898 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑧 → (𝑚 ∈ (1...𝑛) ↔ 𝑧 ∈ (1...𝑛)))
249248, 115ifbieq1d 4473 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑧 → if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) = if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩)))
250249disjor 5032 . . . . . . . . . . . . . . . 16 (Disj 𝑚 ∈ ℕ if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ↔ ∀𝑚 ∈ ℕ ∀𝑧 ∈ ℕ (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))) = ∅))
251247, 250bitri 278 . . . . . . . . . . . . . . 15 (Disj 𝑚 ∈ ℕ ((,)‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)) ↔ ∀𝑚 ∈ ℕ ∀𝑧 ∈ ℕ (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))) = ∅))
252234, 251sylibr 237 . . . . . . . . . . . . . 14 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → Disj 𝑚 ∈ ℕ ((,)‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)))
253 eqid 2824 . . . . . . . . . . . . . 14 seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))) = seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))
254206, 252, 253uniiccvol 24191 . . . . . . . . . . . . 13 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (vol*‘ ran ([,] ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))) = sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))), ℝ*, < ))
255254adantr 484 . . . . . . . . . . . 12 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (vol*‘ ran ([,] ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))) = sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))), ℝ*, < ))
256 rexpssxrxp 10684 . . . . . . . . . . . . . . . . . . . . 21 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
257164, 256sstri 3962 . . . . . . . . . . . . . . . . . . . 20 {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ⊆ (ℝ* × ℝ*)
258257, 65sseldi 3951 . . . . . . . . . . . . . . . . . . 19 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → (𝑓𝑧) ∈ (ℝ* × ℝ*))
259 0xr 10686 . . . . . . . . . . . . . . . . . . . 20 0 ∈ ℝ*
260 opelxpi 5579 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ ℝ* ∧ 0 ∈ ℝ*) → ⟨0, 0⟩ ∈ (ℝ* × ℝ*))
261259, 259, 260mp2an 691 . . . . . . . . . . . . . . . . . . 19 ⟨0, 0⟩ ∈ (ℝ* × ℝ*)
262 ifcl 4494 . . . . . . . . . . . . . . . . . . 19 (((𝑓𝑧) ∈ (ℝ* × ℝ*) ∧ ⟨0, 0⟩ ∈ (ℝ* × ℝ*)) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) ∈ (ℝ* × ℝ*))
263258, 261, 262sylancl 589 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) ∈ (ℝ* × ℝ*))
264 eqidd 2825 . . . . . . . . . . . . . . . . . 18 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) = (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))
265 iccf 12835 . . . . . . . . . . . . . . . . . . . 20 [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
266265a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*)
267266feqmptd 6724 . . . . . . . . . . . . . . . . . 18 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → [,] = (𝑚 ∈ (ℝ* × ℝ*) ↦ ([,]‘𝑚)))
268 fveq2 6661 . . . . . . . . . . . . . . . . . 18 (𝑚 = if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) → ([,]‘𝑚) = ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))
269263, 264, 267, 268fmptco 6882 . . . . . . . . . . . . . . . . 17 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ([,] ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))) = (𝑧 ∈ ℕ ↦ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))
27052, 269syl 17 . . . . . . . . . . . . . . . 16 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ([,] ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))) = (𝑧 ∈ ℕ ↦ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))
271270rneqd 5795 . . . . . . . . . . . . . . 15 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ran ([,] ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))) = ran (𝑧 ∈ ℕ ↦ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))
272271unieqd 4838 . . . . . . . . . . . . . 14 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ran ([,] ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))) = ran (𝑧 ∈ ℕ ↦ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))
273 peano2nn 11646 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
274273, 173eleqtrdi 2926 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ (ℤ‘1))
275 fzouzsplit 13076 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 + 1) ∈ (ℤ‘1) → (ℤ‘1) = ((1..^(𝑛 + 1)) ∪ (ℤ‘(𝑛 + 1))))
276274, 275syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (ℤ‘1) = ((1..^(𝑛 + 1)) ∪ (ℤ‘(𝑛 + 1))))
277173, 276syl5eq 2871 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → ℕ = ((1..^(𝑛 + 1)) ∪ (ℤ‘(𝑛 + 1))))
278 nnz 12001 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
279 fzval3 13110 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℤ → (1...𝑛) = (1..^(𝑛 + 1)))
280278, 279syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (1...𝑛) = (1..^(𝑛 + 1)))
281280uneq1d 4124 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → ((1...𝑛) ∪ (ℤ‘(𝑛 + 1))) = ((1..^(𝑛 + 1)) ∪ (ℤ‘(𝑛 + 1))))
282277, 281eqtr4d 2862 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → ℕ = ((1...𝑛) ∪ (ℤ‘(𝑛 + 1))))
283 fvif 6677 . . . . . . . . . . . . . . . . . 18 ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) = if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩))
284283a1i 11 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) = if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)))
285282, 284iuneq12d 4933 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑧 ∈ ℕ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) = 𝑧 ∈ ((1...𝑛) ∪ (ℤ‘(𝑛 + 1)))if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)))
286 fvex 6674 . . . . . . . . . . . . . . . . 17 ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) ∈ V
287286dfiun3 5824 . . . . . . . . . . . . . . . 16 𝑧 ∈ ℕ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) = ran (𝑧 ∈ ℕ ↦ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))
288 iunxun 5002 . . . . . . . . . . . . . . . 16 𝑧 ∈ ((1...𝑛) ∪ (ℤ‘(𝑛 + 1)))if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)) = ( 𝑧 ∈ (1...𝑛)if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)) ∪ 𝑧 ∈ (ℤ‘(𝑛 + 1))if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)))
289285, 287, 2883eqtr3g 2882 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → ran (𝑧 ∈ ℕ ↦ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))) = ( 𝑧 ∈ (1...𝑛)if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)) ∪ 𝑧 ∈ (ℤ‘(𝑛 + 1))if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩))))
