MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lediv12a Structured version   Visualization version   GIF version

Theorem lediv12a 12048
Description: Comparison of ratio of two nonnegative numbers. (Contributed by NM, 31-Dec-2005.)
Assertion
Ref Expression
lediv12a ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷))) → (𝐴 / 𝐷) ≤ (𝐵 / 𝐶))

Proof of Theorem lediv12a
StepHypRef Expression
1 simplr 767 . . . . 5 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → 𝐷 ∈ ℝ)
2 0re 11157 . . . . . . . 8 0 ∈ ℝ
3 ltletr 11247 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((0 < 𝐶𝐶𝐷) → 0 < 𝐷))
42, 3mp3an1 1448 . . . . . . 7 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((0 < 𝐶𝐶𝐷) → 0 < 𝐷))
54imp 407 . . . . . 6 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → 0 < 𝐷)
65gt0ne0d 11719 . . . . 5 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → 𝐷 ≠ 0)
71, 6rereccld 11982 . . . 4 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → (1 / 𝐷) ∈ ℝ)
8 gt0ne0 11620 . . . . . 6 ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → 𝐶 ≠ 0)
9 rereccl 11873 . . . . . 6 ((𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → (1 / 𝐶) ∈ ℝ)
108, 9syldan 591 . . . . 5 ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → (1 / 𝐶) ∈ ℝ)
1110ad2ant2r 745 . . . 4 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → (1 / 𝐶) ∈ ℝ)
12 recgt0 12001 . . . . . . 7 ((𝐷 ∈ ℝ ∧ 0 < 𝐷) → 0 < (1 / 𝐷))
131, 5, 12syl2anc 584 . . . . . 6 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → 0 < (1 / 𝐷))
14 ltle 11243 . . . . . . 7 ((0 ∈ ℝ ∧ (1 / 𝐷) ∈ ℝ) → (0 < (1 / 𝐷) → 0 ≤ (1 / 𝐷)))
152, 7, 14sylancr 587 . . . . . 6 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → (0 < (1 / 𝐷) → 0 ≤ (1 / 𝐷)))
1613, 15mpd 15 . . . . 5 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → 0 ≤ (1 / 𝐷))
17 simprr 771 . . . . . 6 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → 𝐶𝐷)
18 id 22 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → (𝐶 ∈ ℝ ∧ 0 < 𝐶))
1918ad2ant2r 745 . . . . . . 7 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → (𝐶 ∈ ℝ ∧ 0 < 𝐶))
20 lerec 12038 . . . . . . 7 (((𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷)) → (𝐶𝐷 ↔ (1 / 𝐷) ≤ (1 / 𝐶)))
2119, 1, 5, 20syl12anc 835 . . . . . 6 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → (𝐶𝐷 ↔ (1 / 𝐷) ≤ (1 / 𝐶)))
2217, 21mpbid 231 . . . . 5 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → (1 / 𝐷) ≤ (1 / 𝐶))
2316, 22jca 512 . . . 4 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))
247, 11, 23jca31 515 . . 3 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶))))
25 simplll 773 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → 𝐴 ∈ ℝ)
26 simplrl 775 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → 0 ≤ 𝐴)
27 simpllr 774 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → 𝐵 ∈ ℝ)
2825, 26, 27jca31 515 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ))
29 simprll 777 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → (1 / 𝐷) ∈ ℝ)
30 simprrl 779 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → 0 ≤ (1 / 𝐷))
3129, 30jca 512 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → ((1 / 𝐷) ∈ ℝ ∧ 0 ≤ (1 / 𝐷)))
32 simprlr 778 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → (1 / 𝐶) ∈ ℝ)
3328, 31, 32jca32 516 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (((1 / 𝐷) ∈ ℝ ∧ 0 ≤ (1 / 𝐷)) ∧ (1 / 𝐶) ∈ ℝ)))
34 simplrr 776 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → 𝐴𝐵)
35 simprrr 780 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → (1 / 𝐷) ≤ (1 / 𝐶))
3634, 35jca 512 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → (𝐴𝐵 ∧ (1 / 𝐷) ≤ (1 / 𝐶)))
37 lemul12a 12013 . . . 4 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (((1 / 𝐷) ∈ ℝ ∧ 0 ≤ (1 / 𝐷)) ∧ (1 / 𝐶) ∈ ℝ)) → ((𝐴𝐵 ∧ (1 / 𝐷) ≤ (1 / 𝐶)) → (𝐴 · (1 / 𝐷)) ≤ (𝐵 · (1 / 𝐶))))
3833, 36, 37sylc 65 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ (((1 / 𝐷) ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) ∧ (0 ≤ (1 / 𝐷) ∧ (1 / 𝐷) ≤ (1 / 𝐶)))) → (𝐴 · (1 / 𝐷)) ≤ (𝐵 · (1 / 𝐶)))
3924, 38sylan2 593 . 2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷))) → (𝐴 · (1 / 𝐷)) ≤ (𝐵 · (1 / 𝐶)))
40 recn 11141 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
4140adantr 481 . . . 4 ((𝐴 ∈ ℝ ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷))) → 𝐴 ∈ ℂ)
42 recn 11141 . . . . . 6 (𝐷 ∈ ℝ → 𝐷 ∈ ℂ)
4342ad2antlr 725 . . . . 5 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷)) → 𝐷 ∈ ℂ)
4443adantl 482 . . . 4 ((𝐴 ∈ ℝ ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷))) → 𝐷 ∈ ℂ)
456adantl 482 . . . 4 ((𝐴 ∈ ℝ ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷))) → 𝐷 ≠ 0)
4641, 44, 45divrecd 11934 . . 3 ((𝐴 ∈ ℝ ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷))) → (𝐴 / 𝐷) = (𝐴 · (1 / 𝐷)))
4746ad4ant14 750 . 2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷))) → (𝐴 / 𝐷) = (𝐴 · (1 / 𝐷)))
48 recn 11141 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
4948adantr 481 . . . . . 6 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 𝐵 ∈ ℂ)
50 recn 11141 . . . . . . 7 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
5150ad2antrl 726 . . . . . 6 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 𝐶 ∈ ℂ)
528adantl 482 . . . . . 6 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → 𝐶 ≠ 0)
5349, 51, 52divrecd 11934 . . . . 5 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶)))
5453adantrrr 723 . . . 4 ((𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ (0 < 𝐶𝐶𝐷))) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶)))
5554adantrlr 721 . . 3 ((𝐵 ∈ ℝ ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷))) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶)))
5655ad4ant24 752 . 2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷))) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶)))
5739, 47, 563brtr4d 5137 1 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷))) → (𝐴 / 𝐷) ≤ (𝐵 / 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943   class class class wbr 5105  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   · cmul 11056   < clt 11189  cle 11190   / cdiv 11812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813
This theorem is referenced by:  lediv2a  12049  lediv12ad  13016  stoweidlem1  44232
  Copyright terms: Public domain W3C validator