MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad7antr Structured version   Visualization version   GIF version

Theorem ad7antr 736
Description: Deduction adding 7 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.)
Hypothesis
Ref Expression
ad2ant.1 (𝜑𝜓)
Assertion
Ref Expression
ad7antr ((((((((𝜑𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓)

Proof of Theorem ad7antr
StepHypRef Expression
1 ad2ant.1 . . 3 (𝜑𝜓)
21adantr 481 . 2 ((𝜑𝜒) → 𝜓)
32ad6antr 734 1 ((((((((𝜑𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  ad8antr  738  ad8antlr  739  simp-7l  787  catpropd  17657  natpropd  17933  ucncn  24010  tgcgrxfr  28024  tgbtwnconn1lem3  28080  tgbtwnconn1  28081  midexlem  28198  lnopp2hpgb  28269  trgcopy  28310  mgcf1o  32428  elrspunidl  32808  rhmimaidl  32812  qsidomlem2  32834  mxidlirredi  32849  lbsdiflsp0  32987  fedgmul  32992  zarcmplem  33147  sigapildsys  33446  afsval  33969  matunitlindflem1  36787  dffltz  41678
  Copyright terms: Public domain W3C validator