290 iftrue 4456 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (1...𝑛) → if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)) = ([,]‘(𝑓𝑧)))
291290iuneq2i 4926 . . . . . . . . . . . . . . . . 17 𝑧 ∈ (1...𝑛)if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)) = 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))
292291a1i 11 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑧 ∈ (1...𝑛)if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)) = 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)))
293 uznfz 12994 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ (ℤ‘(𝑛 + 1)) → ¬ 𝑧 ∈ (1...((𝑛 + 1) − 1)))
294293adantl 485 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ ∧ 𝑧 ∈ (ℤ‘(𝑛 + 1))) → ¬ 𝑧 ∈ (1...((𝑛 + 1) − 1)))
295 nncn 11642 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
296 ax-1cn 10593 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℂ
297 pncan 10890 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 + 1) − 1) = 𝑛)
298295, 296, 297sylancl 589 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℕ → ((𝑛 + 1) − 1) = 𝑛)
299298oveq2d 7165 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → (1...((𝑛 + 1) − 1)) = (1...𝑛))
300299eleq2d 2901 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → (𝑧 ∈ (1...((𝑛 + 1) − 1)) ↔ 𝑧 ∈ (1...𝑛)))
301300notbid 321 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (¬ 𝑧 ∈ (1...((𝑛 + 1) − 1)) ↔ ¬ 𝑧 ∈ (1...𝑛)))
302301adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ ∧ 𝑧 ∈ (ℤ‘(𝑛 + 1))) → (¬ 𝑧 ∈ (1...((𝑛 + 1) − 1)) ↔ ¬ 𝑧 ∈ (1...𝑛)))
303294, 302mpbid 235 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ 𝑧 ∈ (ℤ‘(𝑛 + 1))) → ¬ 𝑧 ∈ (1...𝑛))
304303iffalsed 4461 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ ∧ 𝑧 ∈ (ℤ‘(𝑛 + 1))) → if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)) = ([,]‘⟨0, 0⟩))
305304iuneq2dv 4929 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑧 ∈ (ℤ‘(𝑛 + 1))if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)) = 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩))
306292, 305uneq12d 4126 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → ( 𝑧 ∈ (1...𝑛)if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)) ∪ 𝑧 ∈ (ℤ‘(𝑛 + 1))if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩))) = ( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∪ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩)))
307289, 306eqtrd 2859 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → ran (𝑧 ∈ ℕ ↦ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))) = ( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∪ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩)))
308272, 307sylan9eq 2879 . . . . . . . . . . . . 13 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → ran ([,] ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))) = ( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∪ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩)))
309308fveq2d 6665 . . . . . . . . . . . 12 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (vol*‘ ran ([,] ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))) = (vol*‘( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∪ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩))))
310 xrltso 12531 . . . . . . . . . . . . . . 15 < Or ℝ*
311310a1i 11 . . . . . . . . . . . . . 14 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → < Or ℝ*)
312 elnnuz 12279 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
313312biimpi 219 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ‘1))
314313adantl 485 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ (ℤ‘1))
315 elfznn 12940 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ (1...𝑛) → 𝑢 ∈ ℕ)
316172ffvelrnda 6842 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑢 ∈ ℕ) → (((abs ∘ − ) ∘ 𝑓)‘𝑢) ∈ ℝ)
317315, 316sylan2 595 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑢 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ 𝑓)‘𝑢) ∈ ℝ)
318317adantlr 714 . . . . . . . . . . . . . . . 16 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑢 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ 𝑓)‘𝑢) ∈ ℝ)
319 readdcl 10618 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑢 + 𝑣) ∈ ℝ)
320319adantl 485 . . . . . . . . . . . . . . . 16 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → (𝑢 + 𝑣) ∈ ℝ)
321314, 318, 320seqcl 13395 . . . . . . . . . . . . . . 15 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ∈ ℝ)
322321rexrd 10689 . . . . . . . . . . . . . 14 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ∈ ℝ*)
323 eqidd 2825 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ (1...𝑛) → (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) = (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))
324 iftrue 4456 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ (1...𝑛) → if(𝑚 ∈ (1...𝑛), (𝑓𝑚), ⟨0, 0⟩) = (𝑓𝑚))
325238, 324sylan9eqr 2881 . . . . . . . . . . . . . . . . . . . . 21 ((𝑚 ∈ (1...𝑛) ∧ 𝑧 = 𝑚) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) = (𝑓𝑚))
326 elfznn 12940 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ (1...𝑛) → 𝑚 ∈ ℕ)
327240a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ (1...𝑛) → (𝑓𝑚) ∈ V)
328323, 325, 326, 327fvmptd 6766 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ (1...𝑛) → ((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚) = (𝑓𝑚))
329328adantl 485 . . . . . . . . . . . . . . . . . . 19 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ (1...𝑛)) → ((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚) = (𝑓𝑚))
330329fveq2d 6665 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ (1...𝑛)) → ((abs ∘ − )‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)) = ((abs ∘ − )‘(𝑓𝑚)))
331 fvex 6674 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓𝑧) ∈ V
332331, 241ifex 4498 . . . . . . . . . . . . . . . . . . . . 21 if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) ∈ V
333332, 239fnmpti 6480 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) Fn ℕ
334 fvco2 6749 . . . . . . . . . . . . . . . . . . . 20 (((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) Fn ℕ ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = ((abs ∘ − )‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)))
335333, 326, 334sylancr 590 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ (1...𝑛) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = ((abs ∘ − )‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)))
336335adantl 485 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = ((abs ∘ − )‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)))
337 ffn 6503 . . . . . . . . . . . . . . . . . . 19 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 𝑓 Fn ℕ)
338 fvco2 6749 . . . . . . . . . . . . . . . . . . 19 ((𝑓 Fn ℕ ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) = ((abs ∘ − )‘(𝑓𝑚)))
339337, 326, 338syl2an 598 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) = ((abs ∘ − )‘(𝑓𝑚)))
340330, 336, 3393eqtr4d 2869 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = (((abs ∘ − ) ∘ 𝑓)‘𝑚))
341340adantlr 714 . . . . . . . . . . . . . . . 16 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = (((abs ∘ − ) ∘ 𝑓)‘𝑚))
342314, 341seqfveq 13399 . . . . . . . . . . . . . . 15 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑛) = (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
343174a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 1 ∈ ℤ)
344168, 65sseldi 3951 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → (𝑓𝑧) ∈ (ℂ × ℂ))
345 0cn 10631 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ ℂ
346 opelxpi 5579 . . . . . . . . . . . . . . . . . . . . . . 23 ((0 ∈ ℂ ∧ 0 ∈ ℂ) → ⟨0, 0⟩ ∈ (ℂ × ℂ))
347345, 345, 346mp2an 691 . . . . . . . . . . . . . . . . . . . . . 22 ⟨0, 0⟩ ∈ (ℂ × ℂ)
348 ifcl 4494 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑓𝑧) ∈ (ℂ × ℂ) ∧ ⟨0, 0⟩ ∈ (ℂ × ℂ)) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) ∈ (ℂ × ℂ))
349344, 347, 348sylancl 589 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) ∈ (ℂ × ℂ))
350349fmpttd 6870 . . . . . . . . . . . . . . . . . . . 20 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)):ℕ⟶(ℂ × ℂ))
351 fco 6521 . . . . . . . . . . . . . . . . . . . 20 (((abs ∘ − ):(ℂ × ℂ)⟶ℝ ∧ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)):ℕ⟶(ℂ × ℂ)) → ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))):ℕ⟶ℝ)
352139, 350, 351sylancr 590 . . . . . . . . . . . . . . . . . . 19 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))):ℕ⟶ℝ)
353352ffvelrnda 6842 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) ∈ ℝ)
354173, 343, 353serfre 13404 . . . . . . . . . . . . . . . . 17 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))):ℕ⟶ℝ)
355354ffnd 6504 . . . . . . . . . . . . . . . 16 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))) Fn ℕ)
356 fnfvelrn 6839 . . . . . . . . . . . . . . . 16 ((seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))) Fn ℕ ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑛) ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))))
357355, 356sylan 583 . . . . . . . . . . . . . . 15 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑛) ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))))
358342, 357eqeltrrd 2917 . . . . . . . . . . . . . 14 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))))
359354frnd 6510 . . . . . . . . . . . . . . . . 17 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))) ⊆ ℝ)
360359adantr 484 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))) ⊆ ℝ)
361360sselda 3953 . . . . . . . . . . . . . . 15 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))) → 𝑚 ∈ ℝ)
362321adantr 484 . . . . . . . . . . . . . . 15 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ∈ ℝ)
363 readdcl 10618 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 ∈ ℝ ∧ 𝑢 ∈ ℝ) → (𝑚 + 𝑢) ∈ ℝ)
364363adantl 485 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ (𝑚 ∈ ℝ ∧ 𝑢 ∈ ℝ)) → (𝑚 + 𝑢) ∈ ℝ)
365 recn 10625 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 ∈ ℝ → 𝑚 ∈ ℂ)
366 recn 10625 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑢 ∈ ℝ → 𝑢 ∈ ℂ)
367 recn 10625 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑣 ∈ ℝ → 𝑣 ∈ ℂ)
368 addass 10622 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑚 ∈ ℂ ∧ 𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → ((𝑚 + 𝑢) + 𝑣) = (𝑚 + (𝑢 + 𝑣)))
369365, 366, 367, 368syl3an 1157 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 ∈ ℝ ∧ 𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → ((𝑚 + 𝑢) + 𝑣) = (𝑚 + (𝑢 + 𝑣)))
370369adantl 485 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ (𝑚 ∈ ℝ ∧ 𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → ((𝑚 + 𝑢) + 𝑣) = (𝑚 + (𝑢 + 𝑣)))
371 nnltp1le 12035 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) → (𝑛 < 𝑡 ↔ (𝑛 + 1) ≤ 𝑡))
372371biimpa 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (𝑛 + 1) ≤ 𝑡)
373273nnzd 12083 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℤ)
374 nnz 12001 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 ∈ ℕ → 𝑡 ∈ ℤ)
375 eluz 12254 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑛 + 1) ∈ ℤ ∧ 𝑡 ∈ ℤ) → (𝑡 ∈ (ℤ‘(𝑛 + 1)) ↔ (𝑛 + 1) ≤ 𝑡))
376373, 374, 375syl2an 598 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) → (𝑡 ∈ (ℤ‘(𝑛 + 1)) ↔ (𝑛 + 1) ≤ 𝑡))
377376adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (𝑡 ∈ (ℤ‘(𝑛 + 1)) ↔ (𝑛 + 1) ≤ 𝑡))
378372, 377mpbird 260 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → 𝑡 ∈ (ℤ‘(𝑛 + 1)))
379378adantlll 717 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → 𝑡 ∈ (ℤ‘(𝑛 + 1)))
380313ad3antlr 730 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → 𝑛 ∈ (ℤ‘1))
381 simplll 774 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → 𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})
382 elfznn 12940 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ (1...𝑡) → 𝑚 ∈ ℕ)
383381, 382, 353syl2an 598 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ (1...𝑡)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) ∈ ℝ)
384364, 370, 379, 380, 383seqsplit 13408 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) = ((seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑛) + (seq(𝑛 + 1)( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡)))
385342ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑛) = (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
386 elfzelz 12911 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑚 ∈ ((𝑛 + 1)...𝑡) → 𝑚 ∈ ℤ)
387386adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑚 ∈ ℤ)
