| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad7antr | Structured version Visualization version GIF version | ||
| Description: Deduction adding 7 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
| Ref | Expression |
|---|---|
| ad2ant.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| ad7antr | ⊢ ((((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
| 3 | 2 | ad6antr 736 | 1 ⊢ ((((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ad8antr 740 ad8antlr 741 simp-7l 788 catpropd 17677 natpropd 17948 ucncn 24179 tgcgrxfr 28452 tgbtwnconn1lem3 28508 tgbtwnconn1 28509 midexlem 28626 lnopp2hpgb 28697 trgcopy 28738 mgcf1o 32936 chnub 32945 elrgspnlem4 33203 elrspunidl 33406 rhmimaidl 33410 qsidomlem2 33431 ssdifidlprm 33436 mxidlirredi 33449 1arithufdlem3 33524 lbsdiflsp0 33629 fedgmul 33634 constrconj 33742 constrelextdg2 33744 zarcmplem 33878 sigapildsys 34159 afsval 34669 matunitlindflem1 37617 aks6d1c2lem4 42122 dffltz 42629 |
| Copyright terms: Public domain | W3C validator |