| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad7antr | Structured version Visualization version GIF version | ||
| Description: Deduction adding 7 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
| Ref | Expression |
|---|---|
| ad2ant.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ad7antr | ⊢ ((((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
| 3 | 2 | ad6antr 736 | 1 ⊢ ((((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ad8antr 740 ad8antlr 741 simp-7l 788 catpropd 17633 natpropd 17904 ucncn 24188 tgcgrxfr 28481 tgbtwnconn1lem3 28537 tgbtwnconn1 28538 midexlem 28655 lnopp2hpgb 28726 trgcopy 28767 mgcf1o 32958 chnub 32967 elrgspnlem4 33195 elrspunidl 33375 rhmimaidl 33379 qsidomlem2 33400 ssdifidlprm 33405 mxidlirredi 33418 1arithufdlem3 33493 lbsdiflsp0 33598 fedgmul 33603 constrconj 33711 constrelextdg2 33713 zarcmplem 33847 sigapildsys 34128 afsval 34638 matunitlindflem1 37595 aks6d1c2lem4 42100 dffltz 42607 |
| Copyright terms: Public domain | W3C validator |