Step | Hyp | Ref
| Expression |
1 | | retop 23831 |
. . . 4
⊢
(topGen‘ran (,)) ∈ Top |
2 | | 0cld 22097 |
. . . 4
⊢
((topGen‘ran (,)) ∈ Top → ∅ ∈
(Clsd‘(topGen‘ran (,)))) |
3 | 1, 2 | ax-mp 5 |
. . 3
⊢ ∅
∈ (Clsd‘(topGen‘ran (,))) |
4 | | simpl3 1191 |
. . . . 5
⊢ (((𝐴 ∈ (topGen‘ran (,))
∧ 𝑀 ∈ ℝ
∧ 𝑀 <
(vol*‘𝐴)) ∧ 𝐴 = ∅) → 𝑀 < (vol*‘𝐴)) |
5 | | fveq2 6756 |
. . . . . 6
⊢ (𝐴 = ∅ →
(vol*‘𝐴) =
(vol*‘∅)) |
6 | 5 | adantl 481 |
. . . . 5
⊢ (((𝐴 ∈ (topGen‘ran (,))
∧ 𝑀 ∈ ℝ
∧ 𝑀 <
(vol*‘𝐴)) ∧ 𝐴 = ∅) →
(vol*‘𝐴) =
(vol*‘∅)) |
7 | 4, 6 | breqtrd 5096 |
. . . 4
⊢ (((𝐴 ∈ (topGen‘ran (,))
∧ 𝑀 ∈ ℝ
∧ 𝑀 <
(vol*‘𝐴)) ∧ 𝐴 = ∅) → 𝑀 <
(vol*‘∅)) |
8 | | 0ss 4327 |
. . . 4
⊢ ∅
⊆ 𝐴 |
9 | 7, 8 | jctil 519 |
. . 3
⊢ (((𝐴 ∈ (topGen‘ran (,))
∧ 𝑀 ∈ ℝ
∧ 𝑀 <
(vol*‘𝐴)) ∧ 𝐴 = ∅) → (∅
⊆ 𝐴 ∧ 𝑀 <
(vol*‘∅))) |
10 | | sseq1 3942 |
. . . . 5
⊢ (𝑠 = ∅ → (𝑠 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴)) |
11 | | fveq2 6756 |
. . . . . 6
⊢ (𝑠 = ∅ →
(vol*‘𝑠) =
(vol*‘∅)) |
12 | 11 | breq2d 5082 |
. . . . 5
⊢ (𝑠 = ∅ → (𝑀 < (vol*‘𝑠) ↔ 𝑀 <
(vol*‘∅))) |
13 | 10, 12 | anbi12d 630 |
. . . 4
⊢ (𝑠 = ∅ → ((𝑠 ⊆ 𝐴 ∧ 𝑀 < (vol*‘𝑠)) ↔ (∅ ⊆ 𝐴 ∧ 𝑀 <
(vol*‘∅)))) |
14 | 13 | rspcev 3552 |
. . 3
⊢ ((∅
∈ (Clsd‘(topGen‘ran (,))) ∧ (∅ ⊆ 𝐴 ∧ 𝑀 < (vol*‘∅))) →
∃𝑠 ∈
(Clsd‘(topGen‘ran (,)))(𝑠 ⊆ 𝐴 ∧ 𝑀 < (vol*‘𝑠))) |
15 | 3, 9, 14 | sylancr 586 |
. 2
⊢ (((𝐴 ∈ (topGen‘ran (,))
∧ 𝑀 ∈ ℝ
∧ 𝑀 <
(vol*‘𝐴)) ∧ 𝐴 = ∅) → ∃𝑠 ∈
(Clsd‘(topGen‘ran (,)))(𝑠 ⊆ 𝐴 ∧ 𝑀 < (vol*‘𝑠))) |
16 | | mblfinlem1 35741 |
. . . 4
⊢ ((𝐴 ∈ (topGen‘ran (,))
∧ 𝐴 ≠ ∅)
→ ∃𝑓 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) |
17 | 16 | 3ad2antl1 1183 |
. . 3
⊢ (((𝐴 ∈ (topGen‘ran (,))
∧ 𝑀 ∈ ℝ
∧ 𝑀 <
(vol*‘𝐴)) ∧ 𝐴 ≠ ∅) →
∃𝑓 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) |
18 | | simpl3 1191 |
. . . . . . . . 9
⊢ (((𝐴 ∈ (topGen‘ran (,))
∧ 𝑀 ∈ ℝ
∧ 𝑀 <
(vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → 𝑀 < (vol*‘𝐴)) |
19 | | f1ofo 6707 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 𝑓:ℕ–onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) |
20 | | rnco2 6146 |
. . . . . . . . . . . . . . . . 17
⊢ ran ([,]
∘ 𝑓) = ([,] “
ran 𝑓) |
21 | | forn 6675 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓:ℕ–onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ran 𝑓 = {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) |
22 | 21 | imaeq2d 5958 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓:ℕ–onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ([,] “ ran 𝑓) = ([,] “ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})) |
23 | 20, 22 | syl5eq 2791 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:ℕ–onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ran ([,] ∘ 𝑓) = ([,] “ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})) |
24 | 23 | unieqd 4850 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:ℕ–onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ∪ ran
([,] ∘ 𝑓) = ∪ ([,] “ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})) |
25 | 19, 24 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ∪ ran
([,] ∘ 𝑓) = ∪ ([,] “ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})) |
26 | 25 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ (topGen‘ran (,))
∧ 𝑀 ∈ ℝ
∧ 𝑀 <
(vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ∪ ran
([,] ∘ 𝑓) = ∪ ([,] “ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})) |
27 | | oveq1 7262 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑢 → (𝑥 / (2↑𝑦)) = (𝑢 / (2↑𝑦))) |
28 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑢 → (𝑥 + 1) = (𝑢 + 1)) |
29 | 28 | oveq1d 7270 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑢 → ((𝑥 + 1) / (2↑𝑦)) = ((𝑢 + 1) / (2↑𝑦))) |
30 | 27, 29 | opeq12d 4809 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑢 → 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉 = 〈(𝑢 / (2↑𝑦)), ((𝑢 + 1) / (2↑𝑦))〉) |
31 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑣 → (2↑𝑦) = (2↑𝑣)) |
32 | 31 | oveq2d 7271 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑣 → (𝑢 / (2↑𝑦)) = (𝑢 / (2↑𝑣))) |
33 | 31 | oveq2d 7271 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑣 → ((𝑢 + 1) / (2↑𝑦)) = ((𝑢 + 1) / (2↑𝑣))) |
34 | 32, 33 | opeq12d 4809 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑣 → 〈(𝑢 / (2↑𝑦)), ((𝑢 + 1) / (2↑𝑦))〉 = 〈(𝑢 / (2↑𝑣)), ((𝑢 + 1) / (2↑𝑣))〉) |
35 | 30, 34 | cbvmpov 7348 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0
↦ 〈(𝑥 /
(2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) = (𝑢 ∈ ℤ, 𝑣 ∈ ℕ0 ↦
〈(𝑢 / (2↑𝑣)), ((𝑢 + 1) / (2↑𝑣))〉) |
36 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = 𝑧 → ([,]‘𝑎) = ([,]‘𝑧)) |
37 | 36 | sseq1d 3948 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = 𝑧 → (([,]‘𝑎) ⊆ ([,]‘𝑐) ↔ ([,]‘𝑧) ⊆ ([,]‘𝑐))) |
38 | | eqeq1 2742 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = 𝑧 → (𝑎 = 𝑐 ↔ 𝑧 = 𝑐)) |
39 | 37, 38 | imbi12d 344 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = 𝑧 → ((([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐) ↔ (([,]‘𝑧) ⊆ ([,]‘𝑐) → 𝑧 = 𝑐))) |
40 | 39 | ralbidv 3120 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑧 → (∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐) ↔ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑧) ⊆ ([,]‘𝑐) → 𝑧 = 𝑐))) |
41 | 40 | cbvrabv 3416 |
. . . . . . . . . . . . . . 15
⊢ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} = {𝑧 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑧) ⊆ ([,]‘𝑐) → 𝑧 = 𝑐)} |
42 | | ssrab2 4009 |
. . . . . . . . . . . . . . . 16
⊢ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ⊆ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) |
43 | 42 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ (topGen‘ran (,))
∧ 𝑀 ∈ ℝ
∧ 𝑀 <
(vol*‘𝐴)) →
{𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0
↦ 〈(𝑥 /
(2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣
([,]‘𝑏) ⊆ 𝐴} ⊆ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0
↦ 〈(𝑥 /
(2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉)) |
44 | 35, 41, 43 | dyadmbllem 24668 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ (topGen‘ran (,))
∧ 𝑀 ∈ ℝ
∧ 𝑀 <
(vol*‘𝐴)) →
∪ ([,] “ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴}) = ∪ ([,]
“ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})) |
45 | 44 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ (topGen‘ran (,))
∧ 𝑀 ∈ ℝ
∧ 𝑀 <
(vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ∪ ([,]
“ {𝑏 ∈ ran
(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0
↦ 〈(𝑥 /
(2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣
([,]‘𝑏) ⊆ 𝐴}) = ∪ ([,] “ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)})) |
46 | 26, 45 | eqtr4d 2781 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ (topGen‘ran (,))
∧ 𝑀 ∈ ℝ
∧ 𝑀 <
(vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ∪ ran
([,] ∘ 𝑓) = ∪ ([,] “ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴})) |
47 | | opnmbllem0 35740 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ (topGen‘ran (,))
→ ∪ ([,] “ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴}) = 𝐴) |
48 | 47 | 3ad2ant1 1131 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ (topGen‘ran (,))
∧ 𝑀 ∈ ℝ
∧ 𝑀 <
(vol*‘𝐴)) →
∪ ([,] “ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴}) = 𝐴) |
49 | 48 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ (topGen‘ran (,))
∧ 𝑀 ∈ ℝ
∧ 𝑀 <
(vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ∪ ([,]
“ {𝑏 ∈ ran
(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0
↦ 〈(𝑥 /
(2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣
([,]‘𝑏) ⊆ 𝐴}) = 𝐴) |
50 | 46, 49 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ (topGen‘ran (,))
∧ 𝑀 ∈ ℝ
∧ 𝑀 <
(vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ∪ ran
([,] ∘ 𝑓) = 𝐴) |
51 | 50 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ (topGen‘ran (,))
∧ 𝑀 ∈ ℝ
∧ 𝑀 <
(vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → (vol*‘∪ ran ([,] ∘ 𝑓)) = (vol*‘𝐴)) |
52 | | f1of 6700 |
. . . . . . . . . . . . 13
⊢ (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) |
53 | | ssrab2 4009 |
. . . . . . . . . . . . . 14
⊢ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ⊆ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} |
54 | 35 | dyadf 24660 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0
↦ 〈(𝑥 /
(2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉):(ℤ ×
ℕ0)⟶( ≤ ∩ (ℝ ×
ℝ)) |
55 | | frn 6591 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ0
↦ 〈(𝑥 /
(2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉):(ℤ ×
ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) → ran
(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0
↦ 〈(𝑥 /
(2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ⊆ ( ≤ ∩
(ℝ × ℝ))) |
56 | 54, 55 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ ran
(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0
↦ 〈(𝑥 /
(2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ⊆ ( ≤ ∩
(ℝ × ℝ)) |
57 | 42, 56 | sstri 3926 |
. . . . . . . . . . . . . 14
⊢ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ⊆ ( ≤ ∩ (ℝ ×
ℝ)) |
58 | 53, 57 | sstri 3926 |
. . . . . . . . . . . . 13
⊢ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ⊆ ( ≤ ∩ (ℝ ×
ℝ)) |
59 | | fss 6601 |
. . . . . . . . . . . . 13
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ⊆ ( ≤ ∩ (ℝ ×
ℝ))) → 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) |
60 | 52, 58, 59 | sylancl 585 |
. . . . . . . . . . . 12
⊢ (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) |
61 | 53, 42 | sstri 3926 |
. . . . . . . . . . . . . . . . . . . 20
⊢ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ⊆ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) |
62 | | ffvelrn 6941 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → (𝑓‘𝑚) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) |
63 | 61, 62 | sselid 3915 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → (𝑓‘𝑚) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉)) |
64 | 63 | adantrr 713 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → (𝑓‘𝑚) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉)) |
65 | | ffvelrn 6941 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → (𝑓‘𝑧) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) |
66 | 61, 65 | sselid 3915 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → (𝑓‘𝑧) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉)) |
67 | 66 | adantrl 712 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → (𝑓‘𝑧) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉)) |
68 | 35 | dyaddisj 24665 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑓‘𝑚) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∧ (𝑓‘𝑧) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉)) → (([,]‘(𝑓‘𝑚)) ⊆ ([,]‘(𝑓‘𝑧)) ∨ ([,]‘(𝑓‘𝑧)) ⊆ ([,]‘(𝑓‘𝑚)) ∨ (((,)‘(𝑓‘𝑚)) ∩ ((,)‘(𝑓‘𝑧))) = ∅)) |
69 | 64, 67, 68 | syl2anc 583 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → (([,]‘(𝑓‘𝑚)) ⊆ ([,]‘(𝑓‘𝑧)) ∨ ([,]‘(𝑓‘𝑧)) ⊆ ([,]‘(𝑓‘𝑚)) ∨ (((,)‘(𝑓‘𝑚)) ∩ ((,)‘(𝑓‘𝑧))) = ∅)) |
70 | 52, 69 | sylan 579 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → (([,]‘(𝑓‘𝑚)) ⊆ ([,]‘(𝑓‘𝑧)) ∨ ([,]‘(𝑓‘𝑧)) ⊆ ([,]‘(𝑓‘𝑚)) ∨ (((,)‘(𝑓‘𝑚)) ∩ ((,)‘(𝑓‘𝑧))) = ∅)) |
71 | | df-3or 1086 |
. . . . . . . . . . . . . . . 16
⊢
((([,]‘(𝑓‘𝑚)) ⊆ ([,]‘(𝑓‘𝑧)) ∨ ([,]‘(𝑓‘𝑧)) ⊆ ([,]‘(𝑓‘𝑚)) ∨ (((,)‘(𝑓‘𝑚)) ∩ ((,)‘(𝑓‘𝑧))) = ∅) ↔ ((([,]‘(𝑓‘𝑚)) ⊆ ([,]‘(𝑓‘𝑧)) ∨ ([,]‘(𝑓‘𝑧)) ⊆ ([,]‘(𝑓‘𝑚))) ∨ (((,)‘(𝑓‘𝑚)) ∩ ((,)‘(𝑓‘𝑧))) = ∅)) |
72 | 70, 71 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((([,]‘(𝑓‘𝑚)) ⊆ ([,]‘(𝑓‘𝑧)) ∨ ([,]‘(𝑓‘𝑧)) ⊆ ([,]‘(𝑓‘𝑚))) ∨ (((,)‘(𝑓‘𝑚)) ∩ ((,)‘(𝑓‘𝑧))) = ∅)) |
73 | | elrabi 3611 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑓‘𝑧) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (𝑓‘𝑧) ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴}) |
74 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑎 = (𝑓‘𝑚) → ([,]‘𝑎) = ([,]‘(𝑓‘𝑚))) |
75 | 74 | sseq1d 3948 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑎 = (𝑓‘𝑚) → (([,]‘𝑎) ⊆ ([,]‘𝑐) ↔ ([,]‘(𝑓‘𝑚)) ⊆ ([,]‘𝑐))) |
76 | | eqeq1 2742 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑎 = (𝑓‘𝑚) → (𝑎 = 𝑐 ↔ (𝑓‘𝑚) = 𝑐)) |
