Step | Hyp | Ref
| Expression |
1 | | fsumiunle.1 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ Fin) |
2 | | fsumiunle.2 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ Fin) |
3 | 1, 2 | aciunf1 32681 |
. . 3
⊢ (𝜑 → ∃𝑓(𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1→∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∧ ∀𝑙 ∈ ∪
𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙)) |
4 | | f1f1orn 6873 |
. . . . . 6
⊢ (𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1→∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) → 𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓) |
5 | 4 | anim1i 614 |
. . . . 5
⊢ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1→∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∧ ∀𝑙 ∈ ∪
𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) → (𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙)) |
6 | | f1f 6817 |
. . . . . . 7
⊢ (𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1→∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) → 𝑓:∪ 𝑥 ∈ 𝐴 𝐵⟶∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) |
7 | 6 | frnd 6755 |
. . . . . 6
⊢ (𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1→∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) → ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) |
8 | 7 | adantr 480 |
. . . . 5
⊢ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1→∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∧ ∀𝑙 ∈ ∪
𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) → ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) |
9 | 5, 8 | jca 511 |
. . . 4
⊢ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1→∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∧ ∀𝑙 ∈ ∪
𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) → ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) |
10 | 9 | eximi 1833 |
. . 3
⊢
(∃𝑓(𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1→∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∧ ∀𝑙 ∈ ∪
𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) → ∃𝑓((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) |
11 | 3, 10 | syl 17 |
. 2
⊢ (𝜑 → ∃𝑓((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) |
12 | | csbeq1a 3935 |
. . . . . . 7
⊢ (𝑘 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑘⦌𝐶) |
13 | | nfcv 2908 |
. . . . . . 7
⊢
Ⅎ𝑦𝐶 |
14 | | nfcsb1v 3946 |
. . . . . . 7
⊢
Ⅎ𝑘⦋𝑦 / 𝑘⦌𝐶 |
15 | 12, 13, 14 | cbvsum 15743 |
. . . . . 6
⊢
Σ𝑘 ∈
∪ 𝑥 ∈ 𝐴 𝐵𝐶 = Σ𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵⦋𝑦 / 𝑘⦌𝐶 |
16 | | csbeq1 3924 |
. . . . . . 7
⊢ (𝑦 = (2nd ‘𝑧) → ⦋𝑦 / 𝑘⦌𝐶 = ⦋(2nd
‘𝑧) / 𝑘⦌𝐶) |
17 | | snfi 9109 |
. . . . . . . . . . . 12
⊢ {𝑥} ∈ Fin |
18 | | xpfi 9386 |
. . . . . . . . . . . 12
⊢ (({𝑥} ∈ Fin ∧ 𝐵 ∈ Fin) → ({𝑥} × 𝐵) ∈ Fin) |
19 | 17, 2, 18 | sylancr 586 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ({𝑥} × 𝐵) ∈ Fin) |
20 | 19 | ralrimiva 3152 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∈ Fin) |
21 | | iunfi 9411 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∈ Fin) → ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∈ Fin) |
22 | 1, 20, 21 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∈ Fin) |
23 | 22 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) → ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∈ Fin) |
24 | | simprr 772 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) → ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) |
25 | 23, 24 | ssfid 9329 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) → ran 𝑓 ∈ Fin) |
26 | | simprl 770 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) → 𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓) |
27 | | f1ocnv 6874 |
. . . . . . . . 9
⊢ (𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 → ◡𝑓:ran 𝑓–1-1-onto→∪ 𝑥 ∈ 𝐴 𝐵) |
28 | 26, 27 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) → ◡𝑓:ran 𝑓–1-1-onto→∪ 𝑥 ∈ 𝐴 𝐵) |
29 | 28 | adantrlr 722 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) → ◡𝑓:ran 𝑓–1-1-onto→∪ 𝑥 ∈ 𝐴 𝐵) |
30 | | nfv 1913 |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝜑 |
31 | | nfcv 2908 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥𝑓 |
32 | | nfiu1 5050 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 |
33 | 31 | nfrn 5977 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥ran
𝑓 |
34 | 31, 32, 33 | nff1o 6860 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥 𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 |
35 | | nfv 1913 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥(2nd ‘(𝑓‘𝑙)) = 𝑙 |
36 | 32, 35 | nfralw 3317 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥∀𝑙 ∈ ∪
𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙 |
37 | 34, 36 | nfan 1898 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥(𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) |
38 | | nfcv 2908 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥ran
𝑓 |
39 | | nfiu1 5050 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) |
40 | 38, 39 | nfss 4001 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) |
41 | 37, 40 | nfan 1898 |
. . . . . . . . . 10
⊢
Ⅎ𝑥((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) |
42 | 30, 41 | nfan 1898 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) |
43 | | nfv 1913 |
. . . . . . . . 9
⊢
Ⅎ𝑥 𝑧 ∈ ran 𝑓 |
44 | 42, 43 | nfan 1898 |
. . . . . . . 8
⊢
Ⅎ𝑥((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) |
45 | | simpr 484 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) ∧ 𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ∧ (𝑓‘𝑘) = 𝑧) → (𝑓‘𝑘) = 𝑧) |
46 | 45 | fveq2d 6924 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) ∧ 𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ∧ (𝑓‘𝑘) = 𝑧) → (2nd ‘(𝑓‘𝑘)) = (2nd ‘𝑧)) |
47 | | simplr 768 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) ∧ 𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ∧ (𝑓‘𝑘) = 𝑧) → 𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵) |
48 | | simp-4r 783 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) |
49 | 48 | simpld 494 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → (𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙)) |
50 | 49 | simprd 495 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → ∀𝑙 ∈ ∪
𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) |
51 | 50 | ad2antrr 725 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) ∧ 𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ∧ (𝑓‘𝑘) = 𝑧) → ∀𝑙 ∈ ∪
𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) |
52 | | 2fveq3 6925 |
. . . . . . . . . . . . . 14
⊢ (𝑙 = 𝑘 → (2nd ‘(𝑓‘𝑙)) = (2nd ‘(𝑓‘𝑘))) |
53 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑙 = 𝑘 → 𝑙 = 𝑘) |
54 | 52, 53 | eqeq12d 2756 |
. . . . . . . . . . . . 13
⊢ (𝑙 = 𝑘 → ((2nd ‘(𝑓‘𝑙)) = 𝑙 ↔ (2nd ‘(𝑓‘𝑘)) = 𝑘)) |
55 | 54 | rspcva 3633 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ ∀𝑙 ∈ ∪
𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) → (2nd ‘(𝑓‘𝑘)) = 𝑘) |
56 | 47, 51, 55 | syl2anc 583 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) ∧ 𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ∧ (𝑓‘𝑘) = 𝑧) → (2nd ‘(𝑓‘𝑘)) = 𝑘) |
57 | 46, 56 | eqtr3d 2782 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) ∧ 𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ∧ (𝑓‘𝑘) = 𝑧) → (2nd ‘𝑧) = 𝑘) |
58 | 49 | simpld 494 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → 𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓) |
59 | 58 | ad2antrr 725 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) ∧ 𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ∧ (𝑓‘𝑘) = 𝑧) → 𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓) |
60 | | f1ocnvfv1 7312 |
. . . . . . . . . . 11
⊢ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ 𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵) → (◡𝑓‘(𝑓‘𝑘)) = 𝑘) |
61 | 59, 47, 60 | syl2anc 583 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) ∧ 𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ∧ (𝑓‘𝑘) = 𝑧) → (◡𝑓‘(𝑓‘𝑘)) = 𝑘) |
62 | 45 | fveq2d 6924 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) ∧ 𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ∧ (𝑓‘𝑘) = 𝑧) → (◡𝑓‘(𝑓‘𝑘)) = (◡𝑓‘𝑧)) |
63 | 57, 61, 62 | 3eqtr2rd 2787 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) ∧ 𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ∧ (𝑓‘𝑘) = 𝑧) → (◡𝑓‘𝑧) = (2nd ‘𝑧)) |
64 | | f1ofn 6863 |
. . . . . . . . . . 11
⊢ (𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 → 𝑓 Fn ∪ 𝑥 ∈ 𝐴 𝐵) |
65 | 58, 64 | syl 17 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → 𝑓 Fn ∪ 𝑥 ∈ 𝐴 𝐵) |
66 | | simpllr 775 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → 𝑧 ∈ ran 𝑓) |
67 | | fvelrnb 6982 |
. . . . . . . . . . 11
⊢ (𝑓 Fn ∪ 𝑥 ∈ 𝐴 𝐵 → (𝑧 ∈ ran 𝑓 ↔ ∃𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵(𝑓‘𝑘) = 𝑧)) |
68 | 67 | biimpa 476 |
. . . . . . . . . 10
⊢ ((𝑓 Fn ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑧 ∈ ran 𝑓) → ∃𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵(𝑓‘𝑘) = 𝑧) |
69 | 65, 66, 68 | syl2anc 583 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → ∃𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵(𝑓‘𝑘) = 𝑧) |
70 | 63, 69 | r19.29a 3168 |
. . . . . . . 8
⊢
(((((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → (◡𝑓‘𝑧) = (2nd ‘𝑧)) |
71 | 24 | sselda 4008 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) → 𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) |
72 | | eliun 5019 |
. . . . . . . . 9
⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑧 ∈ ({𝑥} × 𝐵)) |
73 | 71, 72 | sylib 218 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) → ∃𝑥 ∈ 𝐴 𝑧 ∈ ({𝑥} × 𝐵)) |
74 | 44, 70, 73 | r19.29af 3274 |
. . . . . . 7
⊢ (((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) → (◡𝑓‘𝑧) = (2nd ‘𝑧)) |
75 | | nfv 1913 |
. . . . . . . . . 10
⊢
Ⅎ𝑘(𝜑 ∧ 𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵) |
76 | | nfcv 2908 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘ℂ |
77 | 14, 76 | nfel 2923 |
. . . . . . . . . 10
⊢
Ⅎ𝑘⦋𝑦 / 𝑘⦌𝐶 ∈ ℂ |
78 | 75, 77 | nfim 1895 |
. . . . . . . . 9
⊢
Ⅎ𝑘((𝜑 ∧ 𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵) → ⦋𝑦 / 𝑘⦌𝐶 ∈ ℂ) |
79 | | eleq1w 2827 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑦 → (𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵 ↔ 𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵)) |
80 | 79 | anbi2d 629 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑦 → ((𝜑 ∧ 𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ↔ (𝜑 ∧ 𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵))) |
81 | 12 | eleq1d 2829 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑦 → (𝐶 ∈ ℂ ↔ ⦋𝑦 / 𝑘⦌𝐶 ∈ ℂ)) |
82 | 80, 81 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑘 = 𝑦 → (((𝜑 ∧ 𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵) → 𝐶 ∈ ℂ) ↔ ((𝜑 ∧ 𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵) → ⦋𝑦 / 𝑘⦌𝐶 ∈ ℂ))) |
83 | | nfcv 2908 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥𝑘 |
84 | 83, 32 | nfel 2923 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 |
85 | 30, 84 | nfan 1898 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝜑 ∧ 𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵) |
86 | | fsumiunle.3 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℝ) |
87 | 86 | adantllr 718 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℝ) |
88 | 87 | recnd 11318 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) |
89 | | eliun 5019 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑘 ∈ 𝐵) |
90 | 89 | biimpi 216 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → ∃𝑥 ∈ 𝐴 𝑘 ∈ 𝐵) |
91 | 90 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵) → ∃𝑥 ∈ 𝐴 𝑘 ∈ 𝐵) |
92 | 85, 88, 91 | r19.29af 3274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵) → 𝐶 ∈ ℂ) |
93 | 78, 82, 92 | chvarfv 2241 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵) → ⦋𝑦 / 𝑘⦌𝐶 ∈ ℂ) |
94 | 93 | adantlr 714 |
. . . . . . 7
⊢ (((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵) → ⦋𝑦 / 𝑘⦌𝐶 ∈ ℂ) |
95 | 16, 25, 29, 74, 94 | fsumf1o 15771 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) → Σ𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵⦋𝑦 / 𝑘⦌𝐶 = Σ𝑧 ∈ ran 𝑓⦋(2nd ‘𝑧) / 𝑘⦌𝐶) |
96 | 15, 95 | eqtrid 2792 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) → Σ𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵𝐶 = Σ𝑧 ∈ ran 𝑓⦋(2nd ‘𝑧) / 𝑘⦌𝐶) |
97 | 96 | eqcomd 2746 |
. . . 4
⊢ ((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) → Σ𝑧 ∈ ran 𝑓⦋(2nd ‘𝑧) / 𝑘⦌𝐶 = Σ𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵𝐶) |
98 | | nfcv 2908 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝑧 |
99 | 98, 39 | nfel 2923 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) |
100 | 30, 99 | nfan 1898 |
. . . . . . 7
⊢
Ⅎ𝑥(𝜑 ∧ 𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) |
101 | | xp2nd 8063 |
. . . . . . . . 9
⊢ (𝑧 ∈ ({𝑥} × 𝐵) → (2nd ‘𝑧) ∈ 𝐵) |
102 | 101 | adantl 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → (2nd ‘𝑧) ∈ 𝐵) |
103 | 86 | ralrimiva 3152 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑘 ∈ 𝐵 𝐶 ∈ ℝ) |
104 | 103 | adantlr 714 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) ∧ 𝑥 ∈ 𝐴) → ∀𝑘 ∈ 𝐵 𝐶 ∈ ℝ) |
105 | 104 | adantr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → ∀𝑘 ∈ 𝐵 𝐶 ∈ ℝ) |
106 | | nfcsb1v 3946 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘⦋(2nd ‘𝑧) / 𝑘⦌𝐶 |
107 | 106 | nfel1 2925 |
. . . . . . . . . 10
⊢
Ⅎ𝑘⦋(2nd ‘𝑧) / 𝑘⦌𝐶 ∈ ℝ |
108 | | csbeq1a 3935 |
. . . . . . . . . . 11
⊢ (𝑘 = (2nd ‘𝑧) → 𝐶 = ⦋(2nd
‘𝑧) / 𝑘⦌𝐶) |
109 | 108 | eleq1d 2829 |
. . . . . . . . . 10
⊢ (𝑘 = (2nd ‘𝑧) → (𝐶 ∈ ℝ ↔
⦋(2nd ‘𝑧) / 𝑘⦌𝐶 ∈ ℝ)) |
110 | 107, 109 | rspc 3623 |
. . . . . . . . 9
⊢
((2nd ‘𝑧) ∈ 𝐵 → (∀𝑘 ∈ 𝐵 𝐶 ∈ ℝ →
⦋(2nd ‘𝑧) / 𝑘⦌𝐶 ∈ ℝ)) |
111 | 110 | imp 406 |
. . . . . . . 8
⊢
(((2nd ‘𝑧) ∈ 𝐵 ∧ ∀𝑘 ∈ 𝐵 𝐶 ∈ ℝ) →
⦋(2nd ‘𝑧) / 𝑘⦌𝐶 ∈ ℝ) |
112 | 102, 105,
111 | syl2anc 583 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → ⦋(2nd
‘𝑧) / 𝑘⦌𝐶 ∈ ℝ) |
113 | 72 | biimpi 216 |
. . . . . . . 8
⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) → ∃𝑥 ∈ 𝐴 𝑧 ∈ ({𝑥} × 𝐵)) |
114 | 113 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) → ∃𝑥 ∈ 𝐴 𝑧 ∈ ({𝑥} × 𝐵)) |
115 | 100, 112,
114 | r19.29af 3274 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) → ⦋(2nd
‘𝑧) / 𝑘⦌𝐶 ∈ ℝ) |
116 | 115 | adantlr 714 |
. . . . 5
⊢ (((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) → ⦋(2nd
‘𝑧) / 𝑘⦌𝐶 ∈ ℝ) |
117 | | xp1st 8062 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ({𝑥} × 𝐵) → (1st ‘𝑧) ∈ {𝑥}) |
118 | | elsni 4665 |
. . . . . . . . . . 11
⊢
((1st ‘𝑧) ∈ {𝑥} → (1st ‘𝑧) = 𝑥) |
119 | 117, 118 | syl 17 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ({𝑥} × 𝐵) → (1st ‘𝑧) = 𝑥) |
120 | 119, 101 | jca 511 |
. . . . . . . . 9
⊢ (𝑧 ∈ ({𝑥} × 𝐵) → ((1st ‘𝑧) = 𝑥 ∧ (2nd ‘𝑧) ∈ 𝐵)) |
121 | | simplll 774 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) ∧ 𝑥 ∈ 𝐴) ∧ ((1st ‘𝑧) = 𝑥 ∧ (2nd ‘𝑧) ∈ 𝐵)) → 𝜑) |
122 | | simplr 768 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) ∧ 𝑥 ∈ 𝐴) ∧ ((1st ‘𝑧) = 𝑥 ∧ (2nd ‘𝑧) ∈ 𝐵)) → 𝑥 ∈ 𝐴) |
123 | | fsumiunle.4 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐵) → 0 ≤ 𝐶) |
124 | 123 | ralrimiva 3152 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑘 ∈ 𝐵 0 ≤ 𝐶) |
125 | 121, 122,
124 | syl2anc 583 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) ∧ 𝑥 ∈ 𝐴) ∧ ((1st ‘𝑧) = 𝑥 ∧ (2nd ‘𝑧) ∈ 𝐵)) → ∀𝑘 ∈ 𝐵 0 ≤ 𝐶) |
126 | 120, 125 | sylan2 592 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → ∀𝑘 ∈ 𝐵 0 ≤ 𝐶) |
127 | | nfcv 2908 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘0 |
128 | | nfcv 2908 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘
≤ |
129 | 127, 128,
106 | nfbr 5213 |
. . . . . . . . . 10
⊢
Ⅎ𝑘0 ≤
⦋(2nd ‘𝑧) / 𝑘⦌𝐶 |
130 | 108 | breq2d 5178 |
. . . . . . . . . 10
⊢ (𝑘 = (2nd ‘𝑧) → (0 ≤ 𝐶 ↔ 0 ≤
⦋(2nd ‘𝑧) / 𝑘⦌𝐶)) |
131 | 129, 130 | rspc 3623 |
. . . . . . . . 9
⊢
((2nd ‘𝑧) ∈ 𝐵 → (∀𝑘 ∈ 𝐵 0 ≤ 𝐶 → 0 ≤
⦋(2nd ‘𝑧) / 𝑘⦌𝐶)) |
132 | 131 | imp 406 |
. . . . . . . 8
⊢
(((2nd ‘𝑧) ∈ 𝐵 ∧ ∀𝑘 ∈ 𝐵 0 ≤ 𝐶) → 0 ≤
⦋(2nd ‘𝑧) / 𝑘⦌𝐶) |
133 | 102, 126,
132 | syl2anc 583 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → 0 ≤
⦋(2nd ‘𝑧) / 𝑘⦌𝐶) |
134 | 100, 133,
114 | r19.29af 3274 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) → 0 ≤
⦋(2nd ‘𝑧) / 𝑘⦌𝐶) |
135 | 134 | adantlr 714 |
. . . . 5
⊢ (((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) → 0 ≤
⦋(2nd ‘𝑧) / 𝑘⦌𝐶) |
136 | 23, 116, 135, 24 | fsumless 15844 |
. . . 4
⊢ ((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) → Σ𝑧 ∈ ran 𝑓⦋(2nd ‘𝑧) / 𝑘⦌𝐶 ≤ Σ𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)⦋(2nd ‘𝑧) / 𝑘⦌𝐶) |
137 | 97, 136 | eqbrtrrd 5190 |
. . 3
⊢ ((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) → Σ𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵𝐶 ≤ Σ𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)⦋(2nd ‘𝑧) / 𝑘⦌𝐶) |
138 | 12, 13, 14 | cbvsum 15743 |
. . . . . . 7
⊢
Σ𝑘 ∈
𝐵 𝐶 = Σ𝑦 ∈ 𝐵 ⦋𝑦 / 𝑘⦌𝐶 |
139 | 138 | a1i 11 |
. . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑦 ∈ 𝐵 ⦋𝑦 / 𝑘⦌𝐶) |
140 | 139 | sumeq2sdv 15751 |
. . . . 5
⊢ (𝜑 → Σ𝑥 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑥 ∈ 𝐴 Σ𝑦 ∈ 𝐵 ⦋𝑦 / 𝑘⦌𝐶) |
141 | | vex 3492 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
142 | | vex 3492 |
. . . . . . . . . 10
⊢ 𝑦 ∈ V |
143 | 141, 142 | op2ndd 8041 |
. . . . . . . . 9
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (2nd ‘𝑧) = 𝑦) |
144 | 143 | eqcomd 2746 |
. . . . . . . 8
⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝑦 = (2nd ‘𝑧)) |
145 | 144 | csbeq1d 3925 |
. . . . . . 7
⊢ (𝑧 = 〈𝑥, 𝑦〉 → ⦋𝑦 / 𝑘⦌𝐶 = ⦋(2nd
‘𝑧) / 𝑘⦌𝐶) |
146 | 145 | eqcomd 2746 |
. . . . . 6
⊢ (𝑧 = 〈𝑥, 𝑦〉 → ⦋(2nd
‘𝑧) / 𝑘⦌𝐶 = ⦋𝑦 / 𝑘⦌𝐶) |
147 | | nfv 1913 |
. . . . . . . . 9
⊢
Ⅎ𝑘((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) |
148 | 14 | nfel1 2925 |
. . . . . . . . 9
⊢
Ⅎ𝑘⦋𝑦 / 𝑘⦌𝐶 ∈ ℂ |
149 | 147, 148 | nfim 1895 |
. . . . . . . 8
⊢
Ⅎ𝑘(((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → ⦋𝑦 / 𝑘⦌𝐶 ∈ ℂ) |
150 | | eleq1w 2827 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑦 → (𝑘 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) |
151 | 150 | anbi2d 629 |
. . . . . . . . 9
⊢ (𝑘 = 𝑦 → (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐵) ↔ ((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵))) |
152 | 151, 81 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑘 = 𝑦 → ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) ↔ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → ⦋𝑦 / 𝑘⦌𝐶 ∈ ℂ))) |
153 | 86 | recnd 11318 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) |
154 | 149, 152,
153 | chvarfv 2241 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → ⦋𝑦 / 𝑘⦌𝐶 ∈ ℂ) |
155 | 154 | anasss 466 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → ⦋𝑦 / 𝑘⦌𝐶 ∈ ℂ) |
156 | 146, 1, 2, 155 | fsum2d 15819 |
. . . . 5
⊢ (𝜑 → Σ𝑥 ∈ 𝐴 Σ𝑦 ∈ 𝐵 ⦋𝑦 / 𝑘⦌𝐶 = Σ𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)⦋(2nd ‘𝑧) / 𝑘⦌𝐶) |
157 | 140, 156 | eqtrd 2780 |
. . . 4
⊢ (𝜑 → Σ𝑥 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)⦋(2nd ‘𝑧) / 𝑘⦌𝐶) |
158 | 157 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) → Σ𝑥 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)⦋(2nd ‘𝑧) / 𝑘⦌𝐶) |
159 | 137, 158 | breqtrrd 5194 |
. 2
⊢ ((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) → Σ𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵𝐶 ≤ Σ𝑥 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶) |
160 | 11, 159 | exlimddv 1934 |
1
⊢ (𝜑 → Σ𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵𝐶 ≤ Σ𝑥 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶) |