Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mblfinlem2 Structured version   Visualization version   GIF version

Theorem mblfinlem2 35095
Description: Lemma for ismblfin 35098, effectively one direction of the same fact for open sets, made necessary by Viaclovsky's slightly different definition of outer measure. Note that unlike the main theorem, this holds for sets of infinite measure. (Contributed by Brendan Leahy, 21-Feb-2018.) (Revised by Brendan Leahy, 13-Jul-2018.)
Assertion
Ref Expression
mblfinlem2 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
Distinct variable groups:   𝐴,𝑠   𝑀,𝑠

Proof of Theorem mblfinlem2
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑚 𝑛 𝑝 𝑡 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 retop 23367 . . . 4 (topGen‘ran (,)) ∈ Top
2 0cld 21643 . . . 4 ((topGen‘ran (,)) ∈ Top → ∅ ∈ (Clsd‘(topGen‘ran (,))))
31, 2ax-mp 5 . . 3 ∅ ∈ (Clsd‘(topGen‘ran (,)))
4 simpl3 1190 . . . . 5 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝐴 = ∅) → 𝑀 < (vol*‘𝐴))
5 fveq2 6645 . . . . . 6 (𝐴 = ∅ → (vol*‘𝐴) = (vol*‘∅))
65adantl 485 . . . . 5 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝐴 = ∅) → (vol*‘𝐴) = (vol*‘∅))
74, 6breqtrd 5056 . . . 4 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝐴 = ∅) → 𝑀 < (vol*‘∅))
8 0ss 4304 . . . 4 ∅ ⊆ 𝐴
97, 8jctil 523 . . 3 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝐴 = ∅) → (∅ ⊆ 𝐴𝑀 < (vol*‘∅)))
10 sseq1 3940 . . . . 5 (𝑠 = ∅ → (𝑠𝐴 ↔ ∅ ⊆ 𝐴))
11 fveq2 6645 . . . . . 6 (𝑠 = ∅ → (vol*‘𝑠) = (vol*‘∅))
1211breq2d 5042 . . . . 5 (𝑠 = ∅ → (𝑀 < (vol*‘𝑠) ↔ 𝑀 < (vol*‘∅)))
1310, 12anbi12d 633 . . . 4 (𝑠 = ∅ → ((𝑠𝐴𝑀 < (vol*‘𝑠)) ↔ (∅ ⊆ 𝐴𝑀 < (vol*‘∅))))
1413rspcev 3571 . . 3 ((∅ ∈ (Clsd‘(topGen‘ran (,))) ∧ (∅ ⊆ 𝐴𝑀 < (vol*‘∅))) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
153, 9, 14sylancr 590 . 2 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝐴 = ∅) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
16 mblfinlem1 35094 . . . 4 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝐴 ≠ ∅) → ∃𝑓 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})
17163ad2antl1 1182 . . 3 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝐴 ≠ ∅) → ∃𝑓 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})
18 simpl3 1190 . . . . . . . . 9 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → 𝑀 < (vol*‘𝐴))
19 f1ofo 6597 . . . . . . . . . . . . . . 15 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 𝑓:ℕ–onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})
20 rnco2 6073 . . . . . . . . . . . . . . . . 17 ran ([,] ∘ 𝑓) = ([,] “ ran 𝑓)
21 forn 6568 . . . . . . . . . . . . . . . . . 18 (𝑓:ℕ–onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ran 𝑓 = {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})
2221imaeq2d 5896 . . . . . . . . . . . . . . . . 17 (𝑓:ℕ–onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ([,] “ ran 𝑓) = ([,] “ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}))
2320, 22syl5eq 2845 . . . . . . . . . . . . . . . 16 (𝑓:ℕ–onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ran ([,] ∘ 𝑓) = ([,] “ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}))
2423unieqd 4814 . . . . . . . . . . . . . . 15 (𝑓:ℕ–onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ran ([,] ∘ 𝑓) = ([,] “ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}))
2519, 24syl 17 . . . . . . . . . . . . . 14 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ran ([,] ∘ 𝑓) = ([,] “ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}))
2625adantl 485 . . . . . . . . . . . . 13 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ran ([,] ∘ 𝑓) = ([,] “ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}))
27 oveq1 7142 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑢 → (𝑥 / (2↑𝑦)) = (𝑢 / (2↑𝑦)))
28 oveq1 7142 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑢 → (𝑥 + 1) = (𝑢 + 1))
2928oveq1d 7150 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑢 → ((𝑥 + 1) / (2↑𝑦)) = ((𝑢 + 1) / (2↑𝑦)))
3027, 29opeq12d 4773 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑢 → ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ = ⟨(𝑢 / (2↑𝑦)), ((𝑢 + 1) / (2↑𝑦))⟩)
31 oveq2 7143 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑣 → (2↑𝑦) = (2↑𝑣))
3231oveq2d 7151 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑣 → (𝑢 / (2↑𝑦)) = (𝑢 / (2↑𝑣)))
3331oveq2d 7151 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑣 → ((𝑢 + 1) / (2↑𝑦)) = ((𝑢 + 1) / (2↑𝑣)))
3432, 33opeq12d 4773 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑣 → ⟨(𝑢 / (2↑𝑦)), ((𝑢 + 1) / (2↑𝑦))⟩ = ⟨(𝑢 / (2↑𝑣)), ((𝑢 + 1) / (2↑𝑣))⟩)
3530, 34cbvmpov 7228 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) = (𝑢 ∈ ℤ, 𝑣 ∈ ℕ0 ↦ ⟨(𝑢 / (2↑𝑣)), ((𝑢 + 1) / (2↑𝑣))⟩)
36 fveq2 6645 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑧 → ([,]‘𝑎) = ([,]‘𝑧))
3736sseq1d 3946 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑧 → (([,]‘𝑎) ⊆ ([,]‘𝑐) ↔ ([,]‘𝑧) ⊆ ([,]‘𝑐)))
38 eqeq1 2802 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑧 → (𝑎 = 𝑐𝑧 = 𝑐))
3937, 38imbi12d 348 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑧 → ((([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐) ↔ (([,]‘𝑧) ⊆ ([,]‘𝑐) → 𝑧 = 𝑐)))
4039ralbidv 3162 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑧 → (∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐) ↔ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑧) ⊆ ([,]‘𝑐) → 𝑧 = 𝑐)))
4140cbvrabv 3439 . . . . . . . . . . . . . . 15 {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} = {𝑧 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑧) ⊆ ([,]‘𝑐) → 𝑧 = 𝑐)}
42 ssrab2 4007 . . . . . . . . . . . . . . . 16 {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ⊆ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
4342a1i 11 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) → {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ⊆ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩))
4435, 41, 43dyadmbllem 24203 . . . . . . . . . . . . . 14 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) → ([,] “ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴}) = ([,] “ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}))
4544adantr 484 . . . . . . . . . . . . 13 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ([,] “ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴}) = ([,] “ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}))
4626, 45eqtr4d 2836 . . . . . . . . . . . 12 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ran ([,] ∘ 𝑓) = ([,] “ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴}))
47 opnmbllem0 35093 . . . . . . . . . . . . . 14 (𝐴 ∈ (topGen‘ran (,)) → ([,] “ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴}) = 𝐴)
48473ad2ant1 1130 . . . . . . . . . . . . 13 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) → ([,] “ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴}) = 𝐴)
4948adantr 484 . . . . . . . . . . . 12 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ([,] “ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴}) = 𝐴)
5046, 49eqtrd 2833 . . . . . . . . . . 11 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ran ([,] ∘ 𝑓) = 𝐴)
5150fveq2d 6649 . . . . . . . . . 10 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → (vol*‘ ran ([,] ∘ 𝑓)) = (vol*‘𝐴))
52 f1of 6590 . . . . . . . . . . . . 13 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})
53 ssrab2 4007 . . . . . . . . . . . . . 14 {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ⊆ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴}
5435dyadf 24195 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩):(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ))
55 frn 6493 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩):(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) → ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ⊆ ( ≤ ∩ (ℝ × ℝ)))
5654, 55ax-mp 5 . . . . . . . . . . . . . . 15 ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ⊆ ( ≤ ∩ (ℝ × ℝ))
5742, 56sstri 3924 . . . . . . . . . . . . . 14 {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ⊆ ( ≤ ∩ (ℝ × ℝ))
5853, 57sstri 3924 . . . . . . . . . . . . 13 {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ⊆ ( ≤ ∩ (ℝ × ℝ))
59 fss 6501 . . . . . . . . . . . . 13 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ⊆ ( ≤ ∩ (ℝ × ℝ))) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
6052, 58, 59sylancl 589 . . . . . . . . . . . 12 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
6153, 42sstri 3924 . . . . . . . . . . . . . . . . . . . 20 {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ⊆ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
62 ffvelrn 6826 . . . . . . . . . . . . . . . . . . . 20 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → (𝑓𝑚) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})
6361, 62sseldi 3913 . . . . . . . . . . . . . . . . . . 19 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → (𝑓𝑚) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩))
6463adantrr 716 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → (𝑓𝑚) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩))
65 ffvelrn 6826 . . . . . . . . . . . . . . . . . . . 20 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → (𝑓𝑧) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})
6661, 65sseldi 3913 . . . . . . . . . . . . . . . . . . 19 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → (𝑓𝑧) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩))
6766adantrl 715 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → (𝑓𝑧) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩))
6835dyaddisj 24200 . . . . . . . . . . . . . . . . . 18 (((𝑓𝑚) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∧ (𝑓𝑧) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)) → (([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚)) ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅))
6964, 67, 68syl2anc 587 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → (([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚)) ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅))
7052, 69sylan 583 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → (([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚)) ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅))
71 df-3or 1085 . . . . . . . . . . . . . . . 16 ((([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚)) ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅) ↔ ((([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚))) ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅))
7270, 71sylib 221 . . . . . . . . . . . . . . 15 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚))) ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅))
73 elrabi 3623 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓𝑧) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (𝑓𝑧) ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴})
74 fveq2 6645 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = (𝑓𝑚) → ([,]‘𝑎) = ([,]‘(𝑓𝑚)))
7574sseq1d 3946 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = (𝑓𝑚) → (([,]‘𝑎) ⊆ ([,]‘𝑐) ↔ ([,]‘(𝑓𝑚)) ⊆ ([,]‘𝑐)))
76 eqeq1 2802 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = (𝑓𝑚) → (𝑎 = 𝑐 ↔ (𝑓𝑚) = 𝑐))
7775, 76imbi12d 348 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 = (𝑓𝑚) → ((([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐) ↔ (([,]‘(𝑓𝑚)) ⊆ ([,]‘𝑐) → (𝑓𝑚) = 𝑐)))
7877ralbidv 3162 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = (𝑓𝑚) → (∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐) ↔ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘(𝑓𝑚)) ⊆ ([,]‘𝑐) → (𝑓𝑚) = 𝑐)))
7978elrab 3628 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓𝑚) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ↔ ((𝑓𝑚) ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∧ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘(𝑓𝑚)) ⊆ ([,]‘𝑐) → (𝑓𝑚) = 𝑐)))
8079simprbi 500 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓𝑚) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘(𝑓𝑚)) ⊆ ([,]‘𝑐) → (𝑓𝑚) = 𝑐))
81 fveq2 6645 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 = (𝑓𝑧) → ([,]‘𝑐) = ([,]‘(𝑓𝑧)))
8281sseq2d 3947 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 = (𝑓𝑧) → (([,]‘(𝑓𝑚)) ⊆ ([,]‘𝑐) ↔ ([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧))))
83 eqeq2 2810 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 = (𝑓𝑧) → ((𝑓𝑚) = 𝑐 ↔ (𝑓𝑚) = (𝑓𝑧)))
8482, 83imbi12d 348 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑐 = (𝑓𝑧) → ((([,]‘(𝑓𝑚)) ⊆ ([,]‘𝑐) → (𝑓𝑚) = 𝑐) ↔ (([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) → (𝑓𝑚) = (𝑓𝑧))))
8584rspcva 3569 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑓𝑧) ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∧ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘(𝑓𝑚)) ⊆ ([,]‘𝑐) → (𝑓𝑚) = 𝑐)) → (([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) → (𝑓𝑚) = (𝑓𝑧)))
8673, 80, 85syl2anr 599 . . . . . . . . . . . . . . . . . . . . 21 (((𝑓𝑚) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑓𝑧) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → (([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) → (𝑓𝑚) = (𝑓𝑧)))
87 elrabi 3623 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓𝑚) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (𝑓𝑚) ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴})
88 fveq2 6645 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 = (𝑓𝑧) → ([,]‘𝑎) = ([,]‘(𝑓𝑧)))
8988sseq1d 3946 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = (𝑓𝑧) → (([,]‘𝑎) ⊆ ([,]‘𝑐) ↔ ([,]‘(𝑓𝑧)) ⊆ ([,]‘𝑐)))
90 eqeq1 2802 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = (𝑓𝑧) → (𝑎 = 𝑐 ↔ (𝑓𝑧) = 𝑐))
9189, 90imbi12d 348 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = (𝑓𝑧) → ((([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐) ↔ (([,]‘(𝑓𝑧)) ⊆ ([,]‘𝑐) → (𝑓𝑧) = 𝑐)))
9291ralbidv 3162 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 = (𝑓𝑧) → (∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐) ↔ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘(𝑓𝑧)) ⊆ ([,]‘𝑐) → (𝑓𝑧) = 𝑐)))
9392elrab 3628 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓𝑧) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ↔ ((𝑓𝑧) ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∧ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘(𝑓𝑧)) ⊆ ([,]‘𝑐) → (𝑓𝑧) = 𝑐)))
9493simprbi 500 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓𝑧) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘(𝑓𝑧)) ⊆ ([,]‘𝑐) → (𝑓𝑧) = 𝑐))
95 fveq2 6645 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑐 = (𝑓𝑚) → ([,]‘𝑐) = ([,]‘(𝑓𝑚)))
9695sseq2d 3947 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 = (𝑓𝑚) → (([,]‘(𝑓𝑧)) ⊆ ([,]‘𝑐) ↔ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚))))
97 eqeq2 2810 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐 = (𝑓𝑚) → ((𝑓𝑧) = 𝑐 ↔ (𝑓𝑧) = (𝑓𝑚)))
9896, 97imbi12d 348 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑐 = (𝑓𝑚) → ((([,]‘(𝑓𝑧)) ⊆ ([,]‘𝑐) → (𝑓𝑧) = 𝑐) ↔ (([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚)) → (𝑓𝑧) = (𝑓𝑚))))
9998rspcva 3569 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑓𝑚) ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∧ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘(𝑓𝑧)) ⊆ ([,]‘𝑐) → (𝑓𝑧) = 𝑐)) → (([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚)) → (𝑓𝑧) = (𝑓𝑚)))
10087, 94, 99syl2an 598 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑓𝑚) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑓𝑧) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → (([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚)) → (𝑓𝑧) = (𝑓𝑚)))
101 eqcom 2805 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓𝑧) = (𝑓𝑚) ↔ (𝑓𝑚) = (𝑓𝑧))
102100, 101syl6ib 254 . . . . . . . . . . . . . . . . . . . . 21 (((𝑓𝑚) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑓𝑧) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → (([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚)) → (𝑓𝑚) = (𝑓𝑧)))
10386, 102jaod 856 . . . . . . . . . . . . . . . . . . . 20 (((𝑓𝑚) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑓𝑧) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ((([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚))) → (𝑓𝑚) = (𝑓𝑧)))
10462, 65, 103syl2an 598 . . . . . . . . . . . . . . . . . . 19 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) ∧ (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ)) → ((([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚))) → (𝑓𝑚) = (𝑓𝑧)))
105104anandis 677 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚))) → (𝑓𝑚) = (𝑓𝑧)))
10652, 105sylan 583 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚))) → (𝑓𝑚) = (𝑓𝑧)))
107 f1of1 6589 . . . . . . . . . . . . . . . . . 18 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 𝑓:ℕ–1-1→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})
108 f1veqaeq 6993 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ–1-1→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑓𝑚) = (𝑓𝑧) → 𝑚 = 𝑧))
109107, 108sylan 583 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑓𝑚) = (𝑓𝑧) → 𝑚 = 𝑧))
110106, 109syld 47 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚))) → 𝑚 = 𝑧))
111110orim1d 963 . . . . . . . . . . . . . . 15 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → (((([,]‘(𝑓𝑚)) ⊆ ([,]‘(𝑓𝑧)) ∨ ([,]‘(𝑓𝑧)) ⊆ ([,]‘(𝑓𝑚))) ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅) → (𝑚 = 𝑧 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅)))
11272, 111mpd 15 . . . . . . . . . . . . . 14 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → (𝑚 = 𝑧 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅))
113112ralrimivva 3156 . . . . . . . . . . . . 13 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ∀𝑚 ∈ ℕ ∀𝑧 ∈ ℕ (𝑚 = 𝑧 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅))
114 eqeq1 2802 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑧 → (𝑚 = 𝑝𝑧 = 𝑝))
115 2fveq3 6650 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑧 → ((,)‘(𝑓𝑚)) = ((,)‘(𝑓𝑧)))
116115ineq1d 4138 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑧 → (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑝))) = (((,)‘(𝑓𝑧)) ∩ ((,)‘(𝑓𝑝))))
117116eqeq1d 2800 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑧 → ((((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑝))) = ∅ ↔ (((,)‘(𝑓𝑧)) ∩ ((,)‘(𝑓𝑝))) = ∅))
118114, 117orbi12d 916 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑧 → ((𝑚 = 𝑝 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑝))) = ∅) ↔ (𝑧 = 𝑝 ∨ (((,)‘(𝑓𝑧)) ∩ ((,)‘(𝑓𝑝))) = ∅)))
119118ralbidv 3162 . . . . . . . . . . . . . . 15 (𝑚 = 𝑧 → (∀𝑝 ∈ ℕ (𝑚 = 𝑝 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑝))) = ∅) ↔ ∀𝑝 ∈ ℕ (𝑧 = 𝑝 ∨ (((,)‘(𝑓𝑧)) ∩ ((,)‘(𝑓𝑝))) = ∅)))
120119cbvralvw 3396 . . . . . . . . . . . . . 14 (∀𝑚 ∈ ℕ ∀𝑝 ∈ ℕ (𝑚 = 𝑝 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑝))) = ∅) ↔ ∀𝑧 ∈ ℕ ∀𝑝 ∈ ℕ (𝑧 = 𝑝 ∨ (((,)‘(𝑓𝑧)) ∩ ((,)‘(𝑓𝑝))) = ∅))
121 eqeq2 2810 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑝 → (𝑚 = 𝑧𝑚 = 𝑝))
122 2fveq3 6650 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑝 → ((,)‘(𝑓𝑧)) = ((,)‘(𝑓𝑝)))
123122ineq2d 4139 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑝 → (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑝))))
124123eqeq1d 2800 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑝 → ((((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅ ↔ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑝))) = ∅))
125121, 124orbi12d 916 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑝 → ((𝑚 = 𝑧 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅) ↔ (𝑚 = 𝑝 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑝))) = ∅)))
126125cbvralvw 3396 . . . . . . . . . . . . . . 15 (∀𝑧 ∈ ℕ (𝑚 = 𝑧 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅) ↔ ∀𝑝 ∈ ℕ (𝑚 = 𝑝 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑝))) = ∅))
127126ralbii 3133 . . . . . . . . . . . . . 14 (∀𝑚 ∈ ℕ ∀𝑧 ∈ ℕ (𝑚 = 𝑧 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅) ↔ ∀𝑚 ∈ ℕ ∀𝑝 ∈ ℕ (𝑚 = 𝑝 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑝))) = ∅))
128122disjor 5010 . . . . . . . . . . . . . 14 (Disj 𝑧 ∈ ℕ ((,)‘(𝑓𝑧)) ↔ ∀𝑧 ∈ ℕ ∀𝑝 ∈ ℕ (𝑧 = 𝑝 ∨ (((,)‘(𝑓𝑧)) ∩ ((,)‘(𝑓𝑝))) = ∅))
129120, 127, 1283bitr4ri 307 . . . . . . . . . . . . 13 (Disj 𝑧 ∈ ℕ ((,)‘(𝑓𝑧)) ↔ ∀𝑚 ∈ ℕ ∀𝑧 ∈ ℕ (𝑚 = 𝑧 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅))
130113, 129sylibr 237 . . . . . . . . . . . 12 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → Disj 𝑧 ∈ ℕ ((,)‘(𝑓𝑧)))
131 eqid 2798 . . . . . . . . . . . 12 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
13260, 130, 131uniiccvol 24184 . . . . . . . . . . 11 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (vol*‘ ran ([,] ∘ 𝑓)) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
133132adantl 485 . . . . . . . . . 10 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → (vol*‘ ran ([,] ∘ 𝑓)) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
13451, 133eqtr3d 2835 . . . . . . . . 9 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → (vol*‘𝐴) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
13518, 134breqtrd 5056 . . . . . . . 8 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → 𝑀 < sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
136 absf 14689 . . . . . . . . . . . 12 abs:ℂ⟶ℝ
137 subf 10877 . . . . . . . . . . . 12 − :(ℂ × ℂ)⟶ℂ
138 fco 6505 . . . . . . . . . . . 12 ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ)
139136, 137, 138mp2an 691 . . . . . . . . . . 11 (abs ∘ − ):(ℂ × ℂ)⟶ℝ
140 zre 11973 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
141 2re 11699 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℝ
142 reexpcl 13442 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℝ ∧ 𝑦 ∈ ℕ0) → (2↑𝑦) ∈ ℝ)
143141, 142mpan 689 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℕ0 → (2↑𝑦) ∈ ℝ)
144 2cn 11700 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℂ
145 2ne0 11729 . . . . . . . . . . . . . . . . . . . . 21 2 ≠ 0
146 nn0z 11993 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
147 expne0i 13457 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 𝑦 ∈ ℤ) → (2↑𝑦) ≠ 0)
148144, 145, 146, 147mp3an12i 1462 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℕ0 → (2↑𝑦) ≠ 0)
149143, 148jca 515 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℕ0 → ((2↑𝑦) ∈ ℝ ∧ (2↑𝑦) ≠ 0))
150 redivcl 11348 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℝ ∧ (2↑𝑦) ∈ ℝ ∧ (2↑𝑦) ≠ 0) → (𝑥 / (2↑𝑦)) ∈ ℝ)
151 peano2re 10802 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
152 redivcl 11348 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 + 1) ∈ ℝ ∧ (2↑𝑦) ∈ ℝ ∧ (2↑𝑦) ≠ 0) → ((𝑥 + 1) / (2↑𝑦)) ∈ ℝ)
153151, 152syl3an1 1160 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℝ ∧ (2↑𝑦) ∈ ℝ ∧ (2↑𝑦) ≠ 0) → ((𝑥 + 1) / (2↑𝑦)) ∈ ℝ)
154150, 153opelxpd 5557 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℝ ∧ (2↑𝑦) ∈ ℝ ∧ (2↑𝑦) ≠ 0) → ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ ∈ (ℝ × ℝ))
1551543expb 1117 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ ∧ ((2↑𝑦) ∈ ℝ ∧ (2↑𝑦) ≠ 0)) → ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ ∈ (ℝ × ℝ))
156140, 149, 155syl2an 598 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0) → ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ ∈ (ℝ × ℝ))
157156rgen2 3168 . . . . . . . . . . . . . . . . 17 𝑥 ∈ ℤ ∀𝑦 ∈ ℕ0 ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ ∈ (ℝ × ℝ)
158 eqid 2798 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
159158fmpo 7748 . . . . . . . . . . . . . . . . 17 (∀𝑥 ∈ ℤ ∀𝑦 ∈ ℕ0 ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ ∈ (ℝ × ℝ) ↔ (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩):(ℤ × ℕ0)⟶(ℝ × ℝ))
160157, 159mpbi 233 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩):(ℤ × ℕ0)⟶(ℝ × ℝ)
161 frn 6493 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩):(ℤ × ℕ0)⟶(ℝ × ℝ) → ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ⊆ (ℝ × ℝ))
162160, 161ax-mp 5 . . . . . . . . . . . . . . 15 ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ⊆ (ℝ × ℝ)
16342, 162sstri 3924 . . . . . . . . . . . . . 14 {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ⊆ (ℝ × ℝ)
16453, 163sstri 3924 . . . . . . . . . . . . 13 {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ⊆ (ℝ × ℝ)
165 ax-resscn 10583 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
166 xpss12 5534 . . . . . . . . . . . . . 14 ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℝ × ℝ) ⊆ (ℂ × ℂ))
167165, 165, 166mp2an 691 . . . . . . . . . . . . 13 (ℝ × ℝ) ⊆ (ℂ × ℂ)
168164, 167sstri 3924 . . . . . . . . . . . 12 {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ⊆ (ℂ × ℂ)
169 fss 6501 . . . . . . . . . . . 12 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ⊆ (ℂ × ℂ)) → 𝑓:ℕ⟶(ℂ × ℂ))
170168, 169mpan2 690 . . . . . . . . . . 11 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 𝑓:ℕ⟶(ℂ × ℂ))
171 fco 6505 . . . . . . . . . . 11 (((abs ∘ − ):(ℂ × ℂ)⟶ℝ ∧ 𝑓:ℕ⟶(ℂ × ℂ)) → ((abs ∘ − ) ∘ 𝑓):ℕ⟶ℝ)
172139, 170, 171sylancr 590 . . . . . . . . . 10 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ((abs ∘ − ) ∘ 𝑓):ℕ⟶ℝ)
173 nnuz 12269 . . . . . . . . . . 11 ℕ = (ℤ‘1)
174 1z 12000 . . . . . . . . . . . 12 1 ∈ ℤ
175174a1i 11 . . . . . . . . . . 11 (((abs ∘ − ) ∘ 𝑓):ℕ⟶ℝ → 1 ∈ ℤ)
176 ffvelrn 6826 . . . . . . . . . . 11 ((((abs ∘ − ) ∘ 𝑓):ℕ⟶ℝ ∧ 𝑛 ∈ ℕ) → (((abs ∘ − ) ∘ 𝑓)‘𝑛) ∈ ℝ)
177173, 175, 176serfre 13395 . . . . . . . . . 10 (((abs ∘ − ) ∘ 𝑓):ℕ⟶ℝ → seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶ℝ)
178 frn 6493 . . . . . . . . . . 11 (seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶ℝ → ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ)
179 ressxr 10674 . . . . . . . . . . 11 ℝ ⊆ ℝ*
180178, 179sstrdi 3927 . . . . . . . . . 10 (seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶ℝ → ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ*)
18152, 172, 177, 1804syl 19 . . . . . . . . 9 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ*)
182 rexr 10676 . . . . . . . . . 10 (𝑀 ∈ ℝ → 𝑀 ∈ ℝ*)
1831823ad2ant2 1131 . . . . . . . . 9 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) → 𝑀 ∈ ℝ*)
184 supxrlub 12706 . . . . . . . . 9 ((ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ*𝑀 ∈ ℝ*) → (𝑀 < sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ↔ ∃𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝑓))𝑀 < 𝑧))
185181, 183, 184syl2anr 599 . . . . . . . 8 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → (𝑀 < sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ↔ ∃𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝑓))𝑀 < 𝑧))
186135, 185mpbid 235 . . . . . . 7 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ∃𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝑓))𝑀 < 𝑧)
187 seqfn 13376 . . . . . . . . . 10 (1 ∈ ℤ → seq1( + , ((abs ∘ − ) ∘ 𝑓)) Fn (ℤ‘1))
188174, 187ax-mp 5 . . . . . . . . 9 seq1( + , ((abs ∘ − ) ∘ 𝑓)) Fn (ℤ‘1)
189173fneq2i 6421 . . . . . . . . 9 (seq1( + , ((abs ∘ − ) ∘ 𝑓)) Fn ℕ ↔ seq1( + , ((abs ∘ − ) ∘ 𝑓)) Fn (ℤ‘1))
190188, 189mpbir 234 . . . . . . . 8 seq1( + , ((abs ∘ − ) ∘ 𝑓)) Fn ℕ
191 breq2 5034 . . . . . . . . 9 (𝑧 = (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) → (𝑀 < 𝑧𝑀 < (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛)))
192191rexrn 6830 . . . . . . . 8 (seq1( + , ((abs ∘ − ) ∘ 𝑓)) Fn ℕ → (∃𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝑓))𝑀 < 𝑧 ↔ ∃𝑛 ∈ ℕ 𝑀 < (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛)))
193190, 192ax-mp 5 . . . . . . 7 (∃𝑧 ∈ ran seq1( + , ((abs ∘ − ) ∘ 𝑓))𝑀 < 𝑧 ↔ ∃𝑛 ∈ ℕ 𝑀 < (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
194186, 193sylib 221 . . . . . 6 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ∃𝑛 ∈ ℕ 𝑀 < (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
19560ffvelrnda 6828 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → (𝑓𝑧) ∈ ( ≤ ∩ (ℝ × ℝ)))
196 0le0 11726 . . . . . . . . . . . . . . . . . 18 0 ≤ 0
197 df-br 5031 . . . . . . . . . . . . . . . . . 18 (0 ≤ 0 ↔ ⟨0, 0⟩ ∈ ≤ )
198196, 197mpbi 233 . . . . . . . . . . . . . . . . 17 ⟨0, 0⟩ ∈ ≤
199 0re 10632 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
200 opelxpi 5556 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 0 ∈ ℝ) → ⟨0, 0⟩ ∈ (ℝ × ℝ))
201199, 199, 200mp2an 691 . . . . . . . . . . . . . . . . 17 ⟨0, 0⟩ ∈ (ℝ × ℝ)
202 elin 3897 . . . . . . . . . . . . . . . . 17 (⟨0, 0⟩ ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ (⟨0, 0⟩ ∈ ≤ ∧ ⟨0, 0⟩ ∈ (ℝ × ℝ)))
203198, 201, 202mpbir2an 710 . . . . . . . . . . . . . . . 16 ⟨0, 0⟩ ∈ ( ≤ ∩ (ℝ × ℝ))
204 ifcl 4469 . . . . . . . . . . . . . . . 16 (((𝑓𝑧) ∈ ( ≤ ∩ (ℝ × ℝ)) ∧ ⟨0, 0⟩ ∈ ( ≤ ∩ (ℝ × ℝ))) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) ∈ ( ≤ ∩ (ℝ × ℝ)))
205195, 203, 204sylancl 589 . . . . . . . . . . . . . . 15 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) ∈ ( ≤ ∩ (ℝ × ℝ)))
206205fmpttd 6856 . . . . . . . . . . . . . 14 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)):ℕ⟶( ≤ ∩ (ℝ × ℝ)))
207 df-ov 7138 . . . . . . . . . . . . . . . . . . . . . 22 (0(,)0) = ((,)‘⟨0, 0⟩)
208 iooid 12754 . . . . . . . . . . . . . . . . . . . . . 22 (0(,)0) = ∅
209207, 208eqtr3i 2823 . . . . . . . . . . . . . . . . . . . . 21 ((,)‘⟨0, 0⟩) = ∅
210209ineq1i 4135 . . . . . . . . . . . . . . . . . . . 20 (((,)‘⟨0, 0⟩) ∩ ((,)‘(𝑓𝑧))) = (∅ ∩ ((,)‘(𝑓𝑧)))
211 0in 4301 . . . . . . . . . . . . . . . . . . . 20 (∅ ∩ ((,)‘(𝑓𝑧))) = ∅
212210, 211eqtri 2821 . . . . . . . . . . . . . . . . . . 19 (((,)‘⟨0, 0⟩) ∩ ((,)‘(𝑓𝑧))) = ∅
213212olci 863 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑧 ∨ (((,)‘⟨0, 0⟩) ∩ ((,)‘(𝑓𝑧))) = ∅)
214 ineq1 4131 . . . . . . . . . . . . . . . . . . . . 21 (((,)‘(𝑓𝑚)) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) → (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))))
215214eqeq1d 2800 . . . . . . . . . . . . . . . . . . . 20 (((,)‘(𝑓𝑚)) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) → ((((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅ ↔ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))) = ∅))
216215orbi2d 913 . . . . . . . . . . . . . . . . . . 19 (((,)‘(𝑓𝑚)) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) → ((𝑚 = 𝑧 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅) ↔ (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))) = ∅)))
217 ineq1 4131 . . . . . . . . . . . . . . . . . . . . 21 (((,)‘⟨0, 0⟩) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) → (((,)‘⟨0, 0⟩) ∩ ((,)‘(𝑓𝑧))) = (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))))
218217eqeq1d 2800 . . . . . . . . . . . . . . . . . . . 20 (((,)‘⟨0, 0⟩) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) → ((((,)‘⟨0, 0⟩) ∩ ((,)‘(𝑓𝑧))) = ∅ ↔ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))) = ∅))
219218orbi2d 913 . . . . . . . . . . . . . . . . . . 19 (((,)‘⟨0, 0⟩) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) → ((𝑚 = 𝑧 ∨ (((,)‘⟨0, 0⟩) ∩ ((,)‘(𝑓𝑧))) = ∅) ↔ (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))) = ∅)))
220216, 219ifboth 4463 . . . . . . . . . . . . . . . . . 18 (((𝑚 = 𝑧 ∨ (((,)‘(𝑓𝑚)) ∩ ((,)‘(𝑓𝑧))) = ∅) ∧ (𝑚 = 𝑧 ∨ (((,)‘⟨0, 0⟩) ∩ ((,)‘(𝑓𝑧))) = ∅)) → (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))) = ∅))
221112, 213, 220sylancl 589 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))) = ∅))
222209ineq2i 4136 . . . . . . . . . . . . . . . . . . 19 (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘⟨0, 0⟩)) = (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ∅)
223 in0 4299 . . . . . . . . . . . . . . . . . . 19 (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ∅) = ∅
224222, 223eqtri 2821 . . . . . . . . . . . . . . . . . 18 (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘⟨0, 0⟩)) = ∅
225224olci 863 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘⟨0, 0⟩)) = ∅)
226 ineq2 4133 . . . . . . . . . . . . . . . . . . . 20 (((,)‘(𝑓𝑧)) = if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩)) → (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))) = (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))))
227226eqeq1d 2800 . . . . . . . . . . . . . . . . . . 19 (((,)‘(𝑓𝑧)) = if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩)) → ((if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))) = ∅ ↔ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))) = ∅))
