![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ad7antr | Structured version Visualization version GIF version |
Description: Deduction adding 7 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
Ref | Expression |
---|---|
ad2ant.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ad7antr | ⊢ ((((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | adantr 481 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
3 | 2 | ad6antr 734 | 1 ⊢ ((((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: ad8antr 738 ad8antlr 739 simp-7l 787 catpropd 17657 natpropd 17933 ucncn 24010 tgcgrxfr 28024 tgbtwnconn1lem3 28080 tgbtwnconn1 28081 midexlem 28198 lnopp2hpgb 28269 trgcopy 28310 mgcf1o 32428 elrspunidl 32808 rhmimaidl 32812 qsidomlem2 32834 mxidlirredi 32849 lbsdiflsp0 32987 fedgmul 32992 zarcmplem 33147 sigapildsys 33446 afsval 33969 matunitlindflem1 36787 dffltz 41678 |
Copyright terms: Public domain | W3C validator |