MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  summolem2 Structured version   Visualization version   GIF version

Theorem summolem2 15748
Description: Lemma for summo 15749. (Contributed by Mario Carneiro, 3-Apr-2014.)
Hypotheses
Ref Expression
summo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
summo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
summo.3 𝐺 = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)
Assertion
Ref Expression
summolem2 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
Distinct variable groups:   𝑓,𝑘,𝑚,𝑛,𝑥,𝑦,𝐴   𝑓,𝐹,𝑘,𝑚,𝑛,𝑥,𝑦   𝑘,𝐺,𝑚,𝑛,𝑥,𝑦   𝜑,𝑘,𝑚,𝑛,𝑦   𝐵,𝑓,𝑚,𝑛,𝑥,𝑦   𝜑,𝑥,𝑓
Allowed substitution hints:   𝐵(𝑘)   𝐺(𝑓)

Proof of Theorem summolem2
Dummy variables 𝑔 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6906 . . . . 5 (𝑚 = 𝑗 → (ℤ𝑚) = (ℤ𝑗))
21sseq2d 4027 . . . 4 (𝑚 = 𝑗 → (𝐴 ⊆ (ℤ𝑚) ↔ 𝐴 ⊆ (ℤ𝑗)))
3 seqeq1 14041 . . . . 5 (𝑚 = 𝑗 → seq𝑚( + , 𝐹) = seq𝑗( + , 𝐹))
43breq1d 5157 . . . 4 (𝑚 = 𝑗 → (seq𝑚( + , 𝐹) ⇝ 𝑥 ↔ seq𝑗( + , 𝐹) ⇝ 𝑥))
52, 4anbi12d 632 . . 3 (𝑚 = 𝑗 → ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)))
65cbvrexvw 3235 . 2 (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ↔ ∃𝑗 ∈ ℤ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥))
7 simplrr 778 . . . . . . . . 9 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → seq𝑗( + , 𝐹) ⇝ 𝑥)
8 simplrl 777 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ⊆ (ℤ𝑗))
9 uzssz 12896 . . . . . . . . . . . . . 14 (ℤ𝑗) ⊆ ℤ
10 zssre 12617 . . . . . . . . . . . . . 14 ℤ ⊆ ℝ
119, 10sstri 4004 . . . . . . . . . . . . 13 (ℤ𝑗) ⊆ ℝ
128, 11sstrdi 4007 . . . . . . . . . . . 12 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ⊆ ℝ)
13 ltso 11338 . . . . . . . . . . . 12 < Or ℝ
14 soss 5616 . . . . . . . . . . . 12 (𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴))
1512, 13, 14mpisyl 21 . . . . . . . . . . 11 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → < Or 𝐴)
16 fzfi 14009 . . . . . . . . . . . 12 (1...𝑚) ∈ Fin
17 ovex 7463 . . . . . . . . . . . . . . 15 (1...𝑚) ∈ V
1817f1oen 9011 . . . . . . . . . . . . . 14 (𝑓:(1...𝑚)–1-1-onto𝐴 → (1...𝑚) ≈ 𝐴)
1918ad2antll 729 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (1...𝑚) ≈ 𝐴)
2019ensymd 9043 . . . . . . . . . . . 12 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ≈ (1...𝑚))
21 enfii 9223 . . . . . . . . . . . 12 (((1...𝑚) ∈ Fin ∧ 𝐴 ≈ (1...𝑚)) → 𝐴 ∈ Fin)
2216, 20, 21sylancr 587 . . . . . . . . . . 11 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ∈ Fin)
23 fz1iso 14497 . . . . . . . . . . 11 (( < Or 𝐴𝐴 ∈ Fin) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
2415, 22, 23syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
25 summo.1 . . . . . . . . . . . . 13 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
26 summo.2 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
2726ad5ant15 759 . . . . . . . . . . . . 13 (((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
28 summo.3 . . . . . . . . . . . . 13 𝐺 = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)
29 eqid 2734 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵) = (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵)
30 simprll 779 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑚 ∈ ℕ)
31 simpllr 776 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑗 ∈ ℤ)
32 simplrl 777 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝐴 ⊆ (ℤ𝑗))
33 simprlr 780 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑓:(1...𝑚)–1-1-onto𝐴)
34 simprr 773 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
3525, 27, 28, 29, 30, 31, 32, 33, 34summolem2a 15747 . . . . . . . . . . . 12 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → seq𝑗( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚))
3635expr 456 . . . . . . . . . . 11 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑗( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚)))
3736exlimdv 1930 . . . . . . . . . 10 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑗( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚)))
3824, 37mpd 15 . . . . . . . . 9 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → seq𝑗( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚))
39 climuni 15584 . . . . . . . . 9 ((seq𝑗( + , 𝐹) ⇝ 𝑥 ∧ seq𝑗( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚)) → 𝑥 = (seq1( + , 𝐺)‘𝑚))
407, 38, 39syl2anc 584 . . . . . . . 8 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝑥 = (seq1( + , 𝐺)‘𝑚))
4140anassrs 467 . . . . . . 7 (((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝑥 = (seq1( + , 𝐺)‘𝑚))
42 eqeq2 2746 . . . . . . 7 (𝑦 = (seq1( + , 𝐺)‘𝑚) → (𝑥 = 𝑦𝑥 = (seq1( + , 𝐺)‘𝑚)))
4341, 42syl5ibrcom 247 . . . . . 6 (((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (𝑦 = (seq1( + , 𝐺)‘𝑚) → 𝑥 = 𝑦))
4443expimpd 453 . . . . 5 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
4544exlimdv 1930 . . . 4 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
4645rexlimdva 3152 . . 3 (((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
4746r19.29an 3155 . 2 ((𝜑 ∧ ∃𝑗 ∈ ℤ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
486, 47sylan2b 594 1 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wex 1775  wcel 2105  wrex 3067  csb 3907  wss 3962  ifcif 4530   class class class wbr 5147  cmpt 5230   Or wor 5595  1-1-ontowf1o 6561  cfv 6562   Isom wiso 6563  (class class class)co 7430  cen 8980  Fincfn 8983  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   < clt 11292  cn 12263  cz 12610  cuz 12875  ...cfz 13543  seqcseq 14038  chash 14365  cli 15516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fz 13544  df-fzo 13691  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520
This theorem is referenced by:  summo  15749
  Copyright terms: Public domain W3C validator