| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad7antr | Structured version Visualization version GIF version | ||
| Description: Deduction adding 7 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
| Ref | Expression |
|---|---|
| ad2ant.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ad7antr | ⊢ ((((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
| 3 | 2 | ad6antr 736 | 1 ⊢ ((((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ad8antr 740 ad8antlr 741 simp-7l 788 catpropd 17612 natpropd 17883 chnub 18525 ucncn 24197 tgcgrxfr 28494 tgbtwnconn1lem3 28550 tgbtwnconn1 28551 midexlem 28668 lnopp2hpgb 28739 trgcopy 28780 mgcf1o 32979 elrgspnlem4 33207 elrspunidl 33388 rhmimaidl 33392 qsidomlem2 33413 ssdifidlprm 33418 mxidlirredi 33431 1arithufdlem3 33506 lbsdiflsp0 33634 fedgmul 33639 constrconj 33753 constrelextdg2 33755 zarcmplem 33889 sigapildsys 34170 afsval 34679 matunitlindflem1 37655 aks6d1c2lem4 42159 dffltz 42666 |
| Copyright terms: Public domain | W3C validator |