MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lediv12a Structured version   Visualization version   GIF version

Theorem lediv12a 12083
Description: Comparison of ratio of two nonnegative numbers. (Contributed by NM, 31-Dec-2005.)
Assertion
Ref Expression
lediv12a ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷))) → (𝐴 / 𝐷) ≤ (𝐵 / 𝐶))

Proof of Theorem lediv12a
StepHypRef Expression
1 simplr 768 . . . . 5 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → 𝐷 ∈ ℝ)
2 0re 11183 . . . . . . . 8 0 ∈ ℝ
3 ltletr 11273 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((0 < 𝐶𝐶𝐷) → 0 < 𝐷))
42, 3mp3an1 1450 . . . . . . 7 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((0 < 𝐶𝐶𝐷) → 0 < 𝐷))
54imp 406 . . . . . 6 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → 0 < 𝐷)
65gt0ne0d 11749 . . . . 5 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → 𝐷 ≠ 0)
71, 6rereccld 12016 . . . 4 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → (1 / 𝐷) ∈ ℝ)
8 gt0ne0 11650 . . . . . 6 ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → 𝐶 ≠ 0)
9 rereccl 11907 . . . . . 6 ((𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → (1 / 𝐶) ∈ ℝ)
108, 9syldan 591 . . . . 5 ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → (1 / 𝐶) ∈ ℝ)
1110ad2ant2r 747 . . . 4 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → (1 / 𝐶) ∈ ℝ)
12 recgt0 12035 . . . . . . 7 ((𝐷 ∈ ℝ ∧ 0 < 𝐷) → 0 < (1 / 𝐷))
131, 5, 12syl2anc 584 . . . . . 6 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → 0 < (1 / 𝐷))
14 ltle 11269 . . . . . . 7 ((0 ∈ ℝ ∧ (1 / 𝐷) ∈ ℝ) → (0 < (1 / 𝐷) → 0 ≤ (1 / 𝐷)))
152, 7, 14sylancr 587 . . . . . 6 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → (0 < (1 / 𝐷) → 0 ≤ (1 / 𝐷)))
1613, 15mpd 15 . . . . 5 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → 0 ≤ (1 / 𝐷))
17 simprr 772 . . . . . 6 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → 𝐶𝐷)
18 id 22 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → (𝐶 ∈ ℝ ∧ 0 < 𝐶))
1918ad2ant2r 747 . . . . . . 7 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → (𝐶 ∈ ℝ ∧ 0 < 𝐶))
20 lerec 12073 . . . . . . 7 (((𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷)) → (𝐶𝐷 ↔ (1 / 𝐷) ≤ (1 / 𝐶)))
2119, 1, 5, 20syl12anc 836 . . . . . 6 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → (𝐶𝐷 ↔ (1 / 𝐷) ≤ (1 / 𝐶)))
2217, 21mpbid 232 . . . . 5 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → (1 / 𝐷) ≤ (1 / 𝐶))
2316, 22jca 511 . . . 4 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))
247, 11, 23jca31 514 . . 3 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶))))
25 simplll 774 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → 𝐴 ∈ ℝ)
26 simplrl 776 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → 0 ≤ 𝐴)
27 simpllr 775 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → 𝐵 ∈ ℝ)
2825, 26, 27jca31 514 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ))
29 simprll 778 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → (1 / 𝐷) ∈ ℝ)
30 simprrl 780 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → 0 ≤ (1 / 𝐷))
3129, 30jca 511 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → ((1 / 𝐷) ∈ ℝ ∧ 0 ≤ (1 / 𝐷)))
32 simprlr 779 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → (1 / 𝐶) ∈ ℝ)
3328, 31, 32jca32 515 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (((1 / 𝐷) ∈ ℝ ∧ 0 ≤ (1 / 𝐷)) ∧ (1 / 𝐶) ∈ ℝ)))
34 simplrr 777 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → 𝐴𝐵)
35 simprrr 781 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → (1 / 𝐷) ≤ (1 / 𝐶))
3634, 35jca 511 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → (𝐴𝐵 ∧ (1 / 𝐷) ≤ (1 / 𝐶)))
37 lemul12a 12047 . . . 4 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (((1 / 𝐷) ∈ ℝ ∧ 0 ≤ (1 / 𝐷)) ∧ (1 / 𝐶) ∈ ℝ)) → ((𝐴𝐵 ∧ (1 / 𝐷) ≤ (1 / 𝐶)) → (𝐴 · (1 / 𝐷)) ≤ (𝐵 · (1 / 𝐶))))
3833, 36, 37sylc 65 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → (𝐴 · (1 / 𝐷)) ≤ (𝐵 · (1 / 𝐶)))
3924, 38sylan2 593 . 2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷))) → (𝐴 · (1 / 𝐷)) ≤ (𝐵 · (1 / 𝐶)))
40 recn 11165 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
4140adantr 480 . . . 4 ((𝐴 ∈ ℝ ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷))) → 𝐴 ∈ ℂ)
42 recn 11165 . . . . . 6 (𝐷 ∈ ℝ → 𝐷 ∈ ℂ)
4342ad2antlr 727 . . . . 5 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → 𝐷 ∈ ℂ)
4443adantl 481 . . . 4 ((𝐴 ∈ ℝ ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷))) → 𝐷 ∈ ℂ)
456adantl 481 . . . 4 ((𝐴 ∈ ℝ ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷))) → 𝐷 ≠ 0)
4641, 44, 45divrecd 11968 . . 3 ((𝐴 ∈ ℝ ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷))) → (𝐴 / 𝐷) = (𝐴 · (1 / 𝐷)))
4746ad4ant14 752 . 2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷))) → (𝐴 / 𝐷) = (𝐴 · (1 / 𝐷)))
48 recn 11165 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
4948adantr 480 . . . . . 6 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 𝐵 ∈ ℂ)
50 recn 11165 . . . . . . 7 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
5150ad2antrl 728 . . . . . 6 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 𝐶 ∈ ℂ)
528adantl 481 . . . . . 6 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 𝐶 ≠ 0)
5349, 51, 52divrecd 11968 . . . . 5 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶)))
5453adantrrr 725 . . . 4 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ (0 < 𝐶𝐶𝐷))) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶)))
5554adantrlr 723 . . 3 ((𝐵 ∈ ℝ ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷))) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶)))
5655ad4ant24 754 . 2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷))) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶)))
5739, 47, 563brtr4d 5142 1 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷))) → (𝐴 / 𝐷) ≤ (𝐵 / 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   · cmul 11080   < clt 11215  cle 11216   / cdiv 11842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843
This theorem is referenced by:  lediv2a  12084  lediv12ad  13061  stoweidlem1  46006
  Copyright terms: Public domain W3C validator