388 0red 10642 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 0 ∈ ℝ)
389273nnred 11649 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℝ)
390389ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (𝑛 + 1) ∈ ℝ)
391386zred 12084 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑚 ∈ ((𝑛 + 1)...𝑡) → 𝑚 ∈ ℝ)
392391adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑚 ∈ ℝ)
393273nngt0d 11683 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑛 ∈ ℕ → 0 < (𝑛 + 1))
394393ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 0 < (𝑛 + 1))
395 elfzle1 12914 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑚 ∈ ((𝑛 + 1)...𝑡) → (𝑛 + 1) ≤ 𝑚)
396395adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (𝑛 + 1) ≤ 𝑚)
397388, 390, 392, 394, 396ltletrd 10798 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 0 < 𝑚)
398 elnnz 11988 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑚 ∈ ℕ ↔ (𝑚 ∈ ℤ ∧ 0 < 𝑚))
399387, 397, 398sylanbrc 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑚 ∈ ℕ)
400333, 399, 334sylancr 590 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = ((abs ∘ − )‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)))
401 eqidd 2825 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) = (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))
402 nnre 11641 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
403402adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑛 ∈ ℝ)
404389adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (𝑛 + 1) ∈ ℝ)
405391adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑚 ∈ ℝ)
406402ltp1d 11568 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑛 ∈ ℕ → 𝑛 < (𝑛 + 1))
407406adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑛 < (𝑛 + 1))
408395adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (𝑛 + 1) ≤ 𝑚)
409403, 404, 405, 407, 408ltletrd 10798 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑛 < 𝑚)
410409adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) ∧ 𝑧 = 𝑚) → 𝑛 < 𝑚)
411403, 405ltnled 10785 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (𝑛 < 𝑚 ↔ ¬ 𝑚𝑛))
412 breq1 5055 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑚 = 𝑧 → (𝑚𝑛𝑧𝑛))
413412equcoms 2028 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑧 = 𝑚 → (𝑚𝑛𝑧𝑛))
414413notbid 321 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑧 = 𝑚 → (¬ 𝑚𝑛 ↔ ¬ 𝑧𝑛))
415411, 414sylan9bb 513 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) ∧ 𝑧 = 𝑚) → (𝑛 < 𝑚 ↔ ¬ 𝑧𝑛))
416410, 415mpbid 235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) ∧ 𝑧 = 𝑚) → ¬ 𝑧𝑛)
417 elfzle2 12915 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑧 ∈ (1...𝑛) → 𝑧𝑛)
418416, 417nsyl 142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) ∧ 𝑧 = 𝑚) → ¬ 𝑧 ∈ (1...𝑛))
419418iffalsed 4461 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) ∧ 𝑧 = 𝑚) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) = ⟨0, 0⟩)
420386adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑚 ∈ ℤ)
421 0red 10642 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 0 ∈ ℝ)
422393adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 0 < (𝑛 + 1))
423421, 404, 405, 422, 408ltletrd 10798 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 0 < 𝑚)
424420, 423, 398sylanbrc 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑚 ∈ ℕ)
425241a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → ⟨0, 0⟩ ∈ V)
426401, 419, 424, 425fvmptd 6766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → ((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚) = ⟨0, 0⟩)
427426ad4ant14 751 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → ((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚) = ⟨0, 0⟩)
428427fveq2d 6665 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → ((abs ∘ − )‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)) = ((abs ∘ − )‘⟨0, 0⟩))
429400, 428eqtrd 2859 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = ((abs ∘ − )‘⟨0, 0⟩))
430 fvco3 6751 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (( − :(ℂ × ℂ)⟶ℂ ∧ ⟨0, 0⟩ ∈ (ℂ × ℂ)) → ((abs ∘ − )‘⟨0, 0⟩) = (abs‘( − ‘⟨0, 0⟩)))
431137, 347, 430mp2an 691 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((abs ∘ − )‘⟨0, 0⟩) = (abs‘( − ‘⟨0, 0⟩))
432 df-ov 7152 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (0 − 0) = ( − ‘⟨0, 0⟩)
433 0m0e0 11754 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (0 − 0) = 0
434432, 433eqtr3i 2849 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ( − ‘⟨0, 0⟩) = 0
435434fveq2i 6664 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (abs‘( − ‘⟨0, 0⟩)) = (abs‘0)
436 abs0 14645 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (abs‘0) = 0
437435, 436eqtri 2847 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (abs‘( − ‘⟨0, 0⟩)) = 0
438431, 437eqtri 2847 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((abs ∘ − )‘⟨0, 0⟩) = 0
439429, 438syl6eq 2875 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = 0)
440 elfzuz 12907 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑚 ∈ ((𝑛 + 1)...𝑡) → 𝑚 ∈ (ℤ‘(𝑛 + 1)))
441 c0ex 10633 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 0 ∈ V
442441fvconst2 6957 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑚 ∈ (ℤ‘(𝑛 + 1)) → (((ℤ‘(𝑛 + 1)) × {0})‘𝑚) = 0)
443440, 442syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑚 ∈ ((𝑛 + 1)...𝑡) → (((ℤ‘(𝑛 + 1)) × {0})‘𝑚) = 0)
444443adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (((ℤ‘(𝑛 + 1)) × {0})‘𝑚) = 0)
445439, 444eqtr4d 2862 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = (((ℤ‘(𝑛 + 1)) × {0})‘𝑚))
446378, 445seqfveq 13399 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq(𝑛 + 1)( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) = (seq(𝑛 + 1)( + , ((ℤ‘(𝑛 + 1)) × {0}))‘𝑡))
447 eqid 2824 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (ℤ‘(𝑛 + 1)) = (ℤ‘(𝑛 + 1))
448447ser0 13427 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 ∈ (ℤ‘(𝑛 + 1)) → (seq(𝑛 + 1)( + , ((ℤ‘(𝑛 + 1)) × {0}))‘𝑡) = 0)
449378, 448syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq(𝑛 + 1)( + , ((ℤ‘(𝑛 + 1)) × {0}))‘𝑡) = 0)
450446, 449eqtrd 2859 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq(𝑛 + 1)( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) = 0)
451450adantlll 717 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq(𝑛 + 1)( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) = 0)
452385, 451oveq12d 7167 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → ((seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑛) + (seq(𝑛 + 1)( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡)) = ((seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) + 0))
453172ffvelrnda 6842 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) ∈ ℝ)
454326, 453sylan2 595 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) ∈ ℝ)
455454adantlr 714 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) ∈ ℝ)
456 readdcl 10618 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑚 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑚 + 𝑣) ∈ ℝ)
457456adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ (𝑚 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → (𝑚 + 𝑣) ∈ ℝ)
458314, 455, 457seqcl 13395 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ∈ ℝ)
459458ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ∈ ℝ)
460459recnd 10667 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ∈ ℂ)
461460addid1d 10838 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → ((seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) + 0) = (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
462452, 461eqtrd 2859 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → ((seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑛) + (seq(𝑛 + 1)( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡)) = (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
463384, 462eqtrd 2859 . . . . . . . . . . . . . . . . . . . 20 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) = (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
464453ad5ant15 758 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) ∈ ℝ)
465326, 464sylan2 595 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) ∈ ℝ)
466380, 465, 364seqcl 13395 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ∈ ℝ)
467466leidd 11204 . . . . . . . . . . . . . . . . . . . 20 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
468463, 467eqbrtrd 5074 . . . . . . . . . . . . . . . . . . 19 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
469 elnnuz 12279 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 ∈ ℕ ↔ 𝑡 ∈ (ℤ‘1))
470469biimpi 219 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 ∈ ℕ → 𝑡 ∈ (ℤ‘1))
471470ad2antlr 726 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) → 𝑡 ∈ (ℤ‘1))
472 eqidd 2825 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) = (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))
473 simpr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) ∧ 𝑧 = 𝑚) → 𝑧 = 𝑚)
474 elfzle1 12914 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑚 ∈ (1...𝑡) → 1 ≤ 𝑚)
475474adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 1 ≤ 𝑚)
476382nnred 11649 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑚 ∈ (1...𝑡) → 𝑚 ∈ ℝ)
477476adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑚 ∈ ℝ)
478 nnre 11641 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑡 ∈ ℕ → 𝑡 ∈ ℝ)
479478ad3antlr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑡 ∈ ℝ)
480402ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑛 ∈ ℝ)
481 elfzle2 12915 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑚 ∈ (1...𝑡) → 𝑚𝑡)
482481adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑚𝑡)
483 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑡𝑛)
484477, 479, 480, 482, 483letrd 10795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑚𝑛)
485 elfzelz 12911 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑚 ∈ (1...𝑡) → 𝑚 ∈ ℤ)
486278ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) → 𝑛 ∈ ℤ)
487 elfz 12900 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑚 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑚 ∈ (1...𝑛) ↔ (1 ≤ 𝑚𝑚𝑛)))
488174, 487mp3an2 1446 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑚 ∈ (1...𝑛) ↔ (1 ≤ 𝑚𝑚𝑛)))
489485, 486, 488syl2anr 599 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → (𝑚 ∈ (1...𝑛) ↔ (1 ≤ 𝑚𝑚𝑛)))
490475, 484, 489mpbir2and 712 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑚 ∈ (1...𝑛))
491490ad5ant2345 1367 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑚 ∈ (1...𝑛))
492491adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) ∧ 𝑧 = 𝑚) → 𝑚 ∈ (1...𝑛))
493473, 492eqeltrd 2916 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) ∧ 𝑧 = 𝑚) → 𝑧 ∈ (1...𝑛))
494 iftrue 4456 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ (1...𝑛) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) = (𝑓𝑧))
495493, 494syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) ∧ 𝑧 = 𝑚) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) = (𝑓𝑧))
496237adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) ∧ 𝑧 = 𝑚) → (𝑓𝑧) = (𝑓𝑚))
497495, 496eqtrd 2859 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) ∧ 𝑧 = 𝑚) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) = (𝑓𝑚))
498382adantl 485 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑚 ∈ ℕ)
499240a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → (𝑓𝑚) ∈ V)
500472, 497, 498, 499fvmptd 6766 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → ((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚) = (𝑓𝑚))
501500fveq2d 6665 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → ((abs ∘ − )‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)) = ((abs ∘ − )‘(𝑓𝑚)))
502333, 382, 334sylancr 590 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ (1...𝑡) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = ((abs ∘ − )‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)))
503502adantl 485 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = ((abs ∘ − )‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)))
504 simplll 774 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) → 𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})
505 fvco3 6751 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) = ((abs ∘ − )‘(𝑓𝑚)))
506504, 382, 505syl2an 598 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) = ((abs ∘ − )‘(𝑓𝑚)))
507501, 503, 5063eqtr4d 2869 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = (((abs ∘ − ) ∘ 𝑓)‘𝑚))
508471, 507seqfveq 13399 . . . . . . . . . . . . . . . . . . . 20 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) = (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑡))
