MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad7antr Structured version   Visualization version   GIF version

Theorem ad7antr 738
Description: Deduction adding 7 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.)
Hypothesis
Ref Expression
ad2ant.1 (𝜑𝜓)
Assertion
Ref Expression
ad7antr ((((((((𝜑𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓)

Proof of Theorem ad7antr
StepHypRef Expression
1 ad2ant.1 . . 3 (𝜑𝜓)
21adantr 480 . 2 ((𝜑𝜒) → 𝜓)
32ad6antr 736 1 ((((((((𝜑𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  ad8antr  740  ad8antlr  741  simp-7l  788  catpropd  17633  natpropd  17904  ucncn  24188  tgcgrxfr  28481  tgbtwnconn1lem3  28537  tgbtwnconn1  28538  midexlem  28655  lnopp2hpgb  28726  trgcopy  28767  mgcf1o  32958  chnub  32967  elrgspnlem4  33195  elrspunidl  33375  rhmimaidl  33379  qsidomlem2  33400  ssdifidlprm  33405  mxidlirredi  33418  1arithufdlem3  33493  lbsdiflsp0  33598  fedgmul  33603  constrconj  33711  constrelextdg2  33713  zarcmplem  33847  sigapildsys  34128  afsval  34638  matunitlindflem1  37595  aks6d1c2lem4  42100  dffltz  42607
  Copyright terms: Public domain W3C validator