Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumiun Structured version   Visualization version   GIF version

Theorem esumiun 32058
Description: Sum over a nonnecessarily disjoint indexed union. The inequality is strict in the case where the sets B(x) overlap. (Contributed by Thierry Arnoux, 21-Sep-2019.)
Hypotheses
Ref Expression
esumiun.0 (𝜑𝐴𝑉)
esumiun.1 ((𝜑𝑗𝐴) → 𝐵𝑊)
esumiun.2 (((𝜑𝑗𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
Assertion
Ref Expression
esumiun (𝜑 → Σ*𝑘 𝑗𝐴 𝐵𝐶 ≤ Σ*𝑗𝐴Σ*𝑘𝐵𝐶)
Distinct variable groups:   𝐴,𝑗,𝑘   𝐵,𝑘   𝐶,𝑗   𝑗,𝑊,𝑘   𝜑,𝑗,𝑘
Allowed substitution hints:   𝐵(𝑗)   𝐶(𝑘)   𝑉(𝑗,𝑘)

Proof of Theorem esumiun
Dummy variables 𝑓 𝑙 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 esumiun.0 . . . 4 (𝜑𝐴𝑉)
2 esumiun.1 . . . 4 ((𝜑𝑗𝐴) → 𝐵𝑊)
31, 2aciunf1 30996 . . 3 (𝜑 → ∃𝑓(𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙))
4 f1f1orn 6725 . . . . . 6 (𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) → 𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓)
54anim1i 615 . . . . 5 ((𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) → (𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙))
6 f1f 6668 . . . . . . 7 (𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) → 𝑓: 𝑗𝐴 𝐵 𝑗𝐴 ({𝑗} × 𝐵))
76frnd 6606 . . . . . 6 (𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) → ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))
87adantr 481 . . . . 5 ((𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) → ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))
95, 8jca 512 . . . 4 ((𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) → ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵)))
109eximi 1841 . . 3 (∃𝑓(𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) → ∃𝑓((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵)))
113, 10syl 17 . 2 (𝜑 → ∃𝑓((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵)))
12 nfv 1921 . . . . . 6 𝑧(𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵)))
13 nfcv 2909 . . . . . 6 𝑧𝐶
14 nfcsb1v 3862 . . . . . 6 𝑘(2nd𝑧) / 𝑘𝐶
15 nfcv 2909 . . . . . 6 𝑧 𝑗𝐴 𝐵
16 nfcv 2909 . . . . . 6 𝑧ran 𝑓
17 nfcv 2909 . . . . . 6 𝑧𝑓
18 csbeq1a 3851 . . . . . 6 (𝑘 = (2nd𝑧) → 𝐶 = (2nd𝑧) / 𝑘𝐶)
192ralrimiva 3110 . . . . . . . 8 (𝜑 → ∀𝑗𝐴 𝐵𝑊)
20 iunexg 7799 . . . . . . . 8 ((𝐴𝑉 ∧ ∀𝑗𝐴 𝐵𝑊) → 𝑗𝐴 𝐵 ∈ V)
211, 19, 20syl2anc 584 . . . . . . 7 (𝜑 𝑗𝐴 𝐵 ∈ V)
2221adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → 𝑗𝐴 𝐵 ∈ V)
23 simprl 768 . . . . . . . 8 ((𝜑 ∧ (𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → 𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓)
24 f1ocnv 6726 . . . . . . . 8 (𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓𝑓:ran 𝑓1-1-onto 𝑗𝐴 𝐵)
2523, 24syl 17 . . . . . . 7 ((𝜑 ∧ (𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → 𝑓:ran 𝑓1-1-onto 𝑗𝐴 𝐵)
2625adantrlr 720 . . . . . 6 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → 𝑓:ran 𝑓1-1-onto 𝑗𝐴 𝐵)
27 nfv 1921 . . . . . . . . 9 𝑗𝜑
28 nfcv 2909 . . . . . . . . . . . 12 𝑗𝑓
29 nfiu1 4964 . . . . . . . . . . . 12 𝑗 𝑗𝐴 𝐵
3028nfrn 5860 . . . . . . . . . . . 12 𝑗ran 𝑓
3128, 29, 30nff1o 6712 . . . . . . . . . . 11 𝑗 𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓
32 nfv 1921 . . . . . . . . . . . 12 𝑗(2nd ‘(𝑓𝑙)) = 𝑙
3329, 32nfralw 3152 . . . . . . . . . . 11 𝑗𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙
3431, 33nfan 1906 . . . . . . . . . 10 𝑗(𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙)
35 nfcv 2909 . . . . . . . . . . 11 𝑗ran 𝑓
36 nfiu1 4964 . . . . . . . . . . 11 𝑗 𝑗𝐴 ({𝑗} × 𝐵)
3735, 36nfss 3918 . . . . . . . . . 10 𝑗ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵)
3834, 37nfan 1906 . . . . . . . . 9 𝑗((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))
3927, 38nfan 1906 . . . . . . . 8 𝑗(𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵)))
40 nfv 1921 . . . . . . . 8 𝑗 𝑧 ∈ ran 𝑓
4139, 40nfan 1906 . . . . . . 7 𝑗((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓)
42 simpr 485 . . . . . . . . . . 11 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (𝑓𝑘) = 𝑧)
4342fveq2d 6775 . . . . . . . . . 10 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (2nd ‘(𝑓𝑘)) = (2nd𝑧))
44 simplr 766 . . . . . . . . . . 11 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → 𝑘 𝑗𝐴 𝐵)
45 simp-4r 781 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵)))
4645simpld 495 . . . . . . . . . . . . 13 (((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → (𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙))
4746simprd 496 . . . . . . . . . . . 12 (((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙)
4847ad2antrr 723 . . . . . . . . . . 11 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙)
49 2fveq3 6776 . . . . . . . . . . . . 13 (𝑙 = 𝑘 → (2nd ‘(𝑓𝑙)) = (2nd ‘(𝑓𝑘)))
50 id 22 . . . . . . . . . . . . 13 (𝑙 = 𝑘𝑙 = 𝑘)
5149, 50eqeq12d 2756 . . . . . . . . . . . 12 (𝑙 = 𝑘 → ((2nd ‘(𝑓𝑙)) = 𝑙 ↔ (2nd ‘(𝑓𝑘)) = 𝑘))
5251rspcva 3559 . . . . . . . . . . 11 ((𝑘 𝑗𝐴 𝐵 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) → (2nd ‘(𝑓𝑘)) = 𝑘)
5344, 48, 52syl2anc 584 . . . . . . . . . 10 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (2nd ‘(𝑓𝑘)) = 𝑘)
5443, 53eqtr3d 2782 . . . . . . . . 9 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (2nd𝑧) = 𝑘)
5546simpld 495 . . . . . . . . . . 11 (((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → 𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓)
5655ad2antrr 723 . . . . . . . . . 10 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → 𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓)
57 f1ocnvfv1 7145 . . . . . . . . . 10 ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓𝑘 𝑗𝐴 𝐵) → (𝑓‘(𝑓𝑘)) = 𝑘)
5856, 44, 57syl2anc 584 . . . . . . . . 9 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (𝑓‘(𝑓𝑘)) = 𝑘)
5942fveq2d 6775 . . . . . . . . 9 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (𝑓‘(𝑓𝑘)) = (𝑓𝑧))
6054, 58, 593eqtr2rd 2787 . . . . . . . 8 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (𝑓𝑧) = (2nd𝑧))
61 f1ofn 6715 . . . . . . . . . 10 (𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓𝑓 Fn 𝑗𝐴 𝐵)
6255, 61syl 17 . . . . . . . . 9 (((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → 𝑓 Fn 𝑗𝐴 𝐵)
63 simpllr 773 . . . . . . . . 9 (((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → 𝑧 ∈ ran 𝑓)
64 fvelrnb 6827 . . . . . . . . . 10 (𝑓 Fn 𝑗𝐴 𝐵 → (𝑧 ∈ ran 𝑓 ↔ ∃𝑘 𝑗𝐴 𝐵(𝑓𝑘) = 𝑧))
6564biimpa 477 . . . . . . . . 9 ((𝑓 Fn 𝑗𝐴 𝐵𝑧 ∈ ran 𝑓) → ∃𝑘 𝑗𝐴 𝐵(𝑓𝑘) = 𝑧)
6662, 63, 65syl2anc 584 . . . . . . . 8 (((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → ∃𝑘 𝑗𝐴 𝐵(𝑓𝑘) = 𝑧)
6760, 66r19.29a 3220 . . . . . . 7 (((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → (𝑓𝑧) = (2nd𝑧))
68 simprr 770 . . . . . . . . 9 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))
6968sselda 3926 . . . . . . . 8 (((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) → 𝑧 𝑗𝐴 ({𝑗} × 𝐵))
70 eliun 4934 . . . . . . . 8 (𝑧 𝑗𝐴 ({𝑗} × 𝐵) ↔ ∃𝑗𝐴 𝑧 ∈ ({𝑗} × 𝐵))
7169, 70sylib 217 . . . . . . 7 (((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) → ∃𝑗𝐴 𝑧 ∈ ({𝑗} × 𝐵))
7241, 67, 71r19.29af 3262 . . . . . 6 (((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) → (𝑓𝑧) = (2nd𝑧))
73 nfcv 2909 . . . . . . . . . 10 𝑗𝑘
7473, 29nfel 2923 . . . . . . . . 9 𝑗 𝑘 𝑗𝐴 𝐵
7527, 74nfan 1906 . . . . . . . 8 𝑗(𝜑𝑘 𝑗𝐴 𝐵)
76 esumiun.2 . . . . . . . . 9 (((𝜑𝑗𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
7776adantllr 716 . . . . . . . 8 ((((𝜑𝑘 𝑗𝐴 𝐵) ∧ 𝑗𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
78 eliun 4934 . . . . . . . . . 10 (𝑘 𝑗𝐴 𝐵 ↔ ∃𝑗𝐴 𝑘𝐵)
7978biimpi 215 . . . . . . . . 9 (𝑘 𝑗𝐴 𝐵 → ∃𝑗𝐴 𝑘𝐵)
8079adantl 482 . . . . . . . 8 ((𝜑𝑘 𝑗𝐴 𝐵) → ∃𝑗𝐴 𝑘𝐵)
8175, 77, 80r19.29af 3262 . . . . . . 7 ((𝜑𝑘 𝑗𝐴 𝐵) → 𝐶 ∈ (0[,]+∞))
8281adantlr 712 . . . . . 6 (((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑘 𝑗𝐴 𝐵) → 𝐶 ∈ (0[,]+∞))
8312, 13, 14, 15, 16, 17, 18, 22, 26, 72, 82esumf1o 32014 . . . . 5 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → Σ*𝑘 𝑗𝐴 𝐵𝐶 = Σ*𝑧 ∈ ran 𝑓(2nd𝑧) / 𝑘𝐶)
8483eqcomd 2746 . . . 4 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → Σ*𝑧 ∈ ran 𝑓(2nd𝑧) / 𝑘𝐶 = Σ*𝑘 𝑗𝐴 𝐵𝐶)
85 snex 5358 . . . . . . . . . 10 {𝑗} ∈ V
8685a1i 11 . . . . . . . . 9 ((𝜑𝑗𝐴) → {𝑗} ∈ V)
8786, 2xpexd 7595 . . . . . . . 8 ((𝜑𝑗𝐴) → ({𝑗} × 𝐵) ∈ V)
8887ralrimiva 3110 . . . . . . 7 (𝜑 → ∀𝑗𝐴 ({𝑗} × 𝐵) ∈ V)
89 iunexg 7799 . . . . . . 7 ((𝐴𝑉 ∧ ∀𝑗𝐴 ({𝑗} × 𝐵) ∈ V) → 𝑗𝐴 ({𝑗} × 𝐵) ∈ V)
901, 88, 89syl2anc 584 . . . . . 6 (𝜑 𝑗𝐴 ({𝑗} × 𝐵) ∈ V)
9190adantr 481 . . . . 5 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → 𝑗𝐴 ({𝑗} × 𝐵) ∈ V)
92 nfcv 2909 . . . . . . . . 9 𝑗𝑧
9392, 36nfel 2923 . . . . . . . 8 𝑗 𝑧 𝑗𝐴 ({𝑗} × 𝐵)
9427, 93nfan 1906 . . . . . . 7 𝑗(𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵))
95 nfcv 2909 . . . . . . . . 9 𝑗(2nd𝑧)
96 nfcv 2909 . . . . . . . . 9 𝑗𝐶
9795, 96nfcsbw 3864 . . . . . . . 8 𝑗(2nd𝑧) / 𝑘𝐶
98 nfcv 2909 . . . . . . . 8 𝑗(0[,]+∞)
9997, 98nfel 2923 . . . . . . 7 𝑗(2nd𝑧) / 𝑘𝐶 ∈ (0[,]+∞)
100 simprr 770 . . . . . . . 8 ((((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵)) → (2nd𝑧) ∈ 𝐵)
101 simplll 772 . . . . . . . . 9 ((((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵)) → 𝜑)
102 simplr 766 . . . . . . . . 9 ((((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵)) → 𝑗𝐴)
10376ralrimiva 3110 . . . . . . . . 9 ((𝜑𝑗𝐴) → ∀𝑘𝐵 𝐶 ∈ (0[,]+∞))
104101, 102, 103syl2anc 584 . . . . . . . 8 ((((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵)) → ∀𝑘𝐵 𝐶 ∈ (0[,]+∞))
105 rspcsbela 4375 . . . . . . . 8 (((2nd𝑧) ∈ 𝐵 ∧ ∀𝑘𝐵 𝐶 ∈ (0[,]+∞)) → (2nd𝑧) / 𝑘𝐶 ∈ (0[,]+∞))
106100, 104, 105syl2anc 584 . . . . . . 7 ((((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵)) → (2nd𝑧) / 𝑘𝐶 ∈ (0[,]+∞))
107 xp1st 7856 . . . . . . . . . . . 12 (𝑧 ∈ ({𝑗} × 𝐵) → (1st𝑧) ∈ {𝑗})
108 elsni 4584 . . . . . . . . . . . 12 ((1st𝑧) ∈ {𝑗} → (1st𝑧) = 𝑗)
109107, 108syl 17 . . . . . . . . . . 11 (𝑧 ∈ ({𝑗} × 𝐵) → (1st𝑧) = 𝑗)
110 xp2nd 7857 . . . . . . . . . . 11 (𝑧 ∈ ({𝑗} × 𝐵) → (2nd𝑧) ∈ 𝐵)
111109, 110jca 512 . . . . . . . . . 10 (𝑧 ∈ ({𝑗} × 𝐵) → ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵))
112111reximi 3177 . . . . . . . . 9 (∃𝑗𝐴 𝑧 ∈ ({𝑗} × 𝐵) → ∃𝑗𝐴 ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵))
11370, 112sylbi 216 . . . . . . . 8 (𝑧 𝑗𝐴 ({𝑗} × 𝐵) → ∃𝑗𝐴 ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵))
114113adantl 482 . . . . . . 7 ((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) → ∃𝑗𝐴 ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵))
11594, 99, 106, 114r19.29af2 3261 . . . . . 6 ((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) → (2nd𝑧) / 𝑘𝐶 ∈ (0[,]+∞))
116115adantlr 712 . . . . 5 (((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 𝑗𝐴 ({𝑗} × 𝐵)) → (2nd𝑧) / 𝑘𝐶 ∈ (0[,]+∞))
117 simprr 770 . . . . . 6 ((𝜑 ∧ (𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))
118117adantrlr 720 . . . . 5 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))
11912, 91, 116, 118esummono 32018 . . . 4 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → Σ*𝑧 ∈ ran 𝑓(2nd𝑧) / 𝑘𝐶 ≤ Σ*𝑧 𝑗𝐴 ({𝑗} × 𝐵)(2nd𝑧) / 𝑘𝐶)
12084, 119eqbrtrrd 5103 . . 3 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → Σ*𝑘 𝑗𝐴 𝐵𝐶 ≤ Σ*𝑧 𝑗𝐴 ({𝑗} × 𝐵)(2nd𝑧) / 𝑘𝐶)
121 vex 3435 . . . . . . . . 9 𝑗 ∈ V
122 vex 3435 . . . . . . . . 9 𝑘 ∈ V
123121, 122op2ndd 7835 . . . . . . . 8 (𝑧 = ⟨𝑗, 𝑘⟩ → (2nd𝑧) = 𝑘)
124123eqcomd 2746 . . . . . . 7 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝑘 = (2nd𝑧))
125124, 18syl 17 . . . . . 6 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐶 = (2nd𝑧) / 𝑘𝐶)
126125eqcomd 2746 . . . . 5 (𝑧 = ⟨𝑗, 𝑘⟩ → (2nd𝑧) / 𝑘𝐶 = 𝐶)
12776anasss 467 . . . . 5 ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ (0[,]+∞))
12814, 126, 1, 2, 127esum2d 32057 . . . 4 (𝜑 → Σ*𝑗𝐴Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗𝐴 ({𝑗} × 𝐵)(2nd𝑧) / 𝑘𝐶)
129128adantr 481 . . 3 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → Σ*𝑗𝐴Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗𝐴 ({𝑗} × 𝐵)(2nd𝑧) / 𝑘𝐶)
130120, 129breqtrrd 5107 . 2 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → Σ*𝑘 𝑗𝐴 𝐵𝐶 ≤ Σ*𝑗𝐴Σ*𝑘𝐵𝐶)
13111, 130exlimddv 1942 1 (𝜑 → Σ*𝑘 𝑗𝐴 𝐵𝐶 ≤ Σ*𝑗𝐴Σ*𝑘𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wex 1786  wcel 2110  wral 3066  wrex 3067  Vcvv 3431  csb 3837  wss 3892  {csn 4567  cop 4573   ciun 4930   class class class wbr 5079   × cxp 5588  ccnv 5589  ran crn 5591   Fn wfn 6427  1-1wf1 6429  1-1-ontowf1o 6431  cfv 6432  (class class class)co 7271  1st c1st 7822  2nd c2nd 7823  0cc0 10872  +∞cpnf 11007  cle 11011  [,]cicc 13081  Σ*cesum 31991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-reg 9329  ax-inf2 9377  ax-ac2 10220  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950  ax-addf 10951  ax-mulf 10952
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-of 7527  df-om 7707  df-1st 7824  df-2nd 7825  df-supp 7969  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-2o 8289  df-er 8481  df-map 8600  df-pm 8601  df-ixp 8669  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-fsupp 9107  df-fi 9148  df-sup 9179  df-inf 9180  df-oi 9247  df-r1 9523  df-rank 9524  df-card 9698  df-ac 9873  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12437  df-uz 12582  df-q 12688  df-rp 12730  df-xneg 12847  df-xadd 12848  df-xmul 12849  df-ioo 13082  df-ioc 13083  df-ico 13084  df-icc 13085  df-fz 13239  df-fzo 13382  df-fl 13510  df-mod 13588  df-seq 13720  df-exp 13781  df-fac 13986  df-bc 14015  df-hash 14043  df-shft 14776  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-limsup 15178  df-clim 15195  df-rlim 15196  df-sum 15396  df-ef 15775  df-sin 15777  df-cos 15778  df-pi 15780  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-starv 16975  df-sca 16976  df-vsca 16977  df-ip 16978  df-tset 16979  df-ple 16980  df-ds 16982  df-unif 16983  df-hom 16984  df-cco 16985  df-rest 17131  df-topn 17132  df-0g 17150  df-gsum 17151  df-topgen 17152  df-pt 17153  df-prds 17156  df-ordt 17210  df-xrs 17211  df-qtop 17216  df-imas 17217  df-xps 17219  df-mre 17293  df-mrc 17294  df-acs 17296  df-ps 18282  df-tsr 18283  df-plusf 18323  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-mhm 18428  df-submnd 18429  df-grp 18578  df-minusg 18579  df-sbg 18580  df-mulg 18699  df-subg 18750  df-cntz 18921  df-cmn 19386  df-abl 19387  df-mgp 19719  df-ur 19736  df-ring 19783  df-cring 19784  df-subrg 20020  df-abv 20075  df-lmod 20123  df-scaf 20124  df-sra 20432  df-rgmod 20433  df-psmet 20587  df-xmet 20588  df-met 20589  df-bl 20590  df-mopn 20591  df-fbas 20592  df-fg 20593  df-cnfld 20596  df-top 22041  df-topon 22058  df-topsp 22080  df-bases 22094  df-cld 22168  df-ntr 22169  df-cls 22170  df-nei 22247  df-lp 22285  df-perf 22286  df-cn 22376  df-cnp 22377  df-haus 22464  df-tx 22711  df-hmeo 22904  df-fil 22995  df-fm 23087  df-flim 23088  df-flf 23089  df-tmd 23221  df-tgp 23222  df-tsms 23276  df-trg 23309  df-xms 23471  df-ms 23472  df-tms 23473  df-nm 23736  df-ngp 23737  df-nrg 23739  df-nlm 23740  df-ii 24038  df-cncf 24039  df-limc 25028  df-dv 25029  df-log 25710  df-esum 31992
This theorem is referenced by:  omssubadd  32263
  Copyright terms: Public domain W3C validator