77 | 75, 76 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑎 = (𝑓‘𝑚) → ((([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐) ↔ (([,]‘(𝑓‘𝑚)) ⊆ ([,]‘𝑐) → (𝑓‘𝑚) = 𝑐))) |
78 | 77 | ralbidv 3120 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑎 = (𝑓‘𝑚) → (∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐) ↔ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘(𝑓‘𝑚)) ⊆ ([,]‘𝑐) → (𝑓‘𝑚) = 𝑐))) |
79 | 78 | elrab 3617 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑓‘𝑚) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ↔ ((𝑓‘𝑚) ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∧ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘(𝑓‘𝑚)) ⊆ ([,]‘𝑐) → (𝑓‘𝑚) = 𝑐))) |
80 | 79 | simprbi 496 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑓‘𝑚) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘(𝑓‘𝑚)) ⊆ ([,]‘𝑐) → (𝑓‘𝑚) = 𝑐)) |
81 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑐 = (𝑓‘𝑧) → ([,]‘𝑐) = ([,]‘(𝑓‘𝑧))) |
82 | 81 | sseq2d 3949 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑐 = (𝑓‘𝑧) → (([,]‘(𝑓‘𝑚)) ⊆ ([,]‘𝑐) ↔ ([,]‘(𝑓‘𝑚)) ⊆ ([,]‘(𝑓‘𝑧)))) |
83 | | eqeq2 2750 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑐 = (𝑓‘𝑧) → ((𝑓‘𝑚) = 𝑐 ↔ (𝑓‘𝑚) = (𝑓‘𝑧))) |
84 | 82, 83 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑐 = (𝑓‘𝑧) → ((([,]‘(𝑓‘𝑚)) ⊆ ([,]‘𝑐) → (𝑓‘𝑚) = 𝑐) ↔ (([,]‘(𝑓‘𝑚)) ⊆ ([,]‘(𝑓‘𝑧)) → (𝑓‘𝑚) = (𝑓‘𝑧)))) |
85 | 84 | rspcva 3550 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑓‘𝑧) ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∧ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘(𝑓‘𝑚)) ⊆ ([,]‘𝑐) → (𝑓‘𝑚) = 𝑐)) → (([,]‘(𝑓‘𝑚)) ⊆ ([,]‘(𝑓‘𝑧)) → (𝑓‘𝑚) = (𝑓‘𝑧))) |
86 | 73, 80, 85 | syl2anr 596 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑓‘𝑚) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑓‘𝑧) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → (([,]‘(𝑓‘𝑚)) ⊆ ([,]‘(𝑓‘𝑧)) → (𝑓‘𝑚) = (𝑓‘𝑧))) |
87 | | elrabi 3611 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑓‘𝑚) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (𝑓‘𝑚) ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴}) |
88 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑎 = (𝑓‘𝑧) → ([,]‘𝑎) = ([,]‘(𝑓‘𝑧))) |
89 | 88 | sseq1d 3948 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑎 = (𝑓‘𝑧) → (([,]‘𝑎) ⊆ ([,]‘𝑐) ↔ ([,]‘(𝑓‘𝑧)) ⊆ ([,]‘𝑐))) |
90 | | eqeq1 2742 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑎 = (𝑓‘𝑧) → (𝑎 = 𝑐 ↔ (𝑓‘𝑧) = 𝑐)) |
91 | 89, 90 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑎 = (𝑓‘𝑧) → ((([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐) ↔ (([,]‘(𝑓‘𝑧)) ⊆ ([,]‘𝑐) → (𝑓‘𝑧) = 𝑐))) |
92 | 91 | ralbidv 3120 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑎 = (𝑓‘𝑧) → (∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐) ↔ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘(𝑓‘𝑧)) ⊆ ([,]‘𝑐) → (𝑓‘𝑧) = 𝑐))) |
93 | 92 | elrab 3617 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑓‘𝑧) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ↔ ((𝑓‘𝑧) ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∧ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘(𝑓‘𝑧)) ⊆ ([,]‘𝑐) → (𝑓‘𝑧) = 𝑐))) |
94 | 93 | simprbi 496 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑓‘𝑧) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘(𝑓‘𝑧)) ⊆ ([,]‘𝑐) → (𝑓‘𝑧) = 𝑐)) |
95 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑐 = (𝑓‘𝑚) → ([,]‘𝑐) = ([,]‘(𝑓‘𝑚))) |
96 | 95 | sseq2d 3949 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑐 = (𝑓‘𝑚) → (([,]‘(𝑓‘𝑧)) ⊆ ([,]‘𝑐) ↔ ([,]‘(𝑓‘𝑧)) ⊆ ([,]‘(𝑓‘𝑚)))) |
97 | | eqeq2 2750 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑐 = (𝑓‘𝑚) → ((𝑓‘𝑧) = 𝑐 ↔ (𝑓‘𝑧) = (𝑓‘𝑚))) |
98 | 96, 97 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑐 = (𝑓‘𝑚) → ((([,]‘(𝑓‘𝑧)) ⊆ ([,]‘𝑐) → (𝑓‘𝑧) = 𝑐) ↔ (([,]‘(𝑓‘𝑧)) ⊆ ([,]‘(𝑓‘𝑚)) → (𝑓‘𝑧) = (𝑓‘𝑚)))) |
99 | 98 | rspcva 3550 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑓‘𝑚) ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∧ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘(𝑓‘𝑧)) ⊆ ([,]‘𝑐) → (𝑓‘𝑧) = 𝑐)) → (([,]‘(𝑓‘𝑧)) ⊆ ([,]‘(𝑓‘𝑚)) → (𝑓‘𝑧) = (𝑓‘𝑚))) |
100 | 87, 94, 99 | syl2an 595 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑓‘𝑚) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑓‘𝑧) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → (([,]‘(𝑓‘𝑧)) ⊆ ([,]‘(𝑓‘𝑚)) → (𝑓‘𝑧) = (𝑓‘𝑚))) |
101 | | eqcom 2745 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑓‘𝑧) = (𝑓‘𝑚) ↔ (𝑓‘𝑚) = (𝑓‘𝑧)) |
102 | 100, 101 | syl6ib 250 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑓‘𝑚) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑓‘𝑧) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → (([,]‘(𝑓‘𝑧)) ⊆ ([,]‘(𝑓‘𝑚)) → (𝑓‘𝑚) = (𝑓‘𝑧))) |
103 | 86, 102 | jaod 855 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑓‘𝑚) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑓‘𝑧) ∈ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ((([,]‘(𝑓‘𝑚)) ⊆ ([,]‘(𝑓‘𝑧)) ∨ ([,]‘(𝑓‘𝑧)) ⊆ ([,]‘(𝑓‘𝑚))) → (𝑓‘𝑚) = (𝑓‘𝑧))) |
104 | 62, 65, 103 | syl2an 595 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) ∧ (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ)) → ((([,]‘(𝑓‘𝑚)) ⊆ ([,]‘(𝑓‘𝑧)) ∨ ([,]‘(𝑓‘𝑧)) ⊆ ([,]‘(𝑓‘𝑚))) → (𝑓‘𝑚) = (𝑓‘𝑧))) |
105 | 104 | anandis 674 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((([,]‘(𝑓‘𝑚)) ⊆ ([,]‘(𝑓‘𝑧)) ∨ ([,]‘(𝑓‘𝑧)) ⊆ ([,]‘(𝑓‘𝑚))) → (𝑓‘𝑚) = (𝑓‘𝑧))) |
106 | 52, 105 | sylan 579 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((([,]‘(𝑓‘𝑚)) ⊆ ([,]‘(𝑓‘𝑧)) ∨ ([,]‘(𝑓‘𝑧)) ⊆ ([,]‘(𝑓‘𝑚))) → (𝑓‘𝑚) = (𝑓‘𝑧))) |
107 | | f1of1 6699 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 𝑓:ℕ–1-1→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) |
108 | | f1veqaeq 7111 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:ℕ–1-1→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑓‘𝑚) = (𝑓‘𝑧) → 𝑚 = 𝑧)) |
109 | 107, 108 | sylan 579 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑓‘𝑚) = (𝑓‘𝑧) → 𝑚 = 𝑧)) |
110 | 106, 109 | syld 47 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((([,]‘(𝑓‘𝑚)) ⊆ ([,]‘(𝑓‘𝑧)) ∨ ([,]‘(𝑓‘𝑧)) ⊆ ([,]‘(𝑓‘𝑚))) → 𝑚 = 𝑧)) |
111 | 110 | orim1d 962 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → (((([,]‘(𝑓‘𝑚)) ⊆ ([,]‘(𝑓‘𝑧)) ∨ ([,]‘(𝑓‘𝑧)) ⊆ ([,]‘(𝑓‘𝑚))) ∨ (((,)‘(𝑓‘𝑚)) ∩ ((,)‘(𝑓‘𝑧))) = ∅) → (𝑚 = 𝑧 ∨ (((,)‘(𝑓‘𝑚)) ∩ ((,)‘(𝑓‘𝑧))) = ∅))) |
112 | 72, 111 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → (𝑚 = 𝑧 ∨ (((,)‘(𝑓‘𝑚)) ∩ ((,)‘(𝑓‘𝑧))) = ∅)) |
113 | 112 | ralrimivva 3114 |
. . . . . . . . . . . . 13
⊢ (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ∀𝑚 ∈ ℕ ∀𝑧 ∈ ℕ (𝑚 = 𝑧 ∨ (((,)‘(𝑓‘𝑚)) ∩ ((,)‘(𝑓‘𝑧))) = ∅)) |
114 | | eqeq1 2742 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 𝑧 → (𝑚 = 𝑝 ↔ 𝑧 = 𝑝)) |
115 | | 2fveq3 6761 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 = 𝑧 → ((,)‘(𝑓‘𝑚)) = ((,)‘(𝑓‘𝑧))) |
116 | 115 | ineq1d 4142 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = 𝑧 → (((,)‘(𝑓‘𝑚)) ∩ ((,)‘(𝑓‘𝑝))) = (((,)‘(𝑓‘𝑧)) ∩ ((,)‘(𝑓‘𝑝)))) |
117 | 116 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 𝑧 → ((((,)‘(𝑓‘𝑚)) ∩ ((,)‘(𝑓‘𝑝))) = ∅ ↔ (((,)‘(𝑓‘𝑧)) ∩ ((,)‘(𝑓‘𝑝))) = ∅)) |
118 | 114, 117 | orbi12d 915 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = 𝑧 → ((𝑚 = 𝑝 ∨ (((,)‘(𝑓‘𝑚)) ∩ ((,)‘(𝑓‘𝑝))) = ∅) ↔ (𝑧 = 𝑝 ∨ (((,)‘(𝑓‘𝑧)) ∩ ((,)‘(𝑓‘𝑝))) = ∅))) |
119 | 118 | ralbidv 3120 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑧 → (∀𝑝 ∈ ℕ (𝑚 = 𝑝 ∨ (((,)‘(𝑓‘𝑚)) ∩ ((,)‘(𝑓‘𝑝))) = ∅) ↔ ∀𝑝 ∈ ℕ (𝑧 = 𝑝 ∨ (((,)‘(𝑓‘𝑧)) ∩ ((,)‘(𝑓‘𝑝))) = ∅))) |
120 | 119 | cbvralvw 3372 |
. . . . . . . . . . . . . 14
⊢
(∀𝑚 ∈
ℕ ∀𝑝 ∈
ℕ (𝑚 = 𝑝 ∨ (((,)‘(𝑓‘𝑚)) ∩ ((,)‘(𝑓‘𝑝))) = ∅) ↔ ∀𝑧 ∈ ℕ ∀𝑝 ∈ ℕ (𝑧 = 𝑝 ∨ (((,)‘(𝑓‘𝑧)) ∩ ((,)‘(𝑓‘𝑝))) = ∅)) |
121 | | eqeq2 2750 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑝 → (𝑚 = 𝑧 ↔ 𝑚 = 𝑝)) |
122 | | 2fveq3 6761 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = 𝑝 → ((,)‘(𝑓‘𝑧)) = ((,)‘(𝑓‘𝑝))) |
123 | 122 | ineq2d 4143 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑝 → (((,)‘(𝑓‘𝑚)) ∩ ((,)‘(𝑓‘𝑧))) = (((,)‘(𝑓‘𝑚)) ∩ ((,)‘(𝑓‘𝑝)))) |
124 | 123 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑝 → ((((,)‘(𝑓‘𝑚)) ∩ ((,)‘(𝑓‘𝑧))) = ∅ ↔ (((,)‘(𝑓‘𝑚)) ∩ ((,)‘(𝑓‘𝑝))) = ∅)) |
125 | 121, 124 | orbi12d 915 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑝 → ((𝑚 = 𝑧 ∨ (((,)‘(𝑓‘𝑚)) ∩ ((,)‘(𝑓‘𝑧))) = ∅) ↔ (𝑚 = 𝑝 ∨ (((,)‘(𝑓‘𝑚)) ∩ ((,)‘(𝑓‘𝑝))) = ∅))) |
126 | 125 | cbvralvw 3372 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑧 ∈
ℕ (𝑚 = 𝑧 ∨ (((,)‘(𝑓‘𝑚)) ∩ ((,)‘(𝑓‘𝑧))) = ∅) ↔ ∀𝑝 ∈ ℕ (𝑚 = 𝑝 ∨ (((,)‘(𝑓‘𝑚)) ∩ ((,)‘(𝑓‘𝑝))) = ∅)) |
127 | 126 | ralbii 3090 |
. . . . . . . . . . . . . 14
⊢
(∀𝑚 ∈
ℕ ∀𝑧 ∈
ℕ (𝑚 = 𝑧 ∨ (((,)‘(𝑓‘𝑚)) ∩ ((,)‘(𝑓‘𝑧))) = ∅) ↔ ∀𝑚 ∈ ℕ ∀𝑝 ∈ ℕ (𝑚 = 𝑝 ∨ (((,)‘(𝑓‘𝑚)) ∩ ((,)‘(𝑓‘𝑝))) = ∅)) |
128 | 122 | disjor 5050 |
. . . . . . . . . . . . . 14
⊢
(Disj 𝑧
∈ ℕ ((,)‘(𝑓‘𝑧)) ↔ ∀𝑧 ∈ ℕ ∀𝑝 ∈ ℕ (𝑧 = 𝑝 ∨ (((,)‘(𝑓‘𝑧)) ∩ ((,)‘(𝑓‘𝑝))) = ∅)) |
129 | 120, 127,
128 | 3bitr4ri 303 |
. . . . . . . . . . . . 13
⊢
(Disj 𝑧
∈ ℕ ((,)‘(𝑓‘𝑧)) ↔ ∀𝑚 ∈ ℕ ∀𝑧 ∈ ℕ (𝑚 = 𝑧 ∨ (((,)‘(𝑓‘𝑚)) ∩ ((,)‘(𝑓‘𝑧))) = ∅)) |
130 | 113, 129 | sylibr 233 |
. . . . . . . . . . . 12
⊢ (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → Disj 𝑧 ∈ ℕ ((,)‘(𝑓‘𝑧))) |
131 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ seq1( + ,
((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − )
∘ 𝑓)) |
132 | 60, 130, 131 | uniiccvol 24649 |
. . . . . . . . . . 11
⊢ (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (vol*‘∪ ran ([,] ∘ 𝑓)) = sup(ran seq1( + , ((abs ∘ −
) ∘ 𝑓)),
ℝ*, < )) |
133 | 132 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ (topGen‘ran (,))
∧ 𝑀 ∈ ℝ
∧ 𝑀 <
(vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → (vol*‘∪ ran ([,] ∘ 𝑓)) = sup(ran seq1( + , ((abs ∘ −
) ∘ 𝑓)),
ℝ*, < )) |
134 | 51, 133 | eqtr3d 2780 |
. . . . . . . . 9
⊢ (((𝐴 ∈ (topGen‘ran (,))
∧ 𝑀 ∈ ℝ
∧ 𝑀 <
(vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → (vol*‘𝐴) = sup(ran seq1( + , ((abs ∘ −
) ∘ 𝑓)),
ℝ*, < )) |
135 | 18, 134 | breqtrd 5096 |
. . . . . . . 8
⊢ (((𝐴 ∈ (topGen‘ran (,))
∧ 𝑀 ∈ ℝ
∧ 𝑀 <
(vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → 𝑀 < sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑓)),
ℝ*, < )) |
136 | | absf 14977 |
. . . . . . . . . . . 12
⊢
abs:ℂ⟶ℝ |
137 | | subf 11153 |
. . . . . . . . . . . 12
⊢ −
:(ℂ × ℂ)⟶ℂ |
138 | | fco 6608 |
. . . . . . . . . . . 12
⊢
((abs:ℂ⟶ℝ ∧ − :(ℂ ×
ℂ)⟶ℂ) → (abs ∘ − ):(ℂ ×
ℂ)⟶ℝ) |
139 | 136, 137,
138 | mp2an 688 |
. . . . . . . . . . 11
⊢ (abs
∘ − ):(ℂ × ℂ)⟶ℝ |
140 | | zre 12253 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ ℤ → 𝑥 ∈
ℝ) |
141 | | 2re 11977 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 2 ∈
ℝ |
142 | | reexpcl 13727 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((2
∈ ℝ ∧ 𝑦
∈ ℕ0) → (2↑𝑦) ∈ ℝ) |
143 | 141, 142 | mpan 686 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ ℕ0
→ (2↑𝑦) ∈
ℝ) |
144 | | 2cn 11978 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 2 ∈
ℂ |
145 | | 2ne0 12007 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 2 ≠
0 |
146 | | nn0z 12273 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ ℕ0
→ 𝑦 ∈
ℤ) |
147 | | expne0i 13743 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((2
∈ ℂ ∧ 2 ≠ 0 ∧ 𝑦 ∈ ℤ) → (2↑𝑦) ≠ 0) |
148 | 144, 145,
146, 147 | mp3an12i 1463 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ ℕ0
→ (2↑𝑦) ≠
0) |
149 | 143, 148 | jca 511 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ ℕ0
→ ((2↑𝑦) ∈
ℝ ∧ (2↑𝑦)
≠ 0)) |
150 | | redivcl 11624 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 ∈ ℝ ∧
(2↑𝑦) ∈ ℝ
∧ (2↑𝑦) ≠ 0)
→ (𝑥 / (2↑𝑦)) ∈
ℝ) |
151 | | peano2re 11078 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ ℝ → (𝑥 + 1) ∈
ℝ) |
152 | | redivcl 11624 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑥 + 1) ∈ ℝ ∧
(2↑𝑦) ∈ ℝ
∧ (2↑𝑦) ≠ 0)
→ ((𝑥 + 1) /
(2↑𝑦)) ∈
ℝ) |
153 | 151, 152 | syl3an1 1161 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 ∈ ℝ ∧
(2↑𝑦) ∈ ℝ
∧ (2↑𝑦) ≠ 0)
→ ((𝑥 + 1) /
(2↑𝑦)) ∈
ℝ) |
154 | 150, 153 | opelxpd 5618 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∈ ℝ ∧
(2↑𝑦) ∈ ℝ
∧ (2↑𝑦) ≠ 0)
→ 〈(𝑥 /
(2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉 ∈ (ℝ ×