228227orbi2d 913 . . . . . . . . . . . . . . . . . 18 (((,)‘(𝑓𝑧)) = if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩)) → ((𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))) = ∅) ↔ (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))) = ∅)))
229 ineq2 4133 . . . . . . . . . . . . . . . . . . . 20 (((,)‘⟨0, 0⟩) = if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩)) → (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘⟨0, 0⟩)) = (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))))
230229eqeq1d 2800 . . . . . . . . . . . . . . . . . . 19 (((,)‘⟨0, 0⟩) = if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩)) → ((if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘⟨0, 0⟩)) = ∅ ↔ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))) = ∅))
231230orbi2d 913 . . . . . . . . . . . . . . . . . 18 (((,)‘⟨0, 0⟩) = if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩)) → ((𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘⟨0, 0⟩)) = ∅) ↔ (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))) = ∅)))
232228, 231ifboth 4463 . . . . . . . . . . . . . . . . 17 (((𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘(𝑓𝑧))) = ∅) ∧ (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ ((,)‘⟨0, 0⟩)) = ∅)) → (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))) = ∅))
233221, 225, 232sylancl 589 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))) = ∅))
234233ralrimivva 3156 . . . . . . . . . . . . . . 15 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ∀𝑚 ∈ ℕ ∀𝑧 ∈ ℕ (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))) = ∅))
235 disjeq2 4999 . . . . . . . . . . . . . . . . 17 (∀𝑚 ∈ ℕ ((,)‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) → (Disj 𝑚 ∈ ℕ ((,)‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)) ↔ Disj 𝑚 ∈ ℕ if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩))))
236 eleq1w 2872 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑚 → (𝑧 ∈ (1...𝑛) ↔ 𝑚 ∈ (1...𝑛)))
237 fveq2 6645 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑚 → (𝑓𝑧) = (𝑓𝑚))
238236, 237ifbieq1d 4448 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑚 → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) = if(𝑚 ∈ (1...𝑛), (𝑓𝑚), ⟨0, 0⟩))
239 eqid 2798 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) = (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))
240 fvex 6658 . . . . . . . . . . . . . . . . . . . . 21 (𝑓𝑚) ∈ V
241 opex 5321 . . . . . . . . . . . . . . . . . . . . 21 ⟨0, 0⟩ ∈ V
242240, 241ifex 4473 . . . . . . . . . . . . . . . . . . . 20 if(𝑚 ∈ (1...𝑛), (𝑓𝑚), ⟨0, 0⟩) ∈ V
243238, 239, 242fvmpt 6745 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ ℕ → ((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚) = if(𝑚 ∈ (1...𝑛), (𝑓𝑚), ⟨0, 0⟩))
244243fveq2d 6649 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ → ((,)‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)) = ((,)‘if(𝑚 ∈ (1...𝑛), (𝑓𝑚), ⟨0, 0⟩)))
245 fvif 6661 . . . . . . . . . . . . . . . . . 18 ((,)‘if(𝑚 ∈ (1...𝑛), (𝑓𝑚), ⟨0, 0⟩)) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩))
246244, 245eqtrdi 2849 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → ((,)‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)))
247235, 246mprg 3120 . . . . . . . . . . . . . . . 16 (Disj 𝑚 ∈ ℕ ((,)‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)) ↔ Disj 𝑚 ∈ ℕ if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)))
248 eleq1w 2872 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑧 → (𝑚 ∈ (1...𝑛) ↔ 𝑧 ∈ (1...𝑛)))
249248, 115ifbieq1d 4448 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑧 → if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) = if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩)))
250249disjor 5010 . . . . . . . . . . . . . . . 16 (Disj 𝑚 ∈ ℕ if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ↔ ∀𝑚 ∈ ℕ ∀𝑧 ∈ ℕ (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))) = ∅))
251247, 250bitri 278 . . . . . . . . . . . . . . 15 (Disj 𝑚 ∈ ℕ ((,)‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)) ↔ ∀𝑚 ∈ ℕ ∀𝑧 ∈ ℕ (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓𝑚)), ((,)‘⟨0, 0⟩)) ∩ if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓𝑧)), ((,)‘⟨0, 0⟩))) = ∅))
252234, 251sylibr 237 . . . . . . . . . . . . . 14 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → Disj 𝑚 ∈ ℕ ((,)‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)))
253 eqid 2798 . . . . . . . . . . . . . 14 seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))) = seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))
254206, 252, 253uniiccvol 24184 . . . . . . . . . . . . 13 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (vol*‘ ran ([,] ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))) = sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))), ℝ*, < ))
255254adantr 484 . . . . . . . . . . . 12 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (vol*‘ ran ([,] ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))) = sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))), ℝ*, < ))
256 rexpssxrxp 10675 . . . . . . . . . . . . . . . . . . . . 21 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
257164, 256sstri 3924 . . . . . . . . . . . . . . . . . . . 20 {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ⊆ (ℝ* × ℝ*)
258257, 65sseldi 3913 . . . . . . . . . . . . . . . . . . 19 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → (𝑓𝑧) ∈ (ℝ* × ℝ*))
259 0xr 10677 . . . . . . . . . . . . . . . . . . . 20 0 ∈ ℝ*
260 opelxpi 5556 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ ℝ* ∧ 0 ∈ ℝ*) → ⟨0, 0⟩ ∈ (ℝ* × ℝ*))
261259, 259, 260mp2an 691 . . . . . . . . . . . . . . . . . . 19 ⟨0, 0⟩ ∈ (ℝ* × ℝ*)
262 ifcl 4469 . . . . . . . . . . . . . . . . . . 19 (((𝑓𝑧) ∈ (ℝ* × ℝ*) ∧ ⟨0, 0⟩ ∈ (ℝ* × ℝ*)) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) ∈ (ℝ* × ℝ*))
263258, 261, 262sylancl 589 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) ∈ (ℝ* × ℝ*))
264 eqidd 2799 . . . . . . . . . . . . . . . . . 18 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) = (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))
265 iccf 12826 . . . . . . . . . . . . . . . . . . . 20 [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
266265a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*)
267266feqmptd 6708 . . . . . . . . . . . . . . . . . 18 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → [,] = (𝑚 ∈ (ℝ* × ℝ*) ↦ ([,]‘𝑚)))
268 fveq2 6645 . . . . . . . . . . . . . . . . . 18 (𝑚 = if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) → ([,]‘𝑚) = ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))
269263, 264, 267, 268fmptco 6868 . . . . . . . . . . . . . . . . 17 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ([,] ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))) = (𝑧 ∈ ℕ ↦ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))
27052, 269syl 17 . . . . . . . . . . . . . . . 16 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ([,] ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))) = (𝑧 ∈ ℕ ↦ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))
271270rneqd 5772 . . . . . . . . . . . . . . 15 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ran ([,] ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))) = ran (𝑧 ∈ ℕ ↦ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))
272271unieqd 4814 . . . . . . . . . . . . . 14 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ran ([,] ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))) = ran (𝑧 ∈ ℕ ↦ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))
273 peano2nn 11637 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
274273, 173eleqtrdi 2900 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ (ℤ‘1))
275 fzouzsplit 13067 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 + 1) ∈ (ℤ‘1) → (ℤ‘1) = ((1..^(𝑛 + 1)) ∪ (ℤ‘(𝑛 + 1))))
276274, 275syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (ℤ‘1) = ((1..^(𝑛 + 1)) ∪ (ℤ‘(𝑛 + 1))))
277173, 276syl5eq 2845 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → ℕ = ((1..^(𝑛 + 1)) ∪ (ℤ‘(𝑛 + 1))))
278 nnz 11992 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
279 fzval3 13101 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℤ → (1...𝑛) = (1..^(𝑛 + 1)))
280278, 279syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (1...𝑛) = (1..^(𝑛 + 1)))
281280uneq1d 4089 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → ((1...𝑛) ∪ (ℤ‘(𝑛 + 1))) = ((1..^(𝑛 + 1)) ∪ (ℤ‘(𝑛 + 1))))
282277, 281eqtr4d 2836 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → ℕ = ((1...𝑛) ∪ (ℤ‘(𝑛 + 1))))
283 fvif 6661 . . . . . . . . . . . . . . . . . 18 ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) = if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩))
284283a1i 11 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) = if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)))
285282, 284iuneq12d 4909 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑧 ∈ ℕ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) = 𝑧 ∈ ((1...𝑛) ∪ (ℤ‘(𝑛 + 1)))if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)))
286 fvex 6658 . . . . . . . . . . . . . . . . 17 ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) ∈ V
287286dfiun3 5802 . . . . . . . . . . . . . . . 16 𝑧 ∈ ℕ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) = ran (𝑧 ∈ ℕ ↦ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))
288 iunxun 4979 . . . . . . . . . . . . . . . 16 𝑧 ∈ ((1...𝑛) ∪ (ℤ‘(𝑛 + 1)))if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)) = ( 𝑧 ∈ (1...𝑛)if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)) ∪ 𝑧 ∈ (ℤ‘(𝑛 + 1))if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)))
289285, 287, 2883eqtr3g 2856 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → ran (𝑧 ∈ ℕ ↦ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))) = ( 𝑧 ∈ (1...𝑛)if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)) ∪ 𝑧 ∈ (ℤ‘(𝑛 + 1))if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩))))
290 iftrue 4431 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (1...𝑛) → if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)) = ([,]‘(𝑓𝑧)))
291290iuneq2i 4902 . . . . . . . . . . . . . . . . 17 𝑧 ∈ (1...𝑛)if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)) = 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))
292291a1i 11 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑧 ∈ (1...𝑛)if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)) = 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)))
293 uznfz 12985 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ (ℤ‘(𝑛 + 1)) → ¬ 𝑧 ∈ (1...((𝑛 + 1) − 1)))
294293adantl 485 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ ∧ 𝑧 ∈ (ℤ‘(𝑛 + 1))) → ¬ 𝑧 ∈ (1...((𝑛 + 1) − 1)))
295 nncn 11633 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
296 ax-1cn 10584 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℂ
297 pncan 10881 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 + 1) − 1) = 𝑛)
298295, 296, 297sylancl 589 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℕ → ((𝑛 + 1) − 1) = 𝑛)
299298oveq2d 7151 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → (1...((𝑛 + 1) − 1)) = (1...𝑛))
300299eleq2d 2875 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → (𝑧 ∈ (1...((𝑛 + 1) − 1)) ↔ 𝑧 ∈ (1...𝑛)))
301300notbid 321 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (¬ 𝑧 ∈ (1...((𝑛 + 1) − 1)) ↔ ¬ 𝑧 ∈ (1...𝑛)))
302301adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ ∧ 𝑧 ∈ (ℤ‘(𝑛 + 1))) → (¬ 𝑧 ∈ (1...((𝑛 + 1) − 1)) ↔ ¬ 𝑧 ∈ (1...𝑛)))
303294, 302mpbid 235 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ 𝑧 ∈ (ℤ‘(𝑛 + 1))) → ¬ 𝑧 ∈ (1...𝑛))
304303iffalsed 4436 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ ∧ 𝑧 ∈ (ℤ‘(𝑛 + 1))) → if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)) = ([,]‘⟨0, 0⟩))
305304iuneq2dv 4905 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑧 ∈ (ℤ‘(𝑛 + 1))if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)) = 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩))
306292, 305uneq12d 4091 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → ( 𝑧 ∈ (1...𝑛)if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩)) ∪ 𝑧 ∈ (ℤ‘(𝑛 + 1))if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓𝑧)), ([,]‘⟨0, 0⟩))) = ( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∪ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩)))
307289, 306eqtrd 2833 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → ran (𝑧 ∈ ℕ ↦ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))) = ( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∪ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩)))
308272, 307sylan9eq 2853 . . . . . . . . . . . . 13 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → ran ([,] ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))) = ( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∪ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩)))
309308fveq2d 6649 . . . . . . . . . . . 12 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (vol*‘ ran ([,] ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))) = (vol*‘( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∪ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩))))
310 xrltso 12522 . . . . . . . . . . . . . . 15 < Or ℝ*
311310a1i 11 . . . . . . . . . . . . . 14 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → < Or ℝ*)
312 elnnuz 12270 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
313312biimpi 219 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ‘1))
314313adantl 485 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ (ℤ‘1))
315 elfznn 12931 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ (1...𝑛) → 𝑢 ∈ ℕ)
316172ffvelrnda 6828 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑢 ∈ ℕ) → (((abs ∘ − ) ∘ 𝑓)‘𝑢) ∈ ℝ)
317315, 316sylan2 595 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑢 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ 𝑓)‘𝑢) ∈ ℝ)
318317adantlr 714 . . . . . . . . . . . . . . . 16 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑢 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ 𝑓)‘𝑢) ∈ ℝ)
319 readdcl 10609 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑢 + 𝑣) ∈ ℝ)
320319adantl 485 . . . . . . . . . . . . . . . 16 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → (𝑢 + 𝑣) ∈ ℝ)
321314, 318, 320seqcl 13386 . . . . . . . . . . . . . . 15 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ∈ ℝ)
322321rexrd 10680 . . . . . . . . . . . . . 14 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ∈ ℝ*)
323 eqidd 2799 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ (1...𝑛) → (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) = (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))
324 iftrue 4431 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ (1...𝑛) → if(𝑚 ∈ (1...𝑛), (𝑓𝑚), ⟨0, 0⟩) = (𝑓𝑚))
325238, 324sylan9eqr 2855 . . . . . . . . . . . . . . . . . . . . 21 ((𝑚 ∈ (1...𝑛) ∧ 𝑧 = 𝑚) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) = (𝑓𝑚))
326 elfznn 12931 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ (1...𝑛) → 𝑚 ∈ ℕ)
327240a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ (1...𝑛) → (𝑓𝑚) ∈ V)
328323, 325, 326, 327fvmptd 6752 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ (1...𝑛) → ((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚) = (𝑓𝑚))
329328adantl 485 . . . . . . . . . . . . . . . . . . 19 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ (1...𝑛)) → ((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚) = (𝑓𝑚))
330329fveq2d 6649 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ (1...𝑛)) → ((abs ∘ − )‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)) = ((abs ∘ − )‘(𝑓𝑚)))
331 fvex 6658 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓𝑧) ∈ V
332331, 241ifex 4473 . . . . . . . . . . . . . . . . . . . . 21 if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) ∈ V
333332, 239fnmpti 6463 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) Fn ℕ
334 fvco2 6735 . . . . . . . . . . . . . . . . . . . 20 (((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) Fn ℕ ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = ((abs ∘ − )‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)))
335333, 326, 334sylancr 590 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ (1...𝑛) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = ((abs ∘ − )‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)))
336335adantl 485 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = ((abs ∘ − )‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)))
337 ffn 6487 . . . . . . . . . . . . . . . . . . 19 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 𝑓 Fn ℕ)
338 fvco2 6735 . . . . . . . . . . . . . . . . . . 19 ((𝑓 Fn ℕ ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) = ((abs ∘ − )‘(𝑓𝑚)))
339337, 326, 338syl2an 598 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) = ((abs ∘ − )‘(𝑓𝑚)))
340330, 336, 3393eqtr4d 2843 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = (((abs ∘ − ) ∘ 𝑓)‘𝑚))
341340adantlr 714 . . . . . . . . . . . . . . . 16 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = (((abs ∘ − ) ∘ 𝑓)‘𝑚))
342314, 341seqfveq 13390 . . . . . . . . . . . . . . 15 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑛) = (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
343174a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 1 ∈ ℤ)
344168, 65sseldi 3913 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → (𝑓𝑧) ∈ (ℂ × ℂ))
345 0cn 10622 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ ℂ
346 opelxpi 5556 . . . . . . . . . . . . . . . . . . . . . . 23 ((0 ∈ ℂ ∧ 0 ∈ ℂ) → ⟨0, 0⟩ ∈ (ℂ × ℂ))
347345, 345, 346mp2an 691 . . . . . . . . . . . . . . . . . . . . . 22 ⟨0, 0⟩ ∈ (ℂ × ℂ)
348 ifcl 4469 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑓𝑧) ∈ (ℂ × ℂ) ∧ ⟨0, 0⟩ ∈ (ℂ × ℂ)) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) ∈ (ℂ × ℂ))
349344, 347, 348sylancl 589 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) ∈ (ℂ × ℂ))
350349fmpttd 6856 . . . . . . . . . . . . . . . . . . . 20 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)):ℕ⟶(ℂ × ℂ))
351 fco 6505 . . . . . . . . . . . . . . . . . . . 20 (((abs ∘ − ):(ℂ × ℂ)⟶ℝ ∧ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)):ℕ⟶(ℂ × ℂ)) → ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))):ℕ⟶ℝ)
352139, 350, 351sylancr 590 . . . . . . . . . . . . . . . . . . 19 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))):ℕ⟶ℝ)
353352ffvelrnda 6828 . . . . . . . . . . . . . . . . . 18 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) ∈ ℝ)
354173, 343, 353serfre 13395 . . . . . . . . . . . . . . . . 17 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))):ℕ⟶ℝ)
355354ffnd 6488 . . . . . . . . . . . . . . . 16 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))) Fn ℕ)
356 fnfvelrn 6825 . . . . . . . . . . . . . . . 16 ((seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))) Fn ℕ ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑛) ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))))
357355, 356sylan 583 . . . . . . . . . . . . . . 15 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑛) ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))))
358342, 357eqeltrrd 2891 . . . . . . . . . . . . . 14 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))))
359354frnd 6494 . . . . . . . . . . . . . . . . 17 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))) ⊆ ℝ)
360359adantr 484 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))) ⊆ ℝ)
361360sselda 3915 . . . . . . . . . . . . . . 15 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))) → 𝑚 ∈ ℝ)
362321adantr 484 . . . . . . . . . . . . . . 15 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ∈ ℝ)
363 readdcl 10609 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 ∈ ℝ ∧ 𝑢 ∈ ℝ) → (𝑚 + 𝑢) ∈ ℝ)
364363adantl 485 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ (𝑚 ∈ ℝ ∧ 𝑢 ∈ ℝ)) → (𝑚 + 𝑢) ∈ ℝ)
365 recn 10616 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 ∈ ℝ → 𝑚 ∈ ℂ)
366 recn 10616 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑢 ∈ ℝ → 𝑢 ∈ ℂ)
367 recn 10616 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑣 ∈ ℝ → 𝑣 ∈ ℂ)
368 addass 10613 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑚 ∈ ℂ ∧ 𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → ((𝑚 + 𝑢) + 𝑣) = (𝑚 + (𝑢 + 𝑣)))
369365, 366, 367, 368syl3an 1157 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 ∈ ℝ ∧ 𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → ((𝑚 + 𝑢) + 𝑣) = (𝑚 + (𝑢 + 𝑣)))
370369adantl 485 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ (𝑚 ∈ ℝ ∧ 𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → ((𝑚 + 𝑢) + 𝑣) = (𝑚 + (𝑢 + 𝑣)))
371 nnltp1le 12026 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) → (𝑛 < 𝑡 ↔ (𝑛 + 1) ≤ 𝑡))
372371biimpa 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (𝑛 + 1) ≤ 𝑡)
373273nnzd 12074 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℤ)
374 nnz 11992 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 ∈ ℕ → 𝑡 ∈ ℤ)
375 eluz 12245 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑛 + 1) ∈ ℤ ∧ 𝑡 ∈ ℤ) → (𝑡 ∈ (ℤ‘(𝑛 + 1)) ↔ (𝑛 + 1) ≤ 𝑡))
376373, 374, 375syl2an 598 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) → (𝑡 ∈ (ℤ‘(𝑛 + 1)) ↔ (𝑛 + 1) ≤ 𝑡))
377376adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (𝑡 ∈ (ℤ‘(𝑛 + 1)) ↔ (𝑛 + 1) ≤ 𝑡))
378372, 377mpbird 260 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → 𝑡 ∈ (ℤ‘(𝑛 + 1)))
379378adantlll 717 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → 𝑡 ∈ (ℤ‘(𝑛 + 1)))
380313ad3antlr 730 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → 𝑛 ∈ (ℤ‘1))
381 simplll 774 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → 𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})
382 elfznn 12931 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ (1...𝑡) → 𝑚 ∈ ℕ)
383381, 382, 353syl2an 598 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ (1...𝑡)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) ∈ ℝ)
384364, 370, 379, 380, 383seqsplit 13399 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) = ((seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑛) + (seq(𝑛 + 1)( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡)))
385342ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑛) = (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
386 elfzelz 12902 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑚 ∈ ((𝑛 + 1)...𝑡) → 𝑚 ∈ ℤ)
387386adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑚 ∈ ℤ)
388 0red 10633 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 0 ∈ ℝ)
389273nnred 11640 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℝ)
390389ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (𝑛 + 1) ∈ ℝ)
391386zred 12075 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑚 ∈ ((𝑛 + 1)...𝑡) → 𝑚 ∈ ℝ)
392391adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑚 ∈ ℝ)
393273nngt0d 11674 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑛 ∈ ℕ → 0 < (𝑛 + 1))
394393ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 0 < (𝑛 + 1))
395 elfzle1 12905 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑚 ∈ ((𝑛 + 1)...𝑡) → (𝑛 + 1) ≤ 𝑚)
396395adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (𝑛 + 1) ≤ 𝑚)
397388, 390, 392, 394, 396ltletrd 10789 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 0 < 𝑚)
398 elnnz 11979 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑚 ∈ ℕ ↔ (𝑚 ∈ ℤ ∧ 0 < 𝑚))
399387, 397, 398sylanbrc 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑚 ∈ ℕ)
400333, 399, 334sylancr 590 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = ((abs ∘ − )‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)))
401 eqidd 2799 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) = (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))
402 nnre 11632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
403402adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑛 ∈ ℝ)
404389adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (𝑛 + 1) ∈ ℝ)
405391adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑚 ∈ ℝ)
406402ltp1d 11559 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑛 ∈ ℕ → 𝑛 < (𝑛 + 1))
407406adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑛 < (𝑛 + 1))
408395adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (𝑛 + 1) ≤ 𝑚)
409403, 404, 405, 407, 408ltletrd 10789 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑛 < 𝑚)
410409adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) ∧ 𝑧 = 𝑚) → 𝑛 < 𝑚)
411403, 405ltnled 10776 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (𝑛 < 𝑚 ↔ ¬ 𝑚𝑛))
412 breq1 5033 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑚 = 𝑧 → (𝑚𝑛𝑧𝑛))
413412equcoms 2027 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑧 = 𝑚 → (𝑚𝑛𝑧𝑛))
414413notbid 321 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑧 = 𝑚 → (¬ 𝑚𝑛 ↔ ¬ 𝑧𝑛))
415411, 414sylan9bb 513 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) ∧ 𝑧 = 𝑚) → (𝑛 < 𝑚 ↔ ¬ 𝑧𝑛))
416410, 415mpbid 235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) ∧ 𝑧 = 𝑚) → ¬ 𝑧𝑛)
417 elfzle2 12906 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑧 ∈ (1...𝑛) → 𝑧𝑛)
418416, 417nsyl 142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) ∧ 𝑧 = 𝑚) → ¬ 𝑧 ∈ (1...𝑛))
419418iffalsed 4436 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) ∧ 𝑧 = 𝑚) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) = ⟨0, 0⟩)
420386adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑚 ∈ ℤ)
421 0red 10633 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 0 ∈ ℝ)
422393adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 0 < (𝑛 + 1))
423421, 404, 405, 422, 408ltletrd 10789 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 0 < 𝑚)
424420, 423, 398sylanbrc 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑚 ∈ ℕ)
425241a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → ⟨0, 0⟩ ∈ V)
426401, 419, 424, 425fvmptd 6752 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → ((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚) = ⟨0, 0⟩)
427426ad4ant14 751 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → ((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚) = ⟨0, 0⟩)
428427fveq2d 6649 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → ((abs ∘ − )‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)) = ((abs ∘ − )‘⟨0, 0⟩))
429400, 428eqtrd 2833 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = ((abs ∘ − )‘⟨0, 0⟩))
430 fvco3 6737 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (( − :(ℂ × ℂ)⟶ℂ ∧ ⟨0, 0⟩ ∈ (ℂ × ℂ)) → ((abs ∘ − )‘⟨0, 0⟩) = (abs‘( − ‘⟨0, 0⟩)))
431137, 347, 430mp2an 691 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((abs ∘ − )‘⟨0, 0⟩) = (abs‘( − ‘⟨0, 0⟩))
432 df-ov 7138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (0 − 0) = ( − ‘⟨0, 0⟩)
433 0m0e0 11745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (0 − 0) = 0
434432, 433eqtr3i 2823 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ( − ‘⟨0, 0⟩) = 0
435434fveq2i 6648 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (abs‘( − ‘⟨0, 0⟩)) = (abs‘0)
436 abs0 14637 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (abs‘0) = 0
437435, 436eqtri 2821 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (abs‘( − ‘⟨0, 0⟩)) = 0
438431, 437eqtri 2821 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((abs ∘ − )‘⟨0, 0⟩) = 0
439429, 438eqtrdi 2849 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = 0)
440 elfzuz 12898 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑚 ∈ ((𝑛 + 1)...𝑡) → 𝑚 ∈ (ℤ‘(𝑛 + 1)))
441 c0ex 10624 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 0 ∈ V
442441fvconst2 6943 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑚 ∈ (ℤ‘(𝑛 + 1)) → (((ℤ‘(𝑛 + 1)) × {0})‘𝑚) = 0)
443440, 442syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑚 ∈ ((𝑛 + 1)...𝑡) → (((ℤ‘(𝑛 + 1)) × {0})‘𝑚) = 0)
444443adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (((ℤ‘(𝑛 + 1)) × {0})‘𝑚) = 0)
445439, 444eqtr4d 2836 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = (((ℤ‘(𝑛 + 1)) × {0})‘𝑚))
446378, 445seqfveq 13390 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq(𝑛 + 1)( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) = (seq(𝑛 + 1)( + , ((ℤ‘(𝑛 + 1)) × {0}))‘𝑡))
447 eqid 2798 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (ℤ‘(𝑛 + 1)) = (ℤ‘(𝑛 + 1))
448447ser0 13418 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 ∈ (ℤ‘(𝑛 + 1)) → (seq(𝑛 + 1)( + , ((ℤ‘(𝑛 + 1)) × {0}))‘𝑡) = 0)
449378, 448syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq(𝑛 + 1)( + , ((ℤ‘(𝑛 + 1)) × {0}))‘𝑡) = 0)
450446, 449eqtrd 2833 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq(𝑛 + 1)( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) = 0)
451450adantlll 717 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq(𝑛 + 1)( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) = 0)
452385, 451oveq12d 7153 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → ((seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑛) + (seq(𝑛 + 1)( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡)) = ((seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) + 0))
453172ffvelrnda 6828 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) ∈ ℝ)
454326, 453sylan2 595 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) ∈ ℝ)
455454adantlr 714 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) ∈ ℝ)
456 readdcl 10609 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑚 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑚 + 𝑣) ∈ ℝ)
457456adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ (𝑚 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → (𝑚 + 𝑣) ∈ ℝ)
458314, 455, 457seqcl 13386 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ∈ ℝ)
459458ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ∈ ℝ)
460459recnd 10658 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ∈ ℂ)
461460addid1d 10829 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → ((seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) + 0) = (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
462452, 461eqtrd 2833 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → ((seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑛) + (seq(𝑛 + 1)( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡)) = (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
463384, 462eqtrd 2833 . . . . . . . . . . . . . . . . . . . 20 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) = (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
464453ad5ant15 758 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) ∈ ℝ)
465326, 464sylan2 595 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) ∈ ℝ)
466380, 465, 364seqcl 13386 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ∈ ℝ)
467466leidd 11195 . . . . . . . . . . . . . . . . . . . 20 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
468463, 467eqbrtrd 5052 . . . . . . . . . . . . . . . . . . 19 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
469 elnnuz 12270 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 ∈ ℕ ↔ 𝑡 ∈ (ℤ‘1))
470469biimpi 219 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 ∈ ℕ → 𝑡 ∈ (ℤ‘1))
471470ad2antlr 726 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) → 𝑡 ∈ (ℤ‘1))
472 eqidd 2799 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)) = (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))
473 simpr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) ∧ 𝑧 = 𝑚) → 𝑧 = 𝑚)
474 elfzle1 12905 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑚 ∈ (1...𝑡) → 1 ≤ 𝑚)
475474adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 1 ≤ 𝑚)
476382nnred 11640 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑚 ∈ (1...𝑡) → 𝑚 ∈ ℝ)
477476adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑚 ∈ ℝ)
478 nnre 11632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑡 ∈ ℕ → 𝑡 ∈ ℝ)
479478ad3antlr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑡 ∈ ℝ)
480402ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑛 ∈ ℝ)
481 elfzle2 12906 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑚 ∈ (1...𝑡) → 𝑚𝑡)
482481adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑚𝑡)
483 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑡𝑛)
484477, 479, 480, 482, 483letrd 10786 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑚𝑛)
