Proof of Theorem lediv12a
Step | Hyp | Ref
| Expression |
1 | | simplr 765 |
. . . . 5
⊢ (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷)) → 𝐷 ∈ ℝ) |
2 | | 0re 10908 |
. . . . . . . 8
⊢ 0 ∈
ℝ |
3 | | ltletr 10997 |
. . . . . . . 8
⊢ ((0
∈ ℝ ∧ 𝐶
∈ ℝ ∧ 𝐷
∈ ℝ) → ((0 < 𝐶 ∧ 𝐶 ≤ 𝐷) → 0 < 𝐷)) |
4 | 2, 3 | mp3an1 1446 |
. . . . . . 7
⊢ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((0 <
𝐶 ∧ 𝐶 ≤ 𝐷) → 0 < 𝐷)) |
5 | 4 | imp 406 |
. . . . . 6
⊢ (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷)) → 0 < 𝐷) |
6 | 5 | gt0ne0d 11469 |
. . . . 5
⊢ (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷)) → 𝐷 ≠ 0) |
7 | 1, 6 | rereccld 11732 |
. . . 4
⊢ (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷)) → (1 / 𝐷) ∈ ℝ) |
8 | | gt0ne0 11370 |
. . . . . 6
⊢ ((𝐶 ∈ ℝ ∧ 0 <
𝐶) → 𝐶 ≠ 0) |
9 | | rereccl 11623 |
. . . . . 6
⊢ ((𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → (1 / 𝐶) ∈
ℝ) |
10 | 8, 9 | syldan 590 |
. . . . 5
⊢ ((𝐶 ∈ ℝ ∧ 0 <
𝐶) → (1 / 𝐶) ∈
ℝ) |
11 | 10 | ad2ant2r 743 |
. . . 4
⊢ (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷)) → (1 / 𝐶) ∈ ℝ) |
12 | | recgt0 11751 |
. . . . . . 7
⊢ ((𝐷 ∈ ℝ ∧ 0 <
𝐷) → 0 < (1 / 𝐷)) |
13 | 1, 5, 12 | syl2anc 583 |
. . . . . 6
⊢ (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷)) → 0 < (1 / 𝐷)) |
14 | | ltle 10994 |
. . . . . . 7
⊢ ((0
∈ ℝ ∧ (1 / 𝐷) ∈ ℝ) → (0 < (1 / 𝐷) → 0 ≤ (1 / 𝐷))) |
15 | 2, 7, 14 | sylancr 586 |
. . . . . 6
⊢ (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷)) → (0 < (1 / 𝐷) → 0 ≤ (1 / 𝐷))) |
16 | 13, 15 | mpd 15 |
. . . . 5
⊢ (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷)) → 0 ≤ (1 / 𝐷)) |
17 | | simprr 769 |
. . . . . 6
⊢ (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷)) → 𝐶 ≤ 𝐷) |
18 | | id 22 |
. . . . . . . 8
⊢ ((𝐶 ∈ ℝ ∧ 0 <
𝐶) → (𝐶 ∈ ℝ ∧ 0 <
𝐶)) |
19 | 18 | ad2ant2r 743 |
. . . . . . 7
⊢ (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷)) → (𝐶 ∈ ℝ ∧ 0 < 𝐶)) |
20 | | lerec 11788 |
. . . . . . 7
⊢ (((𝐶 ∈ ℝ ∧ 0 <
𝐶) ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷)) → (𝐶 ≤ 𝐷 ↔ (1 / 𝐷) ≤ (1 / 𝐶))) |
21 | 19, 1, 5, 20 | syl12anc 833 |
. . . . . 6
⊢ (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷)) → (𝐶 ≤ 𝐷 ↔ (1 / 𝐷) ≤ (1 / 𝐶))) |
22 | 17, 21 | mpbid 231 |
. . . . 5
⊢ (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷)) → (1 / 𝐷) ≤ (1 / 𝐶)) |
23 | 16, 22 | jca 511 |
. . . 4
⊢ (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷)) → (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶))) |
24 | 7, 11, 23 | jca31 514 |
. . 3
⊢ (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷)) → (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤
(1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) |
25 | | simplll 771 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤
(1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → 𝐴 ∈ ℝ) |
26 | | simplrl 773 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤
(1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → 0 ≤ 𝐴) |
27 | | simpllr 772 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤
(1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → 𝐵 ∈ ℝ) |
28 | 25, 26, 27 | jca31 514 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤
(1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ)) |
29 | | simprll 775 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤
(1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → (1 / 𝐷) ∈ ℝ) |
30 | | simprrl 777 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤
(1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → 0 ≤ (1 / 𝐷)) |
31 | 29, 30 | jca 511 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤
(1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → ((1 / 𝐷) ∈ ℝ ∧ 0 ≤ (1 / 𝐷))) |
32 | | simprlr 776 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤
(1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → (1 / 𝐶) ∈ ℝ) |
33 | 28, 31, 32 | jca32 515 |
. . . 4
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤
(1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (((1 / 𝐷) ∈ ℝ ∧ 0 ≤ (1
/ 𝐷)) ∧ (1 / 𝐶) ∈
ℝ))) |
34 | | simplrr 774 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤
(1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → 𝐴 ≤ 𝐵) |
35 | | simprrr 778 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤
(1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → (1 / 𝐷) ≤ (1 / 𝐶)) |
36 | 34, 35 | jca 511 |
. . . 4
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤
(1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → (𝐴 ≤ 𝐵 ∧ (1 / 𝐷) ≤ (1 / 𝐶))) |
37 | | lemul12a 11763 |
. . . 4
⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ 𝐵 ∈ ℝ) ∧ (((1 / 𝐷) ∈ ℝ ∧ 0 ≤ (1
/ 𝐷)) ∧ (1 / 𝐶) ∈ ℝ)) →
((𝐴 ≤ 𝐵 ∧ (1 / 𝐷) ≤ (1 / 𝐶)) → (𝐴 · (1 / 𝐷)) ≤ (𝐵 · (1 / 𝐶)))) |
38 | 33, 36, 37 | sylc 65 |
. . 3
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤
(1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → (𝐴 · (1 / 𝐷)) ≤ (𝐵 · (1 / 𝐶))) |
39 | 24, 38 | sylan2 592 |
. 2
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶 ∧ 𝐶 ≤ 𝐷))) → (𝐴 · (1 / 𝐷)) ≤ (𝐵 · (1 / 𝐶))) |
40 | | recn 10892 |
. . . . 5
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℂ) |
41 | 40 | adantr 480 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷))) → 𝐴 ∈ ℂ) |
42 | | recn 10892 |
. . . . . 6
⊢ (𝐷 ∈ ℝ → 𝐷 ∈
ℂ) |
43 | 42 | ad2antlr 723 |
. . . . 5
⊢ (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷)) → 𝐷 ∈ ℂ) |
44 | 43 | adantl 481 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷))) → 𝐷 ∈ ℂ) |
45 | 6 | adantl 481 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷))) → 𝐷 ≠ 0) |
46 | 41, 44, 45 | divrecd 11684 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷))) → (𝐴 / 𝐷) = (𝐴 · (1 / 𝐷))) |
47 | 46 | ad4ant14 748 |
. 2
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶 ∧ 𝐶 ≤ 𝐷))) → (𝐴 / 𝐷) = (𝐴 · (1 / 𝐷))) |
48 | | recn 10892 |
. . . . . . 7
⊢ (𝐵 ∈ ℝ → 𝐵 ∈
ℂ) |
49 | 48 | adantr 480 |
. . . . . 6
⊢ ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 <
𝐶)) → 𝐵 ∈
ℂ) |
50 | | recn 10892 |
. . . . . . 7
⊢ (𝐶 ∈ ℝ → 𝐶 ∈
ℂ) |
51 | 50 | ad2antrl 724 |
. . . . . 6
⊢ ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 <
𝐶)) → 𝐶 ∈
ℂ) |
52 | 8 | adantl 481 |
. . . . . 6
⊢ ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 <
𝐶)) → 𝐶 ≠ 0) |
53 | 49, 51, 52 | divrecd 11684 |
. . . . 5
⊢ ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 <
𝐶)) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶))) |
54 | 53 | adantrrr 721 |
. . . 4
⊢ ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷))) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶))) |
55 | 54 | adantrlr 719 |
. . 3
⊢ ((𝐵 ∈ ℝ ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 <
𝐶 ∧ 𝐶 ≤ 𝐷))) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶))) |
56 | 55 | ad4ant24 750 |
. 2
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶 ∧ 𝐶 ≤ 𝐷))) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶))) |
57 | 39, 47, 56 | 3brtr4d 5102 |
1
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤
𝐴 ∧ 𝐴 ≤ 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶 ∧ 𝐶 ≤ 𝐷))) → (𝐴 / 𝐷) ≤ (𝐵 / 𝐶)) |