| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 6906 |
. . . . 5
⊢ (𝑚 = 𝑗 → (ℤ≥‘𝑚) =
(ℤ≥‘𝑗)) |
| 2 | 1 | sseq2d 4016 |
. . . 4
⊢ (𝑚 = 𝑗 → (𝐴 ⊆ (ℤ≥‘𝑚) ↔ 𝐴 ⊆ (ℤ≥‘𝑗))) |
| 3 | | seqeq1 14045 |
. . . . 5
⊢ (𝑚 = 𝑗 → seq𝑚( + , 𝐹) = seq𝑗( + , 𝐹)) |
| 4 | 3 | breq1d 5153 |
. . . 4
⊢ (𝑚 = 𝑗 → (seq𝑚( + , 𝐹) ⇝ 𝑥 ↔ seq𝑗( + , 𝐹) ⇝ 𝑥)) |
| 5 | 2, 4 | anbi12d 632 |
. . 3
⊢ (𝑚 = 𝑗 → ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ≥‘𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥))) |
| 6 | 5 | cbvrexvw 3238 |
. 2
⊢
(∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ↔ ∃𝑗 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) |
| 7 | | simplrr 778 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → seq𝑗( + , 𝐹) ⇝ 𝑥) |
| 8 | | simplrl 777 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → 𝐴 ⊆ (ℤ≥‘𝑗)) |
| 9 | | uzssz 12899 |
. . . . . . . . . . . . . 14
⊢
(ℤ≥‘𝑗) ⊆ ℤ |
| 10 | | zssre 12620 |
. . . . . . . . . . . . . 14
⊢ ℤ
⊆ ℝ |
| 11 | 9, 10 | sstri 3993 |
. . . . . . . . . . . . 13
⊢
(ℤ≥‘𝑗) ⊆ ℝ |
| 12 | 8, 11 | sstrdi 3996 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → 𝐴 ⊆ ℝ) |
| 13 | | ltso 11341 |
. . . . . . . . . . . 12
⊢ < Or
ℝ |
| 14 | | soss 5612 |
. . . . . . . . . . . 12
⊢ (𝐴 ⊆ ℝ → ( <
Or ℝ → < Or 𝐴)) |
| 15 | 12, 13, 14 | mpisyl 21 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → < Or 𝐴) |
| 16 | | fzfi 14013 |
. . . . . . . . . . . 12
⊢
(1...𝑚) ∈
Fin |
| 17 | | ovex 7464 |
. . . . . . . . . . . . . . 15
⊢
(1...𝑚) ∈
V |
| 18 | 17 | f1oen 9013 |
. . . . . . . . . . . . . 14
⊢ (𝑓:(1...𝑚)–1-1-onto→𝐴 → (1...𝑚) ≈ 𝐴) |
| 19 | 18 | ad2antll 729 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → (1...𝑚) ≈ 𝐴) |
| 20 | 19 | ensymd 9045 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → 𝐴 ≈ (1...𝑚)) |
| 21 | | enfii 9226 |
. . . . . . . . . . . 12
⊢
(((1...𝑚) ∈ Fin
∧ 𝐴 ≈ (1...𝑚)) → 𝐴 ∈ Fin) |
| 22 | 16, 20, 21 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → 𝐴 ∈ Fin) |
| 23 | | fz1iso 14501 |
. . . . . . . . . . 11
⊢ (( <
Or 𝐴 ∧ 𝐴 ∈ Fin) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴)) |
| 24 | 15, 22, 23 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴)) |
| 25 | | summo.1 |
. . . . . . . . . . . . 13
⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) |
| 26 | | summo.2 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 27 | 26 | ad5ant15 759 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑗 ∈ ℤ) ∧ (𝐴 ⊆
(ℤ≥‘𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 28 | | summo.3 |
. . . . . . . . . . . . 13
⊢ 𝐺 = (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵) |
| 29 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ ↦
⦋(𝑔‘𝑛) / 𝑘⦌𝐵) = (𝑛 ∈ ℕ ↦ ⦋(𝑔‘𝑛) / 𝑘⦌𝐵) |
| 30 | | simprll 779 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑚 ∈ ℕ) |
| 31 | | simpllr 776 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑗 ∈ ℤ) |
| 32 | | simplrl 777 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝐴 ⊆ (ℤ≥‘𝑗)) |
| 33 | | simprlr 780 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑓:(1...𝑚)–1-1-onto→𝐴) |
| 34 | | simprr 773 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴)) |
| 35 | 25, 27, 28, 29, 30, 31, 32, 33, 34 | summolem2a 15751 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → seq𝑗( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚)) |
| 36 | 35 | expr 456 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → (𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑗( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚))) |
| 37 | 36 | exlimdv 1933 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → (∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑗( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚))) |
| 38 | 24, 37 | mpd 15 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → seq𝑗( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚)) |
| 39 | | climuni 15588 |
. . . . . . . . 9
⊢
((seq𝑗( + , 𝐹) ⇝ 𝑥 ∧ seq𝑗( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚)) → 𝑥 = (seq1( + , 𝐺)‘𝑚)) |
| 40 | 7, 38, 39 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴)) → 𝑥 = (seq1( + , 𝐺)‘𝑚)) |
| 41 | 40 | anassrs 467 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑗 ∈ ℤ) ∧ (𝐴 ⊆
(ℤ≥‘𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → 𝑥 = (seq1( + , 𝐺)‘𝑚)) |
| 42 | | eqeq2 2749 |
. . . . . . 7
⊢ (𝑦 = (seq1( + , 𝐺)‘𝑚) → (𝑥 = 𝑦 ↔ 𝑥 = (seq1( + , 𝐺)‘𝑚))) |
| 43 | 41, 42 | syl5ibrcom 247 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑗 ∈ ℤ) ∧ (𝐴 ⊆
(ℤ≥‘𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (𝑦 = (seq1( + , 𝐺)‘𝑚) → 𝑥 = 𝑦)) |
| 44 | 43 | expimpd 453 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦)) |
| 45 | 44 | exlimdv 1933 |
. . . 4
⊢ ((((𝜑 ∧ 𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦)) |
| 46 | 45 | rexlimdva 3155 |
. . 3
⊢ (((𝜑 ∧ 𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ≥‘𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦)) |
| 47 | 46 | r19.29an 3158 |
. 2
⊢ ((𝜑 ∧ ∃𝑗 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦)) |
| 48 | 6, 47 | sylan2b 594 |
1
⊢ ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦)) |