Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intlidl Structured version   Visualization version   GIF version

Theorem intlidl 33385
Description: The intersection of a nonempty collection of ideals is an ideal. (Contributed by Thierry Arnoux, 8-Jun-2024.)
Assertion
Ref Expression
intlidl ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → 𝐶 ∈ (LIdeal‘𝑅))

Proof of Theorem intlidl
Dummy variables 𝑎 𝑏 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1138 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → 𝐶 ⊆ (LIdeal‘𝑅))
21sselda 3929 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑖𝐶) → 𝑖 ∈ (LIdeal‘𝑅))
3 eqid 2731 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
4 eqid 2731 . . . . . . 7 (LIdeal‘𝑅) = (LIdeal‘𝑅)
53, 4lidlss 21149 . . . . . 6 (𝑖 ∈ (LIdeal‘𝑅) → 𝑖 ⊆ (Base‘𝑅))
62, 5syl 17 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑖𝐶) → 𝑖 ⊆ (Base‘𝑅))
76ralrimiva 3124 . . . 4 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → ∀𝑖𝐶 𝑖 ⊆ (Base‘𝑅))
8 pwssb 5047 . . . 4 (𝐶 ⊆ 𝒫 (Base‘𝑅) ↔ ∀𝑖𝐶 𝑖 ⊆ (Base‘𝑅))
97, 8sylibr 234 . . 3 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → 𝐶 ⊆ 𝒫 (Base‘𝑅))
10 simp2 1137 . . 3 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → 𝐶 ≠ ∅)
11 intss2 5054 . . . 4 (𝐶 ⊆ 𝒫 (Base‘𝑅) → (𝐶 ≠ ∅ → 𝐶 ⊆ (Base‘𝑅)))
1211imp 406 . . 3 ((𝐶 ⊆ 𝒫 (Base‘𝑅) ∧ 𝐶 ≠ ∅) → 𝐶 ⊆ (Base‘𝑅))
139, 10, 12syl2anc 584 . 2 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → 𝐶 ⊆ (Base‘𝑅))
14 simpl1 1192 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑖𝐶) → 𝑅 ∈ Ring)
15 eqid 2731 . . . . . . 7 (0g𝑅) = (0g𝑅)
164, 15lidl0cl 21157 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅)) → (0g𝑅) ∈ 𝑖)
1714, 2, 16syl2anc 584 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑖𝐶) → (0g𝑅) ∈ 𝑖)
1817ralrimiva 3124 . . . 4 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → ∀𝑖𝐶 (0g𝑅) ∈ 𝑖)
19 fvex 6835 . . . . 5 (0g𝑅) ∈ V
2019elint2 4902 . . . 4 ((0g𝑅) ∈ 𝐶 ↔ ∀𝑖𝐶 (0g𝑅) ∈ 𝑖)
2118, 20sylibr 234 . . 3 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → (0g𝑅) ∈ 𝐶)
2221ne0d 4289 . 2 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → 𝐶 ≠ ∅)
2314ad5ant15 758 . . . . . . . 8 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → 𝑅 ∈ Ring)
242ad5ant15 758 . . . . . . . 8 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → 𝑖 ∈ (LIdeal‘𝑅))
25 simp-4r 783 . . . . . . . . 9 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → 𝑥 ∈ (Base‘𝑅))
26 simpllr 775 . . . . . . . . . 10 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → 𝑎 𝐶)
27 simpr 484 . . . . . . . . . 10 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → 𝑖𝐶)
28 elinti 4904 . . . . . . . . . . 11 (𝑎 𝐶 → (𝑖𝐶𝑎𝑖))
2928imp 406 . . . . . . . . . 10 ((𝑎 𝐶𝑖𝐶) → 𝑎𝑖)
3026, 27, 29syl2anc 584 . . . . . . . . 9 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → 𝑎𝑖)
31 eqid 2731 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
324, 3, 31lidlmcl 21162 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑖)) → (𝑥(.r𝑅)𝑎) ∈ 𝑖)
3323, 24, 25, 30, 32syl22anc 838 . . . . . . . 8 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → (𝑥(.r𝑅)𝑎) ∈ 𝑖)
34 elinti 4904 . . . . . . . . . 10 (𝑏 𝐶 → (𝑖𝐶𝑏𝑖))
3534imp 406 . . . . . . . . 9 ((𝑏 𝐶𝑖𝐶) → 𝑏𝑖)
3635adantll 714 . . . . . . . 8 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → 𝑏𝑖)
37 eqid 2731 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
384, 37lidlacl 21158 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑥(.r𝑅)𝑎) ∈ 𝑖𝑏𝑖)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖)
3923, 24, 33, 36, 38syl22anc 838 . . . . . . 7 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖)
4039ralrimiva 3124 . . . . . 6 (((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) → ∀𝑖𝐶 ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖)
41 ovex 7379 . . . . . . 7 ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ V
4241elint2 4902 . . . . . 6 (((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐶 ↔ ∀𝑖𝐶 ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖)
4340, 42sylibr 234 . . . . 5 (((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐶)
4443ralrimiva 3124 . . . 4 ((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) → ∀𝑏 𝐶((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐶)
4544anasss 466 . . 3 (((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 𝐶)) → ∀𝑏 𝐶((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐶)
4645ralrimivva 3175 . 2 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → ∀𝑥 ∈ (Base‘𝑅)∀𝑎 𝐶𝑏 𝐶((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐶)
474, 3, 37, 31islidl 21152 . 2 ( 𝐶 ∈ (LIdeal‘𝑅) ↔ ( 𝐶 ⊆ (Base‘𝑅) ∧ 𝐶 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑎 𝐶𝑏 𝐶((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐶))
4813, 22, 46, 47syl3anbrc 1344 1 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → 𝐶 ∈ (LIdeal‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2111  wne 2928  wral 3047  wss 3897  c0 4280  𝒫 cpw 4547   cint 4895  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  0gc0g 17343  Ringcrg 20151  LIdealclidl 21143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-subrg 20485  df-lmod 20795  df-lss 20865  df-sra 21107  df-rgmod 21108  df-lidl 21145
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator