Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intlidl Structured version   Visualization version   GIF version

Theorem intlidl 33405
Description: The intersection of a nonempty collection of ideals is an ideal. (Contributed by Thierry Arnoux, 8-Jun-2024.)
Assertion
Ref Expression
intlidl ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → 𝐶 ∈ (LIdeal‘𝑅))

Proof of Theorem intlidl
Dummy variables 𝑎 𝑏 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1138 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → 𝐶 ⊆ (LIdeal‘𝑅))
21sselda 4002 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑖𝐶) → 𝑖 ∈ (LIdeal‘𝑅))
3 eqid 2734 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
4 eqid 2734 . . . . . . 7 (LIdeal‘𝑅) = (LIdeal‘𝑅)
53, 4lidlss 21240 . . . . . 6 (𝑖 ∈ (LIdeal‘𝑅) → 𝑖 ⊆ (Base‘𝑅))
62, 5syl 17 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑖𝐶) → 𝑖 ⊆ (Base‘𝑅))
76ralrimiva 3148 . . . 4 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → ∀𝑖𝐶 𝑖 ⊆ (Base‘𝑅))
8 pwssb 5127 . . . 4 (𝐶 ⊆ 𝒫 (Base‘𝑅) ↔ ∀𝑖𝐶 𝑖 ⊆ (Base‘𝑅))
97, 8sylibr 234 . . 3 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → 𝐶 ⊆ 𝒫 (Base‘𝑅))
10 simp2 1137 . . 3 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → 𝐶 ≠ ∅)
11 intss2 5134 . . . 4 (𝐶 ⊆ 𝒫 (Base‘𝑅) → (𝐶 ≠ ∅ → 𝐶 ⊆ (Base‘𝑅)))
1211imp 406 . . 3 ((𝐶 ⊆ 𝒫 (Base‘𝑅) ∧ 𝐶 ≠ ∅) → 𝐶 ⊆ (Base‘𝑅))
139, 10, 12syl2anc 583 . 2 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → 𝐶 ⊆ (Base‘𝑅))
14 simpl1 1191 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑖𝐶) → 𝑅 ∈ Ring)
15 eqid 2734 . . . . . . 7 (0g𝑅) = (0g𝑅)
164, 15lidl0cl 21248 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅)) → (0g𝑅) ∈ 𝑖)
1714, 2, 16syl2anc 583 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑖𝐶) → (0g𝑅) ∈ 𝑖)
1817ralrimiva 3148 . . . 4 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → ∀𝑖𝐶 (0g𝑅) ∈ 𝑖)
19 fvex 6932 . . . . 5 (0g𝑅) ∈ V
2019elint2 4979 . . . 4 ((0g𝑅) ∈ 𝐶 ↔ ∀𝑖𝐶 (0g𝑅) ∈ 𝑖)
2118, 20sylibr 234 . . 3 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → (0g𝑅) ∈ 𝐶)
2221ne0d 4360 . 2 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → 𝐶 ≠ ∅)
2314ad5ant15 758 . . . . . . . 8 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → 𝑅 ∈ Ring)
242ad5ant15 758 . . . . . . . 8 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → 𝑖 ∈ (LIdeal‘𝑅))
25 simp-4r 783 . . . . . . . . 9 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → 𝑥 ∈ (Base‘𝑅))
26 simpllr 775 . . . . . . . . . 10 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → 𝑎 𝐶)
27 simpr 484 . . . . . . . . . 10 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → 𝑖𝐶)
28 elinti 4981 . . . . . . . . . . 11 (𝑎 𝐶 → (𝑖𝐶𝑎𝑖))
2928imp 406 . . . . . . . . . 10 ((𝑎 𝐶𝑖𝐶) → 𝑎𝑖)
3026, 27, 29syl2anc 583 . . . . . . . . 9 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → 𝑎𝑖)
31 eqid 2734 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
324, 3, 31lidlmcl 21253 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑖)) → (𝑥(.r𝑅)𝑎) ∈ 𝑖)
3323, 24, 25, 30, 32syl22anc 838 . . . . . . . 8 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → (𝑥(.r𝑅)𝑎) ∈ 𝑖)
34 elinti 4981 . . . . . . . . . 10 (𝑏 𝐶 → (𝑖𝐶𝑏𝑖))
3534imp 406 . . . . . . . . 9 ((𝑏 𝐶𝑖𝐶) → 𝑏𝑖)
3635adantll 713 . . . . . . . 8 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → 𝑏𝑖)
37 eqid 2734 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
384, 37lidlacl 21249 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑥(.r𝑅)𝑎) ∈ 𝑖𝑏𝑖)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖)
3923, 24, 33, 36, 38syl22anc 838 . . . . . . 7 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖)
4039ralrimiva 3148 . . . . . 6 (((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) → ∀𝑖𝐶 ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖)
41 ovex 7478 . . . . . . 7 ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ V
4241elint2 4979 . . . . . 6 (((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐶 ↔ ∀𝑖𝐶 ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖)
4340, 42sylibr 234 . . . . 5 (((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐶)
4443ralrimiva 3148 . . . 4 ((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) → ∀𝑏 𝐶((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐶)
4544anasss 466 . . 3 (((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 𝐶)) → ∀𝑏 𝐶((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐶)
4645ralrimivva 3204 . 2 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → ∀𝑥 ∈ (Base‘𝑅)∀𝑎 𝐶𝑏 𝐶((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐶)
474, 3, 37, 31islidl 21243 . 2 ( 𝐶 ∈ (LIdeal‘𝑅) ↔ ( 𝐶 ⊆ (Base‘𝑅) ∧ 𝐶 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑎 𝐶𝑏 𝐶((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐶))
4813, 22, 46, 47syl3anbrc 1343 1 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → 𝐶 ∈ (LIdeal‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087  wcel 2103  wne 2942  wral 3063  wss 3970  c0 4347  𝒫 cpw 4622   cint 4972  cfv 6572  (class class class)co 7445  Basecbs 17253  +gcplusg 17306  .rcmulr 17307  0gc0g 17494  Ringcrg 20255  LIdealclidl 21234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-cnex 11236  ax-resscn 11237  ax-1cn 11238  ax-icn 11239  ax-addcl 11240  ax-addrcl 11241  ax-mulcl 11242  ax-mulrcl 11243  ax-mulcom 11244  ax-addass 11245  ax-mulass 11246  ax-distr 11247  ax-i2m1 11248  ax-1ne0 11249  ax-1rid 11250  ax-rnegex 11251  ax-rrecex 11252  ax-cnre 11253  ax-pre-lttri 11254  ax-pre-lttrn 11255  ax-pre-ltadd 11256  ax-pre-mulgt0 11257
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3383  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4973  df-iun 5021  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-riota 7401  df-ov 7448  df-oprab 7449  df-mpo 7450  df-om 7900  df-1st 8026  df-2nd 8027  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-rdg 8462  df-er 8759  df-en 9000  df-dom 9001  df-sdom 9002  df-pnf 11322  df-mnf 11323  df-xr 11324  df-ltxr 11325  df-le 11326  df-sub 11518  df-neg 11519  df-nn 12290  df-2 12352  df-3 12353  df-4 12354  df-5 12355  df-6 12356  df-7 12357  df-8 12358  df-sets 17206  df-slot 17224  df-ndx 17236  df-base 17254  df-ress 17283  df-plusg 17319  df-mulr 17320  df-sca 17322  df-vsca 17323  df-ip 17324  df-0g 17496  df-mgm 18673  df-sgrp 18752  df-mnd 18768  df-grp 18971  df-minusg 18972  df-sbg 18973  df-subg 19158  df-cmn 19819  df-abl 19820  df-mgp 20157  df-rng 20175  df-ur 20204  df-ring 20257  df-subrg 20592  df-lmod 20877  df-lss 20948  df-sra 21190  df-rgmod 21191  df-lidl 21236
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator