Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intlidl Structured version   Visualization version   GIF version

Theorem intlidl 33295
Description: The intersection of a nonempty collection of ideals is an ideal. (Contributed by Thierry Arnoux, 8-Jun-2024.)
Assertion
Ref Expression
intlidl ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → 𝐶 ∈ (LIdeal‘𝑅))

Proof of Theorem intlidl
Dummy variables 𝑎 𝑏 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1135 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → 𝐶 ⊆ (LIdeal‘𝑅))
21sselda 3979 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑖𝐶) → 𝑖 ∈ (LIdeal‘𝑅))
3 eqid 2726 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
4 eqid 2726 . . . . . . 7 (LIdeal‘𝑅) = (LIdeal‘𝑅)
53, 4lidlss 21201 . . . . . 6 (𝑖 ∈ (LIdeal‘𝑅) → 𝑖 ⊆ (Base‘𝑅))
62, 5syl 17 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑖𝐶) → 𝑖 ⊆ (Base‘𝑅))
76ralrimiva 3136 . . . 4 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → ∀𝑖𝐶 𝑖 ⊆ (Base‘𝑅))
8 pwssb 5109 . . . 4 (𝐶 ⊆ 𝒫 (Base‘𝑅) ↔ ∀𝑖𝐶 𝑖 ⊆ (Base‘𝑅))
97, 8sylibr 233 . . 3 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → 𝐶 ⊆ 𝒫 (Base‘𝑅))
10 simp2 1134 . . 3 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → 𝐶 ≠ ∅)
11 intss2 5116 . . . 4 (𝐶 ⊆ 𝒫 (Base‘𝑅) → (𝐶 ≠ ∅ → 𝐶 ⊆ (Base‘𝑅)))
1211imp 405 . . 3 ((𝐶 ⊆ 𝒫 (Base‘𝑅) ∧ 𝐶 ≠ ∅) → 𝐶 ⊆ (Base‘𝑅))
139, 10, 12syl2anc 582 . 2 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → 𝐶 ⊆ (Base‘𝑅))
14 simpl1 1188 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑖𝐶) → 𝑅 ∈ Ring)
15 eqid 2726 . . . . . . 7 (0g𝑅) = (0g𝑅)
164, 15lidl0cl 21209 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅)) → (0g𝑅) ∈ 𝑖)
1714, 2, 16syl2anc 582 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑖𝐶) → (0g𝑅) ∈ 𝑖)
1817ralrimiva 3136 . . . 4 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → ∀𝑖𝐶 (0g𝑅) ∈ 𝑖)
19 fvex 6914 . . . . 5 (0g𝑅) ∈ V
2019elint2 4961 . . . 4 ((0g𝑅) ∈ 𝐶 ↔ ∀𝑖𝐶 (0g𝑅) ∈ 𝑖)
2118, 20sylibr 233 . . 3 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → (0g𝑅) ∈ 𝐶)
2221ne0d 4338 . 2 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → 𝐶 ≠ ∅)
2314ad5ant15 757 . . . . . . . 8 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → 𝑅 ∈ Ring)
242ad5ant15 757 . . . . . . . 8 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → 𝑖 ∈ (LIdeal‘𝑅))
25 simp-4r 782 . . . . . . . . 9 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → 𝑥 ∈ (Base‘𝑅))
26 simpllr 774 . . . . . . . . . 10 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → 𝑎 𝐶)
27 simpr 483 . . . . . . . . . 10 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → 𝑖𝐶)
28 elinti 4963 . . . . . . . . . . 11 (𝑎 𝐶 → (𝑖𝐶𝑎𝑖))
2928imp 405 . . . . . . . . . 10 ((𝑎 𝐶𝑖𝐶) → 𝑎𝑖)
3026, 27, 29syl2anc 582 . . . . . . . . 9 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → 𝑎𝑖)
31 eqid 2726 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
324, 3, 31lidlmcl 21214 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑖)) → (𝑥(.r𝑅)𝑎) ∈ 𝑖)
3323, 24, 25, 30, 32syl22anc 837 . . . . . . . 8 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → (𝑥(.r𝑅)𝑎) ∈ 𝑖)
34 elinti 4963 . . . . . . . . . 10 (𝑏 𝐶 → (𝑖𝐶𝑏𝑖))
3534imp 405 . . . . . . . . 9 ((𝑏 𝐶𝑖𝐶) → 𝑏𝑖)
3635adantll 712 . . . . . . . 8 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → 𝑏𝑖)
37 eqid 2726 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
384, 37lidlacl 21210 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑥(.r𝑅)𝑎) ∈ 𝑖𝑏𝑖)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖)
3923, 24, 33, 36, 38syl22anc 837 . . . . . . 7 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖)
4039ralrimiva 3136 . . . . . 6 (((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) → ∀𝑖𝐶 ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖)
41 ovex 7457 . . . . . . 7 ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ V
4241elint2 4961 . . . . . 6 (((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐶 ↔ ∀𝑖𝐶 ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖)
4340, 42sylibr 233 . . . . 5 (((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐶)
4443ralrimiva 3136 . . . 4 ((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) → ∀𝑏 𝐶((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐶)
4544anasss 465 . . 3 (((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 𝐶)) → ∀𝑏 𝐶((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐶)
4645ralrimivva 3191 . 2 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → ∀𝑥 ∈ (Base‘𝑅)∀𝑎 𝐶𝑏 𝐶((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐶)
474, 3, 37, 31islidl 21204 . 2 ( 𝐶 ∈ (LIdeal‘𝑅) ↔ ( 𝐶 ⊆ (Base‘𝑅) ∧ 𝐶 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑎 𝐶𝑏 𝐶((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐶))
4813, 22, 46, 47syl3anbrc 1340 1 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → 𝐶 ∈ (LIdeal‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084  wcel 2099  wne 2930  wral 3051  wss 3947  c0 4325  𝒫 cpw 4607   cint 4954  cfv 6554  (class class class)co 7424  Basecbs 17213  +gcplusg 17266  .rcmulr 17267  0gc0g 17454  Ringcrg 20216  LIdealclidl 21195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-sca 17282  df-vsca 17283  df-ip 17284  df-0g 17456  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-grp 18931  df-minusg 18932  df-sbg 18933  df-subg 19117  df-cmn 19780  df-abl 19781  df-mgp 20118  df-rng 20136  df-ur 20165  df-ring 20218  df-subrg 20553  df-lmod 20838  df-lss 20909  df-sra 21151  df-rgmod 21152  df-lidl 21197
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator