![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ad7antr | Structured version Visualization version GIF version |
Description: Deduction adding 7 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
Ref | Expression |
---|---|
ad2ant.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ad7antr | ⊢ ((((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
3 | 2 | ad6antr 735 | 1 ⊢ ((((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: ad8antr 739 ad8antlr 740 simp-7l 788 catpropd 17767 natpropd 18046 ucncn 24315 tgcgrxfr 28544 tgbtwnconn1lem3 28600 tgbtwnconn1 28601 midexlem 28718 lnopp2hpgb 28789 trgcopy 28830 mgcf1o 32976 chnub 32984 elrspunidl 33421 rhmimaidl 33425 qsidomlem2 33446 ssdifidlprm 33451 mxidlirredi 33464 1arithufdlem3 33539 lbsdiflsp0 33639 fedgmul 33644 constrconj 33735 constrelextdg2 33737 zarcmplem 33827 sigapildsys 34126 afsval 34648 matunitlindflem1 37576 aks6d1c2lem4 42084 dffltz 42589 |
Copyright terms: Public domain | W3C validator |