MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad7antr Structured version   Visualization version   GIF version

Theorem ad7antr 734
Description: Deduction adding 7 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.)
Hypothesis
Ref Expression
ad2ant.1 (𝜑𝜓)
Assertion
Ref Expression
ad7antr ((((((((𝜑𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓)

Proof of Theorem ad7antr
StepHypRef Expression
1 ad2ant.1 . . 3 (𝜑𝜓)
21adantr 480 . 2 ((𝜑𝜒) → 𝜓)
32ad6antr 732 1 ((((((((𝜑𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  ad8antr  736  ad8antlr  737  simp-7l  785  catpropd  17335  natpropd  17610  ucncn  23345  tgcgrxfr  26783  tgbtwnconn1lem3  26839  tgbtwnconn1  26840  midexlem  26957  lnopp2hpgb  27028  trgcopy  27069  mgcf1o  31183  elrspunidl  31508  rhmimaidl  31511  qsidomlem2  31531  lbsdiflsp0  31609  fedgmul  31614  zarcmplem  31733  sigapildsys  32030  afsval  32551  matunitlindflem1  35700  dffltz  40387
  Copyright terms: Public domain W3C validator