MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inaghl Structured version   Visualization version   GIF version

Theorem inaghl 26639
Description: The "point lie in angle" relation is independent of the points chosen on the half lines starting from 𝐵. Theorem 11.25 of [Schwabhauser] p. 101. (Contributed by Thierry Arnoux, 27-Sep-2020.)
Hypotheses
Ref Expression
isinag.p 𝑃 = (Base‘𝐺)
isinag.i 𝐼 = (Itv‘𝐺)
isinag.k 𝐾 = (hlG‘𝐺)
isinag.x (𝜑𝑋𝑃)
isinag.a (𝜑𝐴𝑃)
isinag.b (𝜑𝐵𝑃)
isinag.c (𝜑𝐶𝑃)
inagflat.g (𝜑𝐺 ∈ TarskiG)
inagswap.1 (𝜑𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
inaghl.d (𝜑𝐷𝑃)
inaghl.f (𝜑𝐹𝑃)
inaghl.y (𝜑𝑌𝑃)
inaghl.1 (𝜑𝐷(𝐾𝐵)𝐴)
inaghl.2 (𝜑𝐹(𝐾𝐵)𝐶)
inaghl.3 (𝜑𝑌(𝐾𝐵)𝑋)
Assertion
Ref Expression
inaghl (𝜑𝑌(inA‘𝐺)⟨“𝐷𝐵𝐹”⟩)

Proof of Theorem inaghl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isinag.p . . . 4 𝑃 = (Base‘𝐺)
2 isinag.i . . . 4 𝐼 = (Itv‘𝐺)
3 isinag.k . . . 4 𝐾 = (hlG‘𝐺)
4 inaghl.d . . . 4 (𝜑𝐷𝑃)
5 isinag.a . . . 4 (𝜑𝐴𝑃)
6 isinag.b . . . 4 (𝜑𝐵𝑃)
7 inagflat.g . . . 4 (𝜑𝐺 ∈ TarskiG)
8 inaghl.1 . . . 4 (𝜑𝐷(𝐾𝐵)𝐴)
91, 2, 3, 4, 5, 6, 7, 8hlne1 26399 . . 3 (𝜑𝐷𝐵)
10 inaghl.f . . . 4 (𝜑𝐹𝑃)
11 isinag.c . . . 4 (𝜑𝐶𝑃)
12 inaghl.2 . . . 4 (𝜑𝐹(𝐾𝐵)𝐶)
131, 2, 3, 10, 11, 6, 7, 12hlne1 26399 . . 3 (𝜑𝐹𝐵)
14 inaghl.y . . . 4 (𝜑𝑌𝑃)
15 isinag.x . . . 4 (𝜑𝑋𝑃)
16 inaghl.3 . . . 4 (𝜑𝑌(𝐾𝐵)𝑋)
171, 2, 3, 14, 15, 6, 7, 16hlne1 26399 . . 3 (𝜑𝑌𝐵)
189, 13, 173jca 1125 . 2 (𝜑 → (𝐷𝐵𝐹𝐵𝑌𝐵))
196adantr 484 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵𝑃)
20 eleq1 2877 . . . . . 6 (𝑦 = 𝐵 → (𝑦 ∈ (𝐷𝐼𝐹) ↔ 𝐵 ∈ (𝐷𝐼𝐹)))
21 eqeq1 2802 . . . . . . 7 (𝑦 = 𝐵 → (𝑦 = 𝐵𝐵 = 𝐵))
22 breq1 5033 . . . . . . 7 (𝑦 = 𝐵 → (𝑦(𝐾𝐵)𝑌𝐵(𝐾𝐵)𝑌))
2321, 22orbi12d 916 . . . . . 6 (𝑦 = 𝐵 → ((𝑦 = 𝐵𝑦(𝐾𝐵)𝑌) ↔ (𝐵 = 𝐵𝐵(𝐾𝐵)𝑌)))
2420, 23anbi12d 633 . . . . 5 (𝑦 = 𝐵 → ((𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)) ↔ (𝐵 ∈ (𝐷𝐼𝐹) ∧ (𝐵 = 𝐵𝐵(𝐾𝐵)𝑌))))
2524adantl 485 . . . 4 (((𝜑𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑦 = 𝐵) → ((𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)) ↔ (𝐵 ∈ (𝐷𝐼𝐹) ∧ (𝐵 = 𝐵𝐵(𝐾𝐵)𝑌))))
265adantr 484 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐴𝑃)
274adantr 484 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐷𝑃)
2810adantr 484 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐹𝑃)
297adantr 484 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐺 ∈ TarskiG)
301, 2, 3, 4, 5, 6, 7, 8hlcomd 26398 . . . . . . 7 (𝜑𝐴(𝐾𝐵)𝐷)
3130adantr 484 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐴(𝐾𝐵)𝐷)
32 eqid 2798 . . . . . . 7 (dist‘𝐺) = (dist‘𝐺)
3311adantr 484 . . . . . . . 8 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐶𝑃)
341, 2, 3, 10, 11, 6, 7, 12hlcomd 26398 . . . . . . . . 9 (𝜑𝐶(𝐾𝐵)𝐹)
3534adantr 484 . . . . . . . 8 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐶(𝐾𝐵)𝐹)
36 simpr 488 . . . . . . . . 9 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐴𝐼𝐶))
371, 32, 2, 29, 26, 19, 33, 36tgbtwncom 26282 . . . . . . . 8 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐶𝐼𝐴))
381, 2, 3, 33, 28, 26, 29, 19, 35, 37btwnhl 26408 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐹𝐼𝐴))
391, 32, 2, 29, 28, 19, 26, 38tgbtwncom 26282 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐴𝐼𝐹))
401, 2, 3, 26, 27, 28, 29, 19, 31, 39btwnhl 26408 . . . . 5 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐷𝐼𝐹))
41 eqidd 2799 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 = 𝐵)
4241orcd 870 . . . . 5 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → (𝐵 = 𝐵𝐵(𝐾𝐵)𝑌))
4340, 42jca 515 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → (𝐵 ∈ (𝐷𝐼𝐹) ∧ (𝐵 = 𝐵𝐵(𝐾𝐵)𝑌)))
4419, 25, 43rspcedvd 3574 . . 3 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
45 simpllr 775 . . . . . . 7 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝑥𝑃)
46 simpr 488 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥)
4746eleq1d 2874 . . . . . . . 8 ((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) ∧ 𝑦 = 𝑥) → (𝑦 ∈ (𝐷𝐼𝐹) ↔ 𝑥 ∈ (𝐷𝐼𝐹)))
4846eqeq1d 2800 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) ∧ 𝑦 = 𝑥) → (𝑦 = 𝐵𝑥 = 𝐵))
4946breq1d 5040 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) ∧ 𝑦 = 𝑥) → (𝑦(𝐾𝐵)𝑌𝑥(𝐾𝐵)𝑌))
5048, 49orbi12d 916 . . . . . . . 8 ((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) ∧ 𝑦 = 𝑥) → ((𝑦 = 𝐵𝑦(𝐾𝐵)𝑌) ↔ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑌)))
5147, 50anbi12d 633 . . . . . . 7 ((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) ∧ 𝑦 = 𝑥) → ((𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)) ↔ (𝑥 ∈ (𝐷𝐼𝐹) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑌))))
52 simpr 488 . . . . . . . . 9 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵)
535ad4antr 731 . . . . . . . . . 10 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐴𝑃)
544ad4antr 731 . . . . . . . . . 10 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐷𝑃)
5510ad4antr 731 . . . . . . . . . 10 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐹𝑃)
567ad4antr 731 . . . . . . . . . 10 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐺 ∈ TarskiG)
576ad4antr 731 . . . . . . . . . 10 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐵𝑃)
5830ad4antr 731 . . . . . . . . . 10 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐴(𝐾𝐵)𝐷)
5911ad4antr 731 . . . . . . . . . . . 12 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐶𝑃)
6034ad4antr 731 . . . . . . . . . . . 12 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐶(𝐾𝐵)𝐹)
61 simplr 768 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴𝐼𝐶))
621, 32, 2, 56, 53, 45, 59, 61tgbtwncom 26282 . . . . . . . . . . . . 13 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (𝐶𝐼𝐴))
6352, 62eqeltrrd 2891 . . . . . . . . . . . 12 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐵 ∈ (𝐶𝐼𝐴))
641, 2, 3, 59, 55, 53, 56, 57, 60, 63btwnhl 26408 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐵 ∈ (𝐹𝐼𝐴))
651, 32, 2, 56, 55, 57, 53, 64tgbtwncom 26282 . . . . . . . . . 10 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐵 ∈ (𝐴𝐼𝐹))
661, 2, 3, 53, 54, 55, 56, 57, 58, 65btwnhl 26408 . . . . . . . . 9 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐵 ∈ (𝐷𝐼𝐹))
6752, 66eqeltrd 2890 . . . . . . . 8 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (𝐷𝐼𝐹))
6852orcd 870 . . . . . . . 8 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → (𝑥 = 𝐵𝑥(𝐾𝐵)𝑌))
6967, 68jca 515 . . . . . . 7 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → (𝑥 ∈ (𝐷𝐼𝐹) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑌)))
7045, 51, 69rspcedvd 3574 . . . . . 6 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
717ad4antr 731 . . . . . . . . . 10 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝐺 ∈ TarskiG)
7271ad2antrr 725 . . . . . . . . 9 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝐺 ∈ TarskiG)
73 simplr 768 . . . . . . . . 9 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝑧𝑃)
746ad4antr 731 . . . . . . . . . 10 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝐵𝑃)
7574ad2antrr 725 . . . . . . . . 9 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝐵𝑃)
7611ad4antr 731 . . . . . . . . . 10 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝐶𝑃)
7776ad2antrr 725 . . . . . . . . 9 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝐶𝑃)
784ad4antr 731 . . . . . . . . . 10 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝐷𝑃)
7978ad2antrr 725 . . . . . . . . 9 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝐷𝑃)
8010ad6antr 735 . . . . . . . . 9 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝐹𝑃)
81 simpllr 775 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝑥𝑃)
8281ad2antrr 725 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝑥𝑃)
83 simprl 770 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝑥(𝐾𝐵)𝑧)
841, 2, 3, 82, 73, 75, 72, 83hlne2 26400 . . . . . . . . 9 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝑧𝐵)
8534ad6antr 735 . . . . . . . . 9 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝐶(𝐾𝐵)𝐹)
86 simprr 772 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝑧 ∈ (𝐶𝐼𝐷))
871, 32, 2, 72, 77, 73, 79, 86tgbtwncom 26282 . . . . . . . . 9 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝑧 ∈ (𝐷𝐼𝐶))
881, 2, 3, 72, 73, 75, 77, 79, 80, 84, 85, 87hlpasch 26550 . . . . . . . 8 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → ∃𝑦𝑃 (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹)))
89 simprr 772 . . . . . . . . . . 11 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑦 ∈ (𝐷𝐼𝐹))
90 simplr 768 . . . . . . . . . . . . 13 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑦𝑃)
9173ad2antrr 725 . . . . . . . . . . . . 13 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑧𝑃)
9214ad8antr 739 . . . . . . . . . . . . 13 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑌𝑃)
9372ad2antrr 725 . . . . . . . . . . . . 13 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝐺 ∈ TarskiG)
9475ad2antrr 725 . . . . . . . . . . . . 13 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝐵𝑃)
95 simprl 770 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑧(𝐾𝐵)𝑦)
961, 2, 3, 91, 90, 94, 93, 95hlcomd 26398 . . . . . . . . . . . . 13 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑦(𝐾𝐵)𝑧)
9781ad4antr 731 . . . . . . . . . . . . . . 15 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑥𝑃)
9815ad8antr 739 . . . . . . . . . . . . . . . 16 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑋𝑃)
9916ad8antr 739 . . . . . . . . . . . . . . . 16 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑌(𝐾𝐵)𝑋)
100 simp-5r 785 . . . . . . . . . . . . . . . . 17 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑥(𝐾𝐵)𝑋)
1011, 2, 3, 97, 98, 94, 93, 100hlcomd 26398 . . . . . . . . . . . . . . . 16 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑋(𝐾𝐵)𝑥)
1021, 2, 3, 92, 98, 97, 93, 94, 99, 101hltr 26404 . . . . . . . . . . . . . . 15 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑌(𝐾𝐵)𝑥)
103 simpllr 775 . . . . . . . . . . . . . . . 16 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷)))
104103simpld 498 . . . . . . . . . . . . . . 15 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑥(𝐾𝐵)𝑧)
1051, 2, 3, 92, 97, 91, 93, 94, 102, 104hltr 26404 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑌(𝐾𝐵)𝑧)
1061, 2, 3, 92, 91, 94, 93, 105hlcomd 26398 . . . . . . . . . . . . 13 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑧(𝐾𝐵)𝑌)
1071, 2, 3, 90, 91, 92, 93, 94, 96, 106hltr 26404 . . . . . . . . . . . 12 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑦(𝐾𝐵)𝑌)
108107olcd 871 . . . . . . . . . . 11 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌))
10989, 108jca 515 . . . . . . . . . 10 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
110109ex 416 . . . . . . . . 9 ((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) → ((𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹)) → (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌))))
111110reximdva 3233 . . . . . . . 8 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → (∃𝑦𝑃 (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹)) → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌))))
11288, 111mpd 15 . . . . . . 7 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
1135ad4antr 731 . . . . . . . 8 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝐴𝑃)
11415ad4antr 731 . . . . . . . . 9 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝑋𝑃)
115 simpr 488 . . . . . . . . 9 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝑥(𝐾𝐵)𝑋)
1161, 2, 3, 81, 114, 74, 71, 115hlne1 26399 . . . . . . . 8 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝑥𝐵)
11730ad4antr 731 . . . . . . . 8 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝐴(𝐾𝐵)𝐷)
118 simplr 768 . . . . . . . . 9 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝑥 ∈ (𝐴𝐼𝐶))
1191, 32, 2, 71, 113, 81, 76, 118tgbtwncom 26282 . . . . . . . 8 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝑥 ∈ (𝐶𝐼𝐴))
1201, 2, 3, 71, 81, 74, 113, 76, 78, 116, 117, 119hlpasch 26550 . . . . . . 7 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → ∃𝑧𝑃 (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷)))
121112, 120r19.29a 3248 . . . . . 6 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
12270, 121jaodan 955 . . . . 5 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)) → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
123122anasss 470 . . . 4 ((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))) → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
124 inagswap.1 . . . . . . 7 (𝜑𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
1251, 2, 3, 15, 5, 6, 11, 7isinag 26632 . . . . . . 7 (𝜑 → (𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩ ↔ ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)))))
126124, 125mpbid 235 . . . . . 6 (𝜑 → ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))))
127126simprd 499 . . . . 5 (𝜑 → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)))
128127adantr 484 . . . 4 ((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)))
129123, 128r19.29a 3248 . . 3 ((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
13044, 129pm2.61dan 812 . 2 (𝜑 → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
1311, 2, 3, 14, 4, 6, 10, 7isinag 26632 . 2 (𝜑 → (𝑌(inA‘𝐺)⟨“𝐷𝐵𝐹”⟩ ↔ ((𝐷𝐵𝐹𝐵𝑌𝐵) ∧ ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))))
13218, 130, 131mpbir2and 712 1 (𝜑𝑌(inA‘𝐺)⟨“𝐷𝐵𝐹”⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wrex 3107   class class class wbr 5030  cfv 6324  (class class class)co 7135  ⟨“cs3 14195  Basecbs 16475  distcds 16566  TarskiGcstrkg 26224  Itvcitv 26230  hlGchlg 26394  inAcinag 26629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-concat 13914  df-s1 13941  df-s2 14201  df-s3 14202  df-trkgc 26242  df-trkgb 26243  df-trkgcb 26244  df-trkgld 26246  df-trkg 26247  df-cgrg 26305  df-leg 26377  df-hlg 26395  df-mir 26447  df-rag 26488  df-perpg 26490  df-inag 26631
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator