Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumiun Structured version   Visualization version   GIF version

Theorem esumiun 34061
Description: Sum over a nonnecessarily disjoint indexed union. The inequality is strict in the case where the sets B(x) overlap. (Contributed by Thierry Arnoux, 21-Sep-2019.)
Hypotheses
Ref Expression
esumiun.0 (𝜑𝐴𝑉)
esumiun.1 ((𝜑𝑗𝐴) → 𝐵𝑊)
esumiun.2 (((𝜑𝑗𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
Assertion
Ref Expression
esumiun (𝜑 → Σ*𝑘 𝑗𝐴 𝐵𝐶 ≤ Σ*𝑗𝐴Σ*𝑘𝐵𝐶)
Distinct variable groups:   𝐴,𝑗,𝑘   𝐵,𝑘   𝐶,𝑗   𝑗,𝑊,𝑘   𝜑,𝑗,𝑘
Allowed substitution hints:   𝐵(𝑗)   𝐶(𝑘)   𝑉(𝑗,𝑘)

Proof of Theorem esumiun
Dummy variables 𝑓 𝑙 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 esumiun.0 . . . 4 (𝜑𝐴𝑉)
2 esumiun.1 . . . 4 ((𝜑𝑗𝐴) → 𝐵𝑊)
31, 2aciunf1 32606 . . 3 (𝜑 → ∃𝑓(𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙))
4 f1f1orn 6775 . . . . . 6 (𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) → 𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓)
54anim1i 615 . . . . 5 ((𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) → (𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙))
6 f1f 6720 . . . . . . 7 (𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) → 𝑓: 𝑗𝐴 𝐵 𝑗𝐴 ({𝑗} × 𝐵))
76frnd 6660 . . . . . 6 (𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) → ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))
87adantr 480 . . . . 5 ((𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) → ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))
95, 8jca 511 . . . 4 ((𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) → ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵)))
109eximi 1835 . . 3 (∃𝑓(𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) → ∃𝑓((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵)))
113, 10syl 17 . 2 (𝜑 → ∃𝑓((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵)))
12 nfv 1914 . . . . . 6 𝑧(𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵)))
13 nfcv 2891 . . . . . 6 𝑧𝐶
14 nfcsb1v 3875 . . . . . 6 𝑘(2nd𝑧) / 𝑘𝐶
15 nfcv 2891 . . . . . 6 𝑧 𝑗𝐴 𝐵
16 nfcv 2891 . . . . . 6 𝑧ran 𝑓
17 nfcv 2891 . . . . . 6 𝑧𝑓
18 csbeq1a 3865 . . . . . 6 (𝑘 = (2nd𝑧) → 𝐶 = (2nd𝑧) / 𝑘𝐶)
192ralrimiva 3121 . . . . . . . 8 (𝜑 → ∀𝑗𝐴 𝐵𝑊)
20 iunexg 7898 . . . . . . . 8 ((𝐴𝑉 ∧ ∀𝑗𝐴 𝐵𝑊) → 𝑗𝐴 𝐵 ∈ V)
211, 19, 20syl2anc 584 . . . . . . 7 (𝜑 𝑗𝐴 𝐵 ∈ V)
2221adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → 𝑗𝐴 𝐵 ∈ V)
23 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → 𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓)
24 f1ocnv 6776 . . . . . . . 8 (𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓𝑓:ran 𝑓1-1-onto 𝑗𝐴 𝐵)
2523, 24syl 17 . . . . . . 7 ((𝜑 ∧ (𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → 𝑓:ran 𝑓1-1-onto 𝑗𝐴 𝐵)
2625adantrlr 723 . . . . . 6 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → 𝑓:ran 𝑓1-1-onto 𝑗𝐴 𝐵)
27 nfv 1914 . . . . . . . . 9 𝑗𝜑
28 nfcv 2891 . . . . . . . . . . . 12 𝑗𝑓
29 nfiu1 4977 . . . . . . . . . . . 12 𝑗 𝑗𝐴 𝐵
3028nfrn 5894 . . . . . . . . . . . 12 𝑗ran 𝑓
3128, 29, 30nff1o 6762 . . . . . . . . . . 11 𝑗 𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓
32 nfv 1914 . . . . . . . . . . . 12 𝑗(2nd ‘(𝑓𝑙)) = 𝑙
3329, 32nfralw 3276 . . . . . . . . . . 11 𝑗𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙
3431, 33nfan 1899 . . . . . . . . . 10 𝑗(𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙)
35 nfcv 2891 . . . . . . . . . . 11 𝑗ran 𝑓
36 nfiu1 4977 . . . . . . . . . . 11 𝑗 𝑗𝐴 ({𝑗} × 𝐵)
3735, 36nfss 3928 . . . . . . . . . 10 𝑗ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵)
3834, 37nfan 1899 . . . . . . . . 9 𝑗((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))
3927, 38nfan 1899 . . . . . . . 8 𝑗(𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵)))
40 nfv 1914 . . . . . . . 8 𝑗 𝑧 ∈ ran 𝑓
4139, 40nfan 1899 . . . . . . 7 𝑗((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓)
42 simpr 484 . . . . . . . . . . 11 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (𝑓𝑘) = 𝑧)
4342fveq2d 6826 . . . . . . . . . 10 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (2nd ‘(𝑓𝑘)) = (2nd𝑧))
44 simplr 768 . . . . . . . . . . 11 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → 𝑘 𝑗𝐴 𝐵)
45 simp-4r 783 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵)))
4645simpld 494 . . . . . . . . . . . . 13 (((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → (𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙))
4746simprd 495 . . . . . . . . . . . 12 (((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙)
4847ad2antrr 726 . . . . . . . . . . 11 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙)
49 2fveq3 6827 . . . . . . . . . . . . 13 (𝑙 = 𝑘 → (2nd ‘(𝑓𝑙)) = (2nd ‘(𝑓𝑘)))
50 id 22 . . . . . . . . . . . . 13 (𝑙 = 𝑘𝑙 = 𝑘)
5149, 50eqeq12d 2745 . . . . . . . . . . . 12 (𝑙 = 𝑘 → ((2nd ‘(𝑓𝑙)) = 𝑙 ↔ (2nd ‘(𝑓𝑘)) = 𝑘))
5251rspcva 3575 . . . . . . . . . . 11 ((𝑘 𝑗𝐴 𝐵 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) → (2nd ‘(𝑓𝑘)) = 𝑘)
5344, 48, 52syl2anc 584 . . . . . . . . . 10 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (2nd ‘(𝑓𝑘)) = 𝑘)
5443, 53eqtr3d 2766 . . . . . . . . 9 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (2nd𝑧) = 𝑘)
5546simpld 494 . . . . . . . . . . 11 (((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → 𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓)
5655ad2antrr 726 . . . . . . . . . 10 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → 𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓)
57 f1ocnvfv1 7213 . . . . . . . . . 10 ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓𝑘 𝑗𝐴 𝐵) → (𝑓‘(𝑓𝑘)) = 𝑘)
5856, 44, 57syl2anc 584 . . . . . . . . 9 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (𝑓‘(𝑓𝑘)) = 𝑘)
5942fveq2d 6826 . . . . . . . . 9 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (𝑓‘(𝑓𝑘)) = (𝑓𝑧))
6054, 58, 593eqtr2rd 2771 . . . . . . . 8 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (𝑓𝑧) = (2nd𝑧))
61 f1ofn 6765 . . . . . . . . . 10 (𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓𝑓 Fn 𝑗𝐴 𝐵)
6255, 61syl 17 . . . . . . . . 9 (((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → 𝑓 Fn 𝑗𝐴 𝐵)
63 simpllr 775 . . . . . . . . 9 (((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → 𝑧 ∈ ran 𝑓)
64 fvelrnb 6883 . . . . . . . . . 10 (𝑓 Fn 𝑗𝐴 𝐵 → (𝑧 ∈ ran 𝑓 ↔ ∃𝑘 𝑗𝐴 𝐵(𝑓𝑘) = 𝑧))
6564biimpa 476 . . . . . . . . 9 ((𝑓 Fn 𝑗𝐴 𝐵𝑧 ∈ ran 𝑓) → ∃𝑘 𝑗𝐴 𝐵(𝑓𝑘) = 𝑧)
6662, 63, 65syl2anc 584 . . . . . . . 8 (((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → ∃𝑘 𝑗𝐴 𝐵(𝑓𝑘) = 𝑧)
6760, 66r19.29a 3137 . . . . . . 7 (((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → (𝑓𝑧) = (2nd𝑧))
68 simprr 772 . . . . . . . . 9 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))
6968sselda 3935 . . . . . . . 8 (((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) → 𝑧 𝑗𝐴 ({𝑗} × 𝐵))
70 eliun 4945 . . . . . . . 8 (𝑧 𝑗𝐴 ({𝑗} × 𝐵) ↔ ∃𝑗𝐴 𝑧 ∈ ({𝑗} × 𝐵))
7169, 70sylib 218 . . . . . . 7 (((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) → ∃𝑗𝐴 𝑧 ∈ ({𝑗} × 𝐵))
7241, 67, 71r19.29af 3238 . . . . . 6 (((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) → (𝑓𝑧) = (2nd𝑧))
73 nfcv 2891 . . . . . . . . . 10 𝑗𝑘
7473, 29nfel 2906 . . . . . . . . 9 𝑗 𝑘 𝑗𝐴 𝐵
7527, 74nfan 1899 . . . . . . . 8 𝑗(𝜑𝑘 𝑗𝐴 𝐵)
76 esumiun.2 . . . . . . . . 9 (((𝜑𝑗𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
7776adantllr 719 . . . . . . . 8 ((((𝜑𝑘 𝑗𝐴 𝐵) ∧ 𝑗𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
78 eliun 4945 . . . . . . . . . 10 (𝑘 𝑗𝐴 𝐵 ↔ ∃𝑗𝐴 𝑘𝐵)
7978biimpi 216 . . . . . . . . 9 (𝑘 𝑗𝐴 𝐵 → ∃𝑗𝐴 𝑘𝐵)
8079adantl 481 . . . . . . . 8 ((𝜑𝑘 𝑗𝐴 𝐵) → ∃𝑗𝐴 𝑘𝐵)
8175, 77, 80r19.29af 3238 . . . . . . 7 ((𝜑𝑘 𝑗𝐴 𝐵) → 𝐶 ∈ (0[,]+∞))
8281adantlr 715 . . . . . 6 (((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑘 𝑗𝐴 𝐵) → 𝐶 ∈ (0[,]+∞))
8312, 13, 14, 15, 16, 17, 18, 22, 26, 72, 82esumf1o 34017 . . . . 5 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → Σ*𝑘 𝑗𝐴 𝐵𝐶 = Σ*𝑧 ∈ ran 𝑓(2nd𝑧) / 𝑘𝐶)
8483eqcomd 2735 . . . 4 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → Σ*𝑧 ∈ ran 𝑓(2nd𝑧) / 𝑘𝐶 = Σ*𝑘 𝑗𝐴 𝐵𝐶)
85 vsnex 5373 . . . . . . . . . 10 {𝑗} ∈ V
8685a1i 11 . . . . . . . . 9 ((𝜑𝑗𝐴) → {𝑗} ∈ V)
8786, 2xpexd 7687 . . . . . . . 8 ((𝜑𝑗𝐴) → ({𝑗} × 𝐵) ∈ V)
8887ralrimiva 3121 . . . . . . 7 (𝜑 → ∀𝑗𝐴 ({𝑗} × 𝐵) ∈ V)
89 iunexg 7898 . . . . . . 7 ((𝐴𝑉 ∧ ∀𝑗𝐴 ({𝑗} × 𝐵) ∈ V) → 𝑗𝐴 ({𝑗} × 𝐵) ∈ V)
901, 88, 89syl2anc 584 . . . . . 6 (𝜑 𝑗𝐴 ({𝑗} × 𝐵) ∈ V)
9190adantr 480 . . . . 5 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → 𝑗𝐴 ({𝑗} × 𝐵) ∈ V)
92 nfcv 2891 . . . . . . . . 9 𝑗𝑧
9392, 36nfel 2906 . . . . . . . 8 𝑗 𝑧 𝑗𝐴 ({𝑗} × 𝐵)
9427, 93nfan 1899 . . . . . . 7 𝑗(𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵))
95 nfcv 2891 . . . . . . . . 9 𝑗(2nd𝑧)
96 nfcv 2891 . . . . . . . . 9 𝑗𝐶
9795, 96nfcsbw 3877 . . . . . . . 8 𝑗(2nd𝑧) / 𝑘𝐶
98 nfcv 2891 . . . . . . . 8 𝑗(0[,]+∞)
9997, 98nfel 2906 . . . . . . 7 𝑗(2nd𝑧) / 𝑘𝐶 ∈ (0[,]+∞)
100 simprr 772 . . . . . . . 8 ((((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵)) → (2nd𝑧) ∈ 𝐵)
101 simplll 774 . . . . . . . . 9 ((((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵)) → 𝜑)
102 simplr 768 . . . . . . . . 9 ((((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵)) → 𝑗𝐴)
10376ralrimiva 3121 . . . . . . . . 9 ((𝜑𝑗𝐴) → ∀𝑘𝐵 𝐶 ∈ (0[,]+∞))
104101, 102, 103syl2anc 584 . . . . . . . 8 ((((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵)) → ∀𝑘𝐵 𝐶 ∈ (0[,]+∞))
105 rspcsbela 4389 . . . . . . . 8 (((2nd𝑧) ∈ 𝐵 ∧ ∀𝑘𝐵 𝐶 ∈ (0[,]+∞)) → (2nd𝑧) / 𝑘𝐶 ∈ (0[,]+∞))
106100, 104, 105syl2anc 584 . . . . . . 7 ((((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵)) → (2nd𝑧) / 𝑘𝐶 ∈ (0[,]+∞))
107 xp1st 7956 . . . . . . . . . . . 12 (𝑧 ∈ ({𝑗} × 𝐵) → (1st𝑧) ∈ {𝑗})
108 elsni 4594 . . . . . . . . . . . 12 ((1st𝑧) ∈ {𝑗} → (1st𝑧) = 𝑗)
109107, 108syl 17 . . . . . . . . . . 11 (𝑧 ∈ ({𝑗} × 𝐵) → (1st𝑧) = 𝑗)
110 xp2nd 7957 . . . . . . . . . . 11 (𝑧 ∈ ({𝑗} × 𝐵) → (2nd𝑧) ∈ 𝐵)
111109, 110jca 511 . . . . . . . . . 10 (𝑧 ∈ ({𝑗} × 𝐵) → ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵))
112111reximi 3067 . . . . . . . . 9 (∃𝑗𝐴 𝑧 ∈ ({𝑗} × 𝐵) → ∃𝑗𝐴 ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵))
11370, 112sylbi 217 . . . . . . . 8 (𝑧 𝑗𝐴 ({𝑗} × 𝐵) → ∃𝑗𝐴 ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵))
114113adantl 481 . . . . . . 7 ((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) → ∃𝑗𝐴 ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵))
11594, 99, 106, 114r19.29af2 3237 . . . . . 6 ((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) → (2nd𝑧) / 𝑘𝐶 ∈ (0[,]+∞))
116115adantlr 715 . . . . 5 (((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 𝑗𝐴 ({𝑗} × 𝐵)) → (2nd𝑧) / 𝑘𝐶 ∈ (0[,]+∞))
117 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))
118117adantrlr 723 . . . . 5 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))
11912, 91, 116, 118esummono 34021 . . . 4 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → Σ*𝑧 ∈ ran 𝑓(2nd𝑧) / 𝑘𝐶 ≤ Σ*𝑧 𝑗𝐴 ({𝑗} × 𝐵)(2nd𝑧) / 𝑘𝐶)
12084, 119eqbrtrrd 5116 . . 3 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → Σ*𝑘 𝑗𝐴 𝐵𝐶 ≤ Σ*𝑧 𝑗𝐴 ({𝑗} × 𝐵)(2nd𝑧) / 𝑘𝐶)
121 vex 3440 . . . . . . . . 9 𝑗 ∈ V
122 vex 3440 . . . . . . . . 9 𝑘 ∈ V
123121, 122op2ndd 7935 . . . . . . . 8 (𝑧 = ⟨𝑗, 𝑘⟩ → (2nd𝑧) = 𝑘)
124123eqcomd 2735 . . . . . . 7 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝑘 = (2nd𝑧))
125124, 18syl 17 . . . . . 6 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐶 = (2nd𝑧) / 𝑘𝐶)
126125eqcomd 2735 . . . . 5 (𝑧 = ⟨𝑗, 𝑘⟩ → (2nd𝑧) / 𝑘𝐶 = 𝐶)
12776anasss 466 . . . . 5 ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ (0[,]+∞))
12814, 126, 1, 2, 127esum2d 34060 . . . 4 (𝜑 → Σ*𝑗𝐴Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗𝐴 ({𝑗} × 𝐵)(2nd𝑧) / 𝑘𝐶)
129128adantr 480 . . 3 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → Σ*𝑗𝐴Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗𝐴 ({𝑗} × 𝐵)(2nd𝑧) / 𝑘𝐶)
130120, 129breqtrrd 5120 . 2 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → Σ*𝑘 𝑗𝐴 𝐵𝐶 ≤ Σ*𝑗𝐴Σ*𝑘𝐵𝐶)
13111, 130exlimddv 1935 1 (𝜑 → Σ*𝑘 𝑗𝐴 𝐵𝐶 ≤ Σ*𝑗𝐴Σ*𝑘𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  Vcvv 3436  csb 3851  wss 3903  {csn 4577  cop 4583   ciun 4941   class class class wbr 5092   × cxp 5617  ccnv 5618  ran crn 5620   Fn wfn 6477  1-1wf1 6479  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  1st c1st 7922  2nd c2nd 7923  0cc0 11009  +∞cpnf 11146  cle 11150  [,]cicc 13251  Σ*cesum 33994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-reg 9484  ax-inf2 9537  ax-ac2 10357  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-r1 9660  df-rank 9661  df-card 9835  df-ac 10010  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-ordt 17405  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-ps 18472  df-tsr 18473  df-plusf 18513  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-subrng 20431  df-subrg 20455  df-abv 20694  df-lmod 20765  df-scaf 20766  df-sra 21077  df-rgmod 21078  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-tmd 23957  df-tgp 23958  df-tsms 24012  df-trg 24045  df-xms 24206  df-ms 24207  df-tms 24208  df-nm 24468  df-ngp 24469  df-nrg 24471  df-nlm 24472  df-ii 24768  df-cncf 24769  df-limc 25765  df-dv 25766  df-log 26463  df-esum 33995
This theorem is referenced by:  omssubadd  34268
  Copyright terms: Public domain W3C validator