Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumiunle Structured version   Visualization version   GIF version

Theorem fsumiunle 30024
Description: Upper bound for a sum of nonnegative terms over an indexed union. The inequality may be strict if the indexed union is non-disjoint, since in the right hand side, a summand may be counted several times. (Contributed by Thierry Arnoux, 1-Jan-2021.)
Hypotheses
Ref Expression
fsumiunle.1 (𝜑𝐴 ∈ Fin)
fsumiunle.2 ((𝜑𝑥𝐴) → 𝐵 ∈ Fin)
fsumiunle.3 (((𝜑𝑥𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ ℝ)
fsumiunle.4 (((𝜑𝑥𝐴) ∧ 𝑘𝐵) → 0 ≤ 𝐶)
Assertion
Ref Expression
fsumiunle (𝜑 → Σ𝑘 𝑥𝐴 𝐵𝐶 ≤ Σ𝑥𝐴 Σ𝑘𝐵 𝐶)
Distinct variable groups:   𝐴,𝑘,𝑥   𝐵,𝑘   𝑥,𝐶   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑘)

Proof of Theorem fsumiunle
Dummy variables 𝑓 𝑙 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsumiunle.1 . . . 4 (𝜑𝐴 ∈ Fin)
2 fsumiunle.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ Fin)
31, 2aciunf1 29913 . . 3 (𝜑 → ∃𝑓(𝑓: 𝑥𝐴 𝐵1-1 𝑥𝐴 ({𝑥} × 𝐵) ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙))
4 f1f1orn 6331 . . . . . 6 (𝑓: 𝑥𝐴 𝐵1-1 𝑥𝐴 ({𝑥} × 𝐵) → 𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓)
54anim1i 608 . . . . 5 ((𝑓: 𝑥𝐴 𝐵1-1 𝑥𝐴 ({𝑥} × 𝐵) ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) → (𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙))
6 f1f 6283 . . . . . . 7 (𝑓: 𝑥𝐴 𝐵1-1 𝑥𝐴 ({𝑥} × 𝐵) → 𝑓: 𝑥𝐴 𝐵 𝑥𝐴 ({𝑥} × 𝐵))
76frnd 6230 . . . . . 6 (𝑓: 𝑥𝐴 𝐵1-1 𝑥𝐴 ({𝑥} × 𝐵) → ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))
87adantr 472 . . . . 5 ((𝑓: 𝑥𝐴 𝐵1-1 𝑥𝐴 ({𝑥} × 𝐵) ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) → ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))
95, 8jca 507 . . . 4 ((𝑓: 𝑥𝐴 𝐵1-1 𝑥𝐴 ({𝑥} × 𝐵) ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) → ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵)))
109eximi 1929 . . 3 (∃𝑓(𝑓: 𝑥𝐴 𝐵1-1 𝑥𝐴 ({𝑥} × 𝐵) ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) → ∃𝑓((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵)))
113, 10syl 17 . 2 (𝜑 → ∃𝑓((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵)))
12 csbeq1a 3700 . . . . . . 7 (𝑘 = 𝑦𝐶 = 𝑦 / 𝑘𝐶)
13 nfcv 2907 . . . . . . 7 𝑦 𝑥𝐴 𝐵
14 nfcv 2907 . . . . . . 7 𝑘 𝑥𝐴 𝐵
15 nfcv 2907 . . . . . . 7 𝑦𝐶
16 nfcsb1v 3707 . . . . . . 7 𝑘𝑦 / 𝑘𝐶
1712, 13, 14, 15, 16cbvsum 14710 . . . . . 6 Σ𝑘 𝑥𝐴 𝐵𝐶 = Σ𝑦 𝑥𝐴 𝐵𝑦 / 𝑘𝐶
18 csbeq1 3694 . . . . . . 7 (𝑦 = (2nd𝑧) → 𝑦 / 𝑘𝐶 = (2nd𝑧) / 𝑘𝐶)
19 snfi 8245 . . . . . . . . . . . 12 {𝑥} ∈ Fin
20 xpfi 8438 . . . . . . . . . . . 12 (({𝑥} ∈ Fin ∧ 𝐵 ∈ Fin) → ({𝑥} × 𝐵) ∈ Fin)
2119, 2, 20sylancr 581 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ({𝑥} × 𝐵) ∈ Fin)
2221ralrimiva 3113 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐴 ({𝑥} × 𝐵) ∈ Fin)
23 iunfi 8461 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 ({𝑥} × 𝐵) ∈ Fin) → 𝑥𝐴 ({𝑥} × 𝐵) ∈ Fin)
241, 22, 23syl2anc 579 . . . . . . . . 9 (𝜑 𝑥𝐴 ({𝑥} × 𝐵) ∈ Fin)
2524adantr 472 . . . . . . . 8 ((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) → 𝑥𝐴 ({𝑥} × 𝐵) ∈ Fin)
26 simprr 789 . . . . . . . 8 ((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) → ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))
2725, 26ssfid 8390 . . . . . . 7 ((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) → ran 𝑓 ∈ Fin)
28 simprl 787 . . . . . . . . 9 ((𝜑 ∧ (𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) → 𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓)
29 f1ocnv 6332 . . . . . . . . 9 (𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓𝑓:ran 𝑓1-1-onto 𝑥𝐴 𝐵)
3028, 29syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) → 𝑓:ran 𝑓1-1-onto 𝑥𝐴 𝐵)
3130adantrlr 714 . . . . . . 7 ((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) → 𝑓:ran 𝑓1-1-onto 𝑥𝐴 𝐵)
32 nfv 2009 . . . . . . . . . 10 𝑥𝜑
33 nfcv 2907 . . . . . . . . . . . . 13 𝑥𝑓
34 nfiu1 4706 . . . . . . . . . . . . 13 𝑥 𝑥𝐴 𝐵
3533nfrn 5537 . . . . . . . . . . . . 13 𝑥ran 𝑓
3633, 34, 35nff1o 6318 . . . . . . . . . . . 12 𝑥 𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓
37 nfv 2009 . . . . . . . . . . . . 13 𝑥(2nd ‘(𝑓𝑙)) = 𝑙
3834, 37nfral 3092 . . . . . . . . . . . 12 𝑥𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙
3936, 38nfan 1998 . . . . . . . . . . 11 𝑥(𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙)
40 nfcv 2907 . . . . . . . . . . . 12 𝑥ran 𝑓
41 nfiu1 4706 . . . . . . . . . . . 12 𝑥 𝑥𝐴 ({𝑥} × 𝐵)
4240, 41nfss 3754 . . . . . . . . . . 11 𝑥ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵)
4339, 42nfan 1998 . . . . . . . . . 10 𝑥((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))
4432, 43nfan 1998 . . . . . . . . 9 𝑥(𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵)))
45 nfv 2009 . . . . . . . . 9 𝑥 𝑧 ∈ ran 𝑓
4644, 45nfan 1998 . . . . . . . 8 𝑥((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓)
47 simpr 477 . . . . . . . . . . . 12 (((((((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) ∧ 𝑘 𝑥𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (𝑓𝑘) = 𝑧)
4847fveq2d 6379 . . . . . . . . . . 11 (((((((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) ∧ 𝑘 𝑥𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (2nd ‘(𝑓𝑘)) = (2nd𝑧))
49 simplr 785 . . . . . . . . . . . 12 (((((((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) ∧ 𝑘 𝑥𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → 𝑘 𝑥𝐴 𝐵)
50 simp-4r 803 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵)))
5150simpld 488 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → (𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙))
5251simprd 489 . . . . . . . . . . . . 13 (((((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙)
5352ad2antrr 717 . . . . . . . . . . . 12 (((((((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) ∧ 𝑘 𝑥𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙)
54 2fveq3 6380 . . . . . . . . . . . . . 14 (𝑙 = 𝑘 → (2nd ‘(𝑓𝑙)) = (2nd ‘(𝑓𝑘)))
55 id 22 . . . . . . . . . . . . . 14 (𝑙 = 𝑘𝑙 = 𝑘)
5654, 55eqeq12d 2780 . . . . . . . . . . . . 13 (𝑙 = 𝑘 → ((2nd ‘(𝑓𝑙)) = 𝑙 ↔ (2nd ‘(𝑓𝑘)) = 𝑘))
5756rspcva 3459 . . . . . . . . . . . 12 ((𝑘 𝑥𝐴 𝐵 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) → (2nd ‘(𝑓𝑘)) = 𝑘)
5849, 53, 57syl2anc 579 . . . . . . . . . . 11 (((((((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) ∧ 𝑘 𝑥𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (2nd ‘(𝑓𝑘)) = 𝑘)
5948, 58eqtr3d 2801 . . . . . . . . . 10 (((((((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) ∧ 𝑘 𝑥𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (2nd𝑧) = 𝑘)
6051simpld 488 . . . . . . . . . . . 12 (((((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → 𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓)
6160ad2antrr 717 . . . . . . . . . . 11 (((((((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) ∧ 𝑘 𝑥𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → 𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓)
62 f1ocnvfv1 6724 . . . . . . . . . . 11 ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓𝑘 𝑥𝐴 𝐵) → (𝑓‘(𝑓𝑘)) = 𝑘)
6361, 49, 62syl2anc 579 . . . . . . . . . 10 (((((((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) ∧ 𝑘 𝑥𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (𝑓‘(𝑓𝑘)) = 𝑘)
6447fveq2d 6379 . . . . . . . . . 10 (((((((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) ∧ 𝑘 𝑥𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (𝑓‘(𝑓𝑘)) = (𝑓𝑧))
6559, 63, 643eqtr2rd 2806 . . . . . . . . 9 (((((((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) ∧ 𝑘 𝑥𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (𝑓𝑧) = (2nd𝑧))
66 f1ofn 6321 . . . . . . . . . . 11 (𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓𝑓 Fn 𝑥𝐴 𝐵)
6760, 66syl 17 . . . . . . . . . 10 (((((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → 𝑓 Fn 𝑥𝐴 𝐵)
68 simpllr 793 . . . . . . . . . 10 (((((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → 𝑧 ∈ ran 𝑓)
69 fvelrnb 6432 . . . . . . . . . . 11 (𝑓 Fn 𝑥𝐴 𝐵 → (𝑧 ∈ ran 𝑓 ↔ ∃𝑘 𝑥𝐴 𝐵(𝑓𝑘) = 𝑧))
7069biimpa 468 . . . . . . . . . 10 ((𝑓 Fn 𝑥𝐴 𝐵𝑧 ∈ ran 𝑓) → ∃𝑘 𝑥𝐴 𝐵(𝑓𝑘) = 𝑧)
7167, 68, 70syl2anc 579 . . . . . . . . 9 (((((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → ∃𝑘 𝑥𝐴 𝐵(𝑓𝑘) = 𝑧)
7265, 71r19.29a 3225 . . . . . . . 8 (((((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → (𝑓𝑧) = (2nd𝑧))
7326sselda 3761 . . . . . . . . 9 (((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) → 𝑧 𝑥𝐴 ({𝑥} × 𝐵))
74 eliun 4680 . . . . . . . . 9 (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↔ ∃𝑥𝐴 𝑧 ∈ ({𝑥} × 𝐵))
7573, 74sylib 209 . . . . . . . 8 (((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) → ∃𝑥𝐴 𝑧 ∈ ({𝑥} × 𝐵))
7646, 72, 75r19.29af 3223 . . . . . . 7 (((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) → (𝑓𝑧) = (2nd𝑧))
77 nfv 2009 . . . . . . . . . 10 𝑘(𝜑𝑦 𝑥𝐴 𝐵)
78 nfcv 2907 . . . . . . . . . . 11 𝑘
7916, 78nfel 2920 . . . . . . . . . 10 𝑘𝑦 / 𝑘𝐶 ∈ ℂ
8077, 79nfim 1995 . . . . . . . . 9 𝑘((𝜑𝑦 𝑥𝐴 𝐵) → 𝑦 / 𝑘𝐶 ∈ ℂ)
81 eleq1w 2827 . . . . . . . . . . 11 (𝑘 = 𝑦 → (𝑘 𝑥𝐴 𝐵𝑦 𝑥𝐴 𝐵))
8281anbi2d 622 . . . . . . . . . 10 (𝑘 = 𝑦 → ((𝜑𝑘 𝑥𝐴 𝐵) ↔ (𝜑𝑦 𝑥𝐴 𝐵)))
8312eleq1d 2829 . . . . . . . . . 10 (𝑘 = 𝑦 → (𝐶 ∈ ℂ ↔ 𝑦 / 𝑘𝐶 ∈ ℂ))
8482, 83imbi12d 335 . . . . . . . . 9 (𝑘 = 𝑦 → (((𝜑𝑘 𝑥𝐴 𝐵) → 𝐶 ∈ ℂ) ↔ ((𝜑𝑦 𝑥𝐴 𝐵) → 𝑦 / 𝑘𝐶 ∈ ℂ)))
85 nfcv 2907 . . . . . . . . . . . 12 𝑥𝑘
8685, 34nfel 2920 . . . . . . . . . . 11 𝑥 𝑘 𝑥𝐴 𝐵
8732, 86nfan 1998 . . . . . . . . . 10 𝑥(𝜑𝑘 𝑥𝐴 𝐵)
88 fsumiunle.3 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ ℝ)
8988adantllr 710 . . . . . . . . . . 11 ((((𝜑𝑘 𝑥𝐴 𝐵) ∧ 𝑥𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ ℝ)
9089recnd 10322 . . . . . . . . . 10 ((((𝜑𝑘 𝑥𝐴 𝐵) ∧ 𝑥𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ ℂ)
91 eliun 4680 . . . . . . . . . . . 12 (𝑘 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑘𝐵)
9291biimpi 207 . . . . . . . . . . 11 (𝑘 𝑥𝐴 𝐵 → ∃𝑥𝐴 𝑘𝐵)
9392adantl 473 . . . . . . . . . 10 ((𝜑𝑘 𝑥𝐴 𝐵) → ∃𝑥𝐴 𝑘𝐵)
9487, 90, 93r19.29af 3223 . . . . . . . . 9 ((𝜑𝑘 𝑥𝐴 𝐵) → 𝐶 ∈ ℂ)
9580, 84, 94chvar 2368 . . . . . . . 8 ((𝜑𝑦 𝑥𝐴 𝐵) → 𝑦 / 𝑘𝐶 ∈ ℂ)
9695adantlr 706 . . . . . . 7 (((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑦 𝑥𝐴 𝐵) → 𝑦 / 𝑘𝐶 ∈ ℂ)
9718, 27, 31, 76, 96fsumf1o 14739 . . . . . 6 ((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) → Σ𝑦 𝑥𝐴 𝐵𝑦 / 𝑘𝐶 = Σ𝑧 ∈ ran 𝑓(2nd𝑧) / 𝑘𝐶)
9817, 97syl5eq 2811 . . . . 5 ((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) → Σ𝑘 𝑥𝐴 𝐵𝐶 = Σ𝑧 ∈ ran 𝑓(2nd𝑧) / 𝑘𝐶)
9998eqcomd 2771 . . . 4 ((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) → Σ𝑧 ∈ ran 𝑓(2nd𝑧) / 𝑘𝐶 = Σ𝑘 𝑥𝐴 𝐵𝐶)
100 nfcv 2907 . . . . . . . . 9 𝑥𝑧
101100, 41nfel 2920 . . . . . . . 8 𝑥 𝑧 𝑥𝐴 ({𝑥} × 𝐵)
10232, 101nfan 1998 . . . . . . 7 𝑥(𝜑𝑧 𝑥𝐴 ({𝑥} × 𝐵))
103 xp2nd 7399 . . . . . . . . 9 (𝑧 ∈ ({𝑥} × 𝐵) → (2nd𝑧) ∈ 𝐵)
104103adantl 473 . . . . . . . 8 ((((𝜑𝑧 𝑥𝐴 ({𝑥} × 𝐵)) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → (2nd𝑧) ∈ 𝐵)
10588ralrimiva 3113 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ∀𝑘𝐵 𝐶 ∈ ℝ)
106105adantlr 706 . . . . . . . . 9 (((𝜑𝑧 𝑥𝐴 ({𝑥} × 𝐵)) ∧ 𝑥𝐴) → ∀𝑘𝐵 𝐶 ∈ ℝ)
107106adantr 472 . . . . . . . 8 ((((𝜑𝑧 𝑥𝐴 ({𝑥} × 𝐵)) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → ∀𝑘𝐵 𝐶 ∈ ℝ)
108 nfcsb1v 3707 . . . . . . . . . . 11 𝑘(2nd𝑧) / 𝑘𝐶
109108nfel1 2922 . . . . . . . . . 10 𝑘(2nd𝑧) / 𝑘𝐶 ∈ ℝ
110 csbeq1a 3700 . . . . . . . . . . 11 (𝑘 = (2nd𝑧) → 𝐶 = (2nd𝑧) / 𝑘𝐶)
111110eleq1d 2829 . . . . . . . . . 10 (𝑘 = (2nd𝑧) → (𝐶 ∈ ℝ ↔ (2nd𝑧) / 𝑘𝐶 ∈ ℝ))
112109, 111rspc 3455 . . . . . . . . 9 ((2nd𝑧) ∈ 𝐵 → (∀𝑘𝐵 𝐶 ∈ ℝ → (2nd𝑧) / 𝑘𝐶 ∈ ℝ))
113112imp 395 . . . . . . . 8 (((2nd𝑧) ∈ 𝐵 ∧ ∀𝑘𝐵 𝐶 ∈ ℝ) → (2nd𝑧) / 𝑘𝐶 ∈ ℝ)
114104, 107, 113syl2anc 579 . . . . . . 7 ((((𝜑𝑧 𝑥𝐴 ({𝑥} × 𝐵)) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → (2nd𝑧) / 𝑘𝐶 ∈ ℝ)
11574biimpi 207 . . . . . . . 8 (𝑧 𝑥𝐴 ({𝑥} × 𝐵) → ∃𝑥𝐴 𝑧 ∈ ({𝑥} × 𝐵))
116115adantl 473 . . . . . . 7 ((𝜑𝑧 𝑥𝐴 ({𝑥} × 𝐵)) → ∃𝑥𝐴 𝑧 ∈ ({𝑥} × 𝐵))
117102, 114, 116r19.29af 3223 . . . . . 6 ((𝜑𝑧 𝑥𝐴 ({𝑥} × 𝐵)) → (2nd𝑧) / 𝑘𝐶 ∈ ℝ)
118117adantlr 706 . . . . 5 (((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 𝑥𝐴 ({𝑥} × 𝐵)) → (2nd𝑧) / 𝑘𝐶 ∈ ℝ)
119 xp1st 7398 . . . . . . . . . . 11 (𝑧 ∈ ({𝑥} × 𝐵) → (1st𝑧) ∈ {𝑥})
120 elsni 4351 . . . . . . . . . . 11 ((1st𝑧) ∈ {𝑥} → (1st𝑧) = 𝑥)
121119, 120syl 17 . . . . . . . . . 10 (𝑧 ∈ ({𝑥} × 𝐵) → (1st𝑧) = 𝑥)
122121, 103jca 507 . . . . . . . . 9 (𝑧 ∈ ({𝑥} × 𝐵) → ((1st𝑧) = 𝑥 ∧ (2nd𝑧) ∈ 𝐵))
123 simplll 791 . . . . . . . . . 10 ((((𝜑𝑧 𝑥𝐴 ({𝑥} × 𝐵)) ∧ 𝑥𝐴) ∧ ((1st𝑧) = 𝑥 ∧ (2nd𝑧) ∈ 𝐵)) → 𝜑)
124 simplr 785 . . . . . . . . . 10 ((((𝜑𝑧 𝑥𝐴 ({𝑥} × 𝐵)) ∧ 𝑥𝐴) ∧ ((1st𝑧) = 𝑥 ∧ (2nd𝑧) ∈ 𝐵)) → 𝑥𝐴)
125 fsumiunle.4 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑘𝐵) → 0 ≤ 𝐶)
126125ralrimiva 3113 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ∀𝑘𝐵 0 ≤ 𝐶)
127123, 124, 126syl2anc 579 . . . . . . . . 9 ((((𝜑𝑧 𝑥𝐴 ({𝑥} × 𝐵)) ∧ 𝑥𝐴) ∧ ((1st𝑧) = 𝑥 ∧ (2nd𝑧) ∈ 𝐵)) → ∀𝑘𝐵 0 ≤ 𝐶)
128122, 127sylan2 586 . . . . . . . 8 ((((𝜑𝑧 𝑥𝐴 ({𝑥} × 𝐵)) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → ∀𝑘𝐵 0 ≤ 𝐶)
129 nfcv 2907 . . . . . . . . . . 11 𝑘0
130 nfcv 2907 . . . . . . . . . . 11 𝑘
131129, 130, 108nfbr 4856 . . . . . . . . . 10 𝑘0 ≤ (2nd𝑧) / 𝑘𝐶
132110breq2d 4821 . . . . . . . . . 10 (𝑘 = (2nd𝑧) → (0 ≤ 𝐶 ↔ 0 ≤ (2nd𝑧) / 𝑘𝐶))
133131, 132rspc 3455 . . . . . . . . 9 ((2nd𝑧) ∈ 𝐵 → (∀𝑘𝐵 0 ≤ 𝐶 → 0 ≤ (2nd𝑧) / 𝑘𝐶))
134133imp 395 . . . . . . . 8 (((2nd𝑧) ∈ 𝐵 ∧ ∀𝑘𝐵 0 ≤ 𝐶) → 0 ≤ (2nd𝑧) / 𝑘𝐶)
135104, 128, 134syl2anc 579 . . . . . . 7 ((((𝜑𝑧 𝑥𝐴 ({𝑥} × 𝐵)) ∧ 𝑥𝐴) ∧ 𝑧 ∈ ({𝑥} × 𝐵)) → 0 ≤ (2nd𝑧) / 𝑘𝐶)
136102, 135, 116r19.29af 3223 . . . . . 6 ((𝜑𝑧 𝑥𝐴 ({𝑥} × 𝐵)) → 0 ≤ (2nd𝑧) / 𝑘𝐶)
137136adantlr 706 . . . . 5 (((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) ∧ 𝑧 𝑥𝐴 ({𝑥} × 𝐵)) → 0 ≤ (2nd𝑧) / 𝑘𝐶)
13825, 118, 137, 26fsumless 14812 . . . 4 ((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) → Σ𝑧 ∈ ran 𝑓(2nd𝑧) / 𝑘𝐶 ≤ Σ𝑧 𝑥𝐴 ({𝑥} × 𝐵)(2nd𝑧) / 𝑘𝐶)
13999, 138eqbrtrrd 4833 . . 3 ((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) → Σ𝑘 𝑥𝐴 𝐵𝐶 ≤ Σ𝑧 𝑥𝐴 ({𝑥} × 𝐵)(2nd𝑧) / 𝑘𝐶)
140 nfcv 2907 . . . . . . . 8 𝑦𝐵
141 nfcv 2907 . . . . . . . 8 𝑘𝐵
14212, 140, 141, 15, 16cbvsum 14710 . . . . . . 7 Σ𝑘𝐵 𝐶 = Σ𝑦𝐵 𝑦 / 𝑘𝐶
143142a1i 11 . . . . . 6 (𝜑 → Σ𝑘𝐵 𝐶 = Σ𝑦𝐵 𝑦 / 𝑘𝐶)
144143sumeq2sdv 14720 . . . . 5 (𝜑 → Σ𝑥𝐴 Σ𝑘𝐵 𝐶 = Σ𝑥𝐴 Σ𝑦𝐵 𝑦 / 𝑘𝐶)
145 vex 3353 . . . . . . . . . 10 𝑥 ∈ V
146 vex 3353 . . . . . . . . . 10 𝑦 ∈ V
147145, 146op2ndd 7377 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → (2nd𝑧) = 𝑦)
148147eqcomd 2771 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑦 = (2nd𝑧))
149148csbeq1d 3698 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑦 / 𝑘𝐶 = (2nd𝑧) / 𝑘𝐶)
150149eqcomd 2771 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (2nd𝑧) / 𝑘𝐶 = 𝑦 / 𝑘𝐶)
151 nfv 2009 . . . . . . . . 9 𝑘((𝜑𝑥𝐴) ∧ 𝑦𝐵)
15216nfel1 2922 . . . . . . . . 9 𝑘𝑦 / 𝑘𝐶 ∈ ℂ
153151, 152nfim 1995 . . . . . . . 8 𝑘(((𝜑𝑥𝐴) ∧ 𝑦𝐵) → 𝑦 / 𝑘𝐶 ∈ ℂ)
154 eleq1w 2827 . . . . . . . . . 10 (𝑘 = 𝑦 → (𝑘𝐵𝑦𝐵))
155154anbi2d 622 . . . . . . . . 9 (𝑘 = 𝑦 → (((𝜑𝑥𝐴) ∧ 𝑘𝐵) ↔ ((𝜑𝑥𝐴) ∧ 𝑦𝐵)))
156155, 83imbi12d 335 . . . . . . . 8 (𝑘 = 𝑦 → ((((𝜑𝑥𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ ℂ) ↔ (((𝜑𝑥𝐴) ∧ 𝑦𝐵) → 𝑦 / 𝑘𝐶 ∈ ℂ)))
15788recnd 10322 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ ℂ)
158153, 156, 157chvar 2368 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑦𝐵) → 𝑦 / 𝑘𝐶 ∈ ℂ)
159158anasss 458 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝑦 / 𝑘𝐶 ∈ ℂ)
160150, 1, 2, 159fsum2d 14787 . . . . 5 (𝜑 → Σ𝑥𝐴 Σ𝑦𝐵 𝑦 / 𝑘𝐶 = Σ𝑧 𝑥𝐴 ({𝑥} × 𝐵)(2nd𝑧) / 𝑘𝐶)
161144, 160eqtrd 2799 . . . 4 (𝜑 → Σ𝑥𝐴 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑥𝐴 ({𝑥} × 𝐵)(2nd𝑧) / 𝑘𝐶)
162161adantr 472 . . 3 ((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) → Σ𝑥𝐴 Σ𝑘𝐵 𝐶 = Σ𝑧 𝑥𝐴 ({𝑥} × 𝐵)(2nd𝑧) / 𝑘𝐶)
163139, 162breqtrrd 4837 . 2 ((𝜑 ∧ ((𝑓: 𝑥𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑥𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑥𝐴 ({𝑥} × 𝐵))) → Σ𝑘 𝑥𝐴 𝐵𝐶 ≤ Σ𝑥𝐴 Σ𝑘𝐵 𝐶)
16411, 163exlimddv 2030 1 (𝜑 → Σ𝑘 𝑥𝐴 𝐵𝐶 ≤ Σ𝑥𝐴 Σ𝑘𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wex 1874  wcel 2155  wral 3055  wrex 3056  csb 3691  wss 3732  {csn 4334  cop 4340   ciun 4676   class class class wbr 4809   × cxp 5275  ccnv 5276  ran crn 5278   Fn wfn 6063  1-1wf1 6065  1-1-ontowf1o 6067  cfv 6068  1st c1st 7364  2nd c2nd 7365  Fincfn 8160  cc 10187  cr 10188  0cc0 10189  cle 10329  Σcsu 14701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-reg 8704  ax-inf2 8753  ax-ac2 9538  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-oi 8622  df-r1 8842  df-rank 8843  df-card 9016  df-ac 9190  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-rp 12029  df-ico 12383  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-clim 14504  df-sum 14702
This theorem is referenced by:  hgt750lema  31186
  Copyright terms: Public domain W3C validator