MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trgcopy Structured version   Visualization version   GIF version

Theorem trgcopy 27746
Description: Triangle construction: a copy of a given triangle can always be constructed in such a way that one side is lying on a half-line, and the third vertex is on a given half-plane: existence part. First part of Theorem 10.16 of [Schwabhauser] p. 92. (Contributed by Thierry Arnoux, 4-Aug-2020.)
Hypotheses
Ref Expression
trgcopy.p 𝑃 = (Base‘𝐺)
trgcopy.m = (dist‘𝐺)
trgcopy.i 𝐼 = (Itv‘𝐺)
trgcopy.l 𝐿 = (LineG‘𝐺)
trgcopy.k 𝐾 = (hlG‘𝐺)
trgcopy.g (𝜑𝐺 ∈ TarskiG)
trgcopy.a (𝜑𝐴𝑃)
trgcopy.b (𝜑𝐵𝑃)
trgcopy.c (𝜑𝐶𝑃)
trgcopy.d (𝜑𝐷𝑃)
trgcopy.e (𝜑𝐸𝑃)
trgcopy.f (𝜑𝐹𝑃)
trgcopy.1 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
trgcopy.2 (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
trgcopy.3 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
Assertion
Ref Expression
trgcopy (𝜑 → ∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
Distinct variable groups:   ,𝑓   𝐴,𝑓   𝐵,𝑓   𝐶,𝑓   𝐷,𝑓   𝑓,𝐸   𝑓,𝐹   𝑓,𝐺   𝑓,𝐼   𝑓,𝐿   𝑃,𝑓   𝜑,𝑓   𝑓,𝐾

Proof of Theorem trgcopy
Dummy variables 𝑗 𝑘 𝑙 𝑞 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trgcopy.p . . . . . . 7 𝑃 = (Base‘𝐺)
2 trgcopy.m . . . . . . 7 = (dist‘𝐺)
3 eqid 2736 . . . . . . 7 (cgrG‘𝐺) = (cgrG‘𝐺)
4 trgcopy.g . . . . . . . . . . 11 (𝜑𝐺 ∈ TarskiG)
54ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐺 ∈ TarskiG)
65ad2antrr 724 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐺 ∈ TarskiG)
76ad2antrr 724 . . . . . . . 8 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝐺 ∈ TarskiG)
87adantr 481 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐺 ∈ TarskiG)
9 trgcopy.a . . . . . . . . . 10 (𝜑𝐴𝑃)
109ad2antrr 724 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐴𝑃)
1110ad2antrr 724 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐴𝑃)
1211ad3antrrr 728 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐴𝑃)
13 trgcopy.b . . . . . . . . . 10 (𝜑𝐵𝑃)
1413ad2antrr 724 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐵𝑃)
1514ad2antrr 724 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐵𝑃)
1615ad3antrrr 728 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐵𝑃)
17 trgcopy.c . . . . . . . . 9 (𝜑𝐶𝑃)
1817ad6antr 734 . . . . . . . 8 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝐶𝑃)
1918adantr 481 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐶𝑃)
20 trgcopy.d . . . . . . . . . 10 (𝜑𝐷𝑃)
2120ad2antrr 724 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐷𝑃)
2221ad2antrr 724 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐷𝑃)
2322ad3antrrr 728 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐷𝑃)
24 trgcopy.e . . . . . . . . . 10 (𝜑𝐸𝑃)
2524ad2antrr 724 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐸𝑃)
2625ad2antrr 724 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐸𝑃)
2726ad3antrrr 728 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐸𝑃)
28 simprl 769 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑓𝑃)
29 trgcopy.3 . . . . . . . . 9 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
3029ad2antrr 724 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → (𝐴 𝐵) = (𝐷 𝐸))
3130ad5antr 732 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐴 𝐵) = (𝐷 𝐸))
32 trgcopy.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