509 eluz 12254 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑡 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑛 ∈ (ℤ𝑡) ↔ 𝑡𝑛))
510374, 278, 509syl2anr 599 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) → (𝑛 ∈ (ℤ𝑡) ↔ 𝑡𝑛))
511510biimpar 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) → 𝑛 ∈ (ℤ𝑡))
512511adantlll 717 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) → 𝑛 ∈ (ℤ𝑡))
513504, 326, 453syl2an 598 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) ∈ ℝ)
514 elfzelz 12911 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚 ∈ ((𝑡 + 1)...𝑛) → 𝑚 ∈ ℤ)
515514adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑡 ∈ ℕ ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 𝑚 ∈ ℤ)
516 0red 10642 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑡 ∈ ℕ ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 0 ∈ ℝ)
517 peano2nn 11646 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑡 ∈ ℕ → (𝑡 + 1) ∈ ℕ)
518517nnred 11649 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 ∈ ℕ → (𝑡 + 1) ∈ ℝ)
519518adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑡 ∈ ℕ ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → (𝑡 + 1) ∈ ℝ)
520514zred 12084 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚 ∈ ((𝑡 + 1)...𝑛) → 𝑚 ∈ ℝ)
521520adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑡 ∈ ℕ ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 𝑚 ∈ ℝ)
522517nngt0d 11683 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 ∈ ℕ → 0 < (𝑡 + 1))
523522adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑡 ∈ ℕ ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 0 < (𝑡 + 1))
524 elfzle1 12914 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚 ∈ ((𝑡 + 1)...𝑛) → (𝑡 + 1) ≤ 𝑚)
525524adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑡 ∈ ℕ ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → (𝑡 + 1) ≤ 𝑚)
526516, 519, 521, 523, 525ltletrd 10798 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑡 ∈ ℕ ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 0 < 𝑚)
527515, 526, 398sylanbrc 586 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑡 ∈ ℕ ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 𝑚 ∈ ℕ)
528527adantlr 714 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑡 ∈ ℕ ∧ 𝑡𝑛) ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 𝑚 ∈ ℕ)
529528adantlll 717 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 𝑚 ∈ ℕ)
530170ffvelrnda 6842 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → (𝑓𝑚) ∈ (ℂ × ℂ))
531 ffvelrn 6840 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (( − :(ℂ × ℂ)⟶ℂ ∧ (𝑓𝑚) ∈ (ℂ × ℂ)) → ( − ‘(𝑓𝑚)) ∈ ℂ)
532137, 530, 531sylancr 590 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → ( − ‘(𝑓𝑚)) ∈ ℂ)
533532absge0d 14804 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → 0 ≤ (abs‘( − ‘(𝑓𝑚))))
534 fvco3 6751 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (( − :(ℂ × ℂ)⟶ℂ ∧ (𝑓𝑚) ∈ (ℂ × ℂ)) → ((abs ∘ − )‘(𝑓𝑚)) = (abs‘( − ‘(𝑓𝑚))))
535137, 530, 534sylancr 590 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → ((abs ∘ − )‘(𝑓𝑚)) = (abs‘( − ‘(𝑓𝑚))))
536505, 535eqtrd 2859 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) = (abs‘( − ‘(𝑓𝑚))))
537533, 536breqtrrd 5080 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → 0 ≤ (((abs ∘ − ) ∘ 𝑓)‘𝑚))
538537ad5ant15 758 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ ℕ) → 0 ≤ (((abs ∘ − ) ∘ 𝑓)‘𝑚))
539529, 538syldan 594 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 0 ≤ (((abs ∘ − ) ∘ 𝑓)‘𝑚))
540471, 512, 513, 539sermono 13407 . . . . . . . . . . . . . . . . . . . 20 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑡) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
541508, 540eqbrtrd 5074 . . . . . . . . . . . . . . . . . . 19 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
542402ad2antlr 726 . . . . . . . . . . . . . . . . . . 19 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → 𝑛 ∈ ℝ)
543478adantl 485 . . . . . . . . . . . . . . . . . . 19 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → 𝑡 ∈ ℝ)
544468, 541, 542, 543ltlecasei 10746 . . . . . . . . . . . . . . . . . 18 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
545544ralrimiva 3177 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → ∀𝑡 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
546 breq1 5055 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) → (𝑚 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ↔ (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛)))
547546ralrn 6845 . . . . . . . . . . . . . . . . . . 19 (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))) Fn ℕ → (∀𝑚 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))𝑚 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ↔ ∀𝑡 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛)))
548355, 547syl 17 . . . . . . . . . . . . . . . . . 18 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (∀𝑚 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))𝑚 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ↔ ∀𝑡 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛)))
549548adantr 484 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (∀𝑚 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))𝑚 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ↔ ∀𝑡 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛)))
550545, 549mpbird 260 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → ∀𝑚 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))𝑚 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
551550r19.21bi 3203 . . . . . . . . . . . . . . 15 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))) → 𝑚 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
552361, 362, 551lensymd 10789 . . . . . . . . . . . . . 14 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))) → ¬ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) < 𝑚)
553311, 322, 358, 552supmax 8928 . . . . . . . . . . . . 13 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))), ℝ*, < ) = (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
55452, 553sylan 583 . . . . . . . . . . . 12 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))), ℝ*, < ) = (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
