Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intlidl Structured version   Visualization version   GIF version

Theorem intlidl 33397
Description: The intersection of a nonempty collection of ideals is an ideal. (Contributed by Thierry Arnoux, 8-Jun-2024.)
Assertion
Ref Expression
intlidl ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → 𝐶 ∈ (LIdeal‘𝑅))

Proof of Theorem intlidl
Dummy variables 𝑎 𝑏 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1138 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → 𝐶 ⊆ (LIdeal‘𝑅))
21sselda 3948 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑖𝐶) → 𝑖 ∈ (LIdeal‘𝑅))
3 eqid 2730 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
4 eqid 2730 . . . . . . 7 (LIdeal‘𝑅) = (LIdeal‘𝑅)
53, 4lidlss 21128 . . . . . 6 (𝑖 ∈ (LIdeal‘𝑅) → 𝑖 ⊆ (Base‘𝑅))
62, 5syl 17 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑖𝐶) → 𝑖 ⊆ (Base‘𝑅))
76ralrimiva 3126 . . . 4 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → ∀𝑖𝐶 𝑖 ⊆ (Base‘𝑅))
8 pwssb 5067 . . . 4 (𝐶 ⊆ 𝒫 (Base‘𝑅) ↔ ∀𝑖𝐶 𝑖 ⊆ (Base‘𝑅))
97, 8sylibr 234 . . 3 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → 𝐶 ⊆ 𝒫 (Base‘𝑅))
10 simp2 1137 . . 3 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → 𝐶 ≠ ∅)
11 intss2 5074 . . . 4 (𝐶 ⊆ 𝒫 (Base‘𝑅) → (𝐶 ≠ ∅ → 𝐶 ⊆ (Base‘𝑅)))
1211imp 406 . . 3 ((𝐶 ⊆ 𝒫 (Base‘𝑅) ∧ 𝐶 ≠ ∅) → 𝐶 ⊆ (Base‘𝑅))
139, 10, 12syl2anc 584 . 2 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → 𝐶 ⊆ (Base‘𝑅))
14 simpl1 1192 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑖𝐶) → 𝑅 ∈ Ring)
15 eqid 2730 . . . . . . 7 (0g𝑅) = (0g𝑅)
164, 15lidl0cl 21136 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅)) → (0g𝑅) ∈ 𝑖)
1714, 2, 16syl2anc 584 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑖𝐶) → (0g𝑅) ∈ 𝑖)
1817ralrimiva 3126 . . . 4 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → ∀𝑖𝐶 (0g𝑅) ∈ 𝑖)
19 fvex 6873 . . . . 5 (0g𝑅) ∈ V
2019elint2 4919 . . . 4 ((0g𝑅) ∈ 𝐶 ↔ ∀𝑖𝐶 (0g𝑅) ∈ 𝑖)
2118, 20sylibr 234 . . 3 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → (0g𝑅) ∈ 𝐶)
2221ne0d 4307 . 2 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → 𝐶 ≠ ∅)
2314ad5ant15 758 . . . . . . . 8 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → 𝑅 ∈ Ring)
242ad5ant15 758 . . . . . . . 8 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → 𝑖 ∈ (LIdeal‘𝑅))
25 simp-4r 783 . . . . . . . . 9 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → 𝑥 ∈ (Base‘𝑅))
26 simpllr 775 . . . . . . . . . 10 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → 𝑎 𝐶)
27 simpr 484 . . . . . . . . . 10 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → 𝑖𝐶)
28 elinti 4921 . . . . . . . . . . 11 (𝑎 𝐶 → (𝑖𝐶𝑎𝑖))
2928imp 406 . . . . . . . . . 10 ((𝑎 𝐶𝑖𝐶) → 𝑎𝑖)
3026, 27, 29syl2anc 584 . . . . . . . . 9 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → 𝑎𝑖)
31 eqid 2730 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
324, 3, 31lidlmcl 21141 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑖)) → (𝑥(.r𝑅)𝑎) ∈ 𝑖)
3323, 24, 25, 30, 32syl22anc 838 . . . . . . . 8 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → (𝑥(.r𝑅)𝑎) ∈ 𝑖)
34 elinti 4921 . . . . . . . . . 10 (𝑏 𝐶 → (𝑖𝐶𝑏𝑖))
3534imp 406 . . . . . . . . 9 ((𝑏 𝐶𝑖𝐶) → 𝑏𝑖)
3635adantll 714 . . . . . . . 8 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → 𝑏𝑖)
37 eqid 2730 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
384, 37lidlacl 21137 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅)) ∧ ((𝑥(.r𝑅)𝑎) ∈ 𝑖𝑏𝑖)) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖)
3923, 24, 33, 36, 38syl22anc 838 . . . . . . 7 ((((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) ∧ 𝑖𝐶) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖)
4039ralrimiva 3126 . . . . . 6 (((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) → ∀𝑖𝐶 ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖)
41 ovex 7422 . . . . . . 7 ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ V
4241elint2 4919 . . . . . 6 (((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐶 ↔ ∀𝑖𝐶 ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖)
4340, 42sylibr 234 . . . . 5 (((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) ∧ 𝑏 𝐶) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐶)
4443ralrimiva 3126 . . . 4 ((((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 𝐶) → ∀𝑏 𝐶((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐶)
4544anasss 466 . . 3 (((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 𝐶)) → ∀𝑏 𝐶((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐶)
4645ralrimivva 3181 . 2 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → ∀𝑥 ∈ (Base‘𝑅)∀𝑎 𝐶𝑏 𝐶((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐶)
474, 3, 37, 31islidl 21131 . 2 ( 𝐶 ∈ (LIdeal‘𝑅) ↔ ( 𝐶 ⊆ (Base‘𝑅) ∧ 𝐶 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑎 𝐶𝑏 𝐶((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝐶))
4813, 22, 46, 47syl3anbrc 1344 1 ((𝑅 ∈ Ring ∧ 𝐶 ≠ ∅ ∧ 𝐶 ⊆ (LIdeal‘𝑅)) → 𝐶 ∈ (LIdeal‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109  wne 2926  wral 3045  wss 3916  c0 4298  𝒫 cpw 4565   cint 4912  cfv 6513  (class class class)co 7389  Basecbs 17185  +gcplusg 17226  .rcmulr 17227  0gc0g 17408  Ringcrg 20148  LIdealclidl 21122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-ip 17244  df-0g 17410  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-grp 18874  df-minusg 18875  df-sbg 18876  df-subg 19061  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-ring 20150  df-subrg 20485  df-lmod 20774  df-lss 20844  df-sra 21086  df-rgmod 21087  df-lidl 21124
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator