MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inaghl Structured version   Visualization version   GIF version

Theorem inaghl 26022
Description: The "point lie in angle" relation is independent of the points chosen on the half lines starting from 𝐵. Theorem 11.25 of [Schwabhauser] p. 101. (Contributed by Thierry Arnoux, 27-Sep-2020.)
Hypotheses
Ref Expression
isinag.p 𝑃 = (Base‘𝐺)
isinag.i 𝐼 = (Itv‘𝐺)
isinag.k 𝐾 = (hlG‘𝐺)
isinag.x (𝜑𝑋𝑃)
isinag.a (𝜑𝐴𝑃)
isinag.b (𝜑𝐵𝑃)
isinag.c (𝜑𝐶𝑃)
inagswap.g (𝜑𝐺 ∈ TarskiG)
inagswap.1 (𝜑𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
inaghl.d (𝜑𝐷𝑃)
inaghl.f (𝜑𝐹𝑃)
inaghl.y (𝜑𝑌𝑃)
inaghl.1 (𝜑𝐷(𝐾𝐵)𝐴)
inaghl.2 (𝜑𝐹(𝐾𝐵)𝐶)
inaghl.3 (𝜑𝑌(𝐾𝐵)𝑋)
Assertion
Ref Expression
inaghl (𝜑𝑌(inA‘𝐺)⟨“𝐷𝐵𝐹”⟩)

Proof of Theorem inaghl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isinag.p . . . . 5 𝑃 = (Base‘𝐺)
2 isinag.i . . . . 5 𝐼 = (Itv‘𝐺)
3 isinag.k . . . . 5 𝐾 = (hlG‘𝐺)
4 inaghl.d . . . . 5 (𝜑𝐷𝑃)
5 isinag.a . . . . 5 (𝜑𝐴𝑃)
6 isinag.b . . . . 5 (𝜑𝐵𝑃)
7 inagswap.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
8 inaghl.1 . . . . 5 (𝜑𝐷(𝐾𝐵)𝐴)
91, 2, 3, 4, 5, 6, 7, 8hlne1 25791 . . . 4 (𝜑𝐷𝐵)
10 inaghl.f . . . . 5 (𝜑𝐹𝑃)
11 isinag.c . . . . 5 (𝜑𝐶𝑃)
12 inaghl.2 . . . . 5 (𝜑𝐹(𝐾𝐵)𝐶)
131, 2, 3, 10, 11, 6, 7, 12hlne1 25791 . . . 4 (𝜑𝐹𝐵)
14 inaghl.y . . . . 5 (𝜑𝑌𝑃)
15 isinag.x . . . . 5 (𝜑𝑋𝑃)
16 inaghl.3 . . . . 5 (𝜑𝑌(𝐾𝐵)𝑋)
171, 2, 3, 14, 15, 6, 7, 16hlne1 25791 . . . 4 (𝜑𝑌𝐵)
189, 13, 173jca 1158 . . 3 (𝜑 → (𝐷𝐵𝐹𝐵𝑌𝐵))
196adantr 472 . . . . 5 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵𝑃)
20 eleq1 2832 . . . . . . 7 (𝑦 = 𝐵 → (𝑦 ∈ (𝐷𝐼𝐹) ↔ 𝐵 ∈ (𝐷𝐼𝐹)))
21 eqeq1 2769 . . . . . . . 8 (𝑦 = 𝐵 → (𝑦 = 𝐵𝐵 = 𝐵))
22 breq1 4812 . . . . . . . 8 (𝑦 = 𝐵 → (𝑦(𝐾𝐵)𝑌𝐵(𝐾𝐵)𝑌))
2321, 22orbi12d 942 . . . . . . 7 (𝑦 = 𝐵 → ((𝑦 = 𝐵𝑦(𝐾𝐵)𝑌) ↔ (𝐵 = 𝐵𝐵(𝐾𝐵)𝑌)))
2420, 23anbi12d 624 . . . . . 6 (𝑦 = 𝐵 → ((𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)) ↔ (𝐵 ∈ (𝐷𝐼𝐹) ∧ (𝐵 = 𝐵𝐵(𝐾𝐵)𝑌))))
2524adantl 473 . . . . 5 (((𝜑𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑦 = 𝐵) → ((𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)) ↔ (𝐵 ∈ (𝐷𝐼𝐹) ∧ (𝐵 = 𝐵𝐵(𝐾𝐵)𝑌))))
265adantr 472 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐴𝑃)
274adantr 472 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐷𝑃)
2810adantr 472 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐹𝑃)
297adantr 472 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐺 ∈ TarskiG)
301, 2, 3, 4, 5, 6, 7, 8hlcomd 25790 . . . . . . . 8 (𝜑𝐴(𝐾𝐵)𝐷)
3130adantr 472 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐴(𝐾𝐵)𝐷)
32 eqid 2765 . . . . . . . 8 (dist‘𝐺) = (dist‘𝐺)
3311adantr 472 . . . . . . . . 9 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐶𝑃)
341, 2, 3, 10, 11, 6, 7, 12hlcomd 25790 . . . . . . . . . 10 (𝜑𝐶(𝐾𝐵)𝐹)
3534adantr 472 . . . . . . . . 9 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐶(𝐾𝐵)𝐹)
36 simpr 477 . . . . . . . . . 10 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐴𝐼𝐶))
371, 32, 2, 29, 26, 19, 33, 36tgbtwncom 25674 . . . . . . . . 9 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐶𝐼𝐴))
381, 2, 3, 33, 28, 26, 29, 19, 35, 37btwnhl 25800 . . . . . . . 8 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐹𝐼𝐴))
391, 32, 2, 29, 28, 19, 26, 38tgbtwncom 25674 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐴𝐼𝐹))
401, 2, 3, 26, 27, 28, 29, 19, 31, 39btwnhl 25800 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 ∈ (𝐷𝐼𝐹))
41 eqidd 2766 . . . . . . 7 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → 𝐵 = 𝐵)
4241orcd 899 . . . . . 6 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → (𝐵 = 𝐵𝐵(𝐾𝐵)𝑌))
4340, 42jca 507 . . . . 5 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → (𝐵 ∈ (𝐷𝐼𝐹) ∧ (𝐵 = 𝐵𝐵(𝐾𝐵)𝑌)))
4419, 25, 43rspcedvd 3468 . . . 4 ((𝜑𝐵 ∈ (𝐴𝐼𝐶)) → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
45 simpllr 793 . . . . . . . 8 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝑥𝑃)
46 simpr 477 . . . . . . . . . 10 ((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥)
4746eleq1d 2829 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) ∧ 𝑦 = 𝑥) → (𝑦 ∈ (𝐷𝐼𝐹) ↔ 𝑥 ∈ (𝐷𝐼𝐹)))
4846eqeq1d 2767 . . . . . . . . . 10 ((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) ∧ 𝑦 = 𝑥) → (𝑦 = 𝐵𝑥 = 𝐵))
4946breq1d 4819 . . . . . . . . . 10 ((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) ∧ 𝑦 = 𝑥) → (𝑦(𝐾𝐵)𝑌𝑥(𝐾𝐵)𝑌))
5048, 49orbi12d 942 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) ∧ 𝑦 = 𝑥) → ((𝑦 = 𝐵𝑦(𝐾𝐵)𝑌) ↔ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑌)))
5147, 50anbi12d 624 . . . . . . . 8 ((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) ∧ 𝑦 = 𝑥) → ((𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)) ↔ (𝑥 ∈ (𝐷𝐼𝐹) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑌))))
52 simpr 477 . . . . . . . . . 10 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵)
535ad4antr 724 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐴𝑃)
544ad4antr 724 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐷𝑃)
5510ad4antr 724 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐹𝑃)
567ad4antr 724 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐺 ∈ TarskiG)
576ad4antr 724 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐵𝑃)
5830ad4antr 724 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐴(𝐾𝐵)𝐷)
5911ad4antr 724 . . . . . . . . . . . . 13 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐶𝑃)
6034ad4antr 724 . . . . . . . . . . . . 13 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐶(𝐾𝐵)𝐹)
61 simplr 785 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴𝐼𝐶))
621, 32, 2, 56, 53, 45, 59, 61tgbtwncom 25674 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (𝐶𝐼𝐴))
6352, 62eqeltrrd 2845 . . . . . . . . . . . . 13 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐵 ∈ (𝐶𝐼𝐴))
641, 2, 3, 59, 55, 53, 56, 57, 60, 63btwnhl 25800 . . . . . . . . . . . 12 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐵 ∈ (𝐹𝐼𝐴))
651, 32, 2, 56, 55, 57, 53, 64tgbtwncom 25674 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐵 ∈ (𝐴𝐼𝐹))
661, 2, 3, 53, 54, 55, 56, 57, 58, 65btwnhl 25800 . . . . . . . . . 10 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝐵 ∈ (𝐷𝐼𝐹))
6752, 66eqeltrd 2844 . . . . . . . . 9 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (𝐷𝐼𝐹))
6852orcd 899 . . . . . . . . 9 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → (𝑥 = 𝐵𝑥(𝐾𝐵)𝑌))
6967, 68jca 507 . . . . . . . 8 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → (𝑥 ∈ (𝐷𝐼𝐹) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑌)))
7045, 51, 69rspcedvd 3468 . . . . . . 7 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥 = 𝐵) → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
717ad4antr 724 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝐺 ∈ TarskiG)
7271ad2antrr 717 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝐺 ∈ TarskiG)
73 simplr 785 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝑧𝑃)
746ad4antr 724 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝐵𝑃)
7574ad2antrr 717 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝐵𝑃)
7611ad4antr 724 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝐶𝑃)
7776ad2antrr 717 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝐶𝑃)
784ad4antr 724 . . . . . . . . . . 11 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝐷𝑃)
7978ad2antrr 717 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝐷𝑃)
8010ad6antr 732 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝐹𝑃)
81 simpllr 793 . . . . . . . . . . . 12 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝑥𝑃)
8281ad2antrr 717 . . . . . . . . . . 11 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝑥𝑃)
83 simprl 787 . . . . . . . . . . 11 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝑥(𝐾𝐵)𝑧)
841, 2, 3, 82, 73, 75, 72, 83hlne2 25792 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝑧𝐵)
8534ad6antr 732 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝐶(𝐾𝐵)𝐹)
86 simprr 789 . . . . . . . . . . 11 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝑧 ∈ (𝐶𝐼𝐷))
871, 32, 2, 72, 77, 73, 79, 86tgbtwncom 25674 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → 𝑧 ∈ (𝐷𝐼𝐶))
881, 2, 3, 72, 73, 75, 77, 79, 80, 84, 85, 87hlpasch 25939 . . . . . . . . 9 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → ∃𝑦𝑃 (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹)))
89 simprr 789 . . . . . . . . . . . 12 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑦 ∈ (𝐷𝐼𝐹))
90 simplr 785 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑦𝑃)
9173ad2antrr 717 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑧𝑃)
9214ad8antr 740 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑌𝑃)
9372ad2antrr 717 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝐺 ∈ TarskiG)
9475ad2antrr 717 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝐵𝑃)
95 simprl 787 . . . . . . . . . . . . . . 15 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑧(𝐾𝐵)𝑦)
961, 2, 3, 91, 90, 94, 93, 95hlcomd 25790 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑦(𝐾𝐵)𝑧)
9781ad4antr 724 . . . . . . . . . . . . . . . 16 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑥𝑃)
9815ad8antr 740 . . . . . . . . . . . . . . . . 17 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑋𝑃)
9916ad8antr 740 . . . . . . . . . . . . . . . . 17 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑌(𝐾𝐵)𝑋)
100 simp-5r 807 . . . . . . . . . . . . . . . . . 18 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑥(𝐾𝐵)𝑋)
1011, 2, 3, 97, 98, 94, 93, 100hlcomd 25790 . . . . . . . . . . . . . . . . 17 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑋(𝐾𝐵)𝑥)
1021, 2, 3, 92, 98, 97, 93, 94, 99, 101hltr 25796 . . . . . . . . . . . . . . . 16 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑌(𝐾𝐵)𝑥)
103 simpllr 793 . . . . . . . . . . . . . . . . 17 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷)))
104103simpld 488 . . . . . . . . . . . . . . . 16 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑥(𝐾𝐵)𝑧)
1051, 2, 3, 92, 97, 91, 93, 94, 102, 104hltr 25796 . . . . . . . . . . . . . . 15 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑌(𝐾𝐵)𝑧)
1061, 2, 3, 92, 91, 94, 93, 105hlcomd 25790 . . . . . . . . . . . . . 14 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑧(𝐾𝐵)𝑌)
1071, 2, 3, 90, 91, 92, 93, 94, 96, 106hltr 25796 . . . . . . . . . . . . 13 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → 𝑦(𝐾𝐵)𝑌)
108107olcd 900 . . . . . . . . . . . 12 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌))
10989, 108jca 507 . . . . . . . . . . 11 (((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) ∧ (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹))) → (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
110109ex 401 . . . . . . . . . 10 ((((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) ∧ 𝑦𝑃) → ((𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹)) → (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌))))
111110reximdva 3163 . . . . . . . . 9 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → (∃𝑦𝑃 (𝑧(𝐾𝐵)𝑦𝑦 ∈ (𝐷𝐼𝐹)) → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌))))
11288, 111mpd 15 . . . . . . . 8 (((((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) ∧ 𝑧𝑃) ∧ (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷))) → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
1135ad4antr 724 . . . . . . . . 9 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝐴𝑃)
11415ad4antr 724 . . . . . . . . . 10 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝑋𝑃)
115 simpr 477 . . . . . . . . . 10 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝑥(𝐾𝐵)𝑋)
1161, 2, 3, 81, 114, 74, 71, 115hlne1 25791 . . . . . . . . 9 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝑥𝐵)
11730ad4antr 724 . . . . . . . . 9 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝐴(𝐾𝐵)𝐷)
118 simplr 785 . . . . . . . . . 10 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝑥 ∈ (𝐴𝐼𝐶))
1191, 32, 2, 71, 113, 81, 76, 118tgbtwncom 25674 . . . . . . . . 9 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → 𝑥 ∈ (𝐶𝐼𝐴))
1201, 2, 3, 71, 81, 74, 113, 76, 78, 116, 117, 119hlpasch 25939 . . . . . . . 8 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → ∃𝑧𝑃 (𝑥(𝐾𝐵)𝑧𝑧 ∈ (𝐶𝐼𝐷)))
121112, 120r19.29a 3225 . . . . . . 7 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ 𝑥(𝐾𝐵)𝑋) → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
12270, 121jaodan 980 . . . . . 6 (((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ 𝑥 ∈ (𝐴𝐼𝐶)) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)) → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
123122anasss 458 . . . . 5 ((((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) ∧ 𝑥𝑃) ∧ (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))) → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
124 inagswap.1 . . . . . . . 8 (𝜑𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
1251, 2, 3, 15, 5, 6, 11, 7isinag 26020 . . . . . . . 8 (𝜑 → (𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩ ↔ ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)))))
126124, 125mpbid 223 . . . . . . 7 (𝜑 → ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋))))
127126simprd 489 . . . . . 6 (𝜑 → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)))
128127adantr 472 . . . . 5 ((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)))
129123, 128r19.29a 3225 . . . 4 ((𝜑 ∧ ¬ 𝐵 ∈ (𝐴𝐼𝐶)) → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
13044, 129pm2.61dan 847 . . 3 (𝜑 → ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))
13118, 130jca 507 . 2 (𝜑 → ((𝐷𝐵𝐹𝐵𝑌𝐵) ∧ ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌))))
1321, 2, 3, 14, 4, 6, 10, 7isinag 26020 . 2 (𝜑 → (𝑌(inA‘𝐺)⟨“𝐷𝐵𝐹”⟩ ↔ ((𝐷𝐵𝐹𝐵𝑌𝐵) ∧ ∃𝑦𝑃 (𝑦 ∈ (𝐷𝐼𝐹) ∧ (𝑦 = 𝐵𝑦(𝐾𝐵)𝑌)))))
133131, 132mpbird 248 1 (𝜑𝑌(inA‘𝐺)⟨“𝐷𝐵𝐹”⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 873  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wrex 3056   class class class wbr 4809  cfv 6068  (class class class)co 6842  ⟨“cs3 13871  Basecbs 16130  distcds 16223  TarskiGcstrkg 25620  Itvcitv 25626  hlGchlg 25786  inAcinag 26017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-card 9016  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-xnn0 11611  df-z 11625  df-uz 11887  df-fz 12534  df-fzo 12674  df-hash 13322  df-word 13487  df-concat 13542  df-s1 13567  df-s2 13877  df-s3 13878  df-trkgc 25638  df-trkgb 25639  df-trkgcb 25640  df-trkgld 25642  df-trkg 25643  df-cgrg 25697  df-leg 25769  df-hlg 25787  df-mir 25839  df-rag 25880  df-perpg 25882  df-inag 26019
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator