Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumiun Structured version   Visualization version   GIF version

Theorem esumiun 30758
Description: Sum over a nonnecessarily disjoint indexed union. The inequality is strict in the case where the sets B(x) overlap. (Contributed by Thierry Arnoux, 21-Sep-2019.)
Hypotheses
Ref Expression
esumiun.0 (𝜑𝐴𝑉)
esumiun.1 ((𝜑𝑗𝐴) → 𝐵𝑊)
esumiun.2 (((𝜑𝑗𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
Assertion
Ref Expression
esumiun (𝜑 → Σ*𝑘 𝑗𝐴 𝐵𝐶 ≤ Σ*𝑗𝐴Σ*𝑘𝐵𝐶)
Distinct variable groups:   𝐴,𝑗,𝑘   𝐵,𝑘   𝐶,𝑗   𝑗,𝑊,𝑘   𝜑,𝑗,𝑘
Allowed substitution hints:   𝐵(𝑗)   𝐶(𝑘)   𝑉(𝑗,𝑘)

Proof of Theorem esumiun
Dummy variables 𝑓 𝑙 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 esumiun.0 . . . 4 (𝜑𝐴𝑉)
2 esumiun.1 . . . 4 ((𝜑𝑗𝐴) → 𝐵𝑊)
31, 2aciunf1 30032 . . 3 (𝜑 → ∃𝑓(𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙))
4 f1f1orn 6404 . . . . . 6 (𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) → 𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓)
54anim1i 608 . . . . 5 ((𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) → (𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙))
6 f1f 6353 . . . . . . 7 (𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) → 𝑓: 𝑗𝐴 𝐵 𝑗𝐴 ({𝑗} × 𝐵))
76frnd 6300 . . . . . 6 (𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) → ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))
87adantr 474 . . . . 5 ((𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) → ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))
95, 8jca 507 . . . 4 ((𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) → ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵)))
109eximi 1878 . . 3 (∃𝑓(𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) → ∃𝑓((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵)))
113, 10syl 17 . 2 (𝜑 → ∃𝑓((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵)))
12 nfv 1957 . . . . . 6 𝑧(𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵)))
13 nfcv 2934 . . . . . 6 𝑧𝐶
14 nfcsb1v 3767 . . . . . 6 𝑘(2nd𝑧) / 𝑘𝐶
15 nfcv 2934 . . . . . 6 𝑧 𝑗𝐴 𝐵
16 nfcv 2934 . . . . . 6 𝑧ran 𝑓
17 nfcv 2934 . . . . . 6 𝑧𝑓
18 csbeq1a 3760 . . . . . 6 (𝑘 = (2nd𝑧) → 𝐶 = (2nd𝑧) / 𝑘𝐶)
192ralrimiva 3148 . . . . . . . 8 (𝜑 → ∀𝑗𝐴 𝐵𝑊)
20 iunexg 7423 . . . . . . . 8 ((𝐴𝑉 ∧ ∀𝑗𝐴 𝐵𝑊) → 𝑗𝐴 𝐵 ∈ V)
211, 19, 20syl2anc 579 . . . . . . 7 (𝜑 𝑗𝐴 𝐵 ∈ V)
2221adantr 474 . . . . . 6 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → 𝑗𝐴 𝐵 ∈ V)
23 simprl 761 . . . . . . . 8 ((𝜑 ∧ (𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → 𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓)
24 f1ocnv 6405 . . . . . . . 8 (𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓𝑓:ran 𝑓1-1-onto 𝑗𝐴 𝐵)
2523, 24syl 17 . . . . . . 7 ((𝜑 ∧ (𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → 𝑓:ran 𝑓1-1-onto 𝑗𝐴 𝐵)
2625adantrlr 713 . . . . . 6 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → 𝑓:ran 𝑓1-1-onto 𝑗𝐴 𝐵)
27 nfv 1957 . . . . . . . . 9 𝑗𝜑
28 nfcv 2934 . . . . . . . . . . . 12 𝑗𝑓
29 nfiu1 4785 . . . . . . . . . . . 12 𝑗 𝑗𝐴 𝐵
3028nfrn 5616 . . . . . . . . . . . 12 𝑗ran 𝑓
3128, 29, 30nff1o 6391 . . . . . . . . . . 11 𝑗 𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓
32 nfv 1957 . . . . . . . . . . . 12 𝑗(2nd ‘(𝑓𝑙)) = 𝑙
3329, 32nfral 3127 . . . . . . . . . . 11 𝑗𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙
3431, 33nfan 1946 . . . . . . . . . 10 𝑗(𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙)
35 nfcv 2934 . . . . . . . . . . 11 𝑗ran 𝑓
36 nfiu1 4785 . . . . . . . . . . 11 𝑗 𝑗𝐴 ({𝑗} × 𝐵)
3735, 36nfss 3814 . . . . . . . . . 10 𝑗ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵)
3834, 37nfan 1946 . . . . . . . . 9 𝑗((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))
3927, 38nfan 1946 . . . . . . . 8 𝑗(𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵)))
40 nfv 1957 . . . . . . . 8 𝑗 𝑧 ∈ ran 𝑓
4139, 40nfan 1946 . . . . . . 7 𝑗((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓)
42 simpr 479 . . . . . . . . . . 11 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (𝑓𝑘) = 𝑧)
4342fveq2d 6452 . . . . . . . . . 10 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (2nd ‘(𝑓𝑘)) = (2nd𝑧))
44 simplr 759 . . . . . . . . . . 11 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → 𝑘 𝑗𝐴 𝐵)
45 simp-4r 774 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵)))
4645simpld 490 . . . . . . . . . . . . 13 (((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → (𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙))
4746simprd 491 . . . . . . . . . . . 12 (((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙)
4847ad2antrr 716 . . . . . . . . . . 11 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙)
49 2fveq3 6453 . . . . . . . . . . . . 13 (𝑙 = 𝑘 → (2nd ‘(𝑓𝑙)) = (2nd ‘(𝑓𝑘)))
50 id 22 . . . . . . . . . . . . 13 (𝑙 = 𝑘𝑙 = 𝑘)
5149, 50eqeq12d 2793 . . . . . . . . . . . 12 (𝑙 = 𝑘 → ((2nd ‘(𝑓𝑙)) = 𝑙 ↔ (2nd ‘(𝑓𝑘)) = 𝑘))
5251rspcva 3509 . . . . . . . . . . 11 ((𝑘 𝑗𝐴 𝐵 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) → (2nd ‘(𝑓𝑘)) = 𝑘)
5344, 48, 52syl2anc 579 . . . . . . . . . 10 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (2nd ‘(𝑓𝑘)) = 𝑘)
5443, 53eqtr3d 2816 . . . . . . . . 9 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (2nd𝑧) = 𝑘)
5546simpld 490 . . . . . . . . . . 11 (((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → 𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓)
5655ad2antrr 716 . . . . . . . . . 10 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → 𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓)
57 f1ocnvfv1 6806 . . . . . . . . . 10 ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓𝑘 𝑗𝐴 𝐵) → (𝑓‘(𝑓𝑘)) = 𝑘)
5856, 44, 57syl2anc 579 . . . . . . . . 9 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (𝑓‘(𝑓𝑘)) = 𝑘)
5942fveq2d 6452 . . . . . . . . 9 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (𝑓‘(𝑓𝑘)) = (𝑓𝑧))
6054, 58, 593eqtr2rd 2821 . . . . . . . 8 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (𝑓𝑧) = (2nd𝑧))
61 f1ofn 6394 . . . . . . . . . 10 (𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓𝑓 Fn 𝑗𝐴 𝐵)
6255, 61syl 17 . . . . . . . . 9 (((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → 𝑓 Fn 𝑗𝐴 𝐵)
63 simpllr 766 . . . . . . . . 9 (((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → 𝑧 ∈ ran 𝑓)
64 fvelrnb 6505 . . . . . . . . . 10 (𝑓 Fn 𝑗𝐴 𝐵 → (𝑧 ∈ ran 𝑓 ↔ ∃𝑘 𝑗𝐴 𝐵(𝑓𝑘) = 𝑧))
6564biimpa 470 . . . . . . . . 9 ((𝑓 Fn 𝑗𝐴 𝐵𝑧 ∈ ran 𝑓) → ∃𝑘 𝑗𝐴 𝐵(𝑓𝑘) = 𝑧)
6662, 63, 65syl2anc 579 . . . . . . . 8 (((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → ∃𝑘 𝑗𝐴 𝐵(𝑓𝑘) = 𝑧)
6760, 66r19.29a 3264 . . . . . . 7 (((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → (𝑓𝑧) = (2nd𝑧))
68 simprr 763 . . . . . . . . 9 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))
6968sselda 3821 . . . . . . . 8 (((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) → 𝑧 𝑗𝐴 ({𝑗} × 𝐵))
70 eliun 4759 . . . . . . . 8 (𝑧 𝑗𝐴 ({𝑗} × 𝐵) ↔ ∃𝑗𝐴 𝑧 ∈ ({𝑗} × 𝐵))
7169, 70sylib 210 . . . . . . 7 (((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) → ∃𝑗𝐴 𝑧 ∈ ({𝑗} × 𝐵))
7241, 67, 71r19.29af 3262 . . . . . 6 (((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) → (𝑓𝑧) = (2nd𝑧))
73 nfcv 2934 . . . . . . . . . 10 𝑗𝑘
7473, 29nfel 2946 . . . . . . . . 9 𝑗 𝑘 𝑗𝐴 𝐵
7527, 74nfan 1946 . . . . . . . 8 𝑗(𝜑𝑘 𝑗𝐴 𝐵)
76 esumiun.2 . . . . . . . . 9 (((𝜑𝑗𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
7776adantllr 709 . . . . . . . 8 ((((𝜑𝑘 𝑗𝐴 𝐵) ∧ 𝑗𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
78 eliun 4759 . . . . . . . . . 10 (𝑘 𝑗𝐴 𝐵 ↔ ∃𝑗𝐴 𝑘𝐵)
7978biimpi 208 . . . . . . . . 9 (𝑘 𝑗𝐴 𝐵 → ∃𝑗𝐴 𝑘𝐵)
8079adantl 475 . . . . . . . 8 ((𝜑𝑘 𝑗𝐴 𝐵) → ∃𝑗𝐴 𝑘𝐵)
8175, 77, 80r19.29af 3262 . . . . . . 7 ((𝜑𝑘 𝑗𝐴 𝐵) → 𝐶 ∈ (0[,]+∞))
8281adantlr 705 . . . . . 6 (((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑘 𝑗𝐴 𝐵) → 𝐶 ∈ (0[,]+∞))
8312, 13, 14, 15, 16, 17, 18, 22, 26, 72, 82esumf1o 30714 . . . . 5 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → Σ*𝑘 𝑗𝐴 𝐵𝐶 = Σ*𝑧 ∈ ran 𝑓(2nd𝑧) / 𝑘𝐶)
8483eqcomd 2784 . . . 4 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → Σ*𝑧 ∈ ran 𝑓(2nd𝑧) / 𝑘𝐶 = Σ*𝑘 𝑗𝐴 𝐵𝐶)
85 snex 5142 . . . . . . . . . 10 {𝑗} ∈ V
8685a1i 11 . . . . . . . . 9 ((𝜑𝑗𝐴) → {𝑗} ∈ V)
8786, 2xpexd 7240 . . . . . . . 8 ((𝜑𝑗𝐴) → ({𝑗} × 𝐵) ∈ V)
8887ralrimiva 3148 . . . . . . 7 (𝜑 → ∀𝑗𝐴 ({𝑗} × 𝐵) ∈ V)
89 iunexg 7423 . . . . . . 7 ((𝐴𝑉 ∧ ∀𝑗𝐴 ({𝑗} × 𝐵) ∈ V) → 𝑗𝐴 ({𝑗} × 𝐵) ∈ V)
901, 88, 89syl2anc 579 . . . . . 6 (𝜑 𝑗𝐴 ({𝑗} × 𝐵) ∈ V)
9190adantr 474 . . . . 5 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → 𝑗𝐴 ({𝑗} × 𝐵) ∈ V)
92 nfcv 2934 . . . . . . . . 9 𝑗𝑧
9392, 36nfel 2946 . . . . . . . 8 𝑗 𝑧 𝑗𝐴 ({𝑗} × 𝐵)
9427, 93nfan 1946 . . . . . . 7 𝑗(𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵))
95 nfcv 2934 . . . . . . . . 9 𝑗(2nd𝑧)
96 nfcv 2934 . . . . . . . . 9 𝑗𝐶
9795, 96nfcsb 3769 . . . . . . . 8 𝑗(2nd𝑧) / 𝑘𝐶
98 nfcv 2934 . . . . . . . 8 𝑗(0[,]+∞)
9997, 98nfel 2946 . . . . . . 7 𝑗(2nd𝑧) / 𝑘𝐶 ∈ (0[,]+∞)
100 simprr 763 . . . . . . . 8 ((((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵)) → (2nd𝑧) ∈ 𝐵)
101 simplll 765 . . . . . . . . 9 ((((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵)) → 𝜑)
102 simplr 759 . . . . . . . . 9 ((((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵)) → 𝑗𝐴)
10376ralrimiva 3148 . . . . . . . . 9 ((𝜑𝑗𝐴) → ∀𝑘𝐵 𝐶 ∈ (0[,]+∞))
104101, 102, 103syl2anc 579 . . . . . . . 8 ((((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵)) → ∀𝑘𝐵 𝐶 ∈ (0[,]+∞))
105 rspcsbela 4232 . . . . . . . 8 (((2nd𝑧) ∈ 𝐵 ∧ ∀𝑘𝐵 𝐶 ∈ (0[,]+∞)) → (2nd𝑧) / 𝑘𝐶 ∈ (0[,]+∞))
106100, 104, 105syl2anc 579 . . . . . . 7 ((((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵)) → (2nd𝑧) / 𝑘𝐶 ∈ (0[,]+∞))
107 xp1st 7479 . . . . . . . . . . . 12 (𝑧 ∈ ({𝑗} × 𝐵) → (1st𝑧) ∈ {𝑗})
108 elsni 4415 . . . . . . . . . . . 12 ((1st𝑧) ∈ {𝑗} → (1st𝑧) = 𝑗)
109107, 108syl 17 . . . . . . . . . . 11 (𝑧 ∈ ({𝑗} × 𝐵) → (1st𝑧) = 𝑗)
110 xp2nd 7480 . . . . . . . . . . 11 (𝑧 ∈ ({𝑗} × 𝐵) → (2nd𝑧) ∈ 𝐵)
111109, 110jca 507 . . . . . . . . . 10 (𝑧 ∈ ({𝑗} × 𝐵) → ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵))
112111reximi 3192 . . . . . . . . 9 (∃𝑗𝐴 𝑧 ∈ ({𝑗} × 𝐵) → ∃𝑗𝐴 ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵))
11370, 112sylbi 209 . . . . . . . 8 (𝑧 𝑗𝐴 ({𝑗} × 𝐵) → ∃𝑗𝐴 ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵))
114113adantl 475 . . . . . . 7 ((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) → ∃𝑗𝐴 ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵))
11594, 99, 106, 114r19.29af2 3261 . . . . . 6 ((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) → (2nd𝑧) / 𝑘𝐶 ∈ (0[,]+∞))
116115adantlr 705 . . . . 5 (((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 𝑗𝐴 ({𝑗} × 𝐵)) → (2nd𝑧) / 𝑘𝐶 ∈ (0[,]+∞))
117 simprr 763 . . . . . 6 ((𝜑 ∧ (𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))
118117adantrlr 713 . . . . 5 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))
11912, 91, 116, 118esummono 30718 . . . 4 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → Σ*𝑧 ∈ ran 𝑓(2nd𝑧) / 𝑘𝐶 ≤ Σ*𝑧 𝑗𝐴 ({𝑗} × 𝐵)(2nd𝑧) / 𝑘𝐶)
12084, 119eqbrtrrd 4912 . . 3 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → Σ*𝑘 𝑗𝐴 𝐵𝐶 ≤ Σ*𝑧 𝑗𝐴 ({𝑗} × 𝐵)(2nd𝑧) / 𝑘𝐶)
121 vex 3401 . . . . . . . . 9 𝑗 ∈ V
122 vex 3401 . . . . . . . . 9 𝑘 ∈ V
123121, 122op2ndd 7458 . . . . . . . 8 (𝑧 = ⟨𝑗, 𝑘⟩ → (2nd𝑧) = 𝑘)
124123eqcomd 2784 . . . . . . 7 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝑘 = (2nd𝑧))
125124, 18syl 17 . . . . . 6 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐶 = (2nd𝑧) / 𝑘𝐶)
126125eqcomd 2784 . . . . 5 (𝑧 = ⟨𝑗, 𝑘⟩ → (2nd𝑧) / 𝑘𝐶 = 𝐶)
12776anasss 460 . . . . 5 ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ (0[,]+∞))
12814, 126, 1, 2, 127esum2d 30757 . . . 4 (𝜑 → Σ*𝑗𝐴Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗𝐴 ({𝑗} × 𝐵)(2nd𝑧) / 𝑘𝐶)
129128adantr 474 . . 3 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → Σ*𝑗𝐴Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗𝐴 ({𝑗} × 𝐵)(2nd𝑧) / 𝑘𝐶)
130120, 129breqtrrd 4916 . 2 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → Σ*𝑘 𝑗𝐴 𝐵𝐶 ≤ Σ*𝑗𝐴Σ*𝑘𝐵𝐶)
13111, 130exlimddv 1978 1 (𝜑 → Σ*𝑘 𝑗𝐴 𝐵𝐶 ≤ Σ*𝑗𝐴Σ*𝑘𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wex 1823  wcel 2107  wral 3090  wrex 3091  Vcvv 3398  csb 3751  wss 3792  {csn 4398  cop 4404   ciun 4755   class class class wbr 4888   × cxp 5355  ccnv 5356  ran crn 5358   Fn wfn 6132  1-1wf1 6134  1-1-ontowf1o 6136  cfv 6137  (class class class)co 6924  1st c1st 7445  2nd c2nd 7446  0cc0 10274  +∞cpnf 10410  cle 10414  [,]cicc 12494  Σ*cesum 30691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-reg 8788  ax-inf2 8837  ax-ac2 9622  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-pre-sup 10352  ax-addf 10353  ax-mulf 10354
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-iin 4758  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-se 5317  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-isom 6146  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-of 7176  df-om 7346  df-1st 7447  df-2nd 7448  df-supp 7579  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-2o 7846  df-oadd 7849  df-er 8028  df-map 8144  df-pm 8145  df-ixp 8197  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-fsupp 8566  df-fi 8607  df-sup 8638  df-inf 8639  df-oi 8706  df-r1 8926  df-rank 8927  df-card 9100  df-ac 9274  df-cda 9327  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11035  df-nn 11379  df-2 11442  df-3 11443  df-4 11444  df-5 11445  df-6 11446  df-7 11447  df-8 11448  df-9 11449  df-n0 11647  df-z 11733  df-dec 11850  df-uz 11997  df-q 12100  df-rp 12142  df-xneg 12261  df-xadd 12262  df-xmul 12263  df-ioo 12495  df-ioc 12496  df-ico 12497  df-icc 12498  df-fz 12648  df-fzo 12789  df-fl 12916  df-mod 12992  df-seq 13124  df-exp 13183  df-fac 13383  df-bc 13412  df-hash 13440  df-shft 14218  df-cj 14250  df-re 14251  df-im 14252  df-sqrt 14386  df-abs 14387  df-limsup 14614  df-clim 14631  df-rlim 14632  df-sum 14829  df-ef 15204  df-sin 15206  df-cos 15207  df-pi 15209  df-struct 16261  df-ndx 16262  df-slot 16263  df-base 16265  df-sets 16266  df-ress 16267  df-plusg 16355  df-mulr 16356  df-starv 16357  df-sca 16358  df-vsca 16359  df-ip 16360  df-tset 16361  df-ple 16362  df-ds 16364  df-unif 16365  df-hom 16366  df-cco 16367  df-rest 16473  df-topn 16474  df-0g 16492  df-gsum 16493  df-topgen 16494  df-pt 16495  df-prds 16498  df-ordt 16551  df-xrs 16552  df-qtop 16557  df-imas 16558  df-xps 16560  df-mre 16636  df-mrc 16637  df-acs 16639  df-ps 17590  df-tsr 17591  df-plusf 17631  df-mgm 17632  df-sgrp 17674  df-mnd 17685  df-mhm 17725  df-submnd 17726  df-grp 17816  df-minusg 17817  df-sbg 17818  df-mulg 17932  df-subg 17979  df-cntz 18137  df-cmn 18585  df-abl 18586  df-mgp 18881  df-ur 18893  df-ring 18940  df-cring 18941  df-subrg 19174  df-abv 19213  df-lmod 19261  df-scaf 19262  df-sra 19573  df-rgmod 19574  df-psmet 20138  df-xmet 20139  df-met 20140  df-bl 20141  df-mopn 20142  df-fbas 20143  df-fg 20144  df-cnfld 20147  df-top 21110  df-topon 21127  df-topsp 21149  df-bases 21162  df-cld 21235  df-ntr 21236  df-cls 21237  df-nei 21314  df-lp 21352  df-perf 21353  df-cn 21443  df-cnp 21444  df-haus 21531  df-tx 21778  df-hmeo 21971  df-fil 22062  df-fm 22154  df-flim 22155  df-flf 22156  df-tmd 22288  df-tgp 22289  df-tsms 22342  df-trg 22375  df-xms 22537  df-ms 22538  df-tms 22539  df-nm 22799  df-ngp 22800  df-nrg 22802  df-nlm 22803  df-ii 23092  df-cncf 23093  df-limc 24071  df-dv 24072  df-log 24744  df-esum 30692
This theorem is referenced by:  omssubadd  30964
  Copyright terms: Public domain W3C validator