MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  summolem2 Structured version   Visualization version   GIF version

Theorem summolem2 15730
Description: Lemma for summo 15731. (Contributed by Mario Carneiro, 3-Apr-2014.)
Hypotheses
Ref Expression
summo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
summo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
summo.3 𝐺 = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)
Assertion
Ref Expression
summolem2 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
Distinct variable groups:   𝑓,𝑘,𝑚,𝑛,𝑥,𝑦,𝐴   𝑓,𝐹,𝑘,𝑚,𝑛,𝑥,𝑦   𝑘,𝐺,𝑚,𝑛,𝑥,𝑦   𝜑,𝑘,𝑚,𝑛,𝑦   𝐵,𝑓,𝑚,𝑛,𝑥,𝑦   𝜑,𝑥,𝑓
Allowed substitution hints:   𝐵(𝑘)   𝐺(𝑓)

Proof of Theorem summolem2
Dummy variables 𝑔 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6875 . . . . 5 (𝑚 = 𝑗 → (ℤ𝑚) = (ℤ𝑗))
21sseq2d 3991 . . . 4 (𝑚 = 𝑗 → (𝐴 ⊆ (ℤ𝑚) ↔ 𝐴 ⊆ (ℤ𝑗)))
3 seqeq1 14020 . . . . 5 (𝑚 = 𝑗 → seq𝑚( + , 𝐹) = seq𝑗( + , 𝐹))
43breq1d 5129 . . . 4 (𝑚 = 𝑗 → (seq𝑚( + , 𝐹) ⇝ 𝑥 ↔ seq𝑗( + , 𝐹) ⇝ 𝑥))
52, 4anbi12d 632 . . 3 (𝑚 = 𝑗 → ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)))
65cbvrexvw 3221 . 2 (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ↔ ∃𝑗 ∈ ℤ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥))
7 simplrr 777 . . . . . . . . 9 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → seq𝑗( + , 𝐹) ⇝ 𝑥)
8 simplrl 776 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ⊆ (ℤ𝑗))
9 uzssz 12871 . . . . . . . . . . . . . 14 (ℤ𝑗) ⊆ ℤ
10 zssre 12593 . . . . . . . . . . . . . 14 ℤ ⊆ ℝ
119, 10sstri 3968 . . . . . . . . . . . . 13 (ℤ𝑗) ⊆ ℝ
128, 11sstrdi 3971 . . . . . . . . . . . 12 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ⊆ ℝ)
13 ltso 11313 . . . . . . . . . . . 12 < Or ℝ
14 soss 5581 . . . . . . . . . . . 12 (𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴))
1512, 13, 14mpisyl 21 . . . . . . . . . . 11 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → < Or 𝐴)
16 fzfi 13988 . . . . . . . . . . . 12 (1...𝑚) ∈ Fin
17 ovex 7436 . . . . . . . . . . . . . . 15 (1...𝑚) ∈ V
1817f1oen 8985 . . . . . . . . . . . . . 14 (𝑓:(1...𝑚)–1-1-onto𝐴 → (1...𝑚) ≈ 𝐴)
1918ad2antll 729 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (1...𝑚) ≈ 𝐴)
2019ensymd 9017 . . . . . . . . . . . 12 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ≈ (1...𝑚))
21 enfii 9198 . . . . . . . . . . . 12 (((1...𝑚) ∈ Fin ∧ 𝐴 ≈ (1...𝑚)) → 𝐴 ∈ Fin)
2216, 20, 21sylancr 587 . . . . . . . . . . 11 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ∈ Fin)
23 fz1iso 14478 . . . . . . . . . . 11 (( < Or 𝐴𝐴 ∈ Fin) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
2415, 22, 23syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
25 summo.1 . . . . . . . . . . . . 13 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
26 summo.2 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
2726ad5ant15 758 . . . . . . . . . . . . 13 (((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
28 summo.3 . . . . . . . . . . . . 13 𝐺 = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)
29 eqid 2735 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵) = (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵)
30 simprll 778 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑚 ∈ ℕ)
31 simpllr 775 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑗 ∈ ℤ)
32 simplrl 776 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝐴 ⊆ (ℤ𝑗))
33 simprlr 779 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑓:(1...𝑚)–1-1-onto𝐴)
34 simprr 772 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
3525, 27, 28, 29, 30, 31, 32, 33, 34summolem2a 15729 . . . . . . . . . . . 12 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → seq𝑗( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚))
3635expr 456 . . . . . . . . . . 11 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑗( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚)))
3736exlimdv 1933 . . . . . . . . . 10 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑗( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚)))
3824, 37mpd 15 . . . . . . . . 9 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → seq𝑗( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚))
39 climuni 15566 . . . . . . . . 9 ((seq𝑗( + , 𝐹) ⇝ 𝑥 ∧ seq𝑗( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚)) → 𝑥 = (seq1( + , 𝐺)‘𝑚))
407, 38, 39syl2anc 584 . . . . . . . 8 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝑥 = (seq1( + , 𝐺)‘𝑚))
4140anassrs 467 . . . . . . 7 (((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝑥 = (seq1( + , 𝐺)‘𝑚))
42 eqeq2 2747 . . . . . . 7 (𝑦 = (seq1( + , 𝐺)‘𝑚) → (𝑥 = 𝑦𝑥 = (seq1( + , 𝐺)‘𝑚)))
4341, 42syl5ibrcom 247 . . . . . 6 (((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (𝑦 = (seq1( + , 𝐺)‘𝑚) → 𝑥 = 𝑦))
4443expimpd 453 . . . . 5 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
4544exlimdv 1933 . . . 4 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
4645rexlimdva 3141 . . 3 (((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
4746r19.29an 3144 . 2 ((𝜑 ∧ ∃𝑗 ∈ ℤ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
486, 47sylan2b 594 1 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2108  wrex 3060  csb 3874  wss 3926  ifcif 4500   class class class wbr 5119  cmpt 5201   Or wor 5560  1-1-ontowf1o 6529  cfv 6530   Isom wiso 6531  (class class class)co 7403  cen 8954  Fincfn 8957  cc 11125  cr 11126  0cc0 11127  1c1 11128   + caddc 11130   < clt 11267  cn 12238  cz 12586  cuz 12850  ...cfz 13522  seqcseq 14017  chash 14346  cli 15498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9452  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-n0 12500  df-z 12587  df-uz 12851  df-rp 13007  df-fz 13523  df-fzo 13670  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-clim 15502
This theorem is referenced by:  summo  15731
  Copyright terms: Public domain W3C validator