Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ad7antr | Structured version Visualization version GIF version |
Description: Deduction adding 7 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
Ref | Expression |
---|---|
ad2ant.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ad7antr | ⊢ ((((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | adantr 481 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
3 | 2 | ad6antr 733 | 1 ⊢ ((((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: ad8antr 737 ad8antlr 738 simp-7l 786 catpropd 17418 natpropd 17694 ucncn 23437 tgcgrxfr 26879 tgbtwnconn1lem3 26935 tgbtwnconn1 26936 midexlem 27053 lnopp2hpgb 27124 trgcopy 27165 mgcf1o 31281 elrspunidl 31606 rhmimaidl 31609 qsidomlem2 31629 lbsdiflsp0 31707 fedgmul 31712 zarcmplem 31831 sigapildsys 32130 afsval 32651 matunitlindflem1 35773 dffltz 40471 |
Copyright terms: Public domain | W3C validator |