33 trgcopy.l . . . . . . . . . . 11 𝐿 = (LineG‘𝐺)
34 trgcopy.1 . . . . . . . . . . 11 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
351, 33, 32, 4, 13, 17, 9, 34ncoltgdim2 27507 . . . . . . . . . 10 (𝜑𝐺DimTarskiG≥2)
3635ad4antr 730 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐺DimTarskiG≥2)
3736ad3antrrr 728 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐺DimTarskiG≥2)
381, 32, 33, 4, 9, 13, 17, 34ncolne1 27567 . . . . . . . . . . . . . 14 (𝜑𝐴𝐵)
391, 32, 33, 4, 9, 13, 38tgelrnln 27572 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝐿𝐵) ∈ ran 𝐿)
4039ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → (𝐴𝐿𝐵) ∈ ran 𝐿)
41 simplr 767 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝑥 ∈ (𝐴𝐿𝐵))
421, 33, 32, 5, 40, 41tglnpt 27491 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝑥𝑃)
4342ad2antrr 724 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝑥𝑃)
4443ad2antrr 724 . . . . . . . . 9 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑥𝑃)
4544adantr 481 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑥𝑃)
46 simplr 767 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝑦𝑃)
4746ad2antrr 724 . . . . . . . . 9 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑦𝑃)
4847adantr 481 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑦𝑃)
4941ad5antr 732 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑥 ∈ (𝐴𝐿𝐵))
5038ad7antr 736 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐴𝐵)
511, 32, 33, 8, 12, 16, 50tglinecom 27577 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐴𝐿𝐵) = (𝐵𝐿𝐴))
5249, 51eleqtrd 2840 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑥 ∈ (𝐵𝐿𝐴))
53 simp-6r 786 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵))
5433, 8, 53perpln1 27652 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐶𝐿𝑥) ∈ ran 𝐿)
5540ad5antr 732 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐴𝐿𝐵) ∈ ran 𝐿)
561, 2, 32, 33, 8, 54, 55, 53perpcom 27655 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐶𝐿𝑥))
571, 33, 32, 4, 13, 17, 9, 34ncolrot2 27505 . . . . . . . . . . . . . . . . . 18 (𝜑 → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
58 ioran 982 . . . . . . . . . . . . . . . . . 18 (¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ↔ (¬ 𝐶 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝐴 = 𝐵))
5957, 58sylib 217 . . . . . . . . . . . . . . . . 17 (𝜑 → (¬ 𝐶 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝐴 = 𝐵))
6059simpld 495 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ 𝐶 ∈ (𝐴𝐿𝐵))
6160ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → ¬ 𝐶 ∈ (𝐴𝐿𝐵))
62 nelne2 3042 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝐶 ∈ (𝐴𝐿𝐵)) → 𝑥𝐶)
6341, 61, 62syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝑥𝐶)
6463ad4antr 730 . . . . . . . . . . . . 13 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑥𝐶)
6564adantr 481 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑥𝐶)
6665necomd 2999 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐶𝑥)
671, 32, 33, 8, 19, 45, 66tglinecom 27577 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐶𝐿𝑥) = (𝑥𝐿𝐶))
6856, 51, 673brtr3d 5136 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐵𝐿𝐴)(⟂G‘𝐺)(𝑥𝐿𝐶))
691, 2, 32, 33, 8, 16, 12, 52, 19, 68perprag 27668 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ⟨“𝐵𝑥𝐶”⟩ ∈ (∟G‘𝐺))
70 trgcopy.f . . . . . . . . . . . . 13 (𝜑𝐹𝑃)
71 trgcopy.2 . . . . . . . . . . . . 13 (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
721, 32, 33, 4, 20, 24, 70, 71ncolne1 27567 . . . . . . . . . . . 12 (𝜑𝐷𝐸)
7372necomd 2999 . . . . . . . . . . 11 (𝜑𝐸𝐷)
7473ad7antr 736 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐸𝐷)
7572ad4antr 730 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐷𝐸)
7675neneqd 2948 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → ¬ 𝐷 = 𝐸)
7741orcd 871 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → (𝑥 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
781, 33, 32, 5, 10, 14, 42, 77colrot2 27502 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → (𝐵 ∈ (𝑥𝐿𝐴) ∨ 𝑥 = 𝐴))
791, 33, 32, 5, 42, 10, 14, 78colcom 27500 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → (𝐵 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥))
8079ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝐵 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥))
81 simpr 485 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩)
821, 33, 32, 6, 11, 15, 43, 3, 22, 26, 46, 80, 81lnxfr 27508 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝐸 ∈ (𝐷𝐿𝑦) ∨ 𝐷 = 𝑦))
831, 33, 32, 6, 22, 46, 26, 82colrot2 27502 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝑦 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
841, 33, 32, 6, 26, 22, 46, 83colcom 27500 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝑦 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
8584orcomd 869 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝐷 = 𝐸𝑦 ∈ (𝐷𝐿𝐸)))
8685ord 862 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (¬ 𝐷 = 𝐸𝑦 ∈ (𝐷𝐿𝐸)))
8776, 86mpd 15 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝑦 ∈ (𝐷𝐿𝐸))
8887ad3antrrr 728 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑦 ∈ (𝐷𝐿𝐸))
891, 32, 33, 8, 27, 23, 48, 74, 88lncom 27564 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑦 ∈ (𝐸𝐿𝐷))
90 simprrr 780 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑦 𝑓) = (𝑥 𝐶))
9190eqcomd 2742 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑥 𝐶) = (𝑦 𝑓))
921, 2, 32, 8, 45, 19, 48, 28, 91, 65tgcgrneq 27425 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑦𝑓)
931, 32, 33, 8, 48, 28, 92tgelrnln 27572 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑦𝐿𝑓) ∈ ran 𝐿)
941, 32, 33, 8, 27, 23, 74tgelrnln 27572 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐸𝐿𝐷) ∈ ran 𝐿)
95 simpllr 774 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑞𝑃)
96 simplr 767 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑞𝑃)
97 simprl 769 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → (𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦))
9833, 7, 97perpln2 27653 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → (𝑞𝐿𝑦) ∈ ran 𝐿)
991, 32, 33, 7, 96, 47, 98tglnne 27570 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑞𝑦)
10099adantr 481 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑞𝑦)
101100necomd 2999 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑦𝑞)
1021, 32, 33, 8, 48, 95, 101tgelrnln 27572 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑦𝐿𝑞) ∈ ran 𝐿)
10397adantr 481 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦))
1041, 32, 33, 8, 27, 23, 74tglinecom 27577 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐸𝐿𝐷) = (𝐷𝐿𝐸))
1051, 32, 33, 8, 48, 95, 101tglinecom 27577 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑦𝐿𝑞) = (𝑞𝐿𝑦))
106103, 104, 1053brtr4d 5137 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐸𝐿𝐷)(⟂G‘𝐺)(𝑦𝐿𝑞))
1071, 2, 32, 33, 8, 94, 102, 106perpcom 27655 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑦𝐿𝑞)(⟂G‘𝐺)(𝐸𝐿𝐷))
108 trgcopy.k . . . . . . . . . . . . . 14 𝐾 = (hlG‘𝐺)
109 simprrl 779 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑓(𝐾𝑦)𝑞)
1101, 32, 108, 28, 95, 48, 8, 33, 109hlln 27549 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑓 ∈ (𝑞𝐿𝑦))
1111, 32, 33, 8, 48, 95, 28, 101, 110lncom 27564 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑓 ∈ (𝑦𝐿𝑞))
112111orcd 871 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑓 ∈ (𝑦𝐿𝑞) ∨ 𝑦 = 𝑞))
1131, 2, 32, 33, 8, 48, 95, 28, 107, 112, 92colperp 27671 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑦𝐿𝑓)(⟂G‘𝐺)(𝐸𝐿𝐷))
1141, 2, 32, 33, 8, 93, 94, 113perpcom 27655 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐸𝐿𝐷)(⟂G‘𝐺)(𝑦𝐿𝑓))
1151, 2, 32, 33, 8, 27, 23, 89, 28, 114perprag 27668 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ⟨“𝐸𝑦𝑓”⟩ ∈ (∟G‘𝐺))
11681ad3antrrr 728 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩)
1171, 2, 32, 3, 8, 12, 16, 45, 23, 27, 48, 116cgr3simp2 27463 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐵 𝑥) = (𝐸 𝑦))
1181, 2, 32, 8, 37, 16, 45, 19, 27, 48, 28, 69, 115, 117, 91hypcgr 27743 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐵 𝐶) = (𝐸 𝑓))
119 eqid 2736 . . . . . . . . 9 (pInvG‘𝐺) = (pInvG‘𝐺)
12051, 68eqbrtrd 5127 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑥𝐿𝐶))
1211, 2, 32, 33, 8, 12, 16, 49, 19, 120perprag 27668 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ⟨“𝐴𝑥𝐶”⟩ ∈ (∟G‘𝐺))
1221, 2, 32, 33, 119, 8, 12, 45, 19, 121ragcom 27640 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ⟨“𝐶𝑥𝐴”⟩ ∈ (∟G‘𝐺))
123104, 114eqbrtrrd 5129 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐷𝐿𝐸)(⟂G‘𝐺)(𝑦𝐿𝑓))
1241, 2, 32, 33, 8, 23, 27, 88, 28, 123perprag 27668 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ⟨“𝐷𝑦𝑓”⟩ ∈ (∟G‘𝐺))
1251, 2, 32, 33, 119, 8, 23, 48, 28, 124ragcom 27640 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ⟨“𝑓𝑦𝐷”⟩ ∈ (∟G‘𝐺))
1261, 2, 32, 8, 45, 19, 48, 28, 91tgcgrcomlr 27422 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐶 𝑥) = (𝑓 𝑦))
1271, 2, 32, 3, 8, 12, 16, 45, 23, 27, 48, 116cgr3simp3 27464 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑥 𝐴) = (𝑦 𝐷))
1281, 2, 32, 8, 37, 19, 45, 12, 28, 48, 23, 122, 125, 126, 127hypcgr 27743 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐶 𝐴) = (𝑓 𝐷))
1291, 2, 3, 8, 12, 16, 19, 23, 27, 28, 31, 118, 128trgcgr 27458 . . . . . 6 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩)
1301, 32, 33, 4, 20, 24, 72tgelrnln 27572 . . . . . . . . 9 (𝜑 → (𝐷𝐿𝐸) ∈ ran 𝐿)
131130ad4antr 730 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝐷𝐿𝐸) ∈ ran 𝐿)
132131ad3antrrr 728 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐷𝐿𝐸) ∈ ran 𝐿)
133 simpl 483 . . . . . . . . . . 11 ((𝑤 = 𝑘𝑣 = 𝑙) → 𝑤 = 𝑘)
134133eleq1d 2822 . . . . . . . . . 10 ((𝑤 = 𝑘𝑣 = 𝑙) → (𝑤 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ↔ 𝑘 ∈ (𝑃 ∖ (𝐷𝐿𝐸))))
135 simpr 485 . . . . . . . . . . 11 ((𝑤 = 𝑘𝑣 = 𝑙) → 𝑣 = 𝑙)
136135eleq1d 2822 . . . . . . . . . 10 ((𝑤 = 𝑘𝑣 = 𝑙) → (𝑣 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ↔ 𝑙 ∈ (𝑃 ∖ (𝐷𝐿𝐸))))
137134, 136anbi12d 631 . . . . . . . . 9 ((𝑤 = 𝑘𝑣 = 𝑙) → ((𝑤 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑣 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ↔ (𝑘 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑙 ∈ (𝑃 ∖ (𝐷𝐿𝐸)))))
138 simpr 485 . . . . . . . . . . 11 (((𝑤 = 𝑘𝑣 = 𝑙) ∧ 𝑧 = 𝑗) → 𝑧 = 𝑗)
139 simpll 765 . . . . . . . . . . . 12 (((𝑤 = 𝑘𝑣 = 𝑙) ∧ 𝑧 = 𝑗) → 𝑤 = 𝑘)
140 simplr 767 . . . . . . . . . . . 12 (((𝑤 = 𝑘𝑣 = 𝑙) ∧ 𝑧 = 𝑗) → 𝑣 = 𝑙)
141139, 140oveq12d 7375 . . . . . . . . . . 11 (((𝑤 = 𝑘𝑣 = 𝑙) ∧ 𝑧 = 𝑗) → (𝑤𝐼𝑣) = (𝑘𝐼𝑙))
142138, 141eleq12d 2832 . . . . . . . . . 10 (((𝑤 = 𝑘𝑣 = 𝑙) ∧ 𝑧 = 𝑗) → (𝑧 ∈ (𝑤𝐼𝑣) ↔ 𝑗 ∈ (𝑘𝐼𝑙)))
143142cbvrexdva 3327 . . . . . . . . 9 ((𝑤 = 𝑘𝑣 = 𝑙) → (∃𝑧 ∈ (𝐷𝐿𝐸)𝑧 ∈ (𝑤𝐼𝑣) ↔ ∃𝑗 ∈ (𝐷𝐿𝐸)𝑗 ∈ (𝑘𝐼𝑙)))
144137, 143anbi12d 631 . . . . . . . 8 ((𝑤 = 𝑘𝑣 = 𝑙) → (((𝑤 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑣 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑧 ∈ (𝐷𝐿𝐸)𝑧 ∈ (𝑤𝐼𝑣)) ↔ ((𝑘 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑙 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑗 ∈ (𝐷𝐿𝐸)𝑗 ∈ (𝑘𝐼𝑙))))
145144cbvopabv 5178 . . . . . . 7 {⟨𝑤, 𝑣⟩ ∣ ((𝑤 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑣 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑧 ∈ (𝐷𝐿𝐸)𝑧 ∈ (𝑤𝐼𝑣))} = {⟨𝑘, 𝑙⟩ ∣ ((𝑘 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑙 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑗 ∈ (𝐷𝐿𝐸)𝑗 ∈ (𝑘𝐼𝑙))}
1468adantr 481 . . . . . . . . . 10 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝐺 ∈ TarskiG)
14719adantr 481 . . . . . . . . . 10 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝐶𝑃)
14816adantr 481 . . . . . . . . . 10 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝐵𝑃)
14912adantr 481 . . . . . . . . . 10 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝐴𝑃)
15023adantr 481 . . . . . . . . . . . 12 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝐷𝑃)
15127adantr 481 . . . . . . . . . . . 12 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝐸𝑃)
15228adantr 481 . . . . . . . . . . . 12 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝑓𝑃)
15373ad8antr 738 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝐸𝐷)
154 simpr 485 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝑓 ∈ (𝐷𝐿𝐸))
1551, 32, 33, 146, 151, 150, 152, 153, 154lncom 27564 . . . . . . . . . . . . . 14 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝑓 ∈ (𝐸𝐿𝐷))
156155orcd 871 . . . . . . . . . . . . 13 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → (𝑓 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
1571, 33, 32, 146, 151, 150, 152, 156colrot1 27501 . . . . . . . . . . . 12 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → (𝐸 ∈ (𝐷𝐿𝑓) ∨ 𝐷 = 𝑓))
158129adantr 481 . . . . . . . . . . . . 13 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩)
1591, 2, 32, 3, 146, 149, 148, 147, 150, 151, 152, 158trgcgrcom 27470 . . . . . . . . . . . 12 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → ⟨“𝐷𝐸𝑓”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝐶”⟩)
1601, 33, 32, 146, 150, 151, 152, 3, 149, 148, 147, 157, 159lnxfr 27508 . . . . . . . . . . 11 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → (𝐵 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
1611, 33, 32, 146, 149, 147, 148, 160colrot1 27501 . . . . . . . . . 10 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → (𝐴 ∈ (𝐶𝐿𝐵) ∨ 𝐶 = 𝐵))
1621, 33, 32, 146, 147, 148, 149, 161colcom 27500 . . . . . . . . 9 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
16334ad8antr 738 . . . . . . . . 9 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
164162, 163pm2.65da 815 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ¬ 𝑓 ∈ (𝐷𝐿𝐸))
1651, 32, 33, 8, 132, 48, 145, 108, 88, 28, 95, 164, 109hphl 27713 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝑞)
16670ad4antr 730 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐹𝑃)
167166ad2antrr 724 . . . . . . . 8 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝐹𝑃)
168167adantr 481 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐹𝑃)
169 simplrr 776 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
1701, 32, 33, 8, 132, 28, 145, 95, 165, 168, 169hpgtr 27710 . . . . . 6 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
171129, 170jca 512 . . . . 5 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
1721, 32, 108, 47, 44, 18, 7, 96, 2, 99, 64hlcgrex 27558 . . . . 5 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → ∃𝑓𝑃 (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))
173171, 172reximddv 3168 . . . 4 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → ∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
1741, 33, 32, 4, 24, 70, 20, 71ncolrot2 27505 . . . . . . . 8 (𝜑 → ¬ (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
175 ioran 982 . . . . . . . 8 (¬ (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸) ↔ (¬ 𝐹 ∈ (𝐷𝐿𝐸) ∧ ¬ 𝐷 = 𝐸))
176174, 175sylib 217 . . . . . . 7 (𝜑 → (¬ 𝐹 ∈ (𝐷𝐿𝐸) ∧ ¬ 𝐷 = 𝐸))
177176simpld 495 . . . . . 6 (𝜑 → ¬ 𝐹 ∈ (𝐷𝐿𝐸))
178177ad4antr 730 . . . . 5 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → ¬ 𝐹 ∈ (𝐷𝐿𝐸))
1791, 2, 32, 33, 6, 36, 131, 145, 87, 166, 178lnperpex 27745 . . . 4 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → ∃𝑞𝑃 ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
180173, 179r19.29a 3159 . . 3 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → ∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
1811, 33, 32, 5, 10, 14, 42, 3, 21, 25, 2, 79, 30lnext 27509 . . 3 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → ∃𝑦𝑃 ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩)
182180, 181r19.29a 3159 . 2 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → ∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
1831, 2, 32, 33, 4, 39, 17, 60footex 27663 . 2 (𝜑 → ∃𝑥 ∈ (𝐴𝐿𝐵)(𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵))
184182, 183r19.29a 3159 1 (𝜑 → ∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2943  wrex 3073  cdif 3907   class class class wbr 5105  {copab 5167  ran crn 5634  cfv 6496  (class class class)co 7357  2c2 12208  ⟨“cs3 14731  Basecbs 17083  distcds 17142  TarskiGcstrkg 27369  DimTarskiGcstrkgld 27373  Itvcitv 27375  LineGclng 27376  cgrGccgrg 27452  hlGchlg 27542  pInvGcmir 27594  ⟂Gcperpg 27637  hpGchpg 27699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-hash 14231  df-word 14403  df-concat 14459  df-s1 14484  df-s2 14737  df-s3 14738  df-trkgc 27390  df-trkgb 27391  df-trkgcb 27392  df-trkgld 27394  df-trkg 27395  df-cgrg 27453  df-ismt 27475  df-leg 27525  df-hlg 27543  df-mir 27595  df-rag 27636  df-perpg 27638  df-hpg 27700  df-mid 27716  df-lmi 27717
This theorem is referenced by:  trgcopyeu  27748  acopy  27775  cgrg3col4  27795
  Copyright terms: Public domain W3C validator