555255, 309, 5543eqtr3rd 2868 . . . . . . . . . . 11 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) = (vol*‘( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∪ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩))))
556 elfznn 12940 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (1...𝑛) → 𝑧 ∈ ℕ)
557164, 65sseldi 3951 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → (𝑓𝑧) ∈ (ℝ × ℝ))
558 1st2nd2 7723 . . . . . . . . . . . . . . . . . . . 20 ((𝑓𝑧) ∈ (ℝ × ℝ) → (𝑓𝑧) = ⟨(1st ‘(𝑓𝑧)), (2nd ‘(𝑓𝑧))⟩)
559558fveq2d 6665 . . . . . . . . . . . . . . . . . . 19 ((𝑓𝑧) ∈ (ℝ × ℝ) → ([,]‘(𝑓𝑧)) = ([,]‘⟨(1st ‘(𝑓𝑧)), (2nd ‘(𝑓𝑧))⟩))
560 df-ov 7152 . . . . . . . . . . . . . . . . . . 19 ((1st ‘(𝑓𝑧))[,](2nd ‘(𝑓𝑧))) = ([,]‘⟨(1st ‘(𝑓𝑧)), (2nd ‘(𝑓𝑧))⟩)
561559, 560eqtr4di 2877 . . . . . . . . . . . . . . . . . 18 ((𝑓𝑧) ∈ (ℝ × ℝ) → ([,]‘(𝑓𝑧)) = ((1st ‘(𝑓𝑧))[,](2nd ‘(𝑓𝑧))))
562 xp1st 7716 . . . . . . . . . . . . . . . . . . 19 ((𝑓𝑧) ∈ (ℝ × ℝ) → (1st ‘(𝑓𝑧)) ∈ ℝ)
563 xp2nd 7717 . . . . . . . . . . . . . . . . . . 19 ((𝑓𝑧) ∈ (ℝ × ℝ) → (2nd ‘(𝑓𝑧)) ∈ ℝ)
564 iccssre 12816 . . . . . . . . . . . . . . . . . . 19 (((1st ‘(𝑓𝑧)) ∈ ℝ ∧ (2nd ‘(𝑓𝑧)) ∈ ℝ) → ((1st ‘(𝑓𝑧))[,](2nd ‘(𝑓𝑧))) ⊆ ℝ)
565562, 563, 564syl2anc 587 . . . . . . . . . . . . . . . . . 18 ((𝑓𝑧) ∈ (ℝ × ℝ) → ((1st ‘(𝑓𝑧))[,](2nd ‘(𝑓𝑧))) ⊆ ℝ)
566561, 565eqsstrd 3991 . . . . . . . . . . . . . . . . 17 ((𝑓𝑧) ∈ (ℝ × ℝ) → ([,]‘(𝑓𝑧)) ⊆ ℝ)
567557, 566syl 17 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → ([,]‘(𝑓𝑧)) ⊆ ℝ)
56852, 556, 567syl2an 598 . . . . . . . . . . . . . . 15 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ (1...𝑛)) → ([,]‘(𝑓𝑧)) ⊆ ℝ)
569568ralrimiva 3177 . . . . . . . . . . . . . 14 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ∀𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ ℝ)
570 iunss 4955 . . . . . . . . . . . . . 14 ( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ ℝ ↔ ∀𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ ℝ)
571569, 570sylibr 237 . . . . . . . . . . . . 13 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ ℝ)
572571adantr 484 . . . . . . . . . . . 12 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ ℝ)
573 uzid 12255 . . . . . . . . . . . . . . . 16 ((𝑛 + 1) ∈ ℤ → (𝑛 + 1) ∈ (ℤ‘(𝑛 + 1)))
574 ne0i 4283 . . . . . . . . . . . . . . . 16 ((𝑛 + 1) ∈ (ℤ‘(𝑛 + 1)) → (ℤ‘(𝑛 + 1)) ≠ ∅)
575 iunconst 4914 . . . . . . . . . . . . . . . 16 ((ℤ‘(𝑛 + 1)) ≠ ∅ → 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩) = ([,]‘⟨0, 0⟩))
576373, 573, 574, 5754syl 19 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩) = ([,]‘⟨0, 0⟩))
577 iccid 12780 . . . . . . . . . . . . . . . . 17 (0 ∈ ℝ* → (0[,]0) = {0})
578259, 577ax-mp 5 . . . . . . . . . . . . . . . 16 (0[,]0) = {0}
579 df-ov 7152 . . . . . . . . . . . . . . . 16 (0[,]0) = ([,]‘⟨0, 0⟩)
580578, 579eqtr3i 2849 . . . . . . . . . . . . . . 15 {0} = ([,]‘⟨0, 0⟩)
581576, 580eqtr4di 2877 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩) = {0})
582 snssi 4725 . . . . . . . . . . . . . . 15 (0 ∈ ℝ → {0} ⊆ ℝ)
583199, 582ax-mp 5 . . . . . . . . . . . . . 14 {0} ⊆ ℝ
584581, 583eqsstrdi 4007 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩) ⊆ ℝ)
585584adantl 485 . . . . . . . . . . . 12 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩) ⊆ ℝ)
586581fveq2d 6665 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (vol*‘ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩)) = (vol*‘{0}))
587586adantl 485 . . . . . . . . . . . . 13 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (vol*‘ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩)) = (vol*‘{0}))
588 ovolsn 24106 . . . . . . . . . . . . . 14 (0 ∈ ℝ → (vol*‘{0}) = 0)
589199, 588ax-mp 5 . . . . . . . . . . . . 13 (vol*‘{0}) = 0
590587, 589syl6eq 2875 . . . . . . . . . . . 12 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (vol*‘ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩)) = 0)
591 ovolunnul 24111 . . . . . . . . . . . 12 (( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ ℝ ∧ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩) ⊆ ℝ ∧ (vol*‘ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩)) = 0) → (vol*‘( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∪ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩))) = (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))
592572, 585, 590, 591syl3anc 1368 . . . . . . . . . . 11 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (vol*‘( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∪ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩))) = (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))
593555, 592eqtrd 2859 . . . . . . . . . 10 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) = (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))
594593breq2d 5064 . . . . . . . . 9 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (𝑀 < (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ↔ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)))))
595594biimpd 232 . . . . . . . 8 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (𝑀 < (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) → 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)))))
596595reximdva 3266 . . . . . . 7 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (∃𝑛 ∈ ℕ 𝑀 < (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) → ∃𝑛 ∈ ℕ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)))))
597596adantl 485 . . . . . 6 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → (∃𝑛 ∈ ℕ 𝑀 < (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) → ∃𝑛 ∈ ℕ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)))))
598194, 597mpd 15 . . . . 5 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ∃𝑛 ∈ ℕ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))
599 fzfi 13344 . . . . . . . . . 10 (1...𝑛) ∈ Fin
600 icccld 23379 . . . . . . . . . . . . . . 15 (((1st ‘(𝑓𝑧)) ∈ ℝ ∧ (2nd ‘(𝑓𝑧)) ∈ ℝ) → ((1st ‘(𝑓𝑧))[,](2nd ‘(𝑓𝑧))) ∈ (Clsd‘(topGen‘ran (,))))
601562, 563, 600syl2anc 587 . . . . . . . . . . . . . 14 ((𝑓𝑧) ∈ (ℝ × ℝ) → ((1st ‘(𝑓𝑧))[,](2nd ‘(𝑓𝑧))) ∈ (Clsd‘(topGen‘ran (,))))
602561, 601eqeltrd 2916 . . . . . . . . . . . . 13 ((𝑓𝑧) ∈ (ℝ × ℝ) → ([,]‘(𝑓𝑧)) ∈ (Clsd‘(topGen‘ran (,))))
603557, 602syl 17 . . . . . . . . . . . 12 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → ([,]‘(𝑓𝑧)) ∈ (Clsd‘(topGen‘ran (,))))
604556, 603sylan2 595 . . . . . . . . . . 11 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ (1...𝑛)) → ([,]‘(𝑓𝑧)) ∈ (Clsd‘(topGen‘ran (,))))
605604ralrimiva 3177 . . . . . . . . . 10 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ∀𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∈ (Clsd‘(topGen‘ran (,))))
606 uniretop 23375 . . . . . . . . . . 11 ℝ = (topGen‘ran (,))
607606iuncld 21657 . . . . . . . . . 10 (((topGen‘ran (,)) ∈ Top ∧ (1...𝑛) ∈ Fin ∧ ∀𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∈ (Clsd‘(topGen‘ran (,)))) → 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∈ (Clsd‘(topGen‘ran (,))))
6081, 599, 605, 607mp3an12i 1462 . . . . . . . . 9 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∈ (Clsd‘(topGen‘ran (,))))
609608adantr 484 . . . . . . . 8 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑛 ∈ ℕ ∧ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))) → 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∈ (Clsd‘(topGen‘ran (,))))
610 fveq2 6661 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑓𝑧) → ([,]‘𝑏) = ([,]‘(𝑓𝑧)))
611610sseq1d 3984 . . . . . . . . . . . . . . 15 (𝑏 = (𝑓𝑧) → (([,]‘𝑏) ⊆ 𝐴 ↔ ([,]‘(𝑓𝑧)) ⊆ 𝐴))
612611elrab 3666 . . . . . . . . . . . . . 14 ((𝑓𝑧) ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ↔ ((𝑓𝑧) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∧ ([,]‘(𝑓𝑧)) ⊆ 𝐴))
613612simprbi 500 . . . . . . . . . . . . 13 ((𝑓𝑧) ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} → ([,]‘(𝑓𝑧)) ⊆ 𝐴)
61465, 73, 6133syl 18 . . . . . . . . . . . 12 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → ([,]‘(𝑓𝑧)) ⊆ 𝐴)
615556, 614sylan2 595 . . . . . . . . . . 11 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ (1...𝑛)) → ([,]‘(𝑓𝑧)) ⊆ 𝐴)
616615ralrimiva 3177 . . . . . . . . . 10 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ∀𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ 𝐴)
617 iunss 4955 . . . . . . . . . 10 ( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ 𝐴 ↔ ∀𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ 𝐴)
618616, 617sylibr 237 . . . . . . . . 9 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ 𝐴)
619618adantr 484 . . . . . . . 8 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑛 ∈ ℕ ∧ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))) → 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ 𝐴)
620 simprr 772 . . . . . . . 8 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑛 ∈ ℕ ∧ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))) → 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))
621 sseq1 3978 . . . . . . . . . 10 (𝑠 = 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) → (𝑠𝐴 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ 𝐴))
622 fveq2 6661 . . . . . . . . . . 11 (𝑠 = 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) → (vol*‘𝑠) = (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))
623622breq2d 5064 . . . . . . . . . 10 (𝑠 = 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) → (𝑀 < (vol*‘𝑠) ↔ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)))))
624621, 623anbi12d 633 . . . . . . . . 9 (𝑠 = 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) → ((𝑠𝐴𝑀 < (vol*‘𝑠)) ↔ ( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ 𝐴𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))))
625624rspcev 3609 . . . . . . . 8 (( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∈ (Clsd‘(topGen‘ran (,))) ∧ ( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ 𝐴𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
626609, 619, 620, 625syl12anc 835 . . . . . . 7 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑛 ∈ ℕ ∧ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
62752, 626sylan 583 . . . . . 6 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑛 ∈ ℕ ∧ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
628627adantll 713 . . . . 5 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) ∧ (𝑛 ∈ ℕ ∧ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
629598, 628rexlimddv 3283 . . . 4 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
630629adantlr 714 . . 3 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
63117, 630exlimddv 1937 . 2 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝐴 ≠ ∅) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
63215, 631pm2.61dane 3101 1 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∨ w3o 1083   ∧ w3a 1084   = wceq 1538  ∃wex 1781   ∈ wcel 2115   ≠ wne 3014  ∀wral 3133  ∃wrex 3134  {crab 3137  Vcvv 3480   ∪ cun 3917   ∩ cin 3918   ⊆ wss 3919  ∅c0 4276  ifcif 4450  𝒫 cpw 4522  {csn 4550  ⟨cop 4556  ∪ cuni 4824  ∪ ciun 4905  Disj wdisj 5017   class class class wbr 5052   ↦ cmpt 5132   Or wor 5460   × cxp 5540  ran crn 5543   “ cima 5545   ∘ ccom 5546   Fn wfn 6338  ⟶wf 6339  –1-1→wf1 6340  –onto→wfo 6341  –1-1-onto→wf1o 6342  ‘cfv 6343  (class class class)co 7149   ∈ cmpo 7151  1st c1st 7682  2nd c2nd 7683  Fincfn 8505  supcsup 8901  ℂcc 10533  ℝcr 10534  0cc0 10535  1c1 10536   + caddc 10538  ℝ*cxr 10672   < clt 10673   ≤ cle 10674   − cmin 10868   / cdiv 11295  ℕcn 11634  2c2 11689  ℕ0cn0 11894  ℤcz 11978  ℤ≥cuz 12240  (,)cioo 12735  [,]cicc 12738  ...cfz 12894  ..^cfzo 13037  seqcseq 13373  ↑cexp 13434  abscabs 14593  topGenctg 16711  Topctop 21505  Clsdccld 21628  vol*covol 24073 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-inf2 9101  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-disj 5018  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-of 7403  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-omul 8103  df-er 8285  df-map 8404  df-pm 8405  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-fi 8872  df-sup 8903  df-inf 8904  df-oi 8971  df-dju 9327  df-card 9365  df-acn 9368  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-3 11698  df-n0 11895  df-z 11979  df-uz 12241  df-q 12346  df-rp 12387  df-xneg 12504  df-xadd 12505  df-xmul 12506  df-ioo 12739  df-ico 12741  df-icc 12742  df-fz 12895  df-fzo 13038  df-fl 13166  df-seq 13374  df-exp 13435  df-hash 13696  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-rlim 14846  df-sum 15043  df-rest 16696  df-topgen 16717  df-psmet 20090  df-xmet 20091  df-met 20092  df-bl 20093  df-mopn 20094  df-top 21506  df-topon 21523  df-bases 21558  df-cld 21631  df-cmp 21999  df-conn 22024  df-ovol 24075  df-vol 24076 This theorem is referenced by:  mblfinlem4  35046  ismblfin  35047
 Copyright terms: Public domain W3C validator