MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trgcopy Structured version   Visualization version   GIF version

Theorem trgcopy 28738
Description: Triangle construction: a copy of a given triangle can always be constructed in such a way that one side is lying on a half-line, and the third vertex is on a given half-plane: existence part. First part of Theorem 10.16 of [Schwabhauser] p. 92. (Contributed by Thierry Arnoux, 4-Aug-2020.)
Hypotheses
Ref Expression
trgcopy.p 𝑃 = (Base‘𝐺)
trgcopy.m = (dist‘𝐺)
trgcopy.i 𝐼 = (Itv‘𝐺)
trgcopy.l 𝐿 = (LineG‘𝐺)
trgcopy.k 𝐾 = (hlG‘𝐺)
trgcopy.g (𝜑𝐺 ∈ TarskiG)
trgcopy.a (𝜑𝐴𝑃)
trgcopy.b (𝜑𝐵𝑃)
trgcopy.c (𝜑𝐶𝑃)
trgcopy.d (𝜑𝐷𝑃)
trgcopy.e (𝜑𝐸𝑃)
trgcopy.f (𝜑𝐹𝑃)
trgcopy.1 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
trgcopy.2 (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
trgcopy.3 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
Assertion
Ref Expression
trgcopy (𝜑 → ∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
Distinct variable groups:   ,𝑓   𝐴,𝑓   𝐵,𝑓   𝐶,𝑓   𝐷,𝑓   𝑓,𝐸   𝑓,𝐹   𝑓,𝐺   𝑓,𝐼   𝑓,𝐿   𝑃,𝑓   𝜑,𝑓   𝑓,𝐾

Proof of Theorem trgcopy
Dummy variables 𝑗 𝑘 𝑙 𝑞 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trgcopy.p . . . . . . 7 𝑃 = (Base‘𝐺)
2 trgcopy.m . . . . . . 7 = (dist‘𝐺)
3 eqid 2730 . . . . . . 7 (cgrG‘𝐺) = (cgrG‘𝐺)
4 trgcopy.g . . . . . . . . . . 11 (𝜑𝐺 ∈ TarskiG)
54ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐺 ∈ TarskiG)
65ad2antrr 726 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐺 ∈ TarskiG)
76ad2antrr 726 . . . . . . . 8 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝐺 ∈ TarskiG)
87adantr 480 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐺 ∈ TarskiG)
9 trgcopy.a . . . . . . . . . 10 (𝜑𝐴𝑃)
109ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐴𝑃)
1110ad2antrr 726 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐴𝑃)
1211ad3antrrr 730 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐴𝑃)
13 trgcopy.b . . . . . . . . . 10 (𝜑𝐵𝑃)
1413ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐵𝑃)
1514ad2antrr 726 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐵𝑃)
1615ad3antrrr 730 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐵𝑃)
17 trgcopy.c . . . . . . . . 9 (𝜑𝐶𝑃)
1817ad6antr 736 . . . . . . . 8 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝐶𝑃)
1918adantr 480 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐶𝑃)
20 trgcopy.d . . . . . . . . . 10 (𝜑𝐷𝑃)
2120ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐷𝑃)
2221ad2antrr 726 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐷𝑃)
2322ad3antrrr 730 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐷𝑃)
24 trgcopy.e . . . . . . . . . 10 (𝜑𝐸𝑃)
2524ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐸𝑃)
2625ad2antrr 726 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐸𝑃)
2726ad3antrrr 730 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐸𝑃)
28 simprl 770 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑓𝑃)
29 trgcopy.3 . . . . . . . . 9 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
3029ad2antrr 726 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → (𝐴 𝐵) = (𝐷 𝐸))
3130ad5antr 734 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐴 𝐵) = (𝐷 𝐸))
32 trgcopy.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
33 trgcopy.l . . . . . . . . . . 11 𝐿 = (LineG‘𝐺)
34 trgcopy.1 . . . . . . . . . . 11 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
351, 33, 32, 4, 13, 17, 9, 34ncoltgdim2 28499 . . . . . . . . . 10 (𝜑𝐺DimTarskiG≥2)
3635ad4antr 732 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐺DimTarskiG≥2)
3736ad3antrrr 730 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐺DimTarskiG≥2)
381, 32, 33, 4, 9, 13, 17, 34ncolne1 28559 . . . . . . . . . . . . . 14 (𝜑𝐴𝐵)
391, 32, 33, 4, 9, 13, 38tgelrnln 28564 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝐿𝐵) ∈ ran 𝐿)
4039ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → (𝐴𝐿𝐵) ∈ ran 𝐿)
41 simplr 768 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝑥 ∈ (𝐴𝐿𝐵))
421, 33, 32, 5, 40, 41tglnpt 28483 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝑥𝑃)
4342ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝑥𝑃)
4443ad2antrr 726 . . . . . . . . 9 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑥𝑃)
4544adantr 480 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑥𝑃)
46 simplr 768 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝑦𝑃)
4746ad2antrr 726 . . . . . . . . 9 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑦𝑃)
4847adantr 480 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑦𝑃)
4941ad5antr 734 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑥 ∈ (𝐴𝐿𝐵))
5038ad7antr 738 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐴𝐵)
511, 32, 33, 8, 12, 16, 50tglinecom 28569 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐴𝐿𝐵) = (𝐵𝐿𝐴))
5249, 51eleqtrd 2831 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑥 ∈ (𝐵𝐿𝐴))
53 simp-6r 787 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵))
5433, 8, 53perpln1 28644 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐶𝐿𝑥) ∈ ran 𝐿)
5540ad5antr 734 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐴𝐿𝐵) ∈ ran 𝐿)
561, 2, 32, 33, 8, 54, 55, 53perpcom 28647 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐶𝐿𝑥))
571, 33, 32, 4, 13, 17, 9, 34ncolrot2 28497 . . . . . . . . . . . . . . . . . 18 (𝜑 → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
58 ioran 985 . . . . . . . . . . . . . . . . . 18 (¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ↔ (¬ 𝐶 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝐴 = 𝐵))
5957, 58sylib 218 . . . . . . . . . . . . . . . . 17 (𝜑 → (¬ 𝐶 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝐴 = 𝐵))
6059simpld 494 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ 𝐶 ∈ (𝐴𝐿𝐵))
6160ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → ¬ 𝐶 ∈ (𝐴𝐿𝐵))
62 nelne2 3024 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝐶 ∈ (𝐴𝐿𝐵)) → 𝑥𝐶)
6341, 61, 62syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝑥𝐶)
6463ad4antr 732 . . . . . . . . . . . . 13 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑥𝐶)
6564adantr 480 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑥𝐶)
6665necomd 2981 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐶𝑥)
671, 32, 33, 8, 19, 45, 66tglinecom 28569 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐶𝐿𝑥) = (𝑥𝐿𝐶))
6856, 51, 673brtr3d 5141 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐵𝐿𝐴)(⟂G‘𝐺)(𝑥𝐿𝐶))
691, 2, 32, 33, 8, 16, 12, 52, 19, 68perprag 28660 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ⟨“𝐵𝑥𝐶”⟩ ∈ (∟G‘𝐺))
70 trgcopy.f . . . . . . . . . . . . 13 (𝜑𝐹𝑃)
71 trgcopy.2 . . . . . . . . . . . . 13 (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
721, 32, 33, 4, 20, 24, 70, 71ncolne1 28559 . . . . . . . . . . . 12 (𝜑𝐷𝐸)
7372necomd 2981 . . . . . . . . . . 11 (𝜑𝐸𝐷)
7473ad7antr 738 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐸𝐷)
7572ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐷𝐸)
7675neneqd 2931 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → ¬ 𝐷 = 𝐸)
7741orcd 873 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → (𝑥 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
781, 33, 32, 5, 10, 14, 42, 77colrot2 28494 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → (𝐵 ∈ (𝑥𝐿𝐴) ∨ 𝑥 = 𝐴))
791, 33, 32, 5, 42, 10, 14, 78colcom 28492 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → (𝐵 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥))
8079ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝐵 ∈ (𝐴𝐿𝑥) ∨ 𝐴 = 𝑥))
81 simpr 484 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩)
821, 33, 32, 6, 11, 15, 43, 3, 22, 26, 46, 80, 81lnxfr 28500 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝐸 ∈ (𝐷𝐿𝑦) ∨ 𝐷 = 𝑦))
831, 33, 32, 6, 22, 46, 26, 82colrot2 28494 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝑦 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
841, 33, 32, 6, 26, 22, 46, 83colcom 28492 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝑦 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
8584orcomd 871 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝐷 = 𝐸𝑦 ∈ (𝐷𝐿𝐸)))
8685ord 864 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (¬ 𝐷 = 𝐸𝑦 ∈ (𝐷𝐿𝐸)))
8776, 86mpd 15 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝑦 ∈ (𝐷𝐿𝐸))
8887ad3antrrr 730 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑦 ∈ (𝐷𝐿𝐸))
891, 32, 33, 8, 27, 23, 48, 74, 88lncom 28556 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑦 ∈ (𝐸𝐿𝐷))
90 simprrr 781 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑦 𝑓) = (𝑥 𝐶))
9190eqcomd 2736 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑥 𝐶) = (𝑦 𝑓))
921, 2, 32, 8, 45, 19, 48, 28, 91, 65tgcgrneq 28417 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑦𝑓)
931, 32, 33, 8, 48, 28, 92tgelrnln 28564 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑦𝐿𝑓) ∈ ran 𝐿)
941, 32, 33, 8, 27, 23, 74tgelrnln 28564 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐸𝐿𝐷) ∈ ran 𝐿)
95 simpllr 775 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑞𝑃)
96 simplr 768 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑞𝑃)
97 simprl 770 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → (𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦))
9833, 7, 97perpln2 28645 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → (𝑞𝐿𝑦) ∈ ran 𝐿)
991, 32, 33, 7, 96, 47, 98tglnne 28562 . . . . . . . . . . . . . . 15 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝑞𝑦)
10099adantr 480 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑞𝑦)
101100necomd 2981 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑦𝑞)
1021, 32, 33, 8, 48, 95, 101tgelrnln 28564 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑦𝐿𝑞) ∈ ran 𝐿)
10397adantr 480 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦))
1041, 32, 33, 8, 27, 23, 74tglinecom 28569 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐸𝐿𝐷) = (𝐷𝐿𝐸))
1051, 32, 33, 8, 48, 95, 101tglinecom 28569 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑦𝐿𝑞) = (𝑞𝐿𝑦))
106103, 104, 1053brtr4d 5142 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐸𝐿𝐷)(⟂G‘𝐺)(𝑦𝐿𝑞))
1071, 2, 32, 33, 8, 94, 102, 106perpcom 28647 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑦𝐿𝑞)(⟂G‘𝐺)(𝐸𝐿𝐷))
108 trgcopy.k . . . . . . . . . . . . . 14 𝐾 = (hlG‘𝐺)
109 simprrl 780 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑓(𝐾𝑦)𝑞)
1101, 32, 108, 28, 95, 48, 8, 33, 109hlln 28541 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑓 ∈ (𝑞𝐿𝑦))
1111, 32, 33, 8, 48, 95, 28, 101, 110lncom 28556 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑓 ∈ (𝑦𝐿𝑞))
112111orcd 873 . . . . . . . . . . 11 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑓 ∈ (𝑦𝐿𝑞) ∨ 𝑦 = 𝑞))
1131, 2, 32, 33, 8, 48, 95, 28, 107, 112, 92colperp 28663 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑦𝐿𝑓)(⟂G‘𝐺)(𝐸𝐿𝐷))
1141, 2, 32, 33, 8, 93, 94, 113perpcom 28647 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐸𝐿𝐷)(⟂G‘𝐺)(𝑦𝐿𝑓))
1151, 2, 32, 33, 8, 27, 23, 89, 28, 114perprag 28660 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ⟨“𝐸𝑦𝑓”⟩ ∈ (∟G‘𝐺))
11681ad3antrrr 730 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩)
1171, 2, 32, 3, 8, 12, 16, 45, 23, 27, 48, 116cgr3simp2 28455 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐵 𝑥) = (𝐸 𝑦))
1181, 2, 32, 8, 37, 16, 45, 19, 27, 48, 28, 69, 115, 117, 91hypcgr 28735 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐵 𝐶) = (𝐸 𝑓))
119 eqid 2730 . . . . . . . . 9 (pInvG‘𝐺) = (pInvG‘𝐺)
12051, 68eqbrtrd 5132 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑥𝐿𝐶))
1211, 2, 32, 33, 8, 12, 16, 49, 19, 120perprag 28660 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ⟨“𝐴𝑥𝐶”⟩ ∈ (∟G‘𝐺))
1221, 2, 32, 33, 119, 8, 12, 45, 19, 121ragcom 28632 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ⟨“𝐶𝑥𝐴”⟩ ∈ (∟G‘𝐺))
123104, 114eqbrtrrd 5134 . . . . . . . . . 10 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐷𝐿𝐸)(⟂G‘𝐺)(𝑦𝐿𝑓))
1241, 2, 32, 33, 8, 23, 27, 88, 28, 123perprag 28660 . . . . . . . . 9 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ⟨“𝐷𝑦𝑓”⟩ ∈ (∟G‘𝐺))
1251, 2, 32, 33, 119, 8, 23, 48, 28, 124ragcom 28632 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ⟨“𝑓𝑦𝐷”⟩ ∈ (∟G‘𝐺))
1261, 2, 32, 8, 45, 19, 48, 28, 91tgcgrcomlr 28414 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐶 𝑥) = (𝑓 𝑦))
1271, 2, 32, 3, 8, 12, 16, 45, 23, 27, 48, 116cgr3simp3 28456 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝑥 𝐴) = (𝑦 𝐷))
1281, 2, 32, 8, 37, 19, 45, 12, 28, 48, 23, 122, 125, 126, 127hypcgr 28735 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐶 𝐴) = (𝑓 𝐷))
1291, 2, 3, 8, 12, 16, 19, 23, 27, 28, 31, 118, 128trgcgr 28450 . . . . . 6 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩)
1301, 32, 33, 4, 20, 24, 72tgelrnln 28564 . . . . . . . . 9 (𝜑 → (𝐷𝐿𝐸) ∈ ran 𝐿)
131130ad4antr 732 . . . . . . . 8 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → (𝐷𝐿𝐸) ∈ ran 𝐿)
132131ad3antrrr 730 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (𝐷𝐿𝐸) ∈ ran 𝐿)
133 simpl 482 . . . . . . . . . . 11 ((𝑤 = 𝑘𝑣 = 𝑙) → 𝑤 = 𝑘)
134133eleq1d 2814 . . . . . . . . . 10 ((𝑤 = 𝑘𝑣 = 𝑙) → (𝑤 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ↔ 𝑘 ∈ (𝑃 ∖ (𝐷𝐿𝐸))))
135 simpr 484 . . . . . . . . . . 11 ((𝑤 = 𝑘𝑣 = 𝑙) → 𝑣 = 𝑙)
136135eleq1d 2814 . . . . . . . . . 10 ((𝑤 = 𝑘𝑣 = 𝑙) → (𝑣 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ↔ 𝑙 ∈ (𝑃 ∖ (𝐷𝐿𝐸))))
137134, 136anbi12d 632 . . . . . . . . 9 ((𝑤 = 𝑘𝑣 = 𝑙) → ((𝑤 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑣 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ↔ (𝑘 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑙 ∈ (𝑃 ∖ (𝐷𝐿𝐸)))))
138 simpr 484 . . . . . . . . . . 11 (((𝑤 = 𝑘𝑣 = 𝑙) ∧ 𝑧 = 𝑗) → 𝑧 = 𝑗)
139 simpll 766 . . . . . . . . . . . 12 (((𝑤 = 𝑘𝑣 = 𝑙) ∧ 𝑧 = 𝑗) → 𝑤 = 𝑘)
140 simplr 768 . . . . . . . . . . . 12 (((𝑤 = 𝑘𝑣 = 𝑙) ∧ 𝑧 = 𝑗) → 𝑣 = 𝑙)
141139, 140oveq12d 7408 . . . . . . . . . . 11 (((𝑤 = 𝑘𝑣 = 𝑙) ∧ 𝑧 = 𝑗) → (𝑤𝐼𝑣) = (𝑘𝐼𝑙))
142138, 141eleq12d 2823 . . . . . . . . . 10 (((𝑤 = 𝑘𝑣 = 𝑙) ∧ 𝑧 = 𝑗) → (𝑧 ∈ (𝑤𝐼𝑣) ↔ 𝑗 ∈ (𝑘𝐼𝑙)))
143142cbvrexdva 3219 . . . . . . . . 9 ((𝑤 = 𝑘𝑣 = 𝑙) → (∃𝑧 ∈ (𝐷𝐿𝐸)𝑧 ∈ (𝑤𝐼𝑣) ↔ ∃𝑗 ∈ (𝐷𝐿𝐸)𝑗 ∈ (𝑘𝐼𝑙)))
144137, 143anbi12d 632 . . . . . . . 8 ((𝑤 = 𝑘𝑣 = 𝑙) → (((𝑤 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑣 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑧 ∈ (𝐷𝐿𝐸)𝑧 ∈ (𝑤𝐼𝑣)) ↔ ((𝑘 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑙 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑗 ∈ (𝐷𝐿𝐸)𝑗 ∈ (𝑘𝐼𝑙))))
145144cbvopabv 5183 . . . . . . 7 {⟨𝑤, 𝑣⟩ ∣ ((𝑤 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑣 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑧 ∈ (𝐷𝐿𝐸)𝑧 ∈ (𝑤𝐼𝑣))} = {⟨𝑘, 𝑙⟩ ∣ ((𝑘 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑙 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑗 ∈ (𝐷𝐿𝐸)𝑗 ∈ (𝑘𝐼𝑙))}
1468adantr 480 . . . . . . . . . 10 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝐺 ∈ TarskiG)
14719adantr 480 . . . . . . . . . 10 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝐶𝑃)
14816adantr 480 . . . . . . . . . 10 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝐵𝑃)
14912adantr 480 . . . . . . . . . 10 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝐴𝑃)
15023adantr 480 . . . . . . . . . . . 12 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝐷𝑃)
15127adantr 480 . . . . . . . . . . . 12 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝐸𝑃)
15228adantr 480 . . . . . . . . . . . 12 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝑓𝑃)
15373ad8antr 740 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝐸𝐷)
154 simpr 484 . . . . . . . . . . . . . . 15 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝑓 ∈ (𝐷𝐿𝐸))
1551, 32, 33, 146, 151, 150, 152, 153, 154lncom 28556 . . . . . . . . . . . . . 14 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → 𝑓 ∈ (𝐸𝐿𝐷))
156155orcd 873 . . . . . . . . . . . . 13 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → (𝑓 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
1571, 33, 32, 146, 151, 150, 152, 156colrot1 28493 . . . . . . . . . . . 12 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → (𝐸 ∈ (𝐷𝐿𝑓) ∨ 𝐷 = 𝑓))
158129adantr 480 . . . . . . . . . . . . 13 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩)
1591, 2, 32, 3, 146, 149, 148, 147, 150, 151, 152, 158trgcgrcom 28462 . . . . . . . . . . . 12 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → ⟨“𝐷𝐸𝑓”⟩(cgrG‘𝐺)⟨“𝐴𝐵𝐶”⟩)
1601, 33, 32, 146, 150, 151, 152, 3, 149, 148, 147, 157, 159lnxfr 28500 . . . . . . . . . . 11 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → (𝐵 ∈ (𝐴𝐿𝐶) ∨ 𝐴 = 𝐶))
1611, 33, 32, 146, 149, 147, 148, 160colrot1 28493 . . . . . . . . . 10 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → (𝐴 ∈ (𝐶𝐿𝐵) ∨ 𝐶 = 𝐵))
1621, 33, 32, 146, 147, 148, 149, 161colcom 28492 . . . . . . . . 9 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
16334ad8antr 740 . . . . . . . . 9 (((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) ∧ 𝑓 ∈ (𝐷𝐿𝐸)) → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
164162, 163pm2.65da 816 . . . . . . . 8 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → ¬ 𝑓 ∈ (𝐷𝐿𝐸))
1651, 32, 33, 8, 132, 48, 145, 108, 88, 28, 95, 164, 109hphl 28705 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝑞)
16670ad4antr 732 . . . . . . . . 9 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → 𝐹𝑃)
167166ad2antrr 726 . . . . . . . 8 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → 𝐹𝑃)
168167adantr 480 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝐹𝑃)
169 simplrr 777 . . . . . . 7 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
1701, 32, 33, 8, 132, 28, 145, 95, 165, 168, 169hpgtr 28702 . . . . . 6 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
171129, 170jca 511 . . . . 5 ((((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) ∧ (𝑓𝑃 ∧ (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))) → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
1721, 32, 108, 47, 44, 18, 7, 96, 2, 99, 64hlcgrex 28550 . . . . 5 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → ∃𝑓𝑃 (𝑓(𝐾𝑦)𝑞 ∧ (𝑦 𝑓) = (𝑥 𝐶)))
173171, 172reximddv 3150 . . . 4 (((((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) ∧ 𝑞𝑃) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)) → ∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
1741, 33, 32, 4, 24, 70, 20, 71ncolrot2 28497 . . . . . . . 8 (𝜑 → ¬ (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
175 ioran 985 . . . . . . . 8 (¬ (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸) ↔ (¬ 𝐹 ∈ (𝐷𝐿𝐸) ∧ ¬ 𝐷 = 𝐸))
176174, 175sylib 218 . . . . . . 7 (𝜑 → (¬ 𝐹 ∈ (𝐷𝐿𝐸) ∧ ¬ 𝐷 = 𝐸))
177176simpld 494 . . . . . 6 (𝜑 → ¬ 𝐹 ∈ (𝐷𝐿𝐸))
178177ad4antr 732 . . . . 5 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → ¬ 𝐹 ∈ (𝐷𝐿𝐸))
1791, 2, 32, 33, 6, 36, 131, 145, 87, 166, 178lnperpex 28737 . . . 4 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → ∃𝑞𝑃 ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑞𝐿𝑦) ∧ 𝑞((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
180173, 179r19.29a 3142 . . 3 (((((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑦𝑃) ∧ ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩) → ∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
1811, 33, 32, 5, 10, 14, 42, 3, 21, 25, 2, 79, 30lnext 28501 . . 3 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → ∃𝑦𝑃 ⟨“𝐴𝐵𝑥”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑦”⟩)
182180, 181r19.29a 3142 . 2 (((𝜑𝑥 ∈ (𝐴𝐿𝐵)) ∧ (𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵)) → ∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
1831, 2, 32, 33, 4, 39, 17, 60footex 28655 . 2 (𝜑 → ∃𝑥 ∈ (𝐴𝐿𝐵)(𝐶𝐿𝑥)(⟂G‘𝐺)(𝐴𝐿𝐵))
184182, 183r19.29a 3142 1 (𝜑 → ∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  wrex 3054  cdif 3914   class class class wbr 5110  {copab 5172  ran crn 5642  cfv 6514  (class class class)co 7390  2c2 12248  ⟨“cs3 14815  Basecbs 17186  distcds 17236  TarskiGcstrkg 28361  DimTarskiGcstrkgld 28365  Itvcitv 28367  LineGclng 28368  cgrGccgrg 28444  hlGchlg 28534  pInvGcmir 28586  ⟂Gcperpg 28629  hpGchpg 28691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-concat 14543  df-s1 14568  df-s2 14821  df-s3 14822  df-trkgc 28382  df-trkgb 28383  df-trkgcb 28384  df-trkgld 28386  df-trkg 28387  df-cgrg 28445  df-ismt 28467  df-leg 28517  df-hlg 28535  df-mir 28587  df-rag 28628  df-perpg 28630  df-hpg 28692  df-mid 28708  df-lmi 28709
This theorem is referenced by:  trgcopyeu  28740  acopy  28767  cgrg3col4  28787
  Copyright terms: Public domain W3C validator