MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inaghl Structured version   Visualization version   GIF version

Theorem inaghl 27787
Description: The "point lie in angle" relation is independent of the points chosen on the half lines starting from 𝐵. Theorem 11.25 of [Schwabhauser] p. 101. (Contributed by Thierry Arnoux, 27-Sep-2020.)
Hypotheses
Ref Expression
isinag.p 𝑃 = (Base‘𝐺)
isinag.i 𝐼 = (Itv‘𝐺)
isinag.k 𝐾 = (hlG‘𝐺)
isinag.x (𝜑𝑋𝑃)
isinag.a (𝜑𝐴𝑃)
isinag.b (𝜑𝐵𝑃)
isinag.c (𝜑𝐶𝑃)
inagflat.g (𝜑𝐺 ∈ TarskiG)
inagswap.1 (𝜑𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
inaghl.d (𝜑𝐷𝑃)
inaghl.f (𝜑𝐹𝑃)
inaghl.y (𝜑𝑌𝑃)
inaghl.1 (𝜑𝐷(𝐾𝐵)𝐴)
inaghl.2 (𝜑𝐹(𝐾𝐵)𝐶)
inaghl.3 (𝜑𝑌(𝐾𝐵)𝑋)
Assertion
Ref Expression
inaghl (𝜑𝑌(inA‘𝐺)⟨“𝐷𝐵𝐹”⟩)

Proof of Theorem inaghl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isinag.p . . . 4 𝑃 = (Base‘𝐺)
2 isinag.i . . . 4 𝐼 = (Itv‘𝐺)
3 isinag.k . . . 4 𝐾 = (hlG‘𝐺)
4 inaghl.d . . . 4 (𝜑𝐷𝑃)
5 isinag.a . . . 4 (𝜑𝐴𝑃)
6 isinag.b . . . 4 (𝜑𝐵𝑃)
7 inagflat.g . . . 4 (𝜑𝐺 ∈ TarskiG)
8 inaghl.1 . . . 4 (𝜑𝐷(𝐾𝐵)𝐴)
91, 2, 3, 4, 5, 6, 7, 8hlne1 27547 . . 3 (𝜑𝐷𝐵)
10 inaghl.f . . . 4 (𝜑𝐹𝑃)
11 isinag.c . . . 4 (𝜑𝐶𝑃)
12 inaghl.2 . . . 4 (𝜑𝐹(𝐾𝐵)𝐶)
131, 2, 3, 10, 11, 6, 7, 12hlne1 27547 . . 3 (𝜑𝐹𝐵)
14 inaghl.y . . . 4 (𝜑𝑌𝑃)
15 isinag.x . . . 4 (𝜑𝑋𝑃)
16 inaghl.3 . . . 4 (𝜑𝑌(𝐾𝐵)𝑋)
171, 2, 3, 14, 15, 6, 7, 16hlne1 27547 . . 3 (𝜑𝑌𝐵)
189, 13, 173jca 1128 . 2 (𝜑 → (𝐷𝐵𝐹𝐵𝑌𝐵))
196adantr 481 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵𝑃)
20 eleq1 2825 . . . . . 6 (𝑦 = 𝐵 → (𝑦 ∈ (𝐷𝐼𝐹) ↔ 𝐵 ∈ (𝐷𝐼𝐹)))
21 eqeq1 2740 . . . . . . 7 (𝑦 = 𝐵 → (𝑦 = 𝐵𝐵 = 𝐵))
22 breq1 5108 . . . . . . 7 (𝑦 = 𝐵 → (𝑦(𝐾𝐵)𝑌𝐵(𝐾𝐵)𝑌))
2321, 22orbi12d 917 . . . . . 6 (𝑦 = 𝐵 → ((𝑦 = 𝐵𝑦(𝐾𝐵)𝑌) ↔ (𝐵 = 𝐵𝐵(𝐾𝐵)𝑌)))
2420, 23anbi12d 631 . . . . 5 (𝑦 = 𝐵 → ((𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)) ↔ (𝐵 ∈ (𝐷𝐼𝐹) ∧ (𝐵 = 𝐵𝐵(𝐾𝐵)𝑌))))
2524adantl 482 . . . 4 (((𝜑𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑦 = 𝐵) → ((𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)) ↔ (𝐵 ∈ (𝐷𝐼𝐹) ∧ (𝐵 = 𝐵𝐵(𝐾𝐵)𝑌))))
265adantr 481 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐴𝑃)
274adantr 481 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐷𝑃)
2810adantr 481 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐹𝑃)
297adantr 481 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐺 ∈ TarskiG)
301, 2, 3, 4, 5, 6, 7, 8hlcomd 27546 . . . . . . 7 (𝜑𝐴(𝐾𝐵)𝐷)
3130adantr 481 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐴(𝐾𝐵)𝐷)
32 eqid 2736 . . . . . . 7 (dist‘𝐺) = (dist‘𝐺)
3311adantr 481 . . . . . . . 8 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐶𝑃)
341, 2, 3, 10, 11, 6, 7, 12hlcomd 27546 . . . . . . . . 9 (𝜑𝐶(𝐾𝐵)𝐹)
3534adantr 481 . . . . . . . 8 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐶(𝐾𝐵)𝐹)
36 simpr 485 . . . . . . . . 9 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐴𝐼𝐶))
371, 32, 2, 29, 26, 19, 33, 36tgbtwncom 27430 . . . . . . . 8 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐶𝐼𝐴))
381, 2, 3, 33, 28, 26, 29, 19, 35, 37btwnhl 27556 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐹𝐼𝐴))
391, 32, 2, 29, 28, 19, 26, 38tgbtwncom 27430 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐴𝐼𝐹))
401, 2, 3, 26, 27, 28, 29, 19, 31, 39btwnhl 27556 . . . . 5 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐷𝐼𝐹))
41 eqidd 2737 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 = 𝐵)
4241orcd 871 . . . . 5 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → (𝐵 = 𝐵𝐵(𝐾𝐵)𝑌))
4340, 42jca 512 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → (𝐵 ∈ (𝐷𝐼𝐹) ∧ (𝐵 = 𝐵𝐵(𝐾𝐵)𝑌)))
4419, 25, 43rspcedvd 3583 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
45 simpllr 774 . . . . . . 7 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝑥𝑃)
46 simpr 485 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥)
4746eleq1d 2822 . . . . . . . 8 ((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) ∧ 𝑦 = 𝑥) → (𝑦 ∈ (𝐷𝐼𝐹) ↔ 𝑥 ∈ (𝐷𝐼𝐹)))
4846eqeq1d 2738 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) ∧ 𝑦 = 𝑥) → (𝑦 = 𝐵𝑥 = 𝐵))
4946breq1d 5115 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) ∧ 𝑦 = 𝑥) → (𝑦(𝐾𝐵)𝑌𝑥(𝐾𝐵)𝑌))
5048, 49orbi12d 917 . . . . . . . 8 ((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) ∧ 𝑦 = 𝑥) → ((𝑦 = 𝐵𝑦(𝐾𝐵)𝑌) ↔ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑌)))
5147, 50anbi12d 631 . . . . . . 7 ((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) ∧ 𝑦 = 𝑥) → ((𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)) ↔ (𝑥 ∈ (𝐷𝐼𝐹) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑌))))
52 simpr 485 . . . . . . . . 9 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵)
535ad4antr 730 . . . . . . . . . 10 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐴𝑃)
544ad4antr 730 . . . . . . . . . 10 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐷𝑃)
5510ad4antr 730 . . . . . . . . . 10 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐹𝑃)
567ad4antr 730 . . . . . . . . . 10 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐺 ∈ TarskiG)
576ad4antr 730 . . . . . . . . . 10 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐵𝑃)
5830ad4antr 730 . . . . . . . . . 10 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐴(𝐾𝐵)𝐷)
5911ad4antr 730 . . . . . . . . . . . 12 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐶𝑃)
6034ad4antr 730 . . . . . . . . . . . 12 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐶(𝐾𝐵)𝐹)
61 simplr 767 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴𝐼𝐶))
621, 32, 2, 56, 53, 45, 59, 61tgbtwncom 27430 . . . . . . . . . . . . 13 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (𝐶𝐼𝐴))
6352, 62eqeltrrd 2839 . . . . . . . . . . . 12 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐵 ∈ (𝐶𝐼𝐴))
641, 2, 3, 59, 55, 53, 56, 57, 60, 63btwnhl 27556 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐵 ∈ (𝐹𝐼𝐴))
651, 32, 2, 56, 55, 57, 53, 64tgbtwncom 27430 . . . . . . . . . 10 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐵 ∈ (𝐴𝐼𝐹))
661, 2, 3, 53, 54, 55, 56, 57, 58, 65btwnhl 27556 . . . . . . . . 9 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐵 ∈ (𝐷𝐼𝐹))
6752, 66eqeltrd 2838 . . . . . . . 8 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (𝐷𝐼𝐹))
6852orcd 871 . . . . . . . 8 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → (𝑥 = 𝐵𝑥(𝐾𝐵)𝑌))
6967, 68jca 512 . . . . . . 7 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → (𝑥 ∈ (𝐷𝐼𝐹) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑌)))
7045, 51, 69rspcedvd 3583 . . . . . 6 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
717ad4antr 730 . . . . . . . . . 10 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝐺 ∈ TarskiG)
7271ad2antrr 724 . . . . . . . . 9 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝐺 ∈ TarskiG)
73 simplr 767 . . . . . . . . 9 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝑧𝑃)
746ad4antr 730 . . . . . . . . . 10 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝐵𝑃)
7574ad2antrr 724 . . . . . . . . 9 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝐵𝑃)
7611ad4antr 730 . . . . . . . . . 10 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝐶𝑃)
7776ad2antrr 724 . . . . . . . . 9 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝐶𝑃)
784ad4antr 730 . . . . . . . . . 10 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝐷𝑃)
7978ad2antrr 724 . . . . . . . . 9 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝐷𝑃)
8010ad6antr 734 . . . . . . . . 9 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝐹𝑃)
81 simpllr 774 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝑥𝑃)
8281ad2antrr 724 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝑥𝑃)
83 simprl 769 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝑥(𝐾𝐵)𝑧)
841, 2, 3, 82, 73, 75, 72, 83hlne2 27548 . . . . . . . . 9 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝑧𝐵)
8534ad6antr 734 . . . . . . . . 9 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝐶(𝐾𝐵)𝐹)
86 simprr 771 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝑧 ∈ (𝐶𝐼𝐷))
871, 32, 2, 72, 77, 73, 79, 86tgbtwncom 27430 . . . . . . . . 9 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝑧 ∈ (𝐷𝐼𝐶))
881, 2, 3, 72, 73, 75, 77, 79, 80, 84, 85, 87hlpasch 27698 . . . . . . . 8 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → ∃𝑦𝑃 (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹)))
89 simprr 771 . . . . . . . . . . 11 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑦 ∈ (𝐷𝐼𝐹))
90 simplr 767 . . . . . . . . . . . . 13 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑦𝑃)
9173ad2antrr 724 . . . . . . . . . . . . 13 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑧𝑃)
9214ad8antr 738 . . . . . . . . . . . . 13 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑌𝑃)
9372ad2antrr 724 . . . . . . . . . . . . 13 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝐺 ∈ TarskiG)
9475ad2antrr 724 . . . . . . . . . . . . 13 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝐵𝑃)
95 simprl 769 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑧(𝐾𝐵)𝑦)
961, 2, 3, 91, 90, 94, 93, 95hlcomd 27546 . . . . . . . . . . . . 13 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑦(𝐾𝐵)𝑧)
9781ad4antr 730 . . . . . . . . . . . . . . 15 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑥𝑃)
9815ad8antr 738 . . . . . . . . . . . . . . . 16 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑋𝑃)
9916ad8antr 738 . . . . . . . . . . . . . . . 16 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑌(𝐾𝐵)𝑋)
100 simp-5r 784 . . . . . . . . . . . . . . . . 17 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑥(𝐾𝐵)𝑋)
1011, 2, 3, 97, 98, 94, 93, 100hlcomd 27546 . . . . . . . . . . . . . . . 16 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑋(𝐾𝐵)𝑥)
1021, 2, 3, 92, 98, 97, 93, 94, 99, 101hltr 27552 . . . . . . . . . . . . . . 15 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑌(𝐾𝐵)𝑥)
103 simpllr 774 . . . . . . . . . . . . . . . 16 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷)))
104103simpld 495 . . . . . . . . . . . . . . 15 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑥(𝐾𝐵)𝑧)
1051, 2, 3, 92, 97, 91, 93, 94, 102, 104hltr 27552 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑌(𝐾𝐵)𝑧)
1061, 2, 3, 92, 91, 94, 93, 105hlcomd 27546 . . . . . . . . . . . . 13 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑧(𝐾𝐵)𝑌)
1071, 2, 3, 90, 91, 92, 93, 94, 96, 106hltr 27552 . . . . . . . . . . . 12 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑦(𝐾𝐵)𝑌)
108107olcd 872 . . . . . . . . . . 11 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌))
10989, 108jca 512 . . . . . . . . . 10 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
110109ex 413 . . . . . . . . 9 ((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) → ((𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹)) → (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌))))
111110reximdva 3165 . . . . . . . 8 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → (∃𝑦𝑃 (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹)) → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌))))
11288, 111mpd 15 . . . . . . 7 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
1135ad4antr 730 . . . . . . . 8 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝐴𝑃)
11415ad4antr 730 . . . . . . . . 9 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝑋𝑃)
115 simpr 485 . . . . . . . . 9 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝑥(𝐾𝐵)𝑋)
1161, 2, 3, 81, 114, 74, 71, 115hlne1 27547 . . . . . . . 8 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝑥𝐵)
11730ad4antr 730 . . . . . . . 8 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝐴(𝐾𝐵)𝐷)
118 simplr 767 . . . . . . . . 9 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝑥 ∈ (𝐴𝐼𝐶))
1191, 32, 2, 71, 113, 81, 76, 118tgbtwncom 27430 . . . . . . . 8 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝑥 ∈ (𝐶𝐼𝐴))
1201, 2, 3, 71, 81, 74, 113, 76, 78, 116, 117, 119hlpasch 27698 . . . . . . 7 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → ∃𝑧𝑃 (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷)))
121112, 120r19.29a 3159 . . . . . 6 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
12270, 121jaodan 956 . . . . 5 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)) → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
123122anasss 467 . . . 4 ((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))) → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
124 inagswap.1 . . . . . . 7 (𝜑𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
1251, 2, 3, 15, 5, 6, 11, 7isinag 27780 . . . . . . 7 (𝜑 → (𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩ ↔ ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)))))
126124, 125mpbid 231 . . . . . 6 (𝜑 → ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))))
127126simprd 496 . . . . 5 (𝜑 → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)))
128127adantr 481 . . . 4 ((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)))
129123, 128r19.29a 3159 . . 3 ((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
13044, 129pm2.61dan 811 . 2 (𝜑 → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
1311, 2, 3, 14, 4, 6, 10, 7isinag 27780 . 2 (𝜑 → (𝑌(inA‘𝐺)⟨“𝐷𝐵𝐹”⟩ ↔ ((𝐷𝐵𝐹𝐵𝑌𝐵) ∧ ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))))
13218, 130, 131mpbir2and 711 1 (𝜑𝑌(inA‘𝐺)⟨“𝐷𝐵𝐹”⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wrex 3073   class class class wbr 5105  cfv 6496  (class class class)co 7357  ⟨“cs3 14731  Basecbs 17083  distcds 17142  TarskiGcstrkg 27369  Itvcitv 27375  hlGchlg 27542  inAcinag 27777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-hash 14231  df-word 14403  df-concat 14459  df-s1 14484  df-s2 14737  df-s3 14738  df-trkgc 27390  df-trkgb 27391  df-trkgcb 27392  df-trkgld 27394  df-trkg 27395  df-cgrg 27453  df-leg 27525  df-hlg 27543  df-mir 27595  df-rag 27636  df-perpg 27638  df-inag 27779
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator