MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad7antr Structured version   Visualization version   GIF version

Theorem ad7antr 726
Description: Deduction adding 7 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.)
Hypothesis
Ref Expression
ad2ant.1 (𝜑𝜓)
Assertion
Ref Expression
ad7antr ((((((((𝜑𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓)

Proof of Theorem ad7antr
StepHypRef Expression
1 ad2ant.1 . . 3 (𝜑𝜓)
21adantr 473 . 2 ((𝜑𝜒) → 𝜓)
32ad6antr 724 1 ((((((((𝜑𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 388
This theorem is referenced by:  ad8antr  728  ad8antlr  729  simp-7l  777  simp-8r  780  catpropd  16849  natpropd  17116  ucncn  22612  tgcgrxfr  26021  tgbtwnconn1lem3  26077  tgbtwnconn1  26078  midexlem  26195  lnopp2hpgb  26266  trgcopy  26307  lbsdiflsp0  30683  fedgmul  30688  sigapildsys  31098  afsval  31622  matunitlindflem1  34366  dffltz  38716
  Copyright terms: Public domain W3C validator