MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  summolem2 Structured version   Visualization version   GIF version

Theorem summolem2 15073
Description: Lemma for summo 15074. (Contributed by Mario Carneiro, 3-Apr-2014.)
Hypotheses
Ref Expression
summo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
summo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
summo.3 𝐺 = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)
Assertion
Ref Expression
summolem2 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
Distinct variable groups:   𝑓,𝑘,𝑚,𝑛,𝑥,𝑦,𝐴   𝑓,𝐹,𝑘,𝑚,𝑛,𝑥,𝑦   𝑘,𝐺,𝑚,𝑛,𝑥,𝑦   𝜑,𝑘,𝑚,𝑛,𝑦   𝐵,𝑓,𝑚,𝑛,𝑥,𝑦   𝜑,𝑥,𝑓
Allowed substitution hints:   𝐵(𝑘)   𝐺(𝑓)

Proof of Theorem summolem2
Dummy variables 𝑔 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6670 . . . . 5 (𝑚 = 𝑗 → (ℤ𝑚) = (ℤ𝑗))
21sseq2d 3999 . . . 4 (𝑚 = 𝑗 → (𝐴 ⊆ (ℤ𝑚) ↔ 𝐴 ⊆ (ℤ𝑗)))
3 seqeq1 13373 . . . . 5 (𝑚 = 𝑗 → seq𝑚( + , 𝐹) = seq𝑗( + , 𝐹))
43breq1d 5076 . . . 4 (𝑚 = 𝑗 → (seq𝑚( + , 𝐹) ⇝ 𝑥 ↔ seq𝑗( + , 𝐹) ⇝ 𝑥))
52, 4anbi12d 632 . . 3 (𝑚 = 𝑗 → ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)))
65cbvrexvw 3450 . 2 (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ↔ ∃𝑗 ∈ ℤ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥))
7 simplrr 776 . . . . . . . . 9 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → seq𝑗( + , 𝐹) ⇝ 𝑥)
8 simplrl 775 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ⊆ (ℤ𝑗))
9 uzssz 12265 . . . . . . . . . . . . . 14 (ℤ𝑗) ⊆ ℤ
10 zssre 11989 . . . . . . . . . . . . . 14 ℤ ⊆ ℝ
119, 10sstri 3976 . . . . . . . . . . . . 13 (ℤ𝑗) ⊆ ℝ
128, 11sstrdi 3979 . . . . . . . . . . . 12 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ⊆ ℝ)
13 ltso 10721 . . . . . . . . . . . 12 < Or ℝ
14 soss 5493 . . . . . . . . . . . 12 (𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴))
1512, 13, 14mpisyl 21 . . . . . . . . . . 11 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → < Or 𝐴)
16 fzfi 13341 . . . . . . . . . . . 12 (1...𝑚) ∈ Fin
17 ovex 7189 . . . . . . . . . . . . . . 15 (1...𝑚) ∈ V
1817f1oen 8530 . . . . . . . . . . . . . 14 (𝑓:(1...𝑚)–1-1-onto𝐴 → (1...𝑚) ≈ 𝐴)
1918ad2antll 727 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (1...𝑚) ≈ 𝐴)
2019ensymd 8560 . . . . . . . . . . . 12 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ≈ (1...𝑚))
21 enfii 8735 . . . . . . . . . . . 12 (((1...𝑚) ∈ Fin ∧ 𝐴 ≈ (1...𝑚)) → 𝐴 ∈ Fin)
2216, 20, 21sylancr 589 . . . . . . . . . . 11 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ∈ Fin)
23 fz1iso 13821 . . . . . . . . . . 11 (( < Or 𝐴𝐴 ∈ Fin) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
2415, 22, 23syl2anc 586 . . . . . . . . . 10 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
25 summo.1 . . . . . . . . . . . . 13 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
26 summo.2 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
2726ad5ant15 757 . . . . . . . . . . . . 13 (((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
28 summo.3 . . . . . . . . . . . . 13 𝐺 = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)
29 eqid 2821 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵) = (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵)
30 simprll 777 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑚 ∈ ℕ)
31 simpllr 774 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑗 ∈ ℤ)
32 simplrl 775 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝐴 ⊆ (ℤ𝑗))
33 simprlr 778 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑓:(1...𝑚)–1-1-onto𝐴)
34 simprr 771 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
3525, 27, 28, 29, 30, 31, 32, 33, 34summolem2a 15072 . . . . . . . . . . . 12 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → seq𝑗( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚))
3635expr 459 . . . . . . . . . . 11 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑗( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚)))
3736exlimdv 1934 . . . . . . . . . 10 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑗( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚)))
3824, 37mpd 15 . . . . . . . . 9 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → seq𝑗( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚))
39 climuni 14909 . . . . . . . . 9 ((seq𝑗( + , 𝐹) ⇝ 𝑥 ∧ seq𝑗( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚)) → 𝑥 = (seq1( + , 𝐺)‘𝑚))
407, 38, 39syl2anc 586 . . . . . . . 8 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝑥 = (seq1( + , 𝐺)‘𝑚))
4140anassrs 470 . . . . . . 7 (((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝑥 = (seq1( + , 𝐺)‘𝑚))
42 eqeq2 2833 . . . . . . 7 (𝑦 = (seq1( + , 𝐺)‘𝑚) → (𝑥 = 𝑦𝑥 = (seq1( + , 𝐺)‘𝑚)))
4341, 42syl5ibrcom 249 . . . . . 6 (((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (𝑦 = (seq1( + , 𝐺)‘𝑚) → 𝑥 = 𝑦))
4443expimpd 456 . . . . 5 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
4544exlimdv 1934 . . . 4 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
4645rexlimdva 3284 . . 3 (((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
4746r19.29an 3288 . 2 ((𝜑 ∧ ∃𝑗 ∈ ℤ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
486, 47sylan2b 595 1 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wex 1780  wcel 2114  wrex 3139  csb 3883  wss 3936  ifcif 4467   class class class wbr 5066  cmpt 5146   Or wor 5473  1-1-ontowf1o 6354  cfv 6355   Isom wiso 6356  (class class class)co 7156  cen 8506  Fincfn 8509  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   < clt 10675  cn 11638  cz 11982  cuz 12244  ...cfz 12893  seqcseq 13370  chash 13691  cli 14841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845
This theorem is referenced by:  summo  15074
  Copyright terms: Public domain W3C validator