Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intlidl Structured version   Visualization version   GIF version

Theorem intlidl 31596
Description: The intersection of a nonempty collection of ideals is an ideal. (Contributed by Thierry Arnoux, 8-Jun-2024.)
Assertion
Ref Expression
intlidl ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → 𝐶 ∈ (LIdeal‘𝑅))

Proof of Theorem intlidl
Dummy variables 𝑎 𝑏 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1137 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → 𝐶 ⊆ (LIdeal‘𝑅))
21sselda 3926 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑖𝐶) → 𝑖 ∈ (LIdeal‘𝑅))
3 eqid 2740 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
4 eqid 2740 . . . . . . 7 (LIdeal‘𝑅) = (LIdeal‘𝑅)
53, 4lidlss 20477 . . . . . 6 (𝑖 ∈ (LIdeal‘𝑅) → 𝑖 ⊆ (Base‘𝑅))
62, 5syl 17 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑖𝐶) → 𝑖 ⊆ (Base‘𝑅))
76ralrimiva 3110 . . . 4 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → ∀𝑖𝐶 𝑖 ⊆ (Base‘𝑅))
8 pwssb 5035 . . . 4 (𝐶 ⊆ 𝒫 (Base‘𝑅) ↔ ∀𝑖𝐶 𝑖 ⊆ (Base‘𝑅))
97, 8sylibr 233 . . 3 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → 𝐶 ⊆ 𝒫 (Base‘𝑅))
10 simp2 1136 . . 3 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → 𝐶 ≠ ∅)
11 intss2 5042 . . . 4 (𝐶 ⊆ 𝒫 (Base‘𝑅) → (𝐶 ≠ ∅ → 𝐶 ⊆ (Base‘𝑅)))
1211imp 407 . . 3 ((𝐶 ⊆ 𝒫 (Base‘𝑅) ∧ 𝐶 ≠ ∅) → 𝐶 ⊆ (Base‘𝑅))
139, 10, 12syl2anc 584 . 2 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → 𝐶 ⊆ (Base‘𝑅))
14 simpl1 1190 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑖𝐶) → 𝑅 ∈ Ring)
15 eqid 2740 . . . . . . 7 (0g𝑅) = (0g𝑅)
164, 15lidl0cl 20479 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅)) → (0g𝑅) ∈ 𝑖)
1714, 2, 16syl2anc 584 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑖𝐶) → (0g𝑅) ∈ 𝑖)
1817ralrimiva 3110 . . . 4 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → ∀𝑖𝐶 (0g𝑅) ∈ 𝑖)
19 fvex 6782 . . . . 5 (0g𝑅) ∈ V
2019elint2 4892 . . . 4 ((0g𝑅) ∈ 𝐶 ↔ ∀𝑖𝐶 (0g𝑅) ∈ 𝑖)
2118, 20sylibr 233 . . 3 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → (0g𝑅) ∈ 𝐶)
2221ne0d 4275 . 2 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → 𝐶 ≠ ∅)
2314ad5ant15 756 . . . . . . . 8 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → 𝑅 ∈ Ring)
242ad5ant15 756 . . . . . . . 8 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → 𝑖 ∈ (LIdeal‘𝑅))
25 simp-4r 781 . . . . . . . . 9 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → 𝑥 ∈ (Base‘𝑅))
26 simpllr 773 . . . . . . . . . 10 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → 𝑎 𝐶)
27 simpr 485 . . . . . . . . . 10 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → 𝑖𝐶)
28 elinti 4894 . . . . . . . . . . 11 (𝑎 𝐶 → (𝑖𝐶𝑎𝑖))
2928imp 407 . . . . . . . . . 10 ((𝑎 𝐶𝑖𝐶) → 𝑎𝑖)
3026, 27, 29syl2anc 584 . . . . . . . . 9 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → 𝑎𝑖)
31 eqid 2740 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
324, 3, 31lidlmcl 20484 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑖)) → (𝑥(.r𝑅)𝑎) ∈ 𝑖)
3323, 24, 25, 30, 32syl22anc 836 . . . . . . . 8 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → (𝑥(.r𝑅)𝑎) ∈ 𝑖)
34 elinti 4894 . . . . . . . . . 10 (𝑏 𝐶 → (𝑖𝐶𝑏𝑖))
3534imp 407 . . . . . . . . 9 ((𝑏 𝐶𝑖𝐶) → 𝑏𝑖)
3635adantll 711 . . . . . . . 8 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → 𝑏𝑖)
37 eqid 2740 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
384, 37lidlacl 20480 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑥(.r𝑅)𝑎) ∈ 𝑖𝑏𝑖)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖)
3923, 24, 33, 36, 38syl22anc 836 . . . . . . 7 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖)
4039ralrimiva 3110 . . . . . 6 (((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) → ∀𝑖𝐶 ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖)
41 ovex 7302 . . . . . . 7 ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ V
4241elint2 4892 . . . . . 6 (((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐶 ↔ ∀𝑖𝐶 ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖)
4340, 42sylibr 233 . . . . 5 (((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐶)
4443ralrimiva 3110 . . . 4 ((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) → ∀𝑏 𝐶((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐶)
4544anasss 467 . . 3 (((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 𝐶)) → ∀𝑏 𝐶((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐶)
4645ralrimivva 3117 . 2 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → ∀𝑥 ∈ (Base‘𝑅)∀𝑎 𝐶𝑏 𝐶((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐶)
474, 3, 37, 31islidl 20478 . 2 ( 𝐶 ∈ (LIdeal‘𝑅) ↔ ( 𝐶 ⊆ (Base‘𝑅) ∧ 𝐶 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑎 𝐶𝑏 𝐶((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐶))
4813, 22, 46, 47syl3anbrc 1342 1 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → 𝐶 ∈ (LIdeal‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086  wcel 2110  wne 2945  wral 3066  wss 3892  c0 4262  𝒫 cpw 4539   cint 4885  cfv 6431  (class class class)co 7269  Basecbs 16908  +gcplusg 16958  .rcmulr 16959  0gc0g 17146  Ringcrg 19779  LIdealclidl 20428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-cnex 10926  ax-resscn 10927  ax-1cn 10928  ax-icn 10929  ax-addcl 10930  ax-addrcl 10931  ax-mulcl 10932  ax-mulrcl 10933  ax-mulcom 10934  ax-addass 10935  ax-mulass 10936  ax-distr 10937  ax-i2m1 10938  ax-1ne0 10939  ax-1rid 10940  ax-rnegex 10941  ax-rrecex 10942  ax-cnre 10943  ax-pre-lttri 10944  ax-pre-lttrn 10945  ax-pre-ltadd 10946  ax-pre-mulgt0 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7705  df-1st 7822  df-2nd 7823  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-er 8479  df-en 8715  df-dom 8716  df-sdom 8717  df-pnf 11010  df-mnf 11011  df-xr 11012  df-ltxr 11013  df-le 11014  df-sub 11205  df-neg 11206  df-nn 11972  df-2 12034  df-3 12035  df-4 12036  df-5 12037  df-6 12038  df-7 12039  df-8 12040  df-sets 16861  df-slot 16879  df-ndx 16891  df-base 16909  df-ress 16938  df-plusg 16971  df-mulr 16972  df-sca 16974  df-vsca 16975  df-ip 16976  df-0g 17148  df-mgm 18322  df-sgrp 18371  df-mnd 18382  df-grp 18576  df-minusg 18577  df-sbg 18578  df-subg 18748  df-mgp 19717  df-ur 19734  df-ring 19781  df-subrg 20018  df-lmod 20121  df-lss 20190  df-sra 20430  df-rgmod 20431  df-lidl 20432
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator