MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trgcopy Structured version   Visualization version   GIF version

Theorem trgcopy 27069
Description: Triangle construction: a copy of a given triangle can always be constructed in such a way that one side is lying on a half-line, and the third vertex is on a given half-plane: existence part. First part of Theorem 10.16 of [Schwabhauser] p. 92. (Contributed by Thierry Arnoux, 4-Aug-2020.)
Hypotheses
Ref Expression
trgcopy.p 𝑃 = (Base‘𝐺)
trgcopy.m = (dist‘𝐺)
trgcopy.i 𝐼 = (Itv‘𝐺)
trgcopy.l 𝐿 = (LineG‘𝐺)
trgcopy.k 𝐾 = (hlG‘𝐺)
trgcopy.g (𝜑𝐺 ∈ TarskiG)
trgcopy.a (𝜑𝐴𝑃)
trgcopy.b (𝜑𝐵𝑃)
trgcopy.c (𝜑𝐶𝑃)
trgcopy.d (𝜑𝐷𝑃)
trgcopy.e (𝜑𝐸𝑃)
trgcopy.f (𝜑𝐹𝑃)
trgcopy.1 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
trgcopy.2 (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
trgcopy.3 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
Assertion
Ref Expression
trgcopy (𝜑 → ∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
Distinct variable groups:   ,𝑓   𝐴,𝑓   𝐵,𝑓   𝐶,𝑓   𝐷,𝑓   𝑓,𝐸   𝑓,𝐹   𝑓,𝐺   𝑓,𝐼   𝑓,𝐿   𝑃,𝑓   𝜑,𝑓   𝑓,𝐾

Proof of Theorem trgcopy
Dummy variables 𝑗 𝑘 𝑙 𝑞 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trgcopy.p . . . . . . 7 𝑃 = (Base‘𝐺)
2 trgcopy.m . . . . . . 7 = (dist‘𝐺)
3 eqid 2738 . . . . . . 7 (cgrG‘𝐺) = (cgrG‘𝐺)
4 trgcopy.g . . . . . . . . . . 11 (𝜑𝐺 ∈ TarskiG)
54ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐺 ∈ TarskiG)
65ad2antrr 722 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐺 ∈ TarskiG)
76ad2antrr 722 . . . . . . . 8 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝐺 ∈ TarskiG)
87adantr 480 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐺 ∈ TarskiG)
9 trgcopy.a . . . . . . . . . 10 (𝜑𝐴𝑃)
109ad2antrr 722 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐴𝑃)
1110ad2antrr 722 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐴𝑃)
1211ad3antrrr 726 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐴𝑃)
13 trgcopy.b . . . . . . . . . 10 (𝜑𝐵𝑃)
1413ad2antrr 722 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐵𝑃)
1514ad2antrr 722 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐵𝑃)
1615ad3antrrr 726 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐵𝑃)
17 trgcopy.c . . . . . . . . 9 (𝜑𝐶𝑃)
1817ad6antr 732 . . . . . . . 8 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝐶𝑃)
1918adantr 480 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐶𝑃)
20 trgcopy.d . . . . . . . . . 10 (𝜑𝐷𝑃)
2120ad2antrr 722 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐷𝑃)
2221ad2antrr 722 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐷𝑃)
2322ad3antrrr 726 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐷𝑃)
24 trgcopy.e . . . . . . . . . 10 (𝜑𝐸𝑃)
2524ad2antrr 722 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐸𝑃)
2625ad2antrr 722 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐸𝑃)
2726ad3antrrr 726 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐸𝑃)
28 simprl 767 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑓𝑃)
29 trgcopy.3 . . . . . . . . 9 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
3029ad2antrr 722 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → (𝐴 𝐵) = (𝐷 𝐸))
3130ad5antr 730 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐴 𝐵) = (𝐷 𝐸))
32 trgcopy.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
33 trgcopy.l . . . . . . . . . . 11 𝐿 = (LineG‘𝐺)
34 trgcopy.1 . . . . . . . . . . 11 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
351, 33, 32, 4, 13, 17, 9, 34ncoltgdim2 26830 . . . . . . . . . 10 (𝜑𝐺DimTarskiG≥2)
3635ad4antr 728 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐺DimTarskiG≥2)
3736ad3antrrr 726 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐺DimTarskiG≥2)
381, 32, 33, 4, 9, 13, 17, 34ncolne1 26890 . . . . . . . . . . . . . 14 (𝜑𝐴𝐵)
391, 32, 33, 4, 9, 13, 38tgelrnln 26895 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝐿𝐵) ∈ ran 𝐿)
4039ad2antrr 722 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → (𝐴𝐿𝐵) ∈ ran 𝐿)
41 simplr 765 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝑥 ∈ (𝐴𝐿𝐵))
421, 33, 32, 5, 40, 41tglnpt 26814 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝑥𝑃)
4342ad2antrr 722 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝑥𝑃)
4443ad2antrr 722 . . . . . . . . 9 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑥𝑃)
4544adantr 480 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑥𝑃)
46 simplr 765 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝑦𝑃)
4746ad2antrr 722 . . . . . . . . 9 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑦𝑃)
4847adantr 480 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑦𝑃)
4941ad5antr 730 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑥 ∈ (𝐴𝐿𝐵))
5038ad7antr 734 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐴𝐵)
511, 32, 33, 8, 12, 16, 50tglinecom 26900 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐴𝐿𝐵) = (𝐵𝐿𝐴))
5249, 51eleqtrd 2841 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑥 ∈ (𝐵𝐿𝐴))
53 simp-6r 784 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵))
5433, 8, 53perpln1 26975 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐶𝐿𝑥) ∈ ran 𝐿)
5540ad5antr 730 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐴𝐿𝐵) ∈ ran 𝐿)
561, 2, 32, 33, 8, 54, 55, 53perpcom 26978 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐶𝐿𝑥))
571, 33, 32, 4, 13, 17, 9, 34ncolrot2 26828 . . . . . . . . . . . . . . . . . 18 (𝜑 → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
58 ioran 980 . . . . . . . . . . . . . . . . . 18 (¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ↔ (¬ 𝐶 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝐴 = 𝐵))
5957, 58sylib 217 . . . . . . . . . . . . . . . . 17 (𝜑 → (¬ 𝐶 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝐴 = 𝐵))
6059simpld 494 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ 𝐶 ∈ (𝐴𝐿𝐵))
6160ad2antrr 722 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → ¬ 𝐶 ∈ (𝐴𝐿𝐵))
62 nelne2 3041 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝐶 ∈ (𝐴𝐿𝐵)) → 𝑥𝐶)
6341, 61, 62syl2anc 583 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝑥𝐶)
6463ad4antr 728 . . . . . . . . . . . . 13 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑥𝐶)
6564adantr 480 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑥𝐶)
6665necomd 2998 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐶𝑥)
671, 32, 33, 8, 19, 45, 66tglinecom 26900 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐶𝐿𝑥) = (𝑥𝐿𝐶))
6856, 51, 673brtr3d 5101 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐵𝐿𝐴)(⟂G‘𝐺)(𝑥𝐿𝐶))
691, 2, 32, 33, 8, 16, 12, 52, 19, 68perprag 26991 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ⟨“𝐵𝑥𝐶”⟩ ∈ (∟G‘𝐺))
70 trgcopy.f . . . . . . . . . . . . 13 (𝜑𝐹𝑃)
71 trgcopy.2 . . . . . . . . . . . . 13 (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
721, 32, 33, 4, 20, 24, 70, 71ncolne1 26890 . . . . . . . . . . . 12 (𝜑𝐷𝐸)
7372necomd 2998 . . . . . . . . . . 11 (𝜑𝐸𝐷)
7473ad7antr 734 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐸𝐷)
7572ad4antr 728 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐷𝐸)
7675neneqd 2947 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → ¬ 𝐷 = 𝐸)
7741orcd 869 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → (𝑥 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
781, 33, 32, 5, 10, 14, 42, 77colrot2 26825 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → (𝐵 ∈ (𝑥𝐿𝐴) ∨ 𝑥 = 𝐴))
791, 33, 32, 5, 42, 10, 14, 78colcom 26823 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → (𝐵 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥))
8079ad2antrr 722 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝐵 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥))
81 simpr 484 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩)
821, 33, 32, 6, 11, 15, 43, 3, 22, 26, 46, 80, 81lnxfr 26831 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝐸 ∈ (𝐷𝐿𝑦) ∨ 𝐷 = 𝑦))
831, 33, 32, 6, 22, 46, 26, 82colrot2 26825 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝑦 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
841, 33, 32, 6, 26, 22, 46, 83colcom 26823 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝑦 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
8584orcomd 867 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝐷 = 𝐸𝑦 ∈ (𝐷𝐿𝐸)))
8685ord 860 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (¬ 𝐷 = 𝐸𝑦 ∈ (𝐷𝐿𝐸)))
8776, 86mpd 15 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝑦 ∈ (𝐷𝐿𝐸))
8887ad3antrrr 726 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑦 ∈ (𝐷𝐿𝐸))
891, 32, 33, 8, 27, 23, 48, 74, 88lncom 26887 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑦 ∈ (𝐸𝐿𝐷))
90 simprrr 778 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑦 𝑓) = (𝑥 𝐶))
9190eqcomd 2744 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑥 𝐶) = (𝑦 𝑓))
921, 2, 32, 8, 45, 19, 48, 28, 91, 65tgcgrneq 26748 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑦𝑓)
931, 32, 33, 8, 48, 28, 92tgelrnln 26895 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑦𝐿𝑓) ∈ ran 𝐿)
941, 32, 33, 8, 27, 23, 74tgelrnln 26895 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐸𝐿𝐷) ∈ ran 𝐿)
95 simpllr 772 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑞𝑃)
96 simplr 765 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑞𝑃)
97 simprl 767 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → (𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦))
9833, 7, 97perpln2 26976 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → (𝑞𝐿𝑦) ∈ ran 𝐿)
991, 32, 33, 7, 96, 47, 98tglnne 26893 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑞𝑦)
10099adantr 480 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑞𝑦)
101100necomd 2998 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑦𝑞)
1021, 32, 33, 8, 48, 95, 101tgelrnln 26895 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑦𝐿𝑞) ∈ ran 𝐿)
10397adantr 480 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦))
1041, 32, 33, 8, 27, 23, 74tglinecom 26900 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐸𝐿𝐷) = (𝐷𝐿𝐸))
1051, 32, 33, 8, 48, 95, 101tglinecom 26900 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑦𝐿𝑞) = (𝑞𝐿𝑦))
106103, 104, 1053brtr4d 5102 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐸𝐿𝐷)(⟂G‘𝐺)(𝑦𝐿𝑞))
1071, 2, 32, 33, 8, 94, 102, 106perpcom 26978 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑦𝐿𝑞)(⟂G‘𝐺)(𝐸𝐿𝐷))
108 trgcopy.k . . . . . . . . . . . . . 14 𝐾 = (hlG‘𝐺)
109 simprrl 777 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑓(𝐾𝑦)𝑞)
1101, 32, 108, 28, 95, 48, 8, 33, 109hlln 26872 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑓 ∈ (𝑞𝐿𝑦))
1111, 32, 33, 8, 48, 95, 28, 101, 110lncom 26887 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑓 ∈ (𝑦𝐿𝑞))
112111orcd 869 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑓 ∈ (𝑦𝐿𝑞) ∨ 𝑦 = 𝑞))
1131, 2, 32, 33, 8, 48, 95, 28, 107, 112, 92colperp 26994 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑦𝐿𝑓)(⟂G‘𝐺)(𝐸𝐿𝐷))
1141, 2, 32, 33, 8, 93, 94, 113perpcom 26978 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐸𝐿𝐷)(⟂G‘𝐺)(𝑦𝐿𝑓))
1151, 2, 32, 33, 8, 27, 23, 89, 28, 114perprag 26991 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ⟨“𝐸𝑦𝑓”⟩ ∈ (∟G‘𝐺))
11681ad3antrrr 726 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩)
1171, 2, 32, 3, 8, 12, 16, 45, 23, 27, 48, 116cgr3simp2 26786 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐵 𝑥) = (𝐸 𝑦))
1181, 2, 32, 8, 37, 16, 45, 19, 27, 48, 28, 69, 115, 117, 91hypcgr 27066 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐵 𝐶) = (𝐸 𝑓))
119 eqid 2738 . . . . . . . . 9 (pInvG‘𝐺) = (pInvG‘𝐺)
12051, 68eqbrtrd 5092 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑥𝐿𝐶))
1211, 2, 32, 33, 8, 12, 16, 49, 19, 120perprag 26991 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ⟨“𝐴𝑥𝐶”⟩ ∈ (∟G‘𝐺))
1221, 2, 32, 33, 119, 8, 12, 45, 19, 121ragcom 26963 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ⟨“𝐶𝑥𝐴”⟩ ∈ (∟G‘𝐺))
123104, 114eqbrtrrd 5094 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐷𝐿𝐸)(⟂G‘𝐺)(𝑦𝐿𝑓))
1241, 2, 32, 33, 8, 23, 27, 88, 28, 123perprag 26991 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ⟨“𝐷𝑦𝑓”⟩ ∈ (∟G‘𝐺))
1251, 2, 32, 33, 119, 8, 23, 48, 28, 124ragcom 26963 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ⟨“𝑓𝑦𝐷”⟩ ∈ (∟G‘𝐺))
1261, 2, 32, 8, 45, 19, 48, 28, 91tgcgrcomlr 26745 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐶 𝑥) = (𝑓 𝑦))
1271, 2, 32, 3, 8, 12, 16, 45, 23, 27, 48, 116cgr3simp3 26787 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑥 𝐴) = (𝑦 𝐷))
1281, 2, 32, 8, 37, 19, 45, 12, 28, 48, 23, 122, 125, 126, 127hypcgr 27066 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐶 𝐴) = (𝑓 𝐷))
1291, 2, 3, 8, 12, 16, 19, 23, 27, 28, 31, 118, 128trgcgr 26781 . . . . . 6 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩)
1301, 32, 33, 4, 20, 24, 72tgelrnln 26895 . . . . . . . . 9 (𝜑 → (𝐷𝐿𝐸) ∈ ran 𝐿)
131130ad4antr 728 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝐷𝐿𝐸) ∈ ran 𝐿)
132131ad3antrrr 726 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐷𝐿𝐸) ∈ ran 𝐿)
133 simpl 482 . . . . . . . . . . 11 ((𝑤 = 𝑘𝑣 = 𝑙) → 𝑤 = 𝑘)
134133eleq1d 2823 . . . . . . . . . 10 ((𝑤 = 𝑘𝑣 = 𝑙) → (𝑤 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ↔ 𝑘 ∈ (𝑃 ∖ (𝐷𝐿𝐸))))
135 simpr 484 . . . . . . . . . . 11 ((𝑤 = 𝑘𝑣 = 𝑙) → 𝑣 = 𝑙)
136135eleq1d 2823 . . . . . . . . . 10 ((𝑤 = 𝑘𝑣 = 𝑙) → (𝑣 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ↔ 𝑙 ∈ (𝑃 ∖ (𝐷𝐿𝐸))))
137134, 136anbi12d 630 . . . . . . . . 9 ((𝑤 = 𝑘𝑣 = 𝑙) → ((𝑤 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑣 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ↔ (𝑘 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑙 ∈ (𝑃 ∖ (𝐷𝐿𝐸)))))
138 simpr 484 . . . . . . . . . . 11 (((𝑤 = 𝑘𝑣 = 𝑙) ∧ 𝑧 = 𝑗) → 𝑧 = 𝑗)
139 simpll 763 . . . . . . . . . . . 12 (((𝑤 = 𝑘𝑣 = 𝑙) ∧ 𝑧 = 𝑗) → 𝑤 = 𝑘)
140 simplr 765 . . . . . . . . . . . 12 (((𝑤 = 𝑘𝑣 = 𝑙) ∧ 𝑧 = 𝑗) → 𝑣 = 𝑙)
141139, 140oveq12d 7273 . . . . . . . . . . 11 (((𝑤 = 𝑘𝑣 = 𝑙) ∧ 𝑧 = 𝑗) → (𝑤𝐼𝑣) = (𝑘𝐼𝑙))
142138, 141eleq12d 2833 . . . . . . . . . 10 (((𝑤 = 𝑘𝑣 = 𝑙) ∧ 𝑧 = 𝑗) → (𝑧 ∈ (𝑤𝐼𝑣) ↔ 𝑗 ∈ (𝑘𝐼𝑙)))
143142cbvrexdva 3384 . . . . . . . . 9 ((𝑤 = 𝑘𝑣 = 𝑙) → (∃𝑧 ∈ (𝐷𝐿𝐸)𝑧 ∈ (𝑤𝐼𝑣) ↔ ∃𝑗 ∈ (𝐷𝐿𝐸)𝑗 ∈ (𝑘𝐼𝑙)))
144137, 143anbi12d 630 . . . . . . . 8 ((𝑤 = 𝑘𝑣 = 𝑙) → (((𝑤 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑣 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑧 ∈ (𝐷𝐿𝐸)𝑧 ∈ (𝑤𝐼𝑣)) ↔ ((𝑘 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑙 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑗 ∈ (𝐷𝐿𝐸)𝑗 ∈ (𝑘𝐼𝑙))))
145144cbvopabv 5143 . . . . . . 7 {⟨𝑤, 𝑣⟩ ∣ ((𝑤 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑣 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑧 ∈ (𝐷𝐿𝐸)𝑧 ∈ (𝑤𝐼𝑣))} = {⟨𝑘, 𝑙⟩ ∣ ((𝑘 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑙 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑗 ∈ (𝐷𝐿𝐸)𝑗 ∈ (𝑘𝐼𝑙))}
1468adantr 480 . . . . . . . . . 10 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝐺 ∈ TarskiG)
14719adantr 480 . . . . . . . . . 10 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝐶𝑃)
14816adantr 480 . . . . . . . . . 10 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝐵𝑃)
14912adantr 480 . . . . . . . . . 10 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝐴𝑃)
15023adantr 480 . . . . . . . . . . . 12 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝐷𝑃)
15127adantr 480 . . . . . . . . . . . 12 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝐸𝑃)
15228adantr 480 . . . . . . . . . . . 12 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝑓𝑃)
15373ad8antr 736 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝐸𝐷)
154 simpr 484 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝑓 ∈ (𝐷𝐿𝐸))
1551, 32, 33, 146, 151, 150, 152, 153, 154lncom 26887 . . . . . . . . . . . . . 14 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝑓 ∈ (𝐸𝐿𝐷))
156155orcd 869 . . . . . . . . . . . . 13 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → (𝑓 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
1571, 33, 32, 146, 151, 150, 152, 156colrot1 26824 . . . . . . . . . . . 12 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → (𝐸 ∈ (𝐷𝐿𝑓) ∨ 𝐷 = 𝑓))
158129adantr 480 . . . . . . . . . . . . 13 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩)
1591, 2, 32, 3, 146, 149, 148, 147, 150, 151, 152, 158trgcgrcom 26793 . . . . . . . . . . . 12 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → ⟨“𝐷𝐸𝑓”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝐶”⟩)
1601, 33, 32, 146, 150, 151, 152, 3, 149, 148, 147, 157, 159lnxfr 26831 . . . . . . . . . . 11 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → (𝐵 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
1611, 33, 32, 146, 149, 147, 148, 160colrot1 26824 . . . . . . . . . 10 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → (𝐴 ∈ (𝐶𝐿𝐵) ∨ 𝐶 = 𝐵))
1621, 33, 32, 146, 147, 148, 149, 161colcom 26823 . . . . . . . . 9 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
16334ad8antr 736 . . . . . . . . 9 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
164162, 163pm2.65da 813 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ¬ 𝑓 ∈ (𝐷𝐿𝐸))
1651, 32, 33, 8, 132, 48, 145, 108, 88, 28, 95, 164, 109hphl 27036 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝑞)
16670ad4antr 728 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐹𝑃)
167166ad2antrr 722 . . . . . . . 8 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝐹𝑃)
168167adantr 480 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐹𝑃)
169 simplrr 774 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
1701, 32, 33, 8, 132, 28, 145, 95, 165, 168, 169hpgtr 27033 . . . . . 6 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
171129, 170jca 511 . . . . 5 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
1721, 32, 108, 47, 44, 18, 7, 96, 2, 99, 64hlcgrex 26881 . . . . 5 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → ∃𝑓𝑃 (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))
173171, 172reximddv 3203 . . . 4 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → ∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
1741, 33, 32, 4, 24, 70, 20, 71ncolrot2 26828 . . . . . . . 8 (𝜑 → ¬ (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
175 ioran 980 . . . . . . . 8 (¬ (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸) ↔ (¬ 𝐹 ∈ (𝐷𝐿𝐸) ∧ ¬ 𝐷 = 𝐸))
176174, 175sylib 217 . . . . . . 7 (𝜑 → (¬ 𝐹 ∈ (𝐷𝐿𝐸) ∧ ¬ 𝐷 = 𝐸))
177176simpld 494 . . . . . 6 (𝜑 → ¬ 𝐹 ∈ (𝐷𝐿𝐸))
178177ad4antr 728 . . . . 5 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → ¬ 𝐹 ∈ (𝐷𝐿𝐸))
1791, 2, 32, 33, 6, 36, 131, 145, 87, 166, 178lnperpex 27068 . . . 4 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → ∃𝑞𝑃 ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
180173, 179r19.29a 3217 . . 3 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → ∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
1811, 33, 32, 5, 10, 14, 42, 3, 21, 25, 2, 79, 30lnext 26832 . . 3 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → ∃𝑦𝑃 ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩)
182180, 181r19.29a 3217 . 2 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → ∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
1831, 2, 32, 33, 4, 39, 17, 60footex 26986 . 2 (𝜑 → ∃𝑥 ∈ (𝐴𝐿𝐵)(𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵))
184182, 183r19.29a 3217 1 (𝜑 → ∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  wrex 3064  cdif 3880   class class class wbr 5070  {copab 5132  ran crn 5581  cfv 6418  (class class class)co 7255  2c2 11958  ⟨“cs3 14483  Basecbs 16840  distcds 16897  TarskiGcstrkg 26693  DimTarskiGcstrkgld 26697  Itvcitv 26699  LineGclng 26700  cgrGccgrg 26775  hlGchlg 26865  pInvGcmir 26917  ⟂Gcperpg 26960  hpGchpg 27022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-concat 14202  df-s1 14229  df-s2 14489  df-s3 14490  df-trkgc 26713  df-trkgb 26714  df-trkgcb 26715  df-trkgld 26717  df-trkg 26718  df-cgrg 26776  df-ismt 26798  df-leg 26848  df-hlg 26866  df-mir 26918  df-rag 26959  df-perpg 26961  df-hpg 27023  df-mid 27039  df-lmi 27040
This theorem is referenced by:  trgcopyeu  27071  acopy  27098  cgrg3col4  27118
  Copyright terms: Public domain W3C validator