| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad7antr | Structured version Visualization version GIF version | ||
| Description: Deduction adding 7 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
| Ref | Expression |
|---|---|
| ad2ant.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ad7antr | ⊢ ((((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
| 3 | 2 | ad6antr 736 | 1 ⊢ ((((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ad8antr 740 ad8antlr 741 simp-7l 788 catpropd 17670 natpropd 17941 ucncn 24172 tgcgrxfr 28445 tgbtwnconn1lem3 28501 tgbtwnconn1 28502 midexlem 28619 lnopp2hpgb 28690 trgcopy 28731 mgcf1o 32929 chnub 32938 elrgspnlem4 33196 elrspunidl 33399 rhmimaidl 33403 qsidomlem2 33424 ssdifidlprm 33429 mxidlirredi 33442 1arithufdlem3 33517 lbsdiflsp0 33622 fedgmul 33627 constrconj 33735 constrelextdg2 33737 zarcmplem 33871 sigapildsys 34152 afsval 34662 matunitlindflem1 37610 aks6d1c2lem4 42115 dffltz 42622 |
| Copyright terms: Public domain | W3C validator |