| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad7antr | Structured version Visualization version GIF version | ||
| Description: Deduction adding 7 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
| Ref | Expression |
|---|---|
| ad2ant.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ad7antr | ⊢ ((((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
| 3 | 2 | ad6antr 736 | 1 ⊢ ((((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ad8antr 740 ad8antlr 741 simp-7l 788 catpropd 17721 natpropd 17992 ucncn 24223 tgcgrxfr 28497 tgbtwnconn1lem3 28553 tgbtwnconn1 28554 midexlem 28671 lnopp2hpgb 28742 trgcopy 28783 mgcf1o 32983 chnub 32992 elrgspnlem4 33240 elrspunidl 33443 rhmimaidl 33447 qsidomlem2 33468 ssdifidlprm 33473 mxidlirredi 33486 1arithufdlem3 33561 lbsdiflsp0 33666 fedgmul 33671 constrconj 33779 constrelextdg2 33781 zarcmplem 33912 sigapildsys 34193 afsval 34703 matunitlindflem1 37640 aks6d1c2lem4 42140 dffltz 42657 |
| Copyright terms: Public domain | W3C validator |