Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumiun Structured version   Visualization version   GIF version

Theorem esumiun 34077
Description: Sum over a nonnecessarily disjoint indexed union. The inequality is strict in the case where the sets B(x) overlap. (Contributed by Thierry Arnoux, 21-Sep-2019.)
Hypotheses
Ref Expression
esumiun.0 (𝜑𝐴𝑉)
esumiun.1 ((𝜑𝑗𝐴) → 𝐵𝑊)
esumiun.2 (((𝜑𝑗𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
Assertion
Ref Expression
esumiun (𝜑 → Σ*𝑘 𝑗𝐴 𝐵𝐶 ≤ Σ*𝑗𝐴Σ*𝑘𝐵𝐶)
Distinct variable groups:   𝐴,𝑗,𝑘   𝐵,𝑘   𝐶,𝑗   𝑗,𝑊,𝑘   𝜑,𝑗,𝑘
Allowed substitution hints:   𝐵(𝑗)   𝐶(𝑘)   𝑉(𝑗,𝑘)

Proof of Theorem esumiun
Dummy variables 𝑓 𝑙 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 esumiun.0 . . . 4 (𝜑𝐴𝑉)
2 esumiun.1 . . . 4 ((𝜑𝑗𝐴) → 𝐵𝑊)
31, 2aciunf1 32637 . . 3 (𝜑 → ∃𝑓(𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙))
4 f1f1orn 6793 . . . . . 6 (𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) → 𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓)
54anim1i 615 . . . . 5 ((𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) → (𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙))
6 f1f 6738 . . . . . . 7 (𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) → 𝑓: 𝑗𝐴 𝐵 𝑗𝐴 ({𝑗} × 𝐵))
76frnd 6678 . . . . . 6 (𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) → ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))
87adantr 480 . . . . 5 ((𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) → ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))
95, 8jca 511 . . . 4 ((𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) → ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵)))
109eximi 1835 . . 3 (∃𝑓(𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) → ∃𝑓((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵)))
113, 10syl 17 . 2 (𝜑 → ∃𝑓((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵)))
12 nfv 1914 . . . . . 6 𝑧(𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵)))
13 nfcv 2891 . . . . . 6 𝑧𝐶
14 nfcsb1v 3883 . . . . . 6 𝑘(2nd𝑧) / 𝑘𝐶
15 nfcv 2891 . . . . . 6 𝑧 𝑗𝐴 𝐵
16 nfcv 2891 . . . . . 6 𝑧ran 𝑓
17 nfcv 2891 . . . . . 6 𝑧𝑓
18 csbeq1a 3873 . . . . . 6 (𝑘 = (2nd𝑧) → 𝐶 = (2nd𝑧) / 𝑘𝐶)
192ralrimiva 3125 . . . . . . . 8 (𝜑 → ∀𝑗𝐴 𝐵𝑊)
20 iunexg 7921 . . . . . . . 8 ((𝐴𝑉 ∧ ∀𝑗𝐴 𝐵𝑊) → 𝑗𝐴 𝐵 ∈ V)
211, 19, 20syl2anc 584 . . . . . . 7 (𝜑 𝑗𝐴 𝐵 ∈ V)
2221adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → 𝑗𝐴 𝐵 ∈ V)
23 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → 𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓)
24 f1ocnv 6794 . . . . . . . 8 (𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓𝑓:ran 𝑓1-1-onto 𝑗𝐴 𝐵)