ℝ)) |
155 | 154 | 3expb 1118 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ ℝ ∧
((2↑𝑦) ∈ ℝ
∧ (2↑𝑦) ≠ 0))
→ 〈(𝑥 /
(2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉 ∈ (ℝ ×
ℝ)) |
156 | 140, 149,
155 | syl2an 595 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ0)
→ 〈(𝑥 /
(2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉 ∈ (ℝ ×
ℝ)) |
157 | 156 | rgen2 3126 |
. . . . . . . . . . . . . . . . 17
⊢
∀𝑥 ∈
ℤ ∀𝑦 ∈
ℕ0 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉 ∈ (ℝ ×
ℝ) |
158 | | eqid 2738 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0
↦ 〈(𝑥 /
(2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) |
159 | 158 | fmpo 7881 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑥 ∈
ℤ ∀𝑦 ∈
ℕ0 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉 ∈ (ℝ × ℝ)
↔ (𝑥 ∈ ℤ,
𝑦 ∈
ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉):(ℤ ×
ℕ0)⟶(ℝ × ℝ)) |
160 | 157, 159 | mpbi 229 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0
↦ 〈(𝑥 /
(2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉):(ℤ ×
ℕ0)⟶(ℝ × ℝ) |
161 | | frn 6591 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ0
↦ 〈(𝑥 /
(2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉):(ℤ ×
ℕ0)⟶(ℝ × ℝ) → ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0
↦ 〈(𝑥 /
(2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ⊆ (ℝ
× ℝ)) |
162 | 160, 161 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ ran
(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0
↦ 〈(𝑥 /
(2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ⊆ (ℝ
× ℝ) |
163 | 42, 162 | sstri 3926 |
. . . . . . . . . . . . . 14
⊢ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ⊆ (ℝ ×
ℝ) |
164 | 53, 163 | sstri 3926 |
. . . . . . . . . . . . 13
⊢ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ⊆ (ℝ ×
ℝ) |
165 | | ax-resscn 10859 |
. . . . . . . . . . . . . 14
⊢ ℝ
⊆ ℂ |
166 | | xpss12 5595 |
. . . . . . . . . . . . . 14
⊢ ((ℝ
⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℝ × ℝ)
⊆ (ℂ × ℂ)) |
167 | 165, 165,
166 | mp2an 688 |
. . . . . . . . . . . . 13
⊢ (ℝ
× ℝ) ⊆ (ℂ × ℂ) |
168 | 164, 167 | sstri 3926 |
. . . . . . . . . . . 12
⊢ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ⊆ (ℂ ×
ℂ) |
169 | | fss 6601 |
. . . . . . . . . . . 12
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ⊆ (ℂ × ℂ)) →
𝑓:ℕ⟶(ℂ
× ℂ)) |
170 | 168, 169 | mpan2 687 |
. . . . . . . . . . 11
⊢ (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 𝑓:ℕ⟶(ℂ ×
ℂ)) |
171 | | fco 6608 |
. . . . . . . . . . 11
⊢ (((abs
∘ − ):(ℂ × ℂ)⟶ℝ ∧ 𝑓:ℕ⟶(ℂ ×
ℂ)) → ((abs ∘ − ) ∘ 𝑓):ℕ⟶ℝ) |
172 | 139, 170,
171 | sylancr 586 |
. . . . . . . . . 10
⊢ (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ((abs ∘ − ) ∘
𝑓):ℕ⟶ℝ) |
173 | | nnuz 12550 |
. . . . . . . . . . 11
⊢ ℕ =
(ℤ≥‘1) |
174 | | 1z 12280 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℤ |
175 | 174 | a1i 11 |
. . . . . . . . . . 11
⊢ (((abs
∘ − ) ∘ 𝑓):ℕ⟶ℝ → 1 ∈
ℤ) |
176 | | ffvelrn 6941 |
. . . . . . . . . . 11
⊢ ((((abs
∘ − ) ∘ 𝑓):ℕ⟶ℝ ∧ 𝑛 ∈ ℕ) → (((abs
∘ − ) ∘ 𝑓)‘𝑛) ∈ ℝ) |
177 | 173, 175,
176 | serfre 13680 |
. . . . . . . . . 10
⊢ (((abs
∘ − ) ∘ 𝑓):ℕ⟶ℝ → seq1( + ,
((abs ∘ − ) ∘ 𝑓)):ℕ⟶ℝ) |
178 | | frn 6591 |
. . . . . . . . . . 11
⊢ (seq1( +
, ((abs ∘ − ) ∘ 𝑓)):ℕ⟶ℝ → ran seq1( +
, ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ) |
179 | | ressxr 10950 |
. . . . . . . . . . 11
⊢ ℝ
⊆ ℝ* |
180 | 178, 179 | sstrdi 3929 |
. . . . . . . . . 10
⊢ (seq1( +
, ((abs ∘ − ) ∘ 𝑓)):ℕ⟶ℝ → ran seq1( +
, ((abs ∘ − ) ∘ 𝑓)) ⊆
ℝ*) |
181 | 52, 172, 177, 180 | 4syl 19 |
. . . . . . . . 9
⊢ (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ran seq1( + , ((abs ∘ −
) ∘ 𝑓)) ⊆
ℝ*) |
182 | | rexr 10952 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℝ → 𝑀 ∈
ℝ*) |
183 | 182 | 3ad2ant2 1132 |
. . . . . . . . 9
⊢ ((𝐴 ∈ (topGen‘ran (,))
∧ 𝑀 ∈ ℝ
∧ 𝑀 <
(vol*‘𝐴)) →
𝑀 ∈
ℝ*) |
184 | | supxrlub 12988 |
. . . . . . . . 9
⊢ ((ran
seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ* ∧ 𝑀 ∈ ℝ*)
→ (𝑀 < sup(ran
seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ↔
∃𝑧 ∈ ran seq1( +
, ((abs ∘ − ) ∘ 𝑓))𝑀 < 𝑧)) |
185 | 181, 183,
184 | syl2anr 596 |
. . . . . . . 8
⊢ (((𝐴 ∈ (topGen‘ran (,))
∧ 𝑀 ∈ ℝ
∧ 𝑀 <
(vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → (𝑀 < sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑓)),
ℝ*, < ) ↔ ∃𝑧 ∈ ran seq1( + , ((abs ∘ − )
∘ 𝑓))𝑀 < 𝑧)) |
186 | 135, 185 | mpbid 231 |
. . . . . . 7
⊢ (((𝐴 ∈ (topGen‘ran (,))
∧ 𝑀 ∈ ℝ
∧ 𝑀 <
(vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ∃𝑧 ∈ ran seq1( + , ((abs ∘ − )
∘ 𝑓))𝑀 < 𝑧) |
187 | | seqfn 13661 |
. . . . . . . . . 10
⊢ (1 ∈
ℤ → seq1( + , ((abs ∘ − ) ∘ 𝑓)) Fn
(ℤ≥‘1)) |
188 | 174, 187 | ax-mp 5 |
. . . . . . . . 9
⊢ seq1( + ,
((abs ∘ − ) ∘ 𝑓)) Fn
(ℤ≥‘1) |
189 | 173 | fneq2i 6515 |
. . . . . . . . 9
⊢ (seq1( +
, ((abs ∘ − ) ∘ 𝑓)) Fn ℕ ↔ seq1( + , ((abs ∘
− ) ∘ 𝑓)) Fn
(ℤ≥‘1)) |
190 | 188, 189 | mpbir 230 |
. . . . . . . 8
⊢ seq1( + ,
((abs ∘ − ) ∘ 𝑓)) Fn ℕ |
191 | | breq2 5074 |
. . . . . . . . 9
⊢ (𝑧 = (seq1( + , ((abs ∘
− ) ∘ 𝑓))‘𝑛) → (𝑀 < 𝑧 ↔ 𝑀 < (seq1( + , ((abs ∘ − )
∘ 𝑓))‘𝑛))) |
192 | 191 | rexrn 6945 |
. . . . . . . 8
⊢ (seq1( +
, ((abs ∘ − ) ∘ 𝑓)) Fn ℕ → (∃𝑧 ∈ ran seq1( + , ((abs
∘ − ) ∘ 𝑓))𝑀 < 𝑧 ↔ ∃𝑛 ∈ ℕ 𝑀 < (seq1( + , ((abs ∘ − )
∘ 𝑓))‘𝑛))) |
193 | 190, 192 | ax-mp 5 |
. . . . . . 7
⊢
(∃𝑧 ∈ ran
seq1( + , ((abs ∘ − ) ∘ 𝑓))𝑀 < 𝑧 ↔ ∃𝑛 ∈ ℕ 𝑀 < (seq1( + , ((abs ∘ − )
∘ 𝑓))‘𝑛)) |
194 | 186, 193 | sylib 217 |
. . . . . 6
⊢ (((𝐴 ∈ (topGen‘ran (,))
∧ 𝑀 ∈ ℝ
∧ 𝑀 <
(vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ∃𝑛 ∈ ℕ 𝑀 < (seq1( + , ((abs ∘ − )
∘ 𝑓))‘𝑛)) |
195 | 60 | ffvelrnda 6943 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → (𝑓‘𝑧) ∈ ( ≤ ∩ (ℝ ×
ℝ))) |
196 | | 0le0 12004 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 ≤
0 |
197 | | df-br 5071 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 ≤ 0
↔ 〈0, 0〉 ∈ ≤ ) |
198 | 196, 197 | mpbi 229 |
. . . . . . . . . . . . . . . . 17
⊢ 〈0,
0〉 ∈ ≤ |
199 | | 0re 10908 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 ∈
ℝ |
200 | | opelxpi 5617 |
. . . . . . . . . . . . . . . . . 18
⊢ ((0
∈ ℝ ∧ 0 ∈ ℝ) → 〈0, 0〉 ∈ (ℝ
× ℝ)) |
201 | 199, 199,
200 | mp2an 688 |
. . . . . . . . . . . . . . . . 17
⊢ 〈0,
0〉 ∈ (ℝ × ℝ) |
202 | | elin 3899 |
. . . . . . . . . . . . . . . . 17
⊢ (〈0,
0〉 ∈ ( ≤ ∩ (ℝ × ℝ)) ↔ (〈0, 0〉
∈ ≤ ∧ 〈0, 0〉 ∈ (ℝ ×
ℝ))) |
203 | 198, 201,
202 | mpbir2an 707 |
. . . . . . . . . . . . . . . 16
⊢ 〈0,
0〉 ∈ ( ≤ ∩ (ℝ × ℝ)) |
204 | | ifcl 4501 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓‘𝑧) ∈ ( ≤ ∩ (ℝ ×
ℝ)) ∧ 〈0, 0〉 ∈ ( ≤ ∩ (ℝ ×
ℝ))) → if(𝑧
∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉) ∈ ( ≤ ∩
(ℝ × ℝ))) |
205 | 195, 203,
204 | sylancl 585 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉) ∈ ( ≤ ∩
(ℝ × ℝ))) |
206 | 205 | fmpttd 6971 |
. . . . . . . . . . . . . 14
⊢ (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)):ℕ⟶( ≤
∩ (ℝ × ℝ))) |
207 | | df-ov 7258 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (0(,)0) =
((,)‘〈0, 0〉) |
208 | | iooid 13036 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (0(,)0) =
∅ |
209 | 207, 208 | eqtr3i 2768 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((,)‘〈0, 0〉) = ∅ |
210 | 209 | ineq1i 4139 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((,)‘〈0, 0〉) ∩ ((,)‘(𝑓‘𝑧))) = (∅ ∩ ((,)‘(𝑓‘𝑧))) |
211 | | 0in 4324 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (∅
∩ ((,)‘(𝑓‘𝑧))) = ∅ |
212 | 210, 211 | eqtri 2766 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((,)‘〈0, 0〉) ∩ ((,)‘(𝑓‘𝑧))) = ∅ |
213 | 212 | olci 862 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = 𝑧 ∨ (((,)‘〈0, 0〉) ∩
((,)‘(𝑓‘𝑧))) = ∅) |
214 | | ineq1 4136 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((,)‘(𝑓‘𝑚)) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0, 0〉)) →
(((,)‘(𝑓‘𝑚)) ∩ ((,)‘(𝑓‘𝑧))) = (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0, 0〉)) ∩
((,)‘(𝑓‘𝑧)))) |
215 | 214 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((,)‘(𝑓‘𝑚)) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0, 0〉)) →
((((,)‘(𝑓‘𝑚)) ∩ ((,)‘(𝑓‘𝑧))) = ∅ ↔ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0, 0〉)) ∩
((,)‘(𝑓‘𝑧))) = ∅)) |
216 | 215 | orbi2d 912 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((,)‘(𝑓‘𝑚)) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0, 0〉)) →
((𝑚 = 𝑧 ∨ (((,)‘(𝑓‘𝑚)) ∩ ((,)‘(𝑓‘𝑧))) = ∅) ↔ (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0, 0〉)) ∩
((,)‘(𝑓‘𝑧))) =
∅))) |
217 | | ineq1 4136 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((,)‘〈0, 0〉) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0, 0〉)) →
(((,)‘〈0, 0〉) ∩ ((,)‘(𝑓‘𝑧))) = (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0, 0〉)) ∩
((,)‘(𝑓‘𝑧)))) |
218 | 217 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((,)‘〈0, 0〉) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0, 0〉)) →
((((,)‘〈0, 0〉) ∩ ((,)‘(𝑓‘𝑧))) = ∅ ↔ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0, 0〉)) ∩
((,)‘(𝑓‘𝑧))) = ∅)) |
219 | 218 | orbi2d 912 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((,)‘〈0, 0〉) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0, 0〉)) →
((𝑚 = 𝑧 ∨ (((,)‘〈0, 0〉) ∩
((,)‘(𝑓‘𝑧))) = ∅) ↔ (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0, 0〉)) ∩
((,)‘(𝑓‘𝑧))) =
∅))) |
220 | 216, 219 | ifboth 4495 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑚 = 𝑧 ∨ (((,)‘(𝑓‘𝑚)) ∩ ((,)‘(𝑓‘𝑧))) = ∅) ∧ (𝑚 = 𝑧 ∨ (((,)‘〈0, 0〉) ∩
((,)‘(𝑓‘𝑧))) = ∅)) → (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0, 0〉)) ∩
((,)‘(𝑓‘𝑧))) = ∅)) |
221 | 112, 213,
220 | sylancl 585 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0, 0〉)) ∩
((,)‘(𝑓‘𝑧))) = ∅)) |
222 | 209 | ineq2i 4140 |
. . . . . . . . . . . . . . . . . . 19
⊢ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0, 0〉)) ∩
((,)‘〈0, 0〉)) = (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0, 0〉)) ∩
∅) |
223 | | in0 4322 |
. . . . . . . . . . . . . . . . . . 19
⊢ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0, 0〉)) ∩
∅) = ∅ |
224 | 222, 223 | eqtri 2766 |
. . . . . . . . . . . . . . . . . 18
⊢ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0, 0〉)) ∩
((,)‘〈0, 0〉)) = ∅ |
225 | 224 | olci 862 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0, 0〉)) ∩
((,)‘〈0, 0〉)) = ∅) |
226 | | ineq2 4137 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((,)‘(𝑓‘𝑧)) = if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓‘𝑧)), ((,)‘〈0, 0〉)) →
(if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0, 0〉)) ∩
((,)‘(𝑓‘𝑧))) = (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0, 0〉)) ∩
if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓‘𝑧)), ((,)‘〈0,
0〉)))) |
227 | 226 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((,)‘(𝑓‘𝑧)) = if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓‘𝑧)), ((,)‘〈0, 0〉)) →
((if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0, 0〉)) ∩
((,)‘(𝑓‘𝑧))) = ∅ ↔ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0, 0〉)) ∩
if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓‘𝑧)), ((,)‘〈0, 0〉))) =
∅)) |
228 | 227 | orbi2d 912 |
. . . . . . . . . . . . . . . . . 18
⊢
(((,)‘(𝑓‘𝑧)) = if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓‘𝑧)), ((,)‘〈0, 0〉)) →
((𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0, 0〉)) ∩
((,)‘(𝑓‘𝑧))) = ∅) ↔ (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0, 0〉)) ∩
if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓‘𝑧)), ((,)‘〈0, 0〉))) =
∅))) |
229 | | ineq2 4137 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((,)‘〈0, 0〉) = if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓‘𝑧)), ((,)‘〈0, 0〉)) →
(if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0, 0〉)) ∩
((,)‘〈0, 0〉)) = (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0, 0〉)) ∩
if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓‘𝑧)), ((,)‘〈0,
0〉)))) |
230 | 229 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((,)‘〈0, 0〉) = if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓‘𝑧)), ((,)‘〈0, 0〉)) →
((if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0, 0〉)) ∩
((,)‘〈0, 0〉)) = ∅ ↔ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0, 0〉)) ∩