485 elfzelz 12902 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑚 ∈ (1...𝑡) → 𝑚 ∈ ℤ)
486278ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) → 𝑛 ∈ ℤ)
487 elfz 12891 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑚 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑚 ∈ (1...𝑛) ↔ (1 ≤ 𝑚𝑚𝑛)))
488174, 487mp3an2 1446 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑚 ∈ (1...𝑛) ↔ (1 ≤ 𝑚𝑚𝑛)))
489485, 486, 488syl2anr 599 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → (𝑚 ∈ (1...𝑛) ↔ (1 ≤ 𝑚𝑚𝑛)))
490475, 484, 489mpbir2and 712 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑚 ∈ (1...𝑛))
491490ad5ant2345 1367 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑚 ∈ (1...𝑛))
492491adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) ∧ 𝑧 = 𝑚) → 𝑚 ∈ (1...𝑛))
493473, 492eqeltrd 2890 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) ∧ 𝑧 = 𝑚) → 𝑧 ∈ (1...𝑛))
494 iftrue 4431 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ (1...𝑛) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) = (𝑓𝑧))
495493, 494syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) ∧ 𝑧 = 𝑚) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) = (𝑓𝑧))
496237adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) ∧ 𝑧 = 𝑚) → (𝑓𝑧) = (𝑓𝑚))
497495, 496eqtrd 2833 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) ∧ 𝑧 = 𝑚) → if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩) = (𝑓𝑚))
498382adantl 485 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑚 ∈ ℕ)
499240a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → (𝑓𝑚) ∈ V)
500472, 497, 498, 499fvmptd 6752 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → ((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚) = (𝑓𝑚))
501500fveq2d 6649 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → ((abs ∘ − )‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)) = ((abs ∘ − )‘(𝑓𝑚)))
502333, 382, 334sylancr 590 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ (1...𝑡) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = ((abs ∘ − )‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)))
503502adantl 485 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = ((abs ∘ − )‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))‘𝑚)))
504 simplll 774 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) → 𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})
505 fvco3 6737 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) = ((abs ∘ − )‘(𝑓𝑚)))
506504, 382, 505syl2an 598 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) = ((abs ∘ − )‘(𝑓𝑚)))
507501, 503, 5063eqtr4d 2843 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑡)) → (((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))‘𝑚) = (((abs ∘ − ) ∘ 𝑓)‘𝑚))
508471, 507seqfveq 13390 . . . . . . . . . . . . . . . . . . . 20 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) = (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑡))
509 eluz 12245 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑡 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑛 ∈ (ℤ𝑡) ↔ 𝑡𝑛))
510374, 278, 509syl2anr 599 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) → (𝑛 ∈ (ℤ𝑡) ↔ 𝑡𝑛))
511510biimpar 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) → 𝑛 ∈ (ℤ𝑡))
512511adantlll 717 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) → 𝑛 ∈ (ℤ𝑡))
513504, 326, 453syl2an 598 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ (1...𝑛)) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) ∈ ℝ)
514 elfzelz 12902 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚 ∈ ((𝑡 + 1)...𝑛) → 𝑚 ∈ ℤ)
515514adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑡 ∈ ℕ ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 𝑚 ∈ ℤ)
516 0red 10633 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑡 ∈ ℕ ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 0 ∈ ℝ)
517 peano2nn 11637 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑡 ∈ ℕ → (𝑡 + 1) ∈ ℕ)
518517nnred 11640 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 ∈ ℕ → (𝑡 + 1) ∈ ℝ)
519518adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑡 ∈ ℕ ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → (𝑡 + 1) ∈ ℝ)
520514zred 12075 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚 ∈ ((𝑡 + 1)...𝑛) → 𝑚 ∈ ℝ)
521520adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑡 ∈ ℕ ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 𝑚 ∈ ℝ)
522517nngt0d 11674 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 ∈ ℕ → 0 < (𝑡 + 1))
523522adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑡 ∈ ℕ ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 0 < (𝑡 + 1))
524 elfzle1 12905 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚 ∈ ((𝑡 + 1)...𝑛) → (𝑡 + 1) ≤ 𝑚)
525524adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑡 ∈ ℕ ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → (𝑡 + 1) ≤ 𝑚)
526516, 519, 521, 523, 525ltletrd 10789 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑡 ∈ ℕ ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 0 < 𝑚)
527515, 526, 398sylanbrc 586 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑡 ∈ ℕ ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 𝑚 ∈ ℕ)
528527adantlr 714 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑡 ∈ ℕ ∧ 𝑡𝑛) ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 𝑚 ∈ ℕ)
529528adantlll 717 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 𝑚 ∈ ℕ)
530170ffvelrnda 6828 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → (𝑓𝑚) ∈ (ℂ × ℂ))
531 ffvelrn 6826 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (( − :(ℂ × ℂ)⟶ℂ ∧ (𝑓𝑚) ∈ (ℂ × ℂ)) → ( − ‘(𝑓𝑚)) ∈ ℂ)
532137, 530, 531sylancr 590 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → ( − ‘(𝑓𝑚)) ∈ ℂ)
533532absge0d 14796 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → 0 ≤ (abs‘( − ‘(𝑓𝑚))))
534 fvco3 6737 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (( − :(ℂ × ℂ)⟶ℂ ∧ (𝑓𝑚) ∈ (ℂ × ℂ)) → ((abs ∘ − )‘(𝑓𝑚)) = (abs‘( − ‘(𝑓𝑚))))
535137, 530, 534sylancr 590 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → ((abs ∘ − )‘(𝑓𝑚)) = (abs‘( − ‘(𝑓𝑚))))
536505, 535eqtrd 2833 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → (((abs ∘ − ) ∘ 𝑓)‘𝑚) = (abs‘( − ‘(𝑓𝑚))))
537533, 536breqtrrd 5058 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → 0 ≤ (((abs ∘ − ) ∘ 𝑓)‘𝑚))
538537ad5ant15 758 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ ℕ) → 0 ≤ (((abs ∘ − ) ∘ 𝑓)‘𝑚))
539529, 538syldan 594 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 0 ≤ (((abs ∘ − ) ∘ 𝑓)‘𝑚))
540471, 512, 513, 539sermono 13398 . . . . . . . . . . . . . . . . . . . 20 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑡) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
541508, 540eqbrtrd 5052 . . . . . . . . . . . . . . . . . . 19 ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡𝑛) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
542402ad2antlr 726 . . . . . . . . . . . . . . . . . . 19 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → 𝑛 ∈ ℝ)
543478adantl 485 . . . . . . . . . . . . . . . . . . 19 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → 𝑡 ∈ ℝ)
544468, 541, 542, 543ltlecasei 10737 . . . . . . . . . . . . . . . . . 18 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
545544ralrimiva 3149 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → ∀𝑡 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
546 breq1 5033 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) → (𝑚 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ↔ (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛)))
547546ralrn 6831 . . . . . . . . . . . . . . . . . . 19 (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))) Fn ℕ → (∀𝑚 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))𝑚 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ↔ ∀𝑡 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛)))
548355, 547syl 17 . . . . . . . . . . . . . . . . . 18 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (∀𝑚 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))𝑚 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ↔ ∀𝑡 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛)))
549548adantr 484 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (∀𝑚 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))𝑚 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ↔ ∀𝑡 ∈ ℕ (seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))‘𝑡) ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛)))
550545, 549mpbird 260 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → ∀𝑚 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))𝑚 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
551550r19.21bi 3173 . . . . . . . . . . . . . . 15 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))) → 𝑚 ≤ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
552361, 362, 551lensymd 10780 . . . . . . . . . . . . . 14 (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩))))) → ¬ (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) < 𝑚)
553311, 322, 358, 552supmax 8915 . . . . . . . . . . . . 13 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))), ℝ*, < ) = (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
55452, 553sylan 583 . . . . . . . . . . . 12 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓𝑧), ⟨0, 0⟩)))), ℝ*, < ) = (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛))
555255, 309, 5543eqtr3rd 2842 . . . . . . . . . . 11 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) = (vol*‘( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∪ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩))))
556 elfznn 12931 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (1...𝑛) → 𝑧 ∈ ℕ)
557164, 65sseldi 3913 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → (𝑓𝑧) ∈ (ℝ × ℝ))
558 1st2nd2 7710 . . . . . . . . . . . . . . . . . . . 20 ((𝑓𝑧) ∈ (ℝ × ℝ) → (𝑓𝑧) = ⟨(1st ‘(𝑓𝑧)), (2nd ‘(𝑓𝑧))⟩)
559558fveq2d 6649 . . . . . . . . . . . . . . . . . . 19 ((𝑓𝑧) ∈ (ℝ × ℝ) → ([,]‘(𝑓𝑧)) = ([,]‘⟨(1st ‘(𝑓𝑧)), (2nd ‘(𝑓𝑧))⟩))
560 df-ov 7138 . . . . . . . . . . . . . . . . . . 19 ((1st ‘(𝑓𝑧))[,](2nd ‘(𝑓𝑧))) = ([,]‘⟨(1st ‘(𝑓𝑧)), (2nd ‘(𝑓𝑧))⟩)
561559, 560eqtr4di 2851 . . . . . . . . . . . . . . . . . 18 ((𝑓𝑧) ∈ (ℝ × ℝ) → ([,]‘(𝑓𝑧)) = ((1st ‘(𝑓𝑧))[,](2nd ‘(𝑓𝑧))))
562 xp1st 7703 . . . . . . . . . . . . . . . . . . 19 ((𝑓𝑧) ∈ (ℝ × ℝ) → (1st ‘(𝑓𝑧)) ∈ ℝ)
563 xp2nd 7704 . . . . . . . . . . . . . . . . . . 19 ((𝑓𝑧) ∈ (ℝ × ℝ) → (2nd ‘(𝑓𝑧)) ∈ ℝ)
564 iccssre 12807 . . . . . . . . . . . . . . . . . . 19 (((1st ‘(𝑓𝑧)) ∈ ℝ ∧ (2nd ‘(𝑓𝑧)) ∈ ℝ) → ((1st ‘(𝑓𝑧))[,](2nd ‘(𝑓𝑧))) ⊆ ℝ)
565562, 563, 564syl2anc 587 . . . . . . . . . . . . . . . . . 18 ((𝑓𝑧) ∈ (ℝ × ℝ) → ((1st ‘(𝑓𝑧))[,](2nd ‘(𝑓𝑧))) ⊆ ℝ)
566561, 565eqsstrd 3953 . . . . . . . . . . . . . . . . 17 ((𝑓𝑧) ∈ (ℝ × ℝ) → ([,]‘(𝑓𝑧)) ⊆ ℝ)
567557, 566syl 17 . . . . . . . . . . . . . . . 16 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → ([,]‘(𝑓𝑧)) ⊆ ℝ)
56852, 556, 567syl2an 598 . . . . . . . . . . . . . . 15 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ (1...𝑛)) → ([,]‘(𝑓𝑧)) ⊆ ℝ)
569568ralrimiva 3149 . . . . . . . . . . . . . 14 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ∀𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ ℝ)
570 iunss 4932 . . . . . . . . . . . . . 14 ( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ ℝ ↔ ∀𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ ℝ)
571569, 570sylibr 237 . . . . . . . . . . . . 13 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ ℝ)
572571adantr 484 . . . . . . . . . . . 12 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ ℝ)
573 uzid 12246 . . . . . . . . . . . . . . . 16 ((𝑛 + 1) ∈ ℤ → (𝑛 + 1) ∈ (ℤ‘(𝑛 + 1)))
574 ne0i 4250 . . . . . . . . . . . . . . . 16 ((𝑛 + 1) ∈ (ℤ‘(𝑛 + 1)) → (ℤ‘(𝑛 + 1)) ≠ ∅)
575 iunconst 4890 . . . . . . . . . . . . . . . 16 ((ℤ‘(𝑛 + 1)) ≠ ∅ → 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩) = ([,]‘⟨0, 0⟩))
576373, 573, 574, 5754syl 19 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩) = ([,]‘⟨0, 0⟩))
577 iccid 12771 . . . . . . . . . . . . . . . . 17 (0 ∈ ℝ* → (0[,]0) = {0})
578259, 577ax-mp 5 . . . . . . . . . . . . . . . 16 (0[,]0) = {0}
579 df-ov 7138 . . . . . . . . . . . . . . . 16 (0[,]0) = ([,]‘⟨0, 0⟩)
580578, 579eqtr3i 2823 . . . . . . . . . . . . . . 15 {0} = ([,]‘⟨0, 0⟩)
581576, 580eqtr4di 2851 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩) = {0})
582 snssi 4701 . . . . . . . . . . . . . . 15 (0 ∈ ℝ → {0} ⊆ ℝ)
583199, 582ax-mp 5 . . . . . . . . . . . . . 14 {0} ⊆ ℝ
584581, 583eqsstrdi 3969 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩) ⊆ ℝ)
585584adantl 485 . . . . . . . . . . . 12 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩) ⊆ ℝ)
586581fveq2d 6649 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (vol*‘ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩)) = (vol*‘{0}))
587586adantl 485 . . . . . . . . . . . . 13 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (vol*‘ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩)) = (vol*‘{0}))
588 ovolsn 24099 . . . . . . . . . . . . . 14 (0 ∈ ℝ → (vol*‘{0}) = 0)
589199, 588ax-mp 5 . . . . . . . . . . . . 13 (vol*‘{0}) = 0
590587, 589eqtrdi 2849 . . . . . . . . . . . 12 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (vol*‘ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩)) = 0)
591 ovolunnul 24104 . . . . . . . . . . . 12 (( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ ℝ ∧ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩) ⊆ ℝ ∧ (vol*‘ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩)) = 0) → (vol*‘( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∪ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩))) = (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))
592572, 585, 590, 591syl3anc 1368 . . . . . . . . . . 11 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (vol*‘( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∪ 𝑧 ∈ (ℤ‘(𝑛 + 1))([,]‘⟨0, 0⟩))) = (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))
593555, 592eqtrd 2833 . . . . . . . . . 10 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) = (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))
594593breq2d 5042 . . . . . . . . 9 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (𝑀 < (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) ↔ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)))))
595594biimpd 232 . . . . . . . 8 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (𝑀 < (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) → 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)))))
596595reximdva 3233 . . . . . . 7 (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (∃𝑛 ∈ ℕ 𝑀 < (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) → ∃𝑛 ∈ ℕ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)))))
597596adantl 485 . . . . . 6 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → (∃𝑛 ∈ ℕ 𝑀 < (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛) → ∃𝑛 ∈ ℕ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)))))
598194, 597mpd 15 . . . . 5 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ∃𝑛 ∈ ℕ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))
599 fzfi 13335 . . . . . . . . . 10 (1...𝑛) ∈ Fin
600 icccld 23372 . . . . . . . . . . . . . . 15 (((1st ‘(𝑓𝑧)) ∈ ℝ ∧ (2nd ‘(𝑓𝑧)) ∈ ℝ) → ((1st ‘(𝑓𝑧))[,](2nd ‘(𝑓𝑧))) ∈ (Clsd‘(topGen‘ran (,))))
601562, 563, 600syl2anc 587 . . . . . . . . . . . . . 14 ((𝑓𝑧) ∈ (ℝ × ℝ) → ((1st ‘(𝑓𝑧))[,](2nd ‘(𝑓𝑧))) ∈ (Clsd‘(topGen‘ran (,))))
602561, 601eqeltrd 2890 . . . . . . . . . . . . 13 ((𝑓𝑧) ∈ (ℝ × ℝ) → ([,]‘(𝑓𝑧)) ∈ (Clsd‘(topGen‘ran (,))))
603557, 602syl 17 . . . . . . . . . . . 12 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → ([,]‘(𝑓𝑧)) ∈ (Clsd‘(topGen‘ran (,))))
604556, 603sylan2 595 . . . . . . . . . . 11 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ (1...𝑛)) → ([,]‘(𝑓𝑧)) ∈ (Clsd‘(topGen‘ran (,))))
605604ralrimiva 3149 . . . . . . . . . 10 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ∀𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∈ (Clsd‘(topGen‘ran (,))))
606 uniretop 23368 . . . . . . . . . . 11 ℝ = (topGen‘ran (,))
607606iuncld 21650 . . . . . . . . . 10 (((topGen‘ran (,)) ∈ Top ∧ (1...𝑛) ∈ Fin ∧ ∀𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∈ (Clsd‘(topGen‘ran (,)))) → 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∈ (Clsd‘(topGen‘ran (,))))
6081, 599, 605, 607mp3an12i 1462 . . . . . . . . 9 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∈ (Clsd‘(topGen‘ran (,))))
609608adantr 484 . . . . . . . 8 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑛 ∈ ℕ ∧ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))) → 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∈ (Clsd‘(topGen‘ran (,))))
610 fveq2 6645 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑓𝑧) → ([,]‘𝑏) = ([,]‘(𝑓𝑧)))
611610sseq1d 3946 . . . . . . . . . . . . . . 15 (𝑏 = (𝑓𝑧) → (([,]‘𝑏) ⊆ 𝐴 ↔ ([,]‘(𝑓𝑧)) ⊆ 𝐴))
612611elrab 3628 . . . . . . . . . . . . . 14 ((𝑓𝑧) ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ↔ ((𝑓𝑧) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∧ ([,]‘(𝑓𝑧)) ⊆ 𝐴))
613612simprbi 500 . . . . . . . . . . . . 13 ((𝑓𝑧) ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} → ([,]‘(𝑓𝑧)) ⊆ 𝐴)
61465, 73, 6133syl 18 . . . . . . . . . . . 12 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → ([,]‘(𝑓𝑧)) ⊆ 𝐴)
615556, 614sylan2 595 . . . . . . . . . . 11 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ (1...𝑛)) → ([,]‘(𝑓𝑧)) ⊆ 𝐴)
616615ralrimiva 3149 . . . . . . . . . 10 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ∀𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ 𝐴)
617 iunss 4932 . . . . . . . . . 10 ( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ 𝐴 ↔ ∀𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ 𝐴)
618616, 617sylibr 237 . . . . . . . . 9 (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ 𝐴)
619618adantr 484 . . . . . . . 8 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑛 ∈ ℕ ∧ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))) → 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ 𝐴)
620 simprr 772 . . . . . . . 8 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑛 ∈ ℕ ∧ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))) → 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))
621 sseq1 3940 . . . . . . . . . 10 (𝑠 = 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) → (𝑠𝐴 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ 𝐴))
622 fveq2 6645 . . . . . . . . . . 11 (𝑠 = 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) → (vol*‘𝑠) = (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))
623622breq2d 5042 . . . . . . . . . 10 (𝑠 = 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) → (𝑀 < (vol*‘𝑠) ↔ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)))))
624621, 623anbi12d 633 . . . . . . . . 9 (𝑠 = 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) → ((𝑠𝐴𝑀 < (vol*‘𝑠)) ↔ ( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ 𝐴𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))))
625624rspcev 3571 . . . . . . . 8 (( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ∈ (Clsd‘(topGen‘ran (,))) ∧ ( 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧)) ⊆ 𝐴𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
626609, 619, 620, 625syl12anc 835 . . . . . . 7 ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑛 ∈ ℕ ∧ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
62752, 626sylan 583 . . . . . 6 ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑛 ∈ ℕ ∧ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
628627adantll 713 . . . . 5 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) ∧ (𝑛 ∈ ℕ ∧ 𝑀 < (vol*‘ 𝑧 ∈ (1...𝑛)([,]‘(𝑓𝑧))))) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
629598, 628rexlimddv 3250 . . . 4 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
630629adantlr 714 . . 3 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
63117, 630exlimddv 1936 . 2 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) ∧ 𝐴 ≠ ∅) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
63215, 631pm2.61dane 3074 1 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑀 ∈ ℝ ∧ 𝑀 < (vol*‘𝐴)) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴𝑀 < (vol*‘𝑠)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3o 1083  w3a 1084   = wceq 1538  wex 1781  wcel 2111  wne 2987  wral 3106  wrex 3107  {crab 3110  Vcvv 3441  cun 3879  cin 3880  wss 3881  c0 4243  ifcif 4425  𝒫 cpw 4497  {csn 4525  cop 4531   cuni 4800   ciun 4881  Disj wdisj 4995   class class class wbr 5030  cmpt 5110   Or wor 5437   × cxp 5517  ran crn 5520  cima 5522  ccom 5523   Fn wfn 6319  wf 6320  1-1wf1 6321  ontowfo 6322  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  cmpo 7137  1st c1st 7669  2nd c2nd 7670  Fincfn 8492  supcsup 8888  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529  *cxr 10663   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11625  2c2 11680  0cn0 11885  cz 11969  cuz 12231  (,)cioo 12726  [,]cicc 12729  ...cfz 12885  ..^cfzo 13028  seqcseq 13364  cexp 13425  abscabs 14585  topGenctg 16703  Topctop 21498  Clsdccld 21621  vol*covol 24066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-omul 8090  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-acn 9355  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-rest 16688  df-topgen 16709  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-top 21499  df-topon 21516  df-bases 21551  df-cld 21624  df-cmp 21992  df-conn 22017  df-ovol 24068  df-vol 24069
This theorem is referenced by:  mblfinlem4  35097  ismblfin  35098
  Copyright terms: Public domain W3C validator