2523, 24syl 17 . . . . . . 7 ((𝜑 ∧ (𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → 𝑓:ran 𝑓1-1-onto 𝑗𝐴 𝐵)
2625adantrlr 723 . . . . . 6 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → 𝑓:ran 𝑓1-1-onto 𝑗𝐴 𝐵)
27 nfv 1914 . . . . . . . . 9 𝑗𝜑
28 nfcv 2891 . . . . . . . . . . . 12 𝑗𝑓
29 nfiu1 4987 . . . . . . . . . . . 12 𝑗 𝑗𝐴 𝐵
3028nfrn 5905 . . . . . . . . . . . 12 𝑗ran 𝑓
3128, 29, 30nff1o 6780 . . . . . . . . . . 11 𝑗 𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓
32 nfv 1914 . . . . . . . . . . . 12 𝑗(2nd ‘(𝑓𝑙)) = 𝑙
3329, 32nfralw 3283 . . . . . . . . . . 11 𝑗𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙
3431, 33nfan 1899 . . . . . . . . . 10 𝑗(𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙)
35 nfcv 2891 . . . . . . . . . . 11 𝑗ran 𝑓
36 nfiu1 4987 . . . . . . . . . . 11 𝑗 𝑗𝐴 ({𝑗} × 𝐵)
3735, 36nfss 3936 . . . . . . . . . 10 𝑗ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵)
3834, 37nfan 1899 . . . . . . . . 9 𝑗((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))
3927, 38nfan 1899 . . . . . . . 8 𝑗(𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵)))
40 nfv 1914 . . . . . . . 8 𝑗 𝑧 ∈ ran 𝑓
4139, 40nfan 1899 . . . . . . 7 𝑗((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓)
42 simpr 484 . . . . . . . . . . 11 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (𝑓𝑘) = 𝑧)
4342fveq2d 6844 . . . . . . . . . 10 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (2nd ‘(𝑓𝑘)) = (2nd𝑧))
44 simplr 768 . . . . . . . . . . 11 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → 𝑘 𝑗𝐴 𝐵)
45 simp-4r 783 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵)))
4645simpld 494 . . . . . . . . . . . . 13 (((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → (𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙))
4746simprd 495 . . . . . . . . . . . 12 (((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙)
4847ad2antrr 726 . . . . . . . . . . 11 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙)
49 2fveq3 6845 . . . . . . . . . . . . 13 (𝑙 = 𝑘 → (2nd ‘(𝑓𝑙)) = (2nd ‘(𝑓𝑘)))
50 id 22 . . . . . . . . . . . . 13 (𝑙 = 𝑘𝑙 = 𝑘)
5149, 50eqeq12d 2745 . . . . . . . . . . . 12 (𝑙 = 𝑘 → ((2nd ‘(𝑓𝑙)) = 𝑙 ↔ (2nd ‘(𝑓𝑘)) = 𝑘))
5251rspcva 3583 . . . . . . . . . . 11 ((𝑘 𝑗𝐴 𝐵 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) → (2nd ‘(𝑓𝑘)) = 𝑘)
5344, 48, 52syl2anc 584 . . . . . . . . . 10 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (2nd ‘(𝑓𝑘)) = 𝑘)
5443, 53eqtr3d 2766 . . . . . . . . 9 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (2nd𝑧) = 𝑘)
5546simpld 494 . . . . . . . . . . 11 (((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → 𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓)