if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓‘𝑧)), ((,)‘〈0, 0〉))) =
∅)) |
231 | 230 | orbi2d 912 |
. . . . . . . . . . . . . . . . . 18
⊢
(((,)‘〈0, 0〉) = if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓‘𝑧)), ((,)‘〈0, 0〉)) →
((𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0, 0〉)) ∩
((,)‘〈0, 0〉)) = ∅) ↔ (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0, 0〉)) ∩
if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓‘𝑧)), ((,)‘〈0, 0〉))) =
∅))) |
232 | 228, 231 | ifboth 4495 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0, 0〉)) ∩
((,)‘(𝑓‘𝑧))) = ∅) ∧ (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0, 0〉)) ∩
((,)‘〈0, 0〉)) = ∅)) → (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0, 0〉)) ∩
if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓‘𝑧)), ((,)‘〈0, 0〉))) =
∅)) |
233 | 221, 225,
232 | sylancl 585 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑚 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0, 0〉)) ∩
if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓‘𝑧)), ((,)‘〈0, 0〉))) =
∅)) |
234 | 233 | ralrimivva 3114 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ∀𝑚 ∈ ℕ ∀𝑧 ∈ ℕ (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0, 0〉)) ∩
if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓‘𝑧)), ((,)‘〈0, 0〉))) =
∅)) |
235 | | disjeq2 5039 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑚 ∈
ℕ ((,)‘((𝑧
∈ ℕ ↦ if(𝑧
∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))‘𝑚)) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0, 0〉)) →
(Disj 𝑚 ∈
ℕ ((,)‘((𝑧
∈ ℕ ↦ if(𝑧
∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))‘𝑚)) ↔ Disj 𝑚 ∈ ℕ if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0,
0〉)))) |
236 | | eleq1w 2821 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = 𝑚 → (𝑧 ∈ (1...𝑛) ↔ 𝑚 ∈ (1...𝑛))) |
237 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = 𝑚 → (𝑓‘𝑧) = (𝑓‘𝑚)) |
238 | 236, 237 | ifbieq1d 4480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = 𝑚 → if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉) = if(𝑚 ∈ (1...𝑛), (𝑓‘𝑚), 〈0, 0〉)) |
239 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)) = (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)) |
240 | | fvex 6769 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓‘𝑚) ∈ V |
241 | | opex 5373 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 〈0,
0〉 ∈ V |
242 | 240, 241 | ifex 4506 |
. . . . . . . . . . . . . . . . . . . 20
⊢ if(𝑚 ∈ (1...𝑛), (𝑓‘𝑚), 〈0, 0〉) ∈
V |
243 | 238, 239,
242 | fvmpt 6857 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 ∈ ℕ → ((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))‘𝑚) = if(𝑚 ∈ (1...𝑛), (𝑓‘𝑚), 〈0, 0〉)) |
244 | 243 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈ ℕ →
((,)‘((𝑧 ∈
ℕ ↦ if(𝑧 ∈
(1...𝑛), (𝑓‘𝑧), 〈0, 0〉))‘𝑚)) = ((,)‘if(𝑚 ∈ (1...𝑛), (𝑓‘𝑚), 〈0, 0〉))) |
245 | | fvif 6772 |
. . . . . . . . . . . . . . . . . 18
⊢
((,)‘if(𝑚
∈ (1...𝑛), (𝑓‘𝑚), 〈0, 0〉)) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0,
0〉)) |
246 | 244, 245 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ ℕ →
((,)‘((𝑧 ∈
ℕ ↦ if(𝑧 ∈
(1...𝑛), (𝑓‘𝑧), 〈0, 0〉))‘𝑚)) = if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0,
0〉))) |
247 | 235, 246 | mprg 3077 |
. . . . . . . . . . . . . . . 16
⊢
(Disj 𝑚
∈ ℕ ((,)‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))‘𝑚)) ↔ Disj 𝑚 ∈ ℕ if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0,
0〉))) |
248 | | eleq1w 2821 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = 𝑧 → (𝑚 ∈ (1...𝑛) ↔ 𝑧 ∈ (1...𝑛))) |
249 | 248, 115 | ifbieq1d 4480 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 𝑧 → if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0, 0〉)) = if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓‘𝑧)), ((,)‘〈0,
0〉))) |
250 | 249 | disjor 5050 |
. . . . . . . . . . . . . . . 16
⊢
(Disj 𝑚
∈ ℕ if(𝑚 ∈
(1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0, 0〉)) ↔
∀𝑚 ∈ ℕ
∀𝑧 ∈ ℕ
(𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0, 0〉)) ∩
if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓‘𝑧)), ((,)‘〈0, 0〉))) =
∅)) |
251 | 247, 250 | bitri 274 |
. . . . . . . . . . . . . . 15
⊢
(Disj 𝑚
∈ ℕ ((,)‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))‘𝑚)) ↔ ∀𝑚 ∈ ℕ ∀𝑧 ∈ ℕ (𝑚 = 𝑧 ∨ (if(𝑚 ∈ (1...𝑛), ((,)‘(𝑓‘𝑚)), ((,)‘〈0, 0〉)) ∩
if(𝑧 ∈ (1...𝑛), ((,)‘(𝑓‘𝑧)), ((,)‘〈0, 0〉))) =
∅)) |
252 | 234, 251 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢ (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → Disj 𝑚 ∈ ℕ ((,)‘((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))‘𝑚))) |
253 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ seq1( + ,
((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)))) = seq1( + , ((abs
∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)))) |
254 | 206, 252,
253 | uniiccvol 24649 |
. . . . . . . . . . . . 13
⊢ (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (vol*‘∪ ran ([,] ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)))) = sup(ran seq1( + ,
((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)))), ℝ*,
< )) |
255 | 254 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (vol*‘∪ ran ([,] ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)))) = sup(ran seq1( + ,
((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)))), ℝ*,
< )) |
256 | | rexpssxrxp 10951 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (ℝ
× ℝ) ⊆ (ℝ* ×
ℝ*) |
257 | 164, 256 | sstri 3926 |
. . . . . . . . . . . . . . . . . . . 20
⊢ {𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ⊆ (ℝ* ×
ℝ*) |
258 | 257, 65 | sselid 3915 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → (𝑓‘𝑧) ∈ (ℝ* ×
ℝ*)) |
259 | | 0xr 10953 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 0 ∈
ℝ* |
260 | | opelxpi 5617 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((0
∈ ℝ* ∧ 0 ∈ ℝ*) → 〈0,
0〉 ∈ (ℝ* ×
ℝ*)) |
261 | 259, 259,
260 | mp2an 688 |
. . . . . . . . . . . . . . . . . . 19
⊢ 〈0,
0〉 ∈ (ℝ* ×
ℝ*) |
262 | | ifcl 4501 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑓‘𝑧) ∈ (ℝ* ×
ℝ*) ∧ 〈0, 0〉 ∈ (ℝ* ×
ℝ*)) → if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉) ∈
(ℝ* × ℝ*)) |
263 | 258, 261,
262 | sylancl 585 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉) ∈
(ℝ* × ℝ*)) |
264 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)) = (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))) |
265 | | iccf 13109 |
. . . . . . . . . . . . . . . . . . . 20
⊢
[,]:(ℝ* × ℝ*)⟶𝒫
ℝ* |
266 | 265 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → [,]:(ℝ* ×
ℝ*)⟶𝒫 ℝ*) |
267 | 266 | feqmptd 6819 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → [,] = (𝑚 ∈ (ℝ* ×
ℝ*) ↦ ([,]‘𝑚))) |
268 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉) → ([,]‘𝑚) = ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))) |
269 | 263, 264,
267, 268 | fmptco 6983 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ([,] ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))) = (𝑧 ∈ ℕ ↦ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)))) |
270 | 52, 269 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ([,] ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))) = (𝑧 ∈ ℕ ↦ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)))) |
271 | 270 | rneqd 5836 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ran ([,] ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))) = ran (𝑧 ∈ ℕ ↦
([,]‘if(𝑧 ∈
(1...𝑛), (𝑓‘𝑧), 〈0, 0〉)))) |
272 | 271 | unieqd 4850 |
. . . . . . . . . . . . . 14
⊢ (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ∪ ran
([,] ∘ (𝑧 ∈
ℕ ↦ if(𝑧 ∈
(1...𝑛), (𝑓‘𝑧), 〈0, 0〉))) = ∪ ran (𝑧 ∈ ℕ ↦ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)))) |
273 | | peano2nn 11915 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∈ ℕ → (𝑛 + 1) ∈
ℕ) |
274 | 273, 173 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ ℕ → (𝑛 + 1) ∈
(ℤ≥‘1)) |
275 | | fzouzsplit 13350 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 + 1) ∈
(ℤ≥‘1) → (ℤ≥‘1) =
((1..^(𝑛 + 1)) ∪
(ℤ≥‘(𝑛 + 1)))) |
276 | 274, 275 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ ℕ →
(ℤ≥‘1) = ((1..^(𝑛 + 1)) ∪
(ℤ≥‘(𝑛 + 1)))) |
277 | 173, 276 | syl5eq 2791 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕ → ℕ =
((1..^(𝑛 + 1)) ∪
(ℤ≥‘(𝑛 + 1)))) |
278 | | nnz 12272 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℤ) |
279 | | fzval3 13384 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ ℤ →
(1...𝑛) = (1..^(𝑛 + 1))) |
280 | 278, 279 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ ℕ →
(1...𝑛) = (1..^(𝑛 + 1))) |
281 | 280 | uneq1d 4092 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕ →
((1...𝑛) ∪
(ℤ≥‘(𝑛 + 1))) = ((1..^(𝑛 + 1)) ∪
(ℤ≥‘(𝑛 + 1)))) |
282 | 277, 281 | eqtr4d 2781 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ → ℕ =
((1...𝑛) ∪
(ℤ≥‘(𝑛 + 1)))) |
283 | | fvif 6772 |
. . . . . . . . . . . . . . . . . 18
⊢
([,]‘if(𝑧
∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)) = if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓‘𝑧)), ([,]‘〈0,
0〉)) |
284 | 283 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ →
([,]‘if(𝑧 ∈
(1...𝑛), (𝑓‘𝑧), 〈0, 0〉)) = if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓‘𝑧)), ([,]‘〈0,
0〉))) |
285 | 282, 284 | iuneq12d 4949 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ → ∪ 𝑧 ∈ ℕ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)) = ∪ 𝑧 ∈ ((1...𝑛) ∪ (ℤ≥‘(𝑛 + 1)))if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓‘𝑧)), ([,]‘〈0,
0〉))) |
286 | | fvex 6769 |
. . . . . . . . . . . . . . . . 17
⊢
([,]‘if(𝑧
∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)) ∈
V |
287 | 286 | dfiun3 5864 |
. . . . . . . . . . . . . . . 16
⊢ ∪ 𝑧 ∈ ℕ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)) = ∪ ran (𝑧 ∈ ℕ ↦ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))) |
288 | | iunxun 5019 |
. . . . . . . . . . . . . . . 16
⊢ ∪ 𝑧 ∈ ((1...𝑛) ∪ (ℤ≥‘(𝑛 + 1)))if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓‘𝑧)), ([,]‘〈0, 0〉)) = (∪ 𝑧 ∈ (1...𝑛)if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓‘𝑧)), ([,]‘〈0, 0〉)) ∪
∪ 𝑧 ∈ (ℤ≥‘(𝑛 + 1))if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓‘𝑧)), ([,]‘〈0,
0〉))) |
289 | 285, 287,
288 | 3eqtr3g 2802 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → ∪ ran (𝑧 ∈ ℕ ↦ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))) = (∪ 𝑧 ∈ (1...𝑛)if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓‘𝑧)), ([,]‘〈0, 0〉)) ∪
∪ 𝑧 ∈ (ℤ≥‘(𝑛 + 1))if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓‘𝑧)), ([,]‘〈0,
0〉)))) |
290 | | iftrue 4462 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ (1...𝑛) → if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓‘𝑧)), ([,]‘〈0, 0〉)) =
([,]‘(𝑓‘𝑧))) |
291 | 290 | iuneq2i 4942 |
. . . . . . . . . . . . . . . . 17
⊢ ∪ 𝑧 ∈ (1...𝑛)if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓‘𝑧)), ([,]‘〈0, 0〉)) = ∪ 𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧)) |
292 | 291 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ → ∪ 𝑧 ∈ (1...𝑛)if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓‘𝑧)), ([,]‘〈0, 0〉)) = ∪ 𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧))) |
293 | | uznfz 13268 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈
(ℤ≥‘(𝑛 + 1)) → ¬ 𝑧 ∈ (1...((𝑛 + 1) − 1))) |
294 | 293 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ ℕ ∧ 𝑧 ∈
(ℤ≥‘(𝑛 + 1))) → ¬ 𝑧 ∈ (1...((𝑛 + 1) − 1))) |
295 | | nncn 11911 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℂ) |
296 | | ax-1cn 10860 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 1 ∈
ℂ |
297 | | pncan 11157 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑛 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑛 + 1)
− 1) = 𝑛) |
298 | 295, 296,
297 | sylancl 585 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ ℕ → ((𝑛 + 1) − 1) = 𝑛) |
299 | 298 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 ∈ ℕ →
(1...((𝑛 + 1) − 1)) =
(1...𝑛)) |
300 | 299 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∈ ℕ → (𝑧 ∈ (1...((𝑛 + 1) − 1)) ↔ 𝑧 ∈ (1...𝑛))) |
301 | 300 | notbid 317 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ ℕ → (¬
𝑧 ∈ (1...((𝑛 + 1) − 1)) ↔ ¬
𝑧 ∈ (1...𝑛))) |
302 | 301 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ ℕ ∧ 𝑧 ∈
(ℤ≥‘(𝑛 + 1))) → (¬ 𝑧 ∈ (1...((𝑛 + 1) − 1)) ↔ ¬ 𝑧 ∈ (1...𝑛))) |
303 | 294, 302 | mpbid 231 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ ℕ ∧ 𝑧 ∈
(ℤ≥‘(𝑛 + 1))) → ¬ 𝑧 ∈ (1...𝑛)) |
304 | 303 | iffalsed 4467 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ ℕ ∧ 𝑧 ∈
(ℤ≥‘(𝑛 + 1))) → if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓‘𝑧)), ([,]‘〈0, 0〉)) =
([,]‘〈0, 0〉)) |
305 | 304 | iuneq2dv 4945 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ → ∪ 𝑧 ∈ (ℤ≥‘(𝑛 + 1))if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓‘𝑧)), ([,]‘〈0, 0〉)) = ∪ 𝑧 ∈ (ℤ≥‘(𝑛 + 1))([,]‘〈0,
0〉)) |
306 | 292, 305 | uneq12d 4094 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → (∪ 𝑧 ∈ (1...𝑛)if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓‘𝑧)), ([,]‘〈0, 0〉)) ∪
∪ 𝑧 ∈ (ℤ≥‘(𝑛 + 1))if(𝑧 ∈ (1...𝑛), ([,]‘(𝑓‘𝑧)), ([,]‘〈0, 0〉))) =
(∪ 𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧)) ∪ ∪
𝑧 ∈
(ℤ≥‘(𝑛 + 1))([,]‘〈0,
0〉))) |
307 | 289, 306 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → ∪ ran (𝑧 ∈ ℕ ↦ ([,]‘if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))) = (∪ 𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧)) ∪ ∪
𝑧 ∈
(ℤ≥‘(𝑛 + 1))([,]‘〈0,
0〉))) |
308 | 272, 307 | sylan9eq 2799 |
. . . . . . . . . . . . 13
⊢ ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → ∪ ran ([,] ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))) = (∪ 𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧)) ∪ ∪
𝑧 ∈
(ℤ≥‘(𝑛 + 1))([,]‘〈0,
0〉))) |
309 | 308 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (vol*‘∪ ran ([,] ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)))) =
(vol*‘(∪ 𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧)) ∪ ∪
𝑧 ∈
(ℤ≥‘(𝑛 + 1))([,]‘〈0,
0〉)))) |
310 | | xrltso 12804 |
. . . . . . . . . . . . . . 15
⊢ < Or
ℝ* |
311 | 310 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → < Or
ℝ*) |
312 | | elnnuz 12551 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕ ↔ 𝑛 ∈
(ℤ≥‘1)) |
313 | 312 | biimpi 215 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
(ℤ≥‘1)) |
314 | 313 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → 𝑛 ∈
(ℤ≥‘1)) |
315 | | elfznn 13214 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢 ∈ (1...𝑛) → 𝑢 ∈ ℕ) |
316 | 172 | ffvelrnda 6943 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑢 ∈ ℕ) → (((abs ∘
− ) ∘ 𝑓)‘𝑢) ∈ ℝ) |
317 | 315, 316 | sylan2 592 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑢 ∈ (1...𝑛)) → (((abs ∘ − ) ∘
𝑓)‘𝑢) ∈ ℝ) |
318 | 317 | adantlr 711 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑢 ∈ (1...𝑛)) → (((abs ∘ − ) ∘
𝑓)‘𝑢) ∈ ℝ) |
319 | | readdcl 10885 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑢 + 𝑣) ∈ ℝ) |
320 | 319 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ (𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → (𝑢 + 𝑣) ∈ ℝ) |
321 | 314, 318,
320 | seqcl 13671 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ 𝑓))‘𝑛) ∈ ℝ) |
322 | 321 | rexrd 10956 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ 𝑓))‘𝑛) ∈
ℝ*) |
323 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 ∈ (1...𝑛) → (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)) = (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))) |
324 | | iftrue 4462 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 ∈ (1...𝑛) → if(𝑚 ∈ (1...𝑛), (𝑓‘𝑚), 〈0, 0〉) = (𝑓‘𝑚)) |
325 | 238, 324 | sylan9eqr 2801 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑚 ∈ (1...𝑛) ∧ 𝑧 = 𝑚) → if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉) = (𝑓‘𝑚)) |
326 | | elfznn 13214 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 ∈ (1...𝑛) → 𝑚 ∈ ℕ) |
327 | 240 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 ∈ (1...𝑛) → (𝑓‘𝑚) ∈ V) |
328 | 323, 325,
326, 327 | fvmptd 6864 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ∈ (1...𝑛) → ((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))‘𝑚) = (𝑓‘𝑚)) |
329 | 328 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ (1...𝑛)) → ((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))‘𝑚) = (𝑓‘𝑚)) |
330 | 329 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ (1...𝑛)) → ((abs ∘ −
)‘((𝑧 ∈ ℕ
↦ if(𝑧 ∈
(1...𝑛), (𝑓‘𝑧), 〈0, 0〉))‘𝑚)) = ((abs ∘ −
)‘(𝑓‘𝑚))) |
331 | | fvex 6769 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓‘𝑧) ∈ V |
332 | 331, 241 | ifex 4506 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉) ∈
V |
333 | 332, 239 | fnmpti 6560 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)) Fn
ℕ |
334 | | fvco2 6847 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)) Fn ℕ ∧ 𝑚 ∈ ℕ) → (((abs
∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)))‘𝑚) = ((abs ∘ −
)‘((𝑧 ∈ ℕ
↦ if(𝑧 ∈
(1...𝑛), (𝑓‘𝑧), 〈0, 0〉))‘𝑚))) |
335 | 333, 326,
334 | sylancr 586 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 ∈ (1...𝑛) → (((abs ∘ − ) ∘
(𝑧 ∈ ℕ ↦
if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)))‘𝑚) = ((abs ∘ −
)‘((𝑧 ∈ ℕ
↦ if(𝑧 ∈
(1...𝑛), (𝑓‘𝑧), 〈0, 0〉))‘𝑚))) |
336 | 335 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ (1...𝑛)) → (((abs ∘ − ) ∘
(𝑧 ∈ ℕ ↦
if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)))‘𝑚) = ((abs ∘ −
)‘((𝑧 ∈ ℕ
↦ if(𝑧 ∈
(1...𝑛), (𝑓‘𝑧), 〈0, 0〉))‘𝑚))) |
337 | | ffn 6584 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 𝑓 Fn ℕ) |
338 | | fvco2 6847 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓 Fn ℕ ∧ 𝑚 ∈ ℕ) → (((abs
∘ − ) ∘ 𝑓)‘𝑚) = ((abs ∘ − )‘(𝑓‘𝑚))) |
339 | 337, 326,
338 | syl2an 595 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ (1...𝑛)) → (((abs ∘ − ) ∘
𝑓)‘𝑚) = ((abs ∘ − )‘(𝑓‘𝑚))) |
340 | 330, 336,
339 | 3eqtr4d 2788 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ (1...𝑛)) → (((abs ∘ − ) ∘
(𝑧 ∈ ℕ ↦
if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)))‘𝑚) = (((abs ∘ − )
∘ 𝑓)‘𝑚)) |
341 | 340 | adantlr 711 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑛)) → (((abs ∘ − ) ∘
(𝑧 ∈ ℕ ↦
if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)))‘𝑚) = (((abs ∘ − )
∘ 𝑓)‘𝑚)) |
342 | 314, 341 | seqfveq 13675 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))))‘𝑛) = (seq1( + , ((abs ∘
− ) ∘ 𝑓))‘𝑛)) |
343 | 174 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → 1 ∈ ℤ) |
344 | 168, 65 | sselid 3915 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → (𝑓‘𝑧) ∈ (ℂ ×
ℂ)) |
345 | | 0cn 10898 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 0 ∈
ℂ |
346 | | opelxpi 5617 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((0
∈ ℂ ∧ 0 ∈ ℂ) → 〈0, 0〉 ∈ (ℂ
× ℂ)) |
347 | 345, 345,
346 | mp2an 688 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 〈0,
0〉 ∈ (ℂ × ℂ) |
348 | | ifcl 4501 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑓‘𝑧) ∈ (ℂ × ℂ) ∧
〈0, 0〉 ∈ (ℂ × ℂ)) → if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉) ∈ (ℂ ×
ℂ)) |
349 | 344, 347,
348 | sylancl 585 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉) ∈ (ℂ ×
ℂ)) |
350 | 349 | fmpttd 6971 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)):ℕ⟶(ℂ
× ℂ)) |
351 | | fco 6608 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((abs
∘ − ):(ℂ × ℂ)⟶ℝ ∧ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)):ℕ⟶(ℂ
× ℂ)) → ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0,
0〉))):ℕ⟶ℝ) |
352 | 139, 350,
351 | sylancr 586 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ((abs ∘ − ) ∘
(𝑧 ∈ ℕ ↦
if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0,
0〉))):ℕ⟶ℝ) |
353 | 352 | ffvelrnda 6943 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → (((abs ∘
− ) ∘ (𝑧 ∈
ℕ ↦ if(𝑧 ∈
(1...𝑛), (𝑓‘𝑧), 〈0, 0〉)))‘𝑚) ∈
ℝ) |
354 | 173, 343,
353 | serfre 13680 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → seq1( + , ((abs ∘ − )
∘ (𝑧 ∈ ℕ
↦ if(𝑧 ∈
(1...𝑛), (𝑓‘𝑧), 〈0,
0〉)))):ℕ⟶ℝ) |
355 | 354 | ffnd 6585 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → seq1( + , ((abs ∘ − )
∘ (𝑧 ∈ ℕ
↦ if(𝑧 ∈
(1...𝑛), (𝑓‘𝑧), 〈0, 0〉)))) Fn
ℕ) |
356 | | fnfvelrn 6940 |
. . . . . . . . . . . . . . . 16
⊢ ((seq1( +
, ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)))) Fn ℕ ∧
𝑛 ∈ ℕ) →
(seq1( + , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))))‘𝑛) ∈ ran seq1( + , ((abs
∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))))) |
357 | 355, 356 | sylan 579 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))))‘𝑛) ∈ ran seq1( + , ((abs
∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))))) |
358 | 342, 357 | eqeltrrd 2840 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ 𝑓))‘𝑛) ∈ ran seq1( + , ((abs ∘ −
) ∘ (𝑧 ∈ ℕ
↦ if(𝑧 ∈
(1...𝑛), (𝑓‘𝑧), 〈0, 0〉))))) |
359 | 354 | frnd 6592 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ran seq1( + , ((abs ∘ −
) ∘ (𝑧 ∈ ℕ
↦ if(𝑧 ∈
(1...𝑛), (𝑓‘𝑧), 〈0, 0〉)))) ⊆
ℝ) |
360 | 359 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → ran seq1( + , ((abs
∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)))) ⊆
ℝ) |
361 | 360 | sselda 3917 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ ran seq1( + , ((abs ∘ − )
∘ (𝑧 ∈ ℕ
↦ if(𝑧 ∈
(1...𝑛), (𝑓‘𝑧), 〈0, 0〉))))) → 𝑚 ∈
ℝ) |
362 | 321 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ ran seq1( + , ((abs ∘ − )
∘ (𝑧 ∈ ℕ
↦ if(𝑧 ∈
(1...𝑛), (𝑓‘𝑧), 〈0, 0〉))))) → (seq1( + ,
((abs ∘ − ) ∘ 𝑓))‘𝑛) ∈ ℝ) |
363 | | readdcl 10885 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑚 ∈ ℝ ∧ 𝑢 ∈ ℝ) → (𝑚 + 𝑢) ∈ ℝ) |
364 | 363 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ (𝑚 ∈ ℝ ∧ 𝑢 ∈ ℝ)) → (𝑚 + 𝑢) ∈ ℝ) |
365 | | recn 10892 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑚 ∈ ℝ → 𝑚 ∈
ℂ) |
366 | | recn 10892 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑢 ∈ ℝ → 𝑢 ∈
ℂ) |
367 | | recn 10892 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑣 ∈ ℝ → 𝑣 ∈
ℂ) |
368 | | addass 10889 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑚 ∈ ℂ ∧ 𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → ((𝑚 + 𝑢) + 𝑣) = (𝑚 + (𝑢 + 𝑣))) |
369 | 365, 366,
367, 368 | syl3an 1158 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑚 ∈ ℝ ∧ 𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → ((𝑚 + 𝑢) + 𝑣) = (𝑚 + (𝑢 + 𝑣))) |
370 | 369 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ (𝑚 ∈ ℝ ∧ 𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → ((𝑚 + 𝑢) + 𝑣) = (𝑚 + (𝑢 + 𝑣))) |
371 | | nnltp1le 12306 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) → (𝑛 < 𝑡 ↔ (𝑛 + 1) ≤ 𝑡)) |
372 | 371 | biimpa 476 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (𝑛 + 1) ≤ 𝑡) |
373 | 273 | nnzd 12354 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑛 ∈ ℕ → (𝑛 + 1) ∈
ℤ) |
374 | | nnz 12272 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑡 ∈ ℕ → 𝑡 ∈
ℤ) |
375 | | eluz 12525 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑛 + 1) ∈ ℤ ∧ 𝑡 ∈ ℤ) → (𝑡 ∈
(ℤ≥‘(𝑛 + 1)) ↔ (𝑛 + 1) ≤ 𝑡)) |
376 | 373, 374,
375 | syl2an 595 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) → (𝑡 ∈
(ℤ≥‘(𝑛 + 1)) ↔ (𝑛 + 1) ≤ 𝑡)) |
377 | 376 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (𝑡 ∈ (ℤ≥‘(𝑛 + 1)) ↔ (𝑛 + 1) ≤ 𝑡)) |
378 | 372, 377 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → 𝑡 ∈ (ℤ≥‘(𝑛 + 1))) |
379 | 378 | adantlll 714 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → 𝑡 ∈ (ℤ≥‘(𝑛 + 1))) |
380 | 313 | ad3antlr 727 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → 𝑛 ∈
(ℤ≥‘1)) |
381 | | simplll 771 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → 𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) |
382 | | elfznn 13214 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 ∈ (1...𝑡) → 𝑚 ∈ ℕ) |
383 | 381, 382,
353 | syl2an 595 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ (1...𝑡)) → (((abs ∘ − ) ∘
(𝑧 ∈ ℕ ↦
if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)))‘𝑚) ∈
ℝ) |
384 | 364, 370,
379, 380, 383 | seqsplit 13684 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq1( + , ((abs ∘ − )
∘ (𝑧 ∈ ℕ
↦ if(𝑧 ∈
(1...𝑛), (𝑓‘𝑧), 〈0, 0〉))))‘𝑡) = ((seq1( + , ((abs ∘
− ) ∘ (𝑧 ∈
ℕ ↦ if(𝑧 ∈
(1...𝑛), (𝑓‘𝑧), 〈0, 0〉))))‘𝑛) + (seq(𝑛 + 1)( + , ((abs ∘ − ) ∘
(𝑧 ∈ ℕ ↦
if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))))‘𝑡))) |
385 | 342 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq1( + , ((abs ∘ − )
∘ (𝑧 ∈ ℕ
↦ if(𝑧 ∈
(1...𝑛), (𝑓‘𝑧), 〈0, 0〉))))‘𝑛) = (seq1( + , ((abs ∘
− ) ∘ 𝑓))‘𝑛)) |
386 | | elfzelz 13185 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑚 ∈ ((𝑛 + 1)...𝑡) → 𝑚 ∈ ℤ) |
387 | 386 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑚 ∈ ℤ) |
388 | | 0red 10909 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 0 ∈ ℝ) |
389 | 273 | nnred 11918 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑛 ∈ ℕ → (𝑛 + 1) ∈
ℝ) |
390 | 389 | ad3antrrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (𝑛 + 1) ∈ ℝ) |
391 | 386 | zred 12355 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑚 ∈ ((𝑛 + 1)...𝑡) → 𝑚 ∈ ℝ) |
392 | 391 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑚 ∈ ℝ) |
393 | 273 | nngt0d 11952 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑛 ∈ ℕ → 0 <
(𝑛 + 1)) |
394 | 393 | ad3antrrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 0 < (𝑛 + 1)) |
395 | | elfzle1 13188 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑚 ∈ ((𝑛 + 1)...𝑡) → (𝑛 + 1) ≤ 𝑚) |
396 | 395 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (𝑛 + 1) ≤ 𝑚) |
397 | 388, 390,
392, 394, 396 | ltletrd 11065 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 0 < 𝑚) |
398 | | elnnz 12259 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑚 ∈ ℕ ↔ (𝑚 ∈ ℤ ∧ 0 <
𝑚)) |
399 | 387, 397,
398 | sylanbrc 582 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑚 ∈ ℕ) |
400 | 333, 399,
334 | sylancr 586 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (((abs ∘ − ) ∘
(𝑧 ∈ ℕ ↦
if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)))‘𝑚) = ((abs ∘ −
)‘((𝑧 ∈ ℕ
↦ if(𝑧 ∈
(1...𝑛), (𝑓‘𝑧), 〈0, 0〉))‘𝑚))) |
401 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)) = (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))) |
402 | | nnre 11910 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℝ) |
403 | 402 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑛 ∈ ℝ) |
404 | 389 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (𝑛 + 1) ∈ ℝ) |
405 | 391 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑚 ∈ ℝ) |
406 | 402 | ltp1d 11835 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑛 ∈ ℕ → 𝑛 < (𝑛 + 1)) |
407 | 406 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑛 < (𝑛 + 1)) |
408 | 395 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (𝑛 + 1) ≤ 𝑚) |
409 | 403, 404,
405, 407, 408 | ltletrd 11065 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑛 < 𝑚) |
410 | 409 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) ∧ 𝑧 = 𝑚) → 𝑛 < 𝑚) |
411 | 403, 405 | ltnled 11052 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (𝑛 < 𝑚 ↔ ¬ 𝑚 ≤ 𝑛)) |
412 | | breq1 5073 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑚 = 𝑧 → (𝑚 ≤ 𝑛 ↔ 𝑧 ≤ 𝑛)) |
413 | 412 | equcoms 2024 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑧 = 𝑚 → (𝑚 ≤ 𝑛 ↔ 𝑧 ≤ 𝑛)) |
414 | 413 | notbid 317 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑧 = 𝑚 → (¬ 𝑚 ≤ 𝑛 ↔ ¬ 𝑧 ≤ 𝑛)) |
415 | 411, 414 | sylan9bb 509 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) ∧ 𝑧 = 𝑚) → (𝑛 < 𝑚 ↔ ¬ 𝑧 ≤ 𝑛)) |
416 | 410, 415 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) ∧ 𝑧 = 𝑚) → ¬ 𝑧 ≤ 𝑛) |
417 | | elfzle2 13189 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑧 ∈ (1...𝑛) → 𝑧 ≤ 𝑛) |
418 | 416, 417 | nsyl 140 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) ∧ 𝑧 = 𝑚) → ¬ 𝑧 ∈ (1...𝑛)) |
419 | 418 | iffalsed 4467 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) ∧ 𝑧 = 𝑚) → if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉) = 〈0,
0〉) |
420 | 386 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑚 ∈ ℤ) |
421 | | 0red 10909 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 0 ∈ ℝ) |
422 | 393 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 0 < (𝑛 + 1)) |
423 | 421, 404,
405, 422, 408 | ltletrd 11065 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 0 < 𝑚) |
424 | 420, 423,
398 | sylanbrc 582 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 𝑚 ∈ ℕ) |
425 | 241 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → 〈0, 0〉 ∈
V) |
426 | 401, 419,
424, 425 | fvmptd 6864 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → ((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))‘𝑚) = 〈0,
0〉) |
427 | 426 | ad4ant14 748 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → ((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))‘𝑚) = 〈0,
0〉) |
428 | 427 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → ((abs ∘ −
)‘((𝑧 ∈ ℕ
↦ if(𝑧 ∈
(1...𝑛), (𝑓‘𝑧), 〈0, 0〉))‘𝑚)) = ((abs ∘ −
)‘〈0, 0〉)) |
429 | 400, 428 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (((abs ∘ − ) ∘
(𝑧 ∈ ℕ ↦
if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)))‘𝑚) = ((abs ∘ −
)‘〈0, 0〉)) |
430 | | fvco3 6849 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((
− :(ℂ × ℂ)⟶ℂ ∧ 〈0, 0〉 ∈
(ℂ × ℂ)) → ((abs ∘ − )‘〈0,
0〉) = (abs‘( − ‘〈0, 0〉))) |
431 | 137, 347,
430 | mp2an 688 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((abs
∘ − )‘〈0, 0〉) = (abs‘( −
‘〈0, 0〉)) |
432 | | df-ov 7258 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (0
− 0) = ( − ‘〈0, 0〉) |
433 | | 0m0e0 12023 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (0
− 0) = 0 |
434 | 432, 433 | eqtr3i 2768 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ( −
‘〈0, 0〉) = 0 |
435 | 434 | fveq2i 6759 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(abs‘( − ‘〈0, 0〉)) =
(abs‘0) |
436 | | abs0 14925 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(abs‘0) = 0 |
437 | 435, 436 | eqtri 2766 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(abs‘( − ‘〈0, 0〉)) = 0 |
438 | 431, 437 | eqtri 2766 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((abs
∘ − )‘〈0, 0〉) = 0 |
439 | 429, 438 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (((abs ∘ − ) ∘
(𝑧 ∈ ℕ ↦
if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)))‘𝑚) = 0) |
440 | | elfzuz 13181 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑚 ∈ ((𝑛 + 1)...𝑡) → 𝑚 ∈ (ℤ≥‘(𝑛 + 1))) |
441 | | c0ex 10900 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ 0 ∈
V |
442 | 441 | fvconst2 7061 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑚 ∈
(ℤ≥‘(𝑛 + 1)) →
(((ℤ≥‘(𝑛 + 1)) × {0})‘𝑚) = 0) |
443 | 440, 442 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑚 ∈ ((𝑛 + 1)...𝑡) →
(((ℤ≥‘(𝑛 + 1)) × {0})‘𝑚) = 0) |
444 | 443 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) →
(((ℤ≥‘(𝑛 + 1)) × {0})‘𝑚) = 0) |
445 | 439, 444 | eqtr4d 2781 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ((𝑛 + 1)...𝑡)) → (((abs ∘ − ) ∘
(𝑧 ∈ ℕ ↦
if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)))‘𝑚) =
(((ℤ≥‘(𝑛 + 1)) × {0})‘𝑚)) |
446 | 378, 445 | seqfveq 13675 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq(𝑛 + 1)( + , ((abs ∘ − ) ∘
(𝑧 ∈ ℕ ↦
if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))))‘𝑡) = (seq(𝑛 + 1)( + ,
((ℤ≥‘(𝑛 + 1)) × {0}))‘𝑡)) |
447 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(ℤ≥‘(𝑛 + 1)) = (ℤ≥‘(𝑛 + 1)) |
448 | 447 | ser0 13703 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑡 ∈
(ℤ≥‘(𝑛 + 1)) → (seq(𝑛 + 1)( + ,
((ℤ≥‘(𝑛 + 1)) × {0}))‘𝑡) = 0) |
449 | 378, 448 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq(𝑛 + 1)( + ,
((ℤ≥‘(𝑛 + 1)) × {0}))‘𝑡) = 0) |
450 | 446, 449 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq(𝑛 + 1)( + , ((abs ∘ − ) ∘
(𝑧 ∈ ℕ ↦
if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))))‘𝑡) = 0) |
451 | 450 | adantlll 714 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq(𝑛 + 1)( + , ((abs ∘ − ) ∘
(𝑧 ∈ ℕ ↦
if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))))‘𝑡) = 0) |
452 | 385, 451 | oveq12d 7273 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → ((seq1( + , ((abs ∘ − )
∘ (𝑧 ∈ ℕ
↦ if(𝑧 ∈
(1...𝑛), (𝑓‘𝑧), 〈0, 0〉))))‘𝑛) + (seq(𝑛 + 1)( + , ((abs ∘ − ) ∘
(𝑧 ∈ ℕ ↦
if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))))‘𝑡)) = ((seq1( + , ((abs ∘
− ) ∘ 𝑓))‘𝑛) + 0)) |
453 | 172 | ffvelrnda 6943 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → (((abs ∘
− ) ∘ 𝑓)‘𝑚) ∈ ℝ) |
454 | 326, 453 | sylan2 592 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ (1...𝑛)) → (((abs ∘ − ) ∘
𝑓)‘𝑚) ∈ ℝ) |
455 | 454 | adantlr 711 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑛)) → (((abs ∘ − ) ∘
𝑓)‘𝑚) ∈ ℝ) |
456 | | readdcl 10885 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑚 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑚 + 𝑣) ∈ ℝ) |
457 | 456 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ (𝑚 ∈ ℝ ∧ 𝑣 ∈ ℝ)) → (𝑚 + 𝑣) ∈ ℝ) |
458 | 314, 455,
457 | seqcl 13671 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ 𝑓))‘𝑛) ∈ ℝ) |
459 | 458 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq1( + , ((abs ∘ − )
∘ 𝑓))‘𝑛) ∈
ℝ) |
460 | 459 | recnd 10934 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq1( + , ((abs ∘ − )
∘ 𝑓))‘𝑛) ∈
ℂ) |
461 | 460 | addid1d 11105 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → ((seq1( + , ((abs ∘ − )
∘ 𝑓))‘𝑛) + 0) = (seq1( + , ((abs
∘ − ) ∘ 𝑓))‘𝑛)) |
462 | 452, 461 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → ((seq1( + , ((abs ∘ − )
∘ (𝑧 ∈ ℕ
↦ if(𝑧 ∈
(1...𝑛), (𝑓‘𝑧), 〈0, 0〉))))‘𝑛) + (seq(𝑛 + 1)( + , ((abs ∘ − ) ∘
(𝑧 ∈ ℕ ↦
if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))))‘𝑡)) = (seq1( + , ((abs ∘
− ) ∘ 𝑓))‘𝑛)) |
463 | 384, 462 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq1( + , ((abs ∘ − )
∘ (𝑧 ∈ ℕ
↦ if(𝑧 ∈
(1...𝑛), (𝑓‘𝑧), 〈0, 0〉))))‘𝑡) = (seq1( + , ((abs ∘
− ) ∘ 𝑓))‘𝑛)) |
464 | 453 | ad5ant15 755 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ ℕ) → (((abs ∘
− ) ∘ 𝑓)‘𝑚) ∈ ℝ) |
465 | 326, 464 | sylan2 592 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) ∧ 𝑚 ∈ (1...𝑛)) → (((abs ∘ − ) ∘
𝑓)‘𝑚) ∈ ℝ) |
466 | 380, 465,
364 | seqcl 13671 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq1( + , ((abs ∘ − )
∘ 𝑓))‘𝑛) ∈
ℝ) |
467 | 466 | leidd 11471 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq1( + , ((abs ∘ − )
∘ 𝑓))‘𝑛) ≤ (seq1( + , ((abs ∘
− ) ∘ 𝑓))‘𝑛)) |
468 | 463, 467 | eqbrtrd 5092 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 < 𝑡) → (seq1( + , ((abs ∘ − )
∘ (𝑧 ∈ ℕ
↦ if(𝑧 ∈
(1...𝑛), (𝑓‘𝑧), 〈0, 0〉))))‘𝑡) ≤ (seq1( + , ((abs ∘
− ) ∘ 𝑓))‘𝑛)) |
469 | | elnnuz 12551 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑡 ∈ ℕ ↔ 𝑡 ∈
(ℤ≥‘1)) |
470 | 469 | biimpi 215 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑡 ∈ ℕ → 𝑡 ∈
(ℤ≥‘1)) |
471 | 470 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡 ≤ 𝑛) → 𝑡 ∈
(ℤ≥‘1)) |
472 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡 ≤ 𝑛) ∧ 𝑚 ∈ (1...𝑡)) → (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)) = (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))) |
473 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡 ≤ 𝑛) ∧ 𝑚 ∈ (1...𝑡)) ∧ 𝑧 = 𝑚) → 𝑧 = 𝑚) |
474 | | elfzle1 13188 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑚 ∈ (1...𝑡) → 1 ≤ 𝑚) |
475 | 474 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡 ≤ 𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 1 ≤ 𝑚) |
476 | 382 | nnred 11918 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑚 ∈ (1...𝑡) → 𝑚 ∈ ℝ) |
477 | 476 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡 ≤ 𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑚 ∈ ℝ) |
478 | | nnre 11910 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑡 ∈ ℕ → 𝑡 ∈
ℝ) |
479 | 478 | ad3antlr 727 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡 ≤ 𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑡 ∈ ℝ) |
480 | 402 | ad3antrrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡 ≤ 𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑛 ∈ ℝ) |
481 | | elfzle2 13189 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑚 ∈ (1...𝑡) → 𝑚 ≤ 𝑡) |
482 | 481 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡 ≤ 𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑚 ≤ 𝑡) |
483 | | simplr 765 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡 ≤ 𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑡 ≤ 𝑛) |
484 | 477, 479,
480, 482, 483 | letrd 11062 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡 ≤ 𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑚 ≤ 𝑛) |
485 | | elfzelz 13185 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑚 ∈ (1...𝑡) → 𝑚 ∈ ℤ) |
486 | 278 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡 ≤ 𝑛) → 𝑛 ∈ ℤ) |
487 | | elfz 13174 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑚 ∈ ℤ ∧ 1 ∈
ℤ ∧ 𝑛 ∈
ℤ) → (𝑚 ∈
(1...𝑛) ↔ (1 ≤
𝑚 ∧ 𝑚 ≤ 𝑛))) |
488 | 174, 487 | mp3an2 1447 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑚 ∈ (1...𝑛) ↔ (1 ≤ 𝑚 ∧ 𝑚 ≤ 𝑛))) |
489 | 485, 486,
488 | syl2anr 596 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡 ≤ 𝑛) ∧ 𝑚 ∈ (1...𝑡)) → (𝑚 ∈ (1...𝑛) ↔ (1 ≤ 𝑚 ∧ 𝑚 ≤ 𝑛))) |
490 | 475, 484,
489 | mpbir2and 709 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡 ≤ 𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑚 ∈ (1...𝑛)) |
491 | 490 | ad5ant2345 1368 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡 ≤ 𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑚 ∈ (1...𝑛)) |
492 | 491 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡 ≤ 𝑛) ∧ 𝑚 ∈ (1...𝑡)) ∧ 𝑧 = 𝑚) → 𝑚 ∈ (1...𝑛)) |
493 | 473, 492 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡 ≤ 𝑛) ∧ 𝑚 ∈ (1...𝑡)) ∧ 𝑧 = 𝑚) → 𝑧 ∈ (1...𝑛)) |
494 | | iftrue 4462 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑧 ∈ (1...𝑛) → if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉) = (𝑓‘𝑧)) |
495 | 493, 494 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡 ≤ 𝑛) ∧ 𝑚 ∈ (1...𝑡)) ∧ 𝑧 = 𝑚) → if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉) = (𝑓‘𝑧)) |
496 | 237 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡 ≤ 𝑛) ∧ 𝑚 ∈ (1...𝑡)) ∧ 𝑧 = 𝑚) → (𝑓‘𝑧) = (𝑓‘𝑚)) |
497 | 495, 496 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡 ≤ 𝑛) ∧ 𝑚 ∈ (1...𝑡)) ∧ 𝑧 = 𝑚) → if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉) = (𝑓‘𝑚)) |
498 | 382 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡 ≤ 𝑛) ∧ 𝑚 ∈ (1...𝑡)) → 𝑚 ∈ ℕ) |
499 | 240 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡 ≤ 𝑛) ∧ 𝑚 ∈ (1...𝑡)) → (𝑓‘𝑚) ∈ V) |
500 | 472, 497,
498, 499 | fvmptd 6864 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡 ≤ 𝑛) ∧ 𝑚 ∈ (1...𝑡)) → ((𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))‘𝑚) = (𝑓‘𝑚)) |
501 | 500 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡 ≤ 𝑛) ∧ 𝑚 ∈ (1...𝑡)) → ((abs ∘ −
)‘((𝑧 ∈ ℕ
↦ if(𝑧 ∈
(1...𝑛), (𝑓‘𝑧), 〈0, 0〉))‘𝑚)) = ((abs ∘ −
)‘(𝑓‘𝑚))) |
502 | 333, 382,
334 | sylancr 586 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 ∈ (1...𝑡) → (((abs ∘ − ) ∘
(𝑧 ∈ ℕ ↦
if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)))‘𝑚) = ((abs ∘ −
)‘((𝑧 ∈ ℕ
↦ if(𝑧 ∈
(1...𝑛), (𝑓‘𝑧), 〈0, 0〉))‘𝑚))) |
503 | 502 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡 ≤ 𝑛) ∧ 𝑚 ∈ (1...𝑡)) → (((abs ∘ − ) ∘
(𝑧 ∈ ℕ ↦
if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)))‘𝑚) = ((abs ∘ −
)‘((𝑧 ∈ ℕ
↦ if(𝑧 ∈
(1...𝑛), (𝑓‘𝑧), 〈0, 0〉))‘𝑚))) |
504 | | simplll 771 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡 ≤ 𝑛) → 𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) |
505 | | fvco3 6849 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → (((abs ∘
− ) ∘ 𝑓)‘𝑚) = ((abs ∘ − )‘(𝑓‘𝑚))) |
506 | 504, 382,
505 | syl2an 595 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡 ≤ 𝑛) ∧ 𝑚 ∈ (1...𝑡)) → (((abs ∘ − ) ∘
𝑓)‘𝑚) = ((abs ∘ − )‘(𝑓‘𝑚))) |
507 | 501, 503,
506 | 3eqtr4d 2788 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡 ≤ 𝑛) ∧ 𝑚 ∈ (1...𝑡)) → (((abs ∘ − ) ∘
(𝑧 ∈ ℕ ↦
if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)))‘𝑚) = (((abs ∘ − )
∘ 𝑓)‘𝑚)) |
508 | 471, 507 | seqfveq 13675 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡 ≤ 𝑛) → (seq1( + , ((abs ∘ − )
∘ (𝑧 ∈ ℕ
↦ if(𝑧 ∈
(1...𝑛), (𝑓‘𝑧), 〈0, 0〉))))‘𝑡) = (seq1( + , ((abs ∘
− ) ∘ 𝑓))‘𝑡)) |
509 | | eluz 12525 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑡 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑛 ∈
(ℤ≥‘𝑡) ↔ 𝑡 ≤ 𝑛)) |
510 | 374, 278,
509 | syl2anr 596 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) → (𝑛 ∈
(ℤ≥‘𝑡) ↔ 𝑡 ≤ 𝑛)) |
511 | 510 | biimpar 477 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑛 ∈ ℕ ∧ 𝑡 ∈ ℕ) ∧ 𝑡 ≤ 𝑛) → 𝑛 ∈ (ℤ≥‘𝑡)) |
512 | 511 | adantlll 714 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡 ≤ 𝑛) → 𝑛 ∈ (ℤ≥‘𝑡)) |
513 | 504, 326,
453 | syl2an 595 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡 ≤ 𝑛) ∧ 𝑚 ∈ (1...𝑛)) → (((abs ∘ − ) ∘
𝑓)‘𝑚) ∈ ℝ) |
514 | | elfzelz 13185 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑚 ∈ ((𝑡 + 1)...𝑛) → 𝑚 ∈ ℤ) |
515 | 514 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑡 ∈ ℕ ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 𝑚 ∈ ℤ) |
516 | | 0red 10909 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑡 ∈ ℕ ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 0 ∈ ℝ) |
517 | | peano2nn 11915 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑡 ∈ ℕ → (𝑡 + 1) ∈
ℕ) |
518 | 517 | nnred 11918 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑡 ∈ ℕ → (𝑡 + 1) ∈
ℝ) |
519 | 518 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑡 ∈ ℕ ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → (𝑡 + 1) ∈ ℝ) |
520 | 514 | zred 12355 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑚 ∈ ((𝑡 + 1)...𝑛) → 𝑚 ∈ ℝ) |
521 | 520 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑡 ∈ ℕ ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 𝑚 ∈ ℝ) |
522 | 517 | nngt0d 11952 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑡 ∈ ℕ → 0 <
(𝑡 + 1)) |
523 | 522 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑡 ∈ ℕ ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 0 < (𝑡 + 1)) |
524 | | elfzle1 13188 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑚 ∈ ((𝑡 + 1)...𝑛) → (𝑡 + 1) ≤ 𝑚) |
525 | 524 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑡 ∈ ℕ ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → (𝑡 + 1) ≤ 𝑚) |
526 | 516, 519,
521, 523, 525 | ltletrd 11065 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑡 ∈ ℕ ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 0 < 𝑚) |
527 | 515, 526,
398 | sylanbrc 582 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑡 ∈ ℕ ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 𝑚 ∈ ℕ) |
528 | 527 | adantlr 711 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑡 ∈ ℕ ∧ 𝑡 ≤ 𝑛) ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 𝑚 ∈ ℕ) |
529 | 528 | adantlll 714 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡 ≤ 𝑛) ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 𝑚 ∈ ℕ) |
530 | 170 | ffvelrnda 6943 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → (𝑓‘𝑚) ∈ (ℂ ×
ℂ)) |
531 | | ffvelrn 6941 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((
− :(ℂ × ℂ)⟶ℂ ∧ (𝑓‘𝑚) ∈ (ℂ × ℂ)) → (
− ‘(𝑓‘𝑚)) ∈ ℂ) |
532 | 137, 530,
531 | sylancr 586 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → ( −
‘(𝑓‘𝑚)) ∈
ℂ) |
533 | 532 | absge0d 15084 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → 0 ≤ (abs‘(
− ‘(𝑓‘𝑚)))) |
534 | | fvco3 6849 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((
− :(ℂ × ℂ)⟶ℂ ∧ (𝑓‘𝑚) ∈ (ℂ × ℂ)) →
((abs ∘ − )‘(𝑓‘𝑚)) = (abs‘( − ‘(𝑓‘𝑚)))) |
535 | 137, 530,
534 | sylancr 586 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → ((abs ∘ −
)‘(𝑓‘𝑚)) = (abs‘( −
‘(𝑓‘𝑚)))) |
536 | 505, 535 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → (((abs ∘
− ) ∘ 𝑓)‘𝑚) = (abs‘( − ‘(𝑓‘𝑚)))) |
537 | 533, 536 | breqtrrd 5098 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑚 ∈ ℕ) → 0 ≤ (((abs ∘
− ) ∘ 𝑓)‘𝑚)) |
538 | 537 | ad5ant15 755 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡 ≤ 𝑛) ∧ 𝑚 ∈ ℕ) → 0 ≤ (((abs ∘
− ) ∘ 𝑓)‘𝑚)) |
539 | 529, 538 | syldan 590 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡 ≤ 𝑛) ∧ 𝑚 ∈ ((𝑡 + 1)...𝑛)) → 0 ≤ (((abs ∘ − )
∘ 𝑓)‘𝑚)) |
540 | 471, 512,
513, 539 | sermono 13683 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡 ≤ 𝑛) → (seq1( + , ((abs ∘ − )
∘ 𝑓))‘𝑡) ≤ (seq1( + , ((abs ∘
− ) ∘ 𝑓))‘𝑛)) |
541 | 508, 540 | eqbrtrd 5092 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) ∧ 𝑡 ≤ 𝑛) → (seq1( + , ((abs ∘ − )
∘ (𝑧 ∈ ℕ
↦ if(𝑧 ∈
(1...𝑛), (𝑓‘𝑧), 〈0, 0〉))))‘𝑡) ≤ (seq1( + , ((abs ∘
− ) ∘ 𝑓))‘𝑛)) |
542 | 402 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → 𝑛 ∈ ℝ) |
543 | 478 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → 𝑡 ∈ ℝ) |
544 | 468, 541,
542, 543 | ltlecasei 11013 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑡 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))))‘𝑡) ≤ (seq1( + , ((abs ∘
− ) ∘ 𝑓))‘𝑛)) |
545 | 544 | ralrimiva 3107 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → ∀𝑡 ∈ ℕ (seq1( + , ((abs
∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))))‘𝑡) ≤ (seq1( + , ((abs ∘
− ) ∘ 𝑓))‘𝑛)) |
546 | | breq1 5073 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 = (seq1( + , ((abs ∘
− ) ∘ (𝑧 ∈
ℕ ↦ if(𝑧 ∈
(1...𝑛), (𝑓‘𝑧), 〈0, 0〉))))‘𝑡) → (𝑚 ≤ (seq1( + , ((abs ∘ − )
∘ 𝑓))‘𝑛) ↔ (seq1( + , ((abs
∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))))‘𝑡) ≤ (seq1( + , ((abs ∘
− ) ∘ 𝑓))‘𝑛))) |
547 | 546 | ralrn 6946 |
. . . . . . . . . . . . . . . . . . 19
⊢ (seq1( +
, ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)))) Fn ℕ →
(∀𝑚 ∈ ran seq1(
+ , ((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))))𝑚 ≤ (seq1( + , ((abs ∘ − )
∘ 𝑓))‘𝑛) ↔ ∀𝑡 ∈ ℕ (seq1( + , ((abs
∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))))‘𝑡) ≤ (seq1( + , ((abs ∘
− ) ∘ 𝑓))‘𝑛))) |
548 | 355, 547 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (∀𝑚 ∈ ran seq1( + , ((abs ∘ − )
∘ (𝑧 ∈ ℕ
↦ if(𝑧 ∈
(1...𝑛), (𝑓‘𝑧), 〈0, 0〉))))𝑚 ≤ (seq1( + , ((abs ∘ − )
∘ 𝑓))‘𝑛) ↔ ∀𝑡 ∈ ℕ (seq1( + , ((abs
∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))))‘𝑡) ≤ (seq1( + , ((abs ∘
− ) ∘ 𝑓))‘𝑛))) |
549 | 548 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (∀𝑚 ∈ ran seq1( + , ((abs
∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))))𝑚 ≤ (seq1( + , ((abs ∘ − )
∘ 𝑓))‘𝑛) ↔ ∀𝑡 ∈ ℕ (seq1( + , ((abs
∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))))‘𝑡) ≤ (seq1( + , ((abs ∘
− ) ∘ 𝑓))‘𝑛))) |
550 | 545, 549 | mpbird 256 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → ∀𝑚 ∈ ran seq1( + , ((abs
∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉))))𝑚 ≤ (seq1( + , ((abs ∘ − )
∘ 𝑓))‘𝑛)) |
551 | 550 | r19.21bi 3132 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ ran seq1( + , ((abs ∘ − )
∘ (𝑧 ∈ ℕ
↦ if(𝑧 ∈
(1...𝑛), (𝑓‘𝑧), 〈0, 0〉))))) → 𝑚 ≤ (seq1( + , ((abs ∘
− ) ∘ 𝑓))‘𝑛)) |
552 | 361, 362,
551 | lensymd 11056 |
. . . . . . . . . . . . . 14
⊢ (((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) ∧ 𝑚 ∈ ran seq1( + , ((abs ∘ − )
∘ (𝑧 ∈ ℕ
↦ if(𝑧 ∈
(1...𝑛), (𝑓‘𝑧), 〈0, 0〉))))) → ¬ (seq1(
+ , ((abs ∘ − ) ∘ 𝑓))‘𝑛) < 𝑚) |
553 | 311, 322,
358, 552 | supmax 9156 |
. . . . . . . . . . . . 13
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → sup(ran seq1( + ,
((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)))), ℝ*,
< ) = (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛)) |
554 | 52, 553 | sylan 579 |
. . . . . . . . . . . 12
⊢ ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → sup(ran seq1( + ,
((abs ∘ − ) ∘ (𝑧 ∈ ℕ ↦ if(𝑧 ∈ (1...𝑛), (𝑓‘𝑧), 〈0, 0〉)))), ℝ*,
< ) = (seq1( + , ((abs ∘ − ) ∘ 𝑓))‘𝑛)) |
555 | 255, 309,
554 | 3eqtr3rd 2787 |
. . . . . . . . . . 11
⊢ ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ 𝑓))‘𝑛) = (vol*‘(∪ 𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧)) ∪ ∪
𝑧 ∈
(ℤ≥‘(𝑛 + 1))([,]‘〈0,
0〉)))) |
556 | | elfznn 13214 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ (1...𝑛) → 𝑧 ∈ ℕ) |
557 | 164, 65 | sselid 3915 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → (𝑓‘𝑧) ∈ (ℝ ×
ℝ)) |
558 | | 1st2nd2 7843 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓‘𝑧) ∈ (ℝ × ℝ) →
(𝑓‘𝑧) = 〈(1st ‘(𝑓‘𝑧)), (2nd ‘(𝑓‘𝑧))〉) |
559 | 558 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓‘𝑧) ∈ (ℝ × ℝ) →
([,]‘(𝑓‘𝑧)) =
([,]‘〈(1st ‘(𝑓‘𝑧)), (2nd ‘(𝑓‘𝑧))〉)) |
560 | | df-ov 7258 |
. . . . . . . . . . . . . . . . . . 19
⊢
((1st ‘(𝑓‘𝑧))[,](2nd ‘(𝑓‘𝑧))) = ([,]‘〈(1st
‘(𝑓‘𝑧)), (2nd
‘(𝑓‘𝑧))〉) |
561 | 559, 560 | eqtr4di 2797 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓‘𝑧) ∈ (ℝ × ℝ) →
