| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad7antr | Structured version Visualization version GIF version | ||
| Description: Deduction adding 7 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
| Ref | Expression |
|---|---|
| ad2ant.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ad7antr | ⊢ ((((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
| 3 | 2 | ad6antr 736 | 1 ⊢ ((((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ad8antr 740 ad8antlr 741 simp-7l 788 catpropd 17617 natpropd 17888 chnub 18530 ucncn 24200 tgcgrxfr 28497 tgbtwnconn1lem3 28553 tgbtwnconn1 28554 midexlem 28671 lnopp2hpgb 28742 trgcopy 28783 mgcf1o 32991 elrgspnlem4 33219 elrspunidl 33400 rhmimaidl 33404 qsidomlem2 33425 ssdifidlprm 33430 mxidlirredi 33443 1arithufdlem3 33518 lbsdiflsp0 33660 fedgmul 33665 constrconj 33779 constrelextdg2 33781 zarcmplem 33915 sigapildsys 34196 afsval 34705 matunitlindflem1 37677 aks6d1c2lem4 42241 dffltz 42753 |
| Copyright terms: Public domain | W3C validator |