Step | Hyp | Ref
| Expression |
1 | | fsumiunle.1 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ Fin) |
2 | | fsumiunle.2 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ Fin) |
3 | 1, 2 | aciunf1 31000 |
. . 3
⊢ (𝜑 → ∃𝑓(𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1→∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∧ ∀𝑙 ∈ ∪
𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙)) |
4 | | f1f1orn 6727 |
. . . . . 6
⊢ (𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1→∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) → 𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓) |
5 | 4 | anim1i 615 |
. . . . 5
⊢ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1→∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∧ ∀𝑙 ∈ ∪
𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) → (𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙)) |
6 | | f1f 6670 |
. . . . . . 7
⊢ (𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1→∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) → 𝑓:∪ 𝑥 ∈ 𝐴 𝐵⟶∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) |
7 | 6 | frnd 6608 |
. . . . . 6
⊢ (𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1→∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) → ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) |
8 | 7 | adantr 481 |
. . . . 5
⊢ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1→∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∧ ∀𝑙 ∈ ∪
𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) → ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) |
9 | 5, 8 | jca 512 |
. . . 4
⊢ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1→∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∧ ∀𝑙 ∈ ∪
𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) → ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) |
10 | 9 | eximi 1837 |
. . 3
⊢
(∃𝑓(𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1→∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∧ ∀𝑙 ∈ ∪
𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) → ∃𝑓((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) |
11 | 3, 10 | syl 17 |
. 2
⊢ (𝜑 → ∃𝑓((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) |
12 | | csbeq1a 3846 |
. . . . . . 7
⊢ (𝑘 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑘⦌𝐶) |
13 | | nfcv 2907 |
. . . . . . 7
⊢
Ⅎ𝑦∪ 𝑥 ∈ 𝐴 𝐵 |
14 | | nfcv 2907 |
. . . . . . 7
⊢
Ⅎ𝑘∪ 𝑥 ∈ 𝐴 𝐵 |
15 | | nfcv 2907 |
. . . . . . 7
⊢
Ⅎ𝑦𝐶 |
16 | | nfcsb1v 3857 |
. . . . . . 7
⊢
Ⅎ𝑘⦋𝑦 / 𝑘⦌𝐶 |
17 | 12, 13, 14, 15, 16 | cbvsum 15407 |
. . . . . 6
⊢
Σ𝑘 ∈
∪ 𝑥 ∈ 𝐴 𝐵𝐶 = Σ𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵⦋𝑦 / 𝑘⦌𝐶 |
18 | | csbeq1 3835 |
. . . . . . 7
⊢ (𝑦 = (2nd ‘𝑧) → ⦋𝑦 / 𝑘⦌𝐶 = ⦋(2nd
‘𝑧) / 𝑘⦌𝐶) |
19 | | snfi 8834 |
. . . . . . . . . . . 12
⊢ {𝑥} ∈ Fin |
20 | | xpfi 9085 |
. . . . . . . . . . . 12
⊢ (({𝑥} ∈ Fin ∧ 𝐵 ∈ Fin) → ({𝑥} × 𝐵) ∈ Fin) |
21 | 19, 2, 20 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ({𝑥} × 𝐵) ∈ Fin) |
22 | 21 | ralrimiva 3103 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∈ Fin) |
23 | | iunfi 9107 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∈ Fin) → ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∈ Fin) |
24 | 1, 22, 23 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∈ Fin) |
25 | 24 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) → ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∈ Fin) |
26 | | simprr 770 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) → ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) |
27 | 25, 26 | ssfid 9042 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) → ran 𝑓 ∈ Fin) |
28 | | simprl 768 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) → 𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓) |
29 | | f1ocnv 6728 |
. . . . . . . . 9
⊢ (𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 → ◡𝑓:ran 𝑓–1-1-onto→∪ 𝑥 ∈ 𝐴 𝐵) |
30 | 28, 29 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) → ◡𝑓:ran 𝑓–1-1-onto→∪ 𝑥 ∈ 𝐴 𝐵) |
31 | 30 | adantrlr 720 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) → ◡𝑓:ran 𝑓–1-1-onto→∪ 𝑥 ∈ 𝐴 𝐵) |
32 | | nfv 1917 |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝜑 |
33 | | nfcv 2907 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥𝑓 |
34 | | nfiu1 4958 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 |
35 | 33 | nfrn 5861 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥ran
𝑓 |
36 | 33, 34, 35 | nff1o 6714 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥 𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 |
37 | | nfv 1917 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥(2nd ‘(𝑓‘𝑙)) = 𝑙 |
38 | 34, 37 | nfralw 3151 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥∀𝑙 ∈ ∪
𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙 |
39 | 36, 38 | nfan 1902 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥(𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) |
40 | | nfcv 2907 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥ran
𝑓 |
41 | | nfiu1 4958 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) |
42 | 40, 41 | nfss 3913 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥ran 𝑓 ⊆ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) |
43 | 39, 42 | nfan 1902 |
. . . . . . . . . 10
⊢
Ⅎ𝑥((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) |
44 | 32, 43 | nfan 1902 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) |
45 | | nfv 1917 |
. . . . . . . . 9
⊢
Ⅎ𝑥 𝑧 ∈ ran 𝑓 |
46 | 44, 45 | nfan 1902 |
. . . . . . . 8
⊢
Ⅎ𝑥((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) |
47 | | simpr 485 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) ∧ 𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ∧ (𝑓‘𝑘) = 𝑧) → (𝑓‘𝑘) = 𝑧) |
48 | 47 | fveq2d 6778 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) ∧ 𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ∧ (𝑓‘𝑘) = 𝑧) → (2nd ‘(𝑓‘𝑘)) = (2nd ‘𝑧)) |
49 | | simplr 766 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) ∧ 𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ∧ (𝑓‘𝑘) = 𝑧) → 𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵) |
50 | | simp-4r 781 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) |
51 | 50 | simpld 495 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → (𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙)) |
52 | 51 | simprd 496 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → ∀𝑙 ∈ ∪
𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) |
53 | 52 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) ∧ 𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ∧ (𝑓‘𝑘) = 𝑧) → ∀𝑙 ∈ ∪
𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) |
54 | | 2fveq3 6779 |
. . . . . . . . . . . . . 14
⊢ (𝑙 = 𝑘 → (2nd ‘(𝑓‘𝑙)) = (2nd ‘(𝑓‘𝑘))) |
55 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑙 = 𝑘 → 𝑙 = 𝑘) |
56 | 54, 55 | eqeq12d 2754 |
. . . . . . . . . . . . 13
⊢ (𝑙 = 𝑘 → ((2nd ‘(𝑓‘𝑙)) = 𝑙 ↔ (2nd ‘(𝑓‘𝑘)) = 𝑘)) |
57 | 56 | rspcva 3559 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ ∀𝑙 ∈ ∪
𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) → (2nd ‘(𝑓‘𝑘)) = 𝑘) |
58 | 49, 53, 57 | syl2anc 584 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) ∧ 𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ∧ (𝑓‘𝑘) = 𝑧) → (2nd ‘(𝑓‘𝑘)) = 𝑘) |
59 | 48, 58 | eqtr3d 2780 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) ∧ 𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ∧ (𝑓‘𝑘) = 𝑧) → (2nd ‘𝑧) = 𝑘) |
60 | 51 | simpld 495 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → 𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓) |
61 | 60 | ad2antrr 723 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) ∧ 𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ∧ (𝑓‘𝑘) = 𝑧) → 𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓) |
62 | | f1ocnvfv1 7148 |
. . . . . . . . . . 11
⊢ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ 𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵) → (◡𝑓‘(𝑓‘𝑘)) = 𝑘) |
63 | 61, 49, 62 | syl2anc 584 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) ∧ 𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ∧ (𝑓‘𝑘) = 𝑧) → (◡𝑓‘(𝑓‘𝑘)) = 𝑘) |
64 | 47 | fveq2d 6778 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) ∧ 𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ∧ (𝑓‘𝑘) = 𝑧) → (◡𝑓‘(𝑓‘𝑘)) = (◡𝑓‘𝑧)) |
65 | 59, 63, 64 | 3eqtr2rd 2785 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) ∧ 𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ∧ (𝑓‘𝑘) = 𝑧) → (◡𝑓‘𝑧) = (2nd ‘𝑧)) |
66 | | f1ofn 6717 |
. . . . . . . . . . 11
⊢ (𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 → 𝑓 Fn ∪ 𝑥 ∈ 𝐴 𝐵) |
67 | 60, 66 | syl 17 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → 𝑓 Fn ∪ 𝑥 ∈ 𝐴 𝐵) |
68 | | simpllr 773 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → 𝑧 ∈ ran 𝑓) |
69 | | fvelrnb 6830 |
. . . . . . . . . . 11
⊢ (𝑓 Fn ∪ 𝑥 ∈ 𝐴 𝐵 → (𝑧 ∈ ran 𝑓 ↔ ∃𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵(𝑓‘𝑘) = 𝑧)) |
70 | 69 | biimpa 477 |
. . . . . . . . . 10
⊢ ((𝑓 Fn ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑧 ∈ ran 𝑓) → ∃𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵(𝑓‘𝑘) = 𝑧) |
71 | 67, 68, 70 | syl2anc 584 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → ∃𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵(𝑓‘𝑘) = 𝑧) |
72 | 65, 71 | r19.29a 3218 |
. . . . . . . 8
⊢
(((((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → (◡𝑓‘𝑧) = (2nd ‘𝑧)) |
73 | 26 | sselda 3921 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) → 𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) |
74 | | eliun 4928 |
. . . . . . . . 9
⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑧 ∈ ({𝑥} × 𝐵)) |
75 | 73, 74 | sylib 217 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) → ∃𝑥 ∈ 𝐴 𝑧 ∈ ({𝑥} × 𝐵)) |
76 | 46, 72, 75 | r19.29af 3262 |
. . . . . . 7
⊢ (((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) → (◡𝑓‘𝑧) = (2nd ‘𝑧)) |
77 | | nfv 1917 |
. . . . . . . . . 10
⊢
Ⅎ𝑘(𝜑 ∧ 𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵) |
78 | | nfcv 2907 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘ℂ |
79 | 16, 78 | nfel 2921 |
. . . . . . . . . 10
⊢
Ⅎ𝑘⦋𝑦 / 𝑘⦌𝐶 ∈ ℂ |
80 | 77, 79 | nfim 1899 |
. . . . . . . . 9
⊢
Ⅎ𝑘((𝜑 ∧ 𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵) → ⦋𝑦 / 𝑘⦌𝐶 ∈ ℂ) |
81 | | eleq1w 2821 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑦 → (𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵 ↔ 𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵)) |
82 | 81 | anbi2d 629 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑦 → ((𝜑 ∧ 𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ↔ (𝜑 ∧ 𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵))) |
83 | 12 | eleq1d 2823 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑦 → (𝐶 ∈ ℂ ↔ ⦋𝑦 / 𝑘⦌𝐶 ∈ ℂ)) |
84 | 82, 83 | imbi12d 345 |
. . . . . . . . 9
⊢ (𝑘 = 𝑦 → (((𝜑 ∧ 𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵) → 𝐶 ∈ ℂ) ↔ ((𝜑 ∧ 𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵) → ⦋𝑦 / 𝑘⦌𝐶 ∈ ℂ))) |
85 | | nfcv 2907 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥𝑘 |
86 | 85, 34 | nfel 2921 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 |
87 | 32, 86 | nfan 1902 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝜑 ∧ 𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵) |
88 | | fsumiunle.3 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℝ) |
89 | 88 | adantllr 716 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℝ) |
90 | 89 | recnd 11003 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) |
91 | | eliun 4928 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑘 ∈ 𝐵) |
92 | 91 | biimpi 215 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → ∃𝑥 ∈ 𝐴 𝑘 ∈ 𝐵) |
93 | 92 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵) → ∃𝑥 ∈ 𝐴 𝑘 ∈ 𝐵) |
94 | 87, 90, 93 | r19.29af 3262 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵) → 𝐶 ∈ ℂ) |
95 | 80, 84, 94 | chvarfv 2233 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵) → ⦋𝑦 / 𝑘⦌𝐶 ∈ ℂ) |
96 | 95 | adantlr 712 |
. . . . . . 7
⊢ (((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵) → ⦋𝑦 / 𝑘⦌𝐶 ∈ ℂ) |
97 | 18, 27, 31, 76, 96 | fsumf1o 15435 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) → Σ𝑦 ∈ ∪
𝑥 ∈ 𝐴 𝐵⦋𝑦 / 𝑘⦌𝐶 = Σ𝑧 ∈ ran 𝑓⦋(2nd ‘𝑧) / 𝑘⦌𝐶) |
98 | 17, 97 | eqtrid 2790 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) → Σ𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵𝐶 = Σ𝑧 ∈ ran 𝑓⦋(2nd ‘𝑧) / 𝑘⦌𝐶) |
99 | 98 | eqcomd 2744 |
. . . 4
⊢ ((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) → Σ𝑧 ∈ ran 𝑓⦋(2nd ‘𝑧) / 𝑘⦌𝐶 = Σ𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵𝐶) |
100 | | nfcv 2907 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝑧 |
101 | 100, 41 | nfel 2921 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) |
102 | 32, 101 | nfan 1902 |
. . . . . . 7
⊢
Ⅎ𝑥(𝜑 ∧ 𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) |
103 | | xp2nd 7864 |
. . . . . . . . 9
⊢ (𝑧 ∈ ({𝑥} × 𝐵) → (2nd ‘𝑧) ∈ 𝐵) |
104 | 103 | adantl 482 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → (2nd ‘𝑧) ∈ 𝐵) |
105 | 88 | ralrimiva 3103 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑘 ∈ 𝐵 𝐶 ∈ ℝ) |
106 | 105 | adantlr 712 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) ∧ 𝑥 ∈ 𝐴) → ∀𝑘 ∈ 𝐵 𝐶 ∈ ℝ) |
107 | 106 | adantr 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → ∀𝑘 ∈ 𝐵 𝐶 ∈ ℝ) |
108 | | nfcsb1v 3857 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘⦋(2nd ‘𝑧) / 𝑘⦌𝐶 |
109 | 108 | nfel1 2923 |
. . . . . . . . . 10
⊢
Ⅎ𝑘⦋(2nd ‘𝑧) / 𝑘⦌𝐶 ∈ ℝ |
110 | | csbeq1a 3846 |
. . . . . . . . . . 11
⊢ (𝑘 = (2nd ‘𝑧) → 𝐶 = ⦋(2nd
‘𝑧) / 𝑘⦌𝐶) |
111 | 110 | eleq1d 2823 |
. . . . . . . . . 10
⊢ (𝑘 = (2nd ‘𝑧) → (𝐶 ∈ ℝ ↔
⦋(2nd ‘𝑧) / 𝑘⦌𝐶 ∈ ℝ)) |
112 | 109, 111 | rspc 3549 |
. . . . . . . . 9
⊢
((2nd ‘𝑧) ∈ 𝐵 → (∀𝑘 ∈ 𝐵 𝐶 ∈ ℝ →
⦋(2nd ‘𝑧) / 𝑘⦌𝐶 ∈ ℝ)) |
113 | 112 | imp 407 |
. . . . . . . 8
⊢
(((2nd ‘𝑧) ∈ 𝐵 ∧ ∀𝑘 ∈ 𝐵 𝐶 ∈ ℝ) →
⦋(2nd ‘𝑧) / 𝑘⦌𝐶 ∈ ℝ) |
114 | 104, 107,
113 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → ⦋(2nd
‘𝑧) / 𝑘⦌𝐶 ∈ ℝ) |
115 | 74 | biimpi 215 |
. . . . . . . 8
⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) → ∃𝑥 ∈ 𝐴 𝑧 ∈ ({𝑥} × 𝐵)) |
116 | 115 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) → ∃𝑥 ∈ 𝐴 𝑧 ∈ ({𝑥} × 𝐵)) |
117 | 102, 114,
116 | r19.29af 3262 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) → ⦋(2nd
‘𝑧) / 𝑘⦌𝐶 ∈ ℝ) |
118 | 117 | adantlr 712 |
. . . . 5
⊢ (((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) → ⦋(2nd
‘𝑧) / 𝑘⦌𝐶 ∈ ℝ) |
119 | | xp1st 7863 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ({𝑥} × 𝐵) → (1st ‘𝑧) ∈ {𝑥}) |
120 | | elsni 4578 |
. . . . . . . . . . 11
⊢
((1st ‘𝑧) ∈ {𝑥} → (1st ‘𝑧) = 𝑥) |
121 | 119, 120 | syl 17 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ({𝑥} × 𝐵) → (1st ‘𝑧) = 𝑥) |
122 | 121, 103 | jca 512 |
. . . . . . . . 9
⊢ (𝑧 ∈ ({𝑥} × 𝐵) → ((1st ‘𝑧) = 𝑥 ∧ (2nd ‘𝑧) ∈ 𝐵)) |
123 | | simplll 772 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) ∧ 𝑥 ∈ 𝐴) ∧ ((1st ‘𝑧) = 𝑥 ∧ (2nd ‘𝑧) ∈ 𝐵)) → 𝜑) |
124 | | simplr 766 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) ∧ 𝑥 ∈ 𝐴) ∧ ((1st ‘𝑧) = 𝑥 ∧ (2nd ‘𝑧) ∈ 𝐵)) → 𝑥 ∈ 𝐴) |
125 | | fsumiunle.4 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐵) → 0 ≤ 𝐶) |
126 | 125 | ralrimiva 3103 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑘 ∈ 𝐵 0 ≤ 𝐶) |
127 | 123, 124,
126 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) ∧ 𝑥 ∈ 𝐴) ∧ ((1st ‘𝑧) = 𝑥 ∧ (2nd ‘𝑧) ∈ 𝐵)) → ∀𝑘 ∈ 𝐵 0 ≤ 𝐶) |
128 | 122, 127 | sylan2 593 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → ∀𝑘 ∈ 𝐵 0 ≤ 𝐶) |
129 | | nfcv 2907 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘0 |
130 | | nfcv 2907 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘
≤ |
131 | 129, 130,
108 | nfbr 5121 |
. . . . . . . . . 10
⊢
Ⅎ𝑘0 ≤
⦋(2nd ‘𝑧) / 𝑘⦌𝐶 |
132 | 110 | breq2d 5086 |
. . . . . . . . . 10
⊢ (𝑘 = (2nd ‘𝑧) → (0 ≤ 𝐶 ↔ 0 ≤
⦋(2nd ‘𝑧) / 𝑘⦌𝐶)) |
133 | 131, 132 | rspc 3549 |
. . . . . . . . 9
⊢
((2nd ‘𝑧) ∈ 𝐵 → (∀𝑘 ∈ 𝐵 0 ≤ 𝐶 → 0 ≤
⦋(2nd ‘𝑧) / 𝑘⦌𝐶)) |
134 | 133 | imp 407 |
. . . . . . . 8
⊢
(((2nd ‘𝑧) ∈ 𝐵 ∧ ∀𝑘 ∈ 𝐵 0 ≤ 𝐶) → 0 ≤
⦋(2nd ‘𝑧) / 𝑘⦌𝐶) |
135 | 104, 128,
134 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → 0 ≤
⦋(2nd ‘𝑧) / 𝑘⦌𝐶) |
136 | 102, 135,
116 | r19.29af 3262 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) → 0 ≤
⦋(2nd ‘𝑧) / 𝑘⦌𝐶) |
137 | 136 | adantlr 712 |
. . . . 5
⊢ (((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) → 0 ≤
⦋(2nd ‘𝑧) / 𝑘⦌𝐶) |
138 | 25, 118, 137, 26 | fsumless 15508 |
. . . 4
⊢ ((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) → Σ𝑧 ∈ ran 𝑓⦋(2nd ‘𝑧) / 𝑘⦌𝐶 ≤ Σ𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)⦋(2nd ‘𝑧) / 𝑘⦌𝐶) |
139 | 99, 138 | eqbrtrrd 5098 |
. . 3
⊢ ((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) → Σ𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵𝐶 ≤ Σ𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)⦋(2nd ‘𝑧) / 𝑘⦌𝐶) |
140 | | nfcv 2907 |
. . . . . . . 8
⊢
Ⅎ𝑦𝐵 |
141 | | nfcv 2907 |
. . . . . . . 8
⊢
Ⅎ𝑘𝐵 |
142 | 12, 140, 141, 15, 16 | cbvsum 15407 |
. . . . . . 7
⊢
Σ𝑘 ∈
𝐵 𝐶 = Σ𝑦 ∈ 𝐵 ⦋𝑦 / 𝑘⦌𝐶 |
143 | 142 | a1i 11 |
. . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑦 ∈ 𝐵 ⦋𝑦 / 𝑘⦌𝐶) |
144 | 143 | sumeq2sdv 15416 |
. . . . 5
⊢ (𝜑 → Σ𝑥 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑥 ∈ 𝐴 Σ𝑦 ∈ 𝐵 ⦋𝑦 / 𝑘⦌𝐶) |
145 | | vex 3436 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
146 | | vex 3436 |
. . . . . . . . . 10
⊢ 𝑦 ∈ V |
147 | 145, 146 | op2ndd 7842 |
. . . . . . . . 9
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (2nd ‘𝑧) = 𝑦) |
148 | 147 | eqcomd 2744 |
. . . . . . . 8
⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝑦 = (2nd ‘𝑧)) |
149 | 148 | csbeq1d 3836 |
. . . . . . 7
⊢ (𝑧 = 〈𝑥, 𝑦〉 → ⦋𝑦 / 𝑘⦌𝐶 = ⦋(2nd
‘𝑧) / 𝑘⦌𝐶) |
150 | 149 | eqcomd 2744 |
. . . . . 6
⊢ (𝑧 = 〈𝑥, 𝑦〉 → ⦋(2nd
‘𝑧) / 𝑘⦌𝐶 = ⦋𝑦 / 𝑘⦌𝐶) |
151 | | nfv 1917 |
. . . . . . . . 9
⊢
Ⅎ𝑘((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) |
152 | 16 | nfel1 2923 |
. . . . . . . . 9
⊢
Ⅎ𝑘⦋𝑦 / 𝑘⦌𝐶 ∈ ℂ |
153 | 151, 152 | nfim 1899 |
. . . . . . . 8
⊢
Ⅎ𝑘(((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → ⦋𝑦 / 𝑘⦌𝐶 ∈ ℂ) |
154 | | eleq1w 2821 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑦 → (𝑘 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) |
155 | 154 | anbi2d 629 |
. . . . . . . . 9
⊢ (𝑘 = 𝑦 → (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐵) ↔ ((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵))) |
156 | 155, 83 | imbi12d 345 |
. . . . . . . 8
⊢ (𝑘 = 𝑦 → ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) ↔ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → ⦋𝑦 / 𝑘⦌𝐶 ∈ ℂ))) |
157 | 88 | recnd 11003 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) |
158 | 153, 156,
157 | chvarfv 2233 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → ⦋𝑦 / 𝑘⦌𝐶 ∈ ℂ) |
159 | 158 | anasss 467 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → ⦋𝑦 / 𝑘⦌𝐶 ∈ ℂ) |
160 | 150, 1, 2, 159 | fsum2d 15483 |
. . . . 5
⊢ (𝜑 → Σ𝑥 ∈ 𝐴 Σ𝑦 ∈ 𝐵 ⦋𝑦 / 𝑘⦌𝐶 = Σ𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)⦋(2nd ‘𝑧) / 𝑘⦌𝐶) |
161 | 144, 160 | eqtrd 2778 |
. . . 4
⊢ (𝜑 → Σ𝑥 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)⦋(2nd ‘𝑧) / 𝑘⦌𝐶) |
162 | 161 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) → Σ𝑥 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵)⦋(2nd ‘𝑧) / 𝑘⦌𝐶) |
163 | 139, 162 | breqtrrd 5102 |
. 2
⊢ ((𝜑 ∧ ((𝑓:∪ 𝑥 ∈ 𝐴 𝐵–1-1-onto→ran
𝑓 ∧ ∀𝑙 ∈ ∪ 𝑥 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑙)) = 𝑙) ∧ ran 𝑓 ⊆ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) → Σ𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵𝐶 ≤ Σ𝑥 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶) |
164 | 11, 163 | exlimddv 1938 |
1
⊢ (𝜑 → Σ𝑘 ∈ ∪
𝑥 ∈ 𝐴 𝐵𝐶 ≤ Σ𝑥 ∈ 𝐴 Σ𝑘 ∈ 𝐵 𝐶) |