([,]‘(𝑓‘𝑧)) = ((1st
‘(𝑓‘𝑧))[,](2nd
‘(𝑓‘𝑧)))) |
562 | | xp1st 7836 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓‘𝑧) ∈ (ℝ × ℝ) →
(1st ‘(𝑓‘𝑧)) ∈ ℝ) |
563 | | xp2nd 7837 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓‘𝑧) ∈ (ℝ × ℝ) →
(2nd ‘(𝑓‘𝑧)) ∈ ℝ) |
564 | | iccssre 13090 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((1st ‘(𝑓‘𝑧)) ∈ ℝ ∧ (2nd
‘(𝑓‘𝑧)) ∈ ℝ) →
((1st ‘(𝑓‘𝑧))[,](2nd ‘(𝑓‘𝑧))) ⊆ ℝ) |
565 | 562, 563,
564 | syl2anc 583 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓‘𝑧) ∈ (ℝ × ℝ) →
((1st ‘(𝑓‘𝑧))[,](2nd ‘(𝑓‘𝑧))) ⊆ ℝ) |
566 | 561, 565 | eqsstrd 3955 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓‘𝑧) ∈ (ℝ × ℝ) →
([,]‘(𝑓‘𝑧)) ⊆
ℝ) |
567 | 557, 566 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → ([,]‘(𝑓‘𝑧)) ⊆ ℝ) |
568 | 52, 556, 567 | syl2an 595 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ (1...𝑛)) → ([,]‘(𝑓‘𝑧)) ⊆ ℝ) |
569 | 568 | ralrimiva 3107 |
. . . . . . . . . . . . . 14
⊢ (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ∀𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧)) ⊆ ℝ) |
570 | | iunss 4971 |
. . . . . . . . . . . . . 14
⊢ (∪ 𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧)) ⊆ ℝ ↔ ∀𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧)) ⊆ ℝ) |
571 | 569, 570 | sylibr 233 |
. . . . . . . . . . . . 13
⊢ (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ∪
𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧)) ⊆ ℝ) |
572 | 571 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → ∪ 𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧)) ⊆ ℝ) |
573 | | uzid 12526 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 + 1) ∈ ℤ →
(𝑛 + 1) ∈
(ℤ≥‘(𝑛 + 1))) |
574 | | ne0i 4265 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 + 1) ∈
(ℤ≥‘(𝑛 + 1)) →
(ℤ≥‘(𝑛 + 1)) ≠ ∅) |
575 | | iunconst 4930 |
. . . . . . . . . . . . . . . 16
⊢
((ℤ≥‘(𝑛 + 1)) ≠ ∅ → ∪ 𝑧 ∈ (ℤ≥‘(𝑛 + 1))([,]‘〈0,
0〉) = ([,]‘〈0, 0〉)) |
576 | 373, 573,
574, 575 | 4syl 19 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → ∪ 𝑧 ∈ (ℤ≥‘(𝑛 + 1))([,]‘〈0,
0〉) = ([,]‘〈0, 0〉)) |
577 | | iccid 13053 |
. . . . . . . . . . . . . . . . 17
⊢ (0 ∈
ℝ* → (0[,]0) = {0}) |
578 | 259, 577 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ (0[,]0) =
{0} |
579 | | df-ov 7258 |
. . . . . . . . . . . . . . . 16
⊢ (0[,]0) =
([,]‘〈0, 0〉) |
580 | 578, 579 | eqtr3i 2768 |
. . . . . . . . . . . . . . 15
⊢ {0} =
([,]‘〈0, 0〉) |
581 | 576, 580 | eqtr4di 2797 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → ∪ 𝑧 ∈ (ℤ≥‘(𝑛 + 1))([,]‘〈0,
0〉) = {0}) |
582 | | snssi 4738 |
. . . . . . . . . . . . . . 15
⊢ (0 ∈
ℝ → {0} ⊆ ℝ) |
583 | 199, 582 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ {0}
⊆ ℝ |
584 | 581, 583 | eqsstrdi 3971 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → ∪ 𝑧 ∈ (ℤ≥‘(𝑛 + 1))([,]‘〈0,
0〉) ⊆ ℝ) |
585 | 584 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → ∪ 𝑧 ∈ (ℤ≥‘(𝑛 + 1))([,]‘〈0,
0〉) ⊆ ℝ) |
586 | 581 | fveq2d 6760 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ →
(vol*‘∪ 𝑧 ∈ (ℤ≥‘(𝑛 + 1))([,]‘〈0,
0〉)) = (vol*‘{0})) |
587 | 586 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (vol*‘∪ 𝑧 ∈ (ℤ≥‘(𝑛 + 1))([,]‘〈0,
0〉)) = (vol*‘{0})) |
588 | | ovolsn 24564 |
. . . . . . . . . . . . . 14
⊢ (0 ∈
ℝ → (vol*‘{0}) = 0) |
589 | 199, 588 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
(vol*‘{0}) = 0 |
590 | 587, 589 | eqtrdi 2795 |
. . . . . . . . . . . 12
⊢ ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (vol*‘∪ 𝑧 ∈ (ℤ≥‘(𝑛 + 1))([,]‘〈0,
0〉)) = 0) |
591 | | ovolunnul 24569 |
. . . . . . . . . . . 12
⊢
((∪ 𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧)) ⊆ ℝ ∧ ∪ 𝑧 ∈ (ℤ≥‘(𝑛 + 1))([,]‘〈0,
0〉) ⊆ ℝ ∧ (vol*‘∪
𝑧 ∈
(ℤ≥‘(𝑛 + 1))([,]‘〈0, 0〉)) = 0)
→ (vol*‘(∪ 𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧)) ∪ ∪
𝑧 ∈
(ℤ≥‘(𝑛 + 1))([,]‘〈0, 0〉))) =
(vol*‘∪ 𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧)))) |
592 | 572, 585,
590, 591 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (vol*‘(∪ 𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧)) ∪ ∪
𝑧 ∈
(ℤ≥‘(𝑛 + 1))([,]‘〈0, 0〉))) =
(vol*‘∪ 𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧)))) |
593 | 555, 592 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (seq1( + , ((abs
∘ − ) ∘ 𝑓))‘𝑛) = (vol*‘∪ 𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧)))) |
594 | 593 | breq2d 5082 |
. . . . . . . . 9
⊢ ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (𝑀 < (seq1( + , ((abs ∘ − )
∘ 𝑓))‘𝑛) ↔ 𝑀 < (vol*‘∪ 𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧))))) |
595 | 594 | biimpd 228 |
. . . . . . . 8
⊢ ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑛 ∈ ℕ) → (𝑀 < (seq1( + , ((abs ∘ − )
∘ 𝑓))‘𝑛) → 𝑀 < (vol*‘∪ 𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧))))) |
596 | 595 | reximdva 3202 |
. . . . . . 7
⊢ (𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → (∃𝑛 ∈ ℕ 𝑀 < (seq1( + , ((abs ∘ − )
∘ 𝑓))‘𝑛) → ∃𝑛 ∈ ℕ 𝑀 < (vol*‘∪ 𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧))))) |
597 | 596 | adantl 481 |
. . . . . 6
⊢ (((𝐴 ∈ (topGen‘ran (,))
∧ 𝑀 ∈ ℝ
∧ 𝑀 <
(vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → (∃𝑛 ∈ ℕ 𝑀 < (seq1( + , ((abs ∘ − )
∘ 𝑓))‘𝑛) → ∃𝑛 ∈ ℕ 𝑀 < (vol*‘∪ 𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧))))) |
598 | 194, 597 | mpd 15 |
. . . . 5
⊢ (((𝐴 ∈ (topGen‘ran (,))
∧ 𝑀 ∈ ℝ
∧ 𝑀 <
(vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ∃𝑛 ∈ ℕ 𝑀 < (vol*‘∪ 𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧)))) |
599 | | fzfi 13620 |
. . . . . . . . . 10
⊢
(1...𝑛) ∈
Fin |
600 | | icccld 23836 |
. . . . . . . . . . . . . . 15
⊢
(((1st ‘(𝑓‘𝑧)) ∈ ℝ ∧ (2nd
‘(𝑓‘𝑧)) ∈ ℝ) →
((1st ‘(𝑓‘𝑧))[,](2nd ‘(𝑓‘𝑧))) ∈ (Clsd‘(topGen‘ran
(,)))) |
601 | 562, 563,
600 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ ((𝑓‘𝑧) ∈ (ℝ × ℝ) →
((1st ‘(𝑓‘𝑧))[,](2nd ‘(𝑓‘𝑧))) ∈ (Clsd‘(topGen‘ran
(,)))) |
602 | 561, 601 | eqeltrd 2839 |
. . . . . . . . . . . . 13
⊢ ((𝑓‘𝑧) ∈ (ℝ × ℝ) →
([,]‘(𝑓‘𝑧)) ∈
(Clsd‘(topGen‘ran (,)))) |
603 | 557, 602 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → ([,]‘(𝑓‘𝑧)) ∈ (Clsd‘(topGen‘ran
(,)))) |
604 | 556, 603 | sylan2 592 |
. . . . . . . . . . 11
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ (1...𝑛)) → ([,]‘(𝑓‘𝑧)) ∈ (Clsd‘(topGen‘ran
(,)))) |
605 | 604 | ralrimiva 3107 |
. . . . . . . . . 10
⊢ (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ∀𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧)) ∈ (Clsd‘(topGen‘ran
(,)))) |
606 | | uniretop 23832 |
. . . . . . . . . . 11
⊢ ℝ =
∪ (topGen‘ran (,)) |
607 | 606 | iuncld 22104 |
. . . . . . . . . 10
⊢
(((topGen‘ran (,)) ∈ Top ∧ (1...𝑛) ∈ Fin ∧ ∀𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧)) ∈ (Clsd‘(topGen‘ran
(,)))) → ∪ 𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧)) ∈ (Clsd‘(topGen‘ran
(,)))) |
608 | 1, 599, 605, 607 | mp3an12i 1463 |
. . . . . . . . 9
⊢ (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ∪
𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧)) ∈ (Clsd‘(topGen‘ran
(,)))) |
609 | 608 | adantr 480 |
. . . . . . . 8
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑛 ∈ ℕ ∧ 𝑀 < (vol*‘∪ 𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧))))) → ∪ 𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧)) ∈ (Clsd‘(topGen‘ran
(,)))) |
610 | | fveq2 6756 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = (𝑓‘𝑧) → ([,]‘𝑏) = ([,]‘(𝑓‘𝑧))) |
611 | 610 | sseq1d 3948 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = (𝑓‘𝑧) → (([,]‘𝑏) ⊆ 𝐴 ↔ ([,]‘(𝑓‘𝑧)) ⊆ 𝐴)) |
612 | 611 | elrab 3617 |
. . . . . . . . . . . . . 14
⊢ ((𝑓‘𝑧) ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ↔ ((𝑓‘𝑧) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∧ ([,]‘(𝑓‘𝑧)) ⊆ 𝐴)) |
613 | 612 | simprbi 496 |
. . . . . . . . . . . . 13
⊢ ((𝑓‘𝑧) ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} → ([,]‘(𝑓‘𝑧)) ⊆ 𝐴) |
614 | 65, 73, 613 | 3syl 18 |
. . . . . . . . . . . 12
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ ℕ) → ([,]‘(𝑓‘𝑧)) ⊆ 𝐴) |
615 | 556, 614 | sylan2 592 |
. . . . . . . . . . 11
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ 𝑧 ∈ (1...𝑛)) → ([,]‘(𝑓‘𝑧)) ⊆ 𝐴) |
616 | 615 | ralrimiva 3107 |
. . . . . . . . . 10
⊢ (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ∀𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧)) ⊆ 𝐴) |
617 | | iunss 4971 |
. . . . . . . . . 10
⊢ (∪ 𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧)) ⊆ 𝐴 ↔ ∀𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧)) ⊆ 𝐴) |
618 | 616, 617 | sylibr 233 |
. . . . . . . . 9
⊢ (𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} → ∪
𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧)) ⊆ 𝐴) |
619 | 618 | adantr 480 |
. . . . . . . 8
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑛 ∈ ℕ ∧ 𝑀 < (vol*‘∪ 𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧))))) → ∪ 𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧)) ⊆ 𝐴) |
620 | | simprr 769 |
. . . . . . . 8
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑛 ∈ ℕ ∧ 𝑀 < (vol*‘∪ 𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧))))) → 𝑀 < (vol*‘∪ 𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧)))) |
621 | | sseq1 3942 |
. . . . . . . . . 10
⊢ (𝑠 = ∪ 𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧)) → (𝑠 ⊆ 𝐴 ↔ ∪
𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧)) ⊆ 𝐴)) |
622 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑠 = ∪ 𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧)) → (vol*‘𝑠) = (vol*‘∪ 𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧)))) |
623 | 622 | breq2d 5082 |
. . . . . . . . . 10
⊢ (𝑠 = ∪ 𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧)) → (𝑀 < (vol*‘𝑠) ↔ 𝑀 < (vol*‘∪ 𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧))))) |
624 | 621, 623 | anbi12d 630 |
. . . . . . . . 9
⊢ (𝑠 = ∪ 𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧)) → ((𝑠 ⊆ 𝐴 ∧ 𝑀 < (vol*‘𝑠)) ↔ (∪ 𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧)) ⊆ 𝐴 ∧ 𝑀 < (vol*‘∪ 𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧)))))) |
625 | 624 | rspcev 3552 |
. . . . . . . 8
⊢
((∪ 𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧)) ∈ (Clsd‘(topGen‘ran (,)))
∧ (∪ 𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧)) ⊆ 𝐴 ∧ 𝑀 < (vol*‘∪ 𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧))))) → ∃𝑠 ∈ (Clsd‘(topGen‘ran
(,)))(𝑠 ⊆ 𝐴 ∧ 𝑀 < (vol*‘𝑠))) |
626 | 609, 619,
620, 625 | syl12anc 833 |
. . . . . . 7
⊢ ((𝑓:ℕ⟶{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑛 ∈ ℕ ∧ 𝑀 < (vol*‘∪ 𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧))))) → ∃𝑠 ∈ (Clsd‘(topGen‘ran
(,)))(𝑠 ⊆ 𝐴 ∧ 𝑀 < (vol*‘𝑠))) |
627 | 52, 626 | sylan 579 |
. . . . . 6
⊢ ((𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)} ∧ (𝑛 ∈ ℕ ∧ 𝑀 < (vol*‘∪ 𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧))))) → ∃𝑠 ∈ (Clsd‘(topGen‘ran
(,)))(𝑠 ⊆ 𝐴 ∧ 𝑀 < (vol*‘𝑠))) |
628 | 627 | adantll 710 |
. . . . 5
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑀 ∈ ℝ
∧ 𝑀 <
(vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) ∧ (𝑛 ∈ ℕ ∧ 𝑀 < (vol*‘∪ 𝑧 ∈ (1...𝑛)([,]‘(𝑓‘𝑧))))) → ∃𝑠 ∈ (Clsd‘(topGen‘ran
(,)))(𝑠 ⊆ 𝐴 ∧ 𝑀 < (vol*‘𝑠))) |
629 | 598, 628 | rexlimddv 3219 |
. . . 4
⊢ (((𝐴 ∈ (topGen‘ran (,))
∧ 𝑀 ∈ ℝ
∧ 𝑀 <
(vol*‘𝐴)) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ∃𝑠 ∈ (Clsd‘(topGen‘ran
(,)))(𝑠 ⊆ 𝐴 ∧ 𝑀 < (vol*‘𝑠))) |
630 | 629 | adantlr 711 |
. . 3
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑀 ∈ ℝ
∧ 𝑀 <
(vol*‘𝐴)) ∧ 𝐴 ≠ ∅) ∧ 𝑓:ℕ–1-1-onto→{𝑎 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} ∣ ∀𝑐 ∈ {𝑏 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦
〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ∣ ([,]‘𝑏) ⊆ 𝐴} (([,]‘𝑎) ⊆ ([,]‘𝑐) → 𝑎 = 𝑐)}) → ∃𝑠 ∈ (Clsd‘(topGen‘ran
(,)))(𝑠 ⊆ 𝐴 ∧ 𝑀 < (vol*‘𝑠))) |
631 | 17, 630 | exlimddv 1939 |
. 2
⊢ (((𝐴 ∈ (topGen‘ran (,))
∧ 𝑀 ∈ ℝ
∧ 𝑀 <
(vol*‘𝐴)) ∧ 𝐴 ≠ ∅) →
∃𝑠 ∈
(Clsd‘(topGen‘ran (,)))(𝑠 ⊆ 𝐴 ∧ 𝑀 < (vol*‘𝑠))) |
632 | 15, 631 | pm2.61dane 3031 |
1
⊢ ((𝐴 ∈ (topGen‘ran (,))
∧ 𝑀 ∈ ℝ
∧ 𝑀 <
(vol*‘𝐴)) →
∃𝑠 ∈
(Clsd‘(topGen‘ran (,)))(𝑠 ⊆ 𝐴 ∧ 𝑀 < (vol*‘𝑠))) |