5655ad2antrr 726 . . . . . . . . . 10 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → 𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓)
57 f1ocnvfv1 7233 . . . . . . . . . 10 ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓𝑘 𝑗𝐴 𝐵) → (𝑓‘(𝑓𝑘)) = 𝑘)
5856, 44, 57syl2anc 584 . . . . . . . . 9 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (𝑓‘(𝑓𝑘)) = 𝑘)
5942fveq2d 6844 . . . . . . . . 9 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (𝑓‘(𝑓𝑘)) = (𝑓𝑧))
6054, 58, 593eqtr2rd 2771 . . . . . . . 8 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (𝑓𝑧) = (2nd𝑧))
61 f1ofn 6783 . . . . . . . . . 10 (𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓𝑓 Fn 𝑗𝐴 𝐵)
6255, 61syl 17 . . . . . . . . 9 (((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → 𝑓 Fn 𝑗𝐴 𝐵)
63 simpllr 775 . . . . . . . . 9 (((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → 𝑧 ∈ ran 𝑓)
64 fvelrnb 6903 . . . . . . . . . 10 (𝑓 Fn 𝑗𝐴 𝐵 → (𝑧 ∈ ran 𝑓 ↔ ∃𝑘 𝑗𝐴 𝐵(𝑓𝑘) = 𝑧))
6564biimpa 476 . . . . . . . . 9 ((𝑓 Fn 𝑗𝐴 𝐵𝑧 ∈ ran 𝑓) → ∃𝑘 𝑗𝐴 𝐵(𝑓𝑘) = 𝑧)
6662, 63, 65syl2anc 584 . . . . . . . 8 (((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → ∃𝑘 𝑗𝐴 𝐵(𝑓𝑘) = 𝑧)
6760, 66r19.29a 3141 . . . . . . 7 (((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → (𝑓𝑧) = (2nd𝑧))
68 simprr 772 . . . . . . . . 9 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))
6968sselda 3943 . . . . . . . 8 (((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) → 𝑧 𝑗𝐴 ({𝑗} × 𝐵))
70 eliun 4955 . . . . . . . 8 (𝑧 𝑗𝐴 ({𝑗} × 𝐵) ↔ ∃𝑗𝐴 𝑧 ∈ ({𝑗} × 𝐵))
7169, 70sylib 218 . . . . . . 7 (((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) → ∃𝑗𝐴 𝑧 ∈ ({𝑗} × 𝐵))
7241, 67, 71r19.29af 3244 . . . . . 6 (((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) → (𝑓𝑧) = (2nd𝑧))
73 nfcv 2891 . . . . . . . . . 10 𝑗𝑘
7473, 29nfel 2906 . . . . . . . . 9 𝑗 𝑘 𝑗𝐴 𝐵
7527, 74nfan 1899 . . . . . . . 8 𝑗(𝜑𝑘 𝑗𝐴 𝐵)
76 esumiun.2 . . . . . . . . 9 (((𝜑𝑗𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
7776adantllr 719 . . . . . . . 8 ((((𝜑𝑘 𝑗𝐴 𝐵) ∧ 𝑗𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
78 eliun 4955 . . . . . . . . . 10 (𝑘 𝑗𝐴 𝐵 ↔ ∃𝑗𝐴 𝑘𝐵)
7978biimpi 216 . . . . . . . . 9 (𝑘 𝑗𝐴 𝐵 → ∃𝑗𝐴 𝑘𝐵)
8079adantl 481 . . . . . . . 8 ((𝜑𝑘 𝑗𝐴 𝐵) → ∃𝑗𝐴 𝑘𝐵)
8175, 77, 80r19.29af 3244 . . . . . . 7 ((𝜑𝑘 𝑗𝐴 𝐵) → 𝐶 ∈ (0[,]+∞))
8281adantlr 715 . . . . . 6 (((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑘 𝑗𝐴 𝐵) → 𝐶 ∈ (0[,]+∞))
8312, 13, 14, 15, 16, 17, 18, 22, 26, 72, 82esumf1o 34033 . . . . 5 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → Σ*𝑘 𝑗𝐴 𝐵𝐶 = Σ*𝑧 ∈ ran 𝑓(2nd𝑧) / 𝑘𝐶)
8483eqcomd 2735 . . . 4 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → Σ*𝑧 ∈ ran 𝑓(2nd𝑧) / 𝑘𝐶 = Σ*𝑘 𝑗𝐴 𝐵𝐶)
85 vsnex 5384 . . . . . . . . . 10 {𝑗} ∈ V
8685a1i 11 . . . . . . . . 9 ((𝜑𝑗𝐴) → {𝑗} ∈ V)
8786, 2xpexd 7707 . . . . . . . 8 ((𝜑𝑗𝐴) → ({𝑗} × 𝐵) ∈ V)
8887ralrimiva 3125 . . . . . . 7 (𝜑 → ∀𝑗𝐴 ({𝑗} × 𝐵) ∈ V)
89 iunexg 7921 . . . . . . 7 ((𝐴𝑉 ∧ ∀𝑗𝐴 ({𝑗} × 𝐵) ∈ V) → 𝑗𝐴 ({𝑗} × 𝐵) ∈ V)
901, 88, 89syl2anc 584 . . . . . 6 (𝜑 𝑗𝐴 ({𝑗} × 𝐵) ∈ V)
9190adantr 480 . . . . 5 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → 𝑗𝐴 ({𝑗} × 𝐵) ∈ V)
92 nfcv 2891 . . . . . . . . 9 𝑗𝑧
9392, 36nfel 2906 . . . . . . . 8 𝑗 𝑧 𝑗𝐴 ({𝑗} × 𝐵)
9427, 93nfan 1899 . . . . . . 7 𝑗(𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵))
95 nfcv 2891 . . . . . . . . 9 𝑗(2nd𝑧)
96 nfcv 2891 . . . . . . . . 9 𝑗𝐶
9795, 96nfcsbw 3885 . . . . . . . 8 𝑗(2nd𝑧) / 𝑘𝐶
98 nfcv 2891 . . . . . . . 8 𝑗(0[,]+∞)
9997, 98nfel 2906 . . . . . . 7 𝑗(2nd𝑧) / 𝑘𝐶 ∈ (0[,]+∞)
100 simprr 772 . . . . . . . 8 ((((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵)) → (2nd𝑧) ∈ 𝐵)
101 simplll 774 . . . . . . . . 9 ((((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵)) → 𝜑)
102 simplr 768 . . . . . . . . 9 ((((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵)) → 𝑗𝐴)
10376ralrimiva 3125 . . . . . . . . 9 ((𝜑𝑗𝐴) → ∀𝑘𝐵 𝐶 ∈ (0[,]+∞))
104101, 102, 103syl2anc 584 . . . . . . . 8 ((((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵)) → ∀𝑘𝐵 𝐶 ∈ (0[,]+∞))
105 rspcsbela 4397 . . . . . . . 8 (((2nd𝑧) ∈ 𝐵 ∧ ∀𝑘𝐵 𝐶 ∈ (0[,]+∞)) → (2nd𝑧) / 𝑘𝐶 ∈ (0[,]+∞))
106100, 104, 105syl2anc 584 . . . . . . 7 ((((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵)) → (2nd𝑧) / 𝑘𝐶 ∈ (0[,]+∞))
107 xp1st 7979 . . . . . . . . . . . 12 (𝑧 ∈ ({𝑗} × 𝐵) → (1st𝑧) ∈ {𝑗})
108 elsni 4602 . . . . . . . . . . . 12 ((1st𝑧) ∈ {𝑗} → (1st𝑧) = 𝑗)
109107, 108syl 17 . . . . . . . . . . 11 (𝑧 ∈ ({𝑗} × 𝐵) → (1st𝑧) = 𝑗)
110 xp2nd 7980 . . . . . . . . . . 11 (𝑧 ∈ ({𝑗} × 𝐵) → (2nd𝑧) ∈ 𝐵)
111109, 110jca 511 . . . . . . . . . 10 (𝑧 ∈ ({𝑗} × 𝐵) → ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵))
112111reximi 3067 . . . . . . . . 9 (∃𝑗𝐴 𝑧 ∈ ({𝑗} × 𝐵) → ∃𝑗𝐴 ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵))
11370, 112sylbi 217 . . . . . . . 8 (𝑧 𝑗𝐴 ({𝑗} × 𝐵) → ∃𝑗𝐴 ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵))
114113adantl 481 . . . . . . 7 ((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) → ∃𝑗𝐴 ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵))
11594, 99, 106, 114r19.29af2 3243 . . . . . 6 ((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) → (2nd𝑧) / 𝑘𝐶 ∈ (0[,]+∞))
116115adantlr 715 . . . . 5 (((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 𝑗𝐴 ({𝑗} × 𝐵)) → (2nd𝑧) / 𝑘𝐶 ∈ (0[,]+∞))
117 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))
118117adantrlr 723 . . . . 5 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))
11912, 91, 116, 118esummono 34037 . . . 4 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → Σ*𝑧 ∈ ran 𝑓(2nd𝑧) / 𝑘𝐶 ≤ Σ*𝑧 𝑗𝐴 ({𝑗} × 𝐵)(2nd𝑧) / 𝑘𝐶)
12084, 119eqbrtrrd 5126 . . 3 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → Σ*𝑘 𝑗𝐴 𝐵𝐶 ≤ Σ*𝑧 𝑗𝐴 ({𝑗} × 𝐵)(2nd𝑧) / 𝑘𝐶)
121 vex 3448 . . . . . . . . 9 𝑗 ∈ V
122 vex 3448 . . . . . . . . 9 𝑘 ∈ V
123121, 122op2ndd 7958 . . . . . . . 8 (𝑧 = ⟨𝑗, 𝑘⟩ → (2nd𝑧) = 𝑘)
124123eqcomd 2735 . . . . . . 7 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝑘 = (2nd𝑧))
125124, 18syl 17 . . . . . 6 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐶 = (2nd𝑧) / 𝑘𝐶)
126125eqcomd 2735 . . . . 5 (𝑧 = ⟨𝑗, 𝑘⟩ → (2nd𝑧) / 𝑘𝐶 = 𝐶)
12776anasss 466 . . . . 5 ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ (0[,]+∞))
12814, 126, 1, 2, 127esum2d 34076 . . . 4 (𝜑 → Σ*𝑗𝐴Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗𝐴 ({𝑗} × 𝐵)(2nd𝑧) / 𝑘𝐶)
129128adantr 480 . . 3 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → Σ*𝑗𝐴Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗𝐴 ({𝑗} × 𝐵)(2nd𝑧) / 𝑘𝐶)
130120, 129breqtrrd 5130 . 2 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → Σ*𝑘 𝑗𝐴 𝐵𝐶 ≤ Σ*𝑗𝐴Σ*𝑘𝐵𝐶)
13111, 130exlimddv 1935 1 (𝜑 → Σ*𝑘 𝑗𝐴 𝐵𝐶 ≤ Σ*𝑗𝐴Σ*𝑘𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  Vcvv 3444  csb 3859  wss 3911  {csn 4585  cop 4591   ciun 4951   class class class wbr 5102   × cxp 5629  ccnv 5630  ran crn 5632   Fn wfn 6494  1-1wf1 6496  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  1st c1st 7945  2nd c2nd 7946  0cc0 11044  +∞cpnf 11181  cle 11185  [,]cicc 13285  Σ*cesum 34010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-reg 9521  ax-inf2 9570  ax-ac2 10392  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-r1 9693  df-rank 9694  df-card 9868  df-ac 10045  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-ordt 17440  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-ps 18507  df-tsr 18508  df-plusf 18548  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-subrng 20466  df-subrg 20490  df-abv 20729  df-lmod 20800  df-scaf 20801  df-sra 21112  df-rgmod 21113  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-lp 23056  df-perf 23057  df-cn 23147  df-cnp 23148  df-haus 23235  df-tx 23482  df-hmeo 23675  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-tmd 23992  df-tgp 23993  df-tsms 24047  df-trg 24080  df-xms 24241  df-ms 24242  df-tms 24243  df-nm 24503  df-ngp 24504  df-nrg 24506  df-nlm 24507  df-ii 24803  df-cncf 24804  df-limc 25800  df-dv 25801  df-log 26498  df-esum 34011
This theorem is referenced by:  omssubadd  34284
  Copyright terms: Public domain W3C validator