Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ad7antr | Structured version Visualization version GIF version |
Description: Deduction adding 7 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
Ref | Expression |
---|---|
ad2ant.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ad7antr | ⊢ ((((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
3 | 2 | ad6antr 732 | 1 ⊢ ((((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: ad8antr 736 ad8antlr 737 simp-7l 785 catpropd 17335 natpropd 17610 ucncn 23345 tgcgrxfr 26783 tgbtwnconn1lem3 26839 tgbtwnconn1 26840 midexlem 26957 lnopp2hpgb 27028 trgcopy 27069 mgcf1o 31183 elrspunidl 31508 rhmimaidl 31511 qsidomlem2 31531 lbsdiflsp0 31609 fedgmul 31614 zarcmplem 31733 sigapildsys 32030 afsval 32551 matunitlindflem1 35700 dffltz 40387 |
Copyright terms: Public domain | W3C validator |