Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumiun Structured version   Visualization version   GIF version

Theorem esumiun 34107
Description: Sum over a nonnecessarily disjoint indexed union. The inequality is strict in the case where the sets B(x) overlap. (Contributed by Thierry Arnoux, 21-Sep-2019.)
Hypotheses
Ref Expression
esumiun.0 (𝜑𝐴𝑉)
esumiun.1 ((𝜑𝑗𝐴) → 𝐵𝑊)
esumiun.2 (((𝜑𝑗𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
Assertion
Ref Expression
esumiun (𝜑 → Σ*𝑘 𝑗𝐴 𝐵𝐶 ≤ Σ*𝑗𝐴Σ*𝑘𝐵𝐶)
Distinct variable groups:   𝐴,𝑗,𝑘   𝐵,𝑘   𝐶,𝑗   𝑗,𝑊,𝑘   𝜑,𝑗,𝑘
Allowed substitution hints:   𝐵(𝑗)   𝐶(𝑘)   𝑉(𝑗,𝑘)

Proof of Theorem esumiun
Dummy variables 𝑓 𝑙 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 esumiun.0 . . . 4 (𝜑𝐴𝑉)
2 esumiun.1 . . . 4 ((𝜑𝑗𝐴) → 𝐵𝑊)
31, 2aciunf1 32645 . . 3 (𝜑 → ∃𝑓(𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙))
4 f1f1orn 6774 . . . . . 6 (𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) → 𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓)
54anim1i 615 . . . . 5 ((𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) → (𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙))
6 f1f 6719 . . . . . . 7 (𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) → 𝑓: 𝑗𝐴 𝐵 𝑗𝐴 ({𝑗} × 𝐵))
76frnd 6659 . . . . . 6 (𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) → ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))
87adantr 480 . . . . 5 ((𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) → ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))
95, 8jca 511 . . . 4 ((𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) → ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵)))
109eximi 1836 . . 3 (∃𝑓(𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) → ∃𝑓((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵)))
113, 10syl 17 . 2 (𝜑 → ∃𝑓((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵)))
12 nfv 1915 . . . . . 6 𝑧(𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵)))
13 nfcv 2894 . . . . . 6 𝑧𝐶
14 nfcsb1v 3869 . . . . . 6 𝑘(2nd𝑧) / 𝑘𝐶
15 nfcv 2894 . . . . . 6 𝑧 𝑗𝐴 𝐵
16 nfcv 2894 . . . . . 6 𝑧ran 𝑓
17 nfcv 2894 . . . . . 6 𝑧𝑓
18 csbeq1a 3859 . . . . . 6 (𝑘 = (2nd𝑧) → 𝐶 = (2nd𝑧) / 𝑘𝐶)
192ralrimiva 3124 . . . . . . . 8 (𝜑 → ∀𝑗𝐴 𝐵𝑊)
20 iunexg 7895 . . . . . . . 8 ((𝐴𝑉 ∧ ∀𝑗𝐴 𝐵𝑊) → 𝑗𝐴 𝐵 ∈ V)
211, 19, 20syl2anc 584 . . . . . . 7 (𝜑 𝑗𝐴 𝐵 ∈ V)
2221adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → 𝑗𝐴 𝐵 ∈ V)
23 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → 𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓)
24 f1ocnv 6775 . . . . . . . 8 (𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓𝑓:ran 𝑓1-1-onto 𝑗𝐴 𝐵)
2523, 24syl 17 . . . . . . 7 ((𝜑 ∧ (𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → 𝑓:ran 𝑓1-1-onto 𝑗𝐴 𝐵)
2625adantrlr 723 . . . . . 6 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → 𝑓:ran 𝑓1-1-onto 𝑗𝐴 𝐵)
27 nfv 1915 . . . . . . . . 9 𝑗𝜑
28 nfcv 2894 . . . . . . . . . . . 12 𝑗𝑓
29 nfiu1 4975 . . . . . . . . . . . 12 𝑗 𝑗𝐴 𝐵
3028nfrn 5891 . . . . . . . . . . . 12 𝑗ran 𝑓
3128, 29, 30nff1o 6761 . . . . . . . . . . 11 𝑗 𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓
32 nfv 1915 . . . . . . . . . . . 12 𝑗(2nd ‘(𝑓𝑙)) = 𝑙
3329, 32nfralw 3279 . . . . . . . . . . 11 𝑗𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙
3431, 33nfan 1900 . . . . . . . . . 10 𝑗(𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙)
35 nfcv 2894 . . . . . . . . . . 11 𝑗ran 𝑓
36 nfiu1 4975 . . . . . . . . . . 11 𝑗 𝑗𝐴 ({𝑗} × 𝐵)
3735, 36nfss 3922 . . . . . . . . . 10 𝑗ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵)
3834, 37nfan 1900 . . . . . . . . 9 𝑗((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))
3927, 38nfan 1900 . . . . . . . 8 𝑗(𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵)))
40 nfv 1915 . . . . . . . 8 𝑗 𝑧 ∈ ran 𝑓
4139, 40nfan 1900 . . . . . . 7 𝑗((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓)
42 simpr 484 . . . . . . . . . . 11 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (𝑓𝑘) = 𝑧)
4342fveq2d 6826 . . . . . . . . . 10 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (2nd ‘(𝑓𝑘)) = (2nd𝑧))
44 simplr 768 . . . . . . . . . . 11 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → 𝑘 𝑗𝐴 𝐵)
45 simp-4r 783 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵)))
4645simpld 494 . . . . . . . . . . . . 13 (((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → (𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙))
4746simprd 495 . . . . . . . . . . . 12 (((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙)
4847ad2antrr 726 . . . . . . . . . . 11 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙)
49 2fveq3 6827 . . . . . . . . . . . . 13 (𝑙 = 𝑘 → (2nd ‘(𝑓𝑙)) = (2nd ‘(𝑓𝑘)))
50 id 22 . . . . . . . . . . . . 13 (𝑙 = 𝑘𝑙 = 𝑘)
5149, 50eqeq12d 2747 . . . . . . . . . . . 12 (𝑙 = 𝑘 → ((2nd ‘(𝑓𝑙)) = 𝑙 ↔ (2nd ‘(𝑓𝑘)) = 𝑘))
5251rspcva 3570 . . . . . . . . . . 11 ((𝑘 𝑗𝐴 𝐵 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) → (2nd ‘(𝑓𝑘)) = 𝑘)
5344, 48, 52syl2anc 584 . . . . . . . . . 10 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (2nd ‘(𝑓𝑘)) = 𝑘)
5443, 53eqtr3d 2768 . . . . . . . . 9 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (2nd𝑧) = 𝑘)
5546simpld 494 . . . . . . . . . . 11 (((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → 𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓)
5655ad2antrr 726 . . . . . . . . . 10 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → 𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓)
57 f1ocnvfv1 7210 . . . . . . . . . 10 ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓𝑘 𝑗𝐴 𝐵) → (𝑓‘(𝑓𝑘)) = 𝑘)
5856, 44, 57syl2anc 584 . . . . . . . . 9 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (𝑓‘(𝑓𝑘)) = 𝑘)
5942fveq2d 6826 . . . . . . . . 9 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (𝑓‘(𝑓𝑘)) = (𝑓𝑧))
6054, 58, 593eqtr2rd 2773 . . . . . . . 8 (((((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 𝑗𝐴 𝐵) ∧ (𝑓𝑘) = 𝑧) → (𝑓𝑧) = (2nd𝑧))
61 f1ofn 6764 . . . . . . . . . 10 (𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓𝑓 Fn 𝑗𝐴 𝐵)
6255, 61syl 17 . . . . . . . . 9 (((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → 𝑓 Fn 𝑗𝐴 𝐵)
63 simpllr 775 . . . . . . . . 9 (((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → 𝑧 ∈ ran 𝑓)
64 fvelrnb 6882 . . . . . . . . . 10 (𝑓 Fn 𝑗𝐴 𝐵 → (𝑧 ∈ ran 𝑓 ↔ ∃𝑘 𝑗𝐴 𝐵(𝑓𝑘) = 𝑧))
6564biimpa 476 . . . . . . . . 9 ((𝑓 Fn 𝑗𝐴 𝐵𝑧 ∈ ran 𝑓) → ∃𝑘 𝑗𝐴 𝐵(𝑓𝑘) = 𝑧)
6662, 63, 65syl2anc 584 . . . . . . . 8 (((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → ∃𝑘 𝑗𝐴 𝐵(𝑓𝑘) = 𝑧)
6760, 66r19.29a 3140 . . . . . . 7 (((((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → (𝑓𝑧) = (2nd𝑧))
68 simprr 772 . . . . . . . . 9 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))
6968sselda 3929 . . . . . . . 8 (((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) → 𝑧 𝑗𝐴 ({𝑗} × 𝐵))
70 eliun 4943 . . . . . . . 8 (𝑧 𝑗𝐴 ({𝑗} × 𝐵) ↔ ∃𝑗𝐴 𝑧 ∈ ({𝑗} × 𝐵))
7169, 70sylib 218 . . . . . . 7 (((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) → ∃𝑗𝐴 𝑧 ∈ ({𝑗} × 𝐵))
7241, 67, 71r19.29af 3241 . . . . . 6 (((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 ∈ ran 𝑓) → (𝑓𝑧) = (2nd𝑧))
73 nfcv 2894 . . . . . . . . . 10 𝑗𝑘
7473, 29nfel 2909 . . . . . . . . 9 𝑗 𝑘 𝑗𝐴 𝐵
7527, 74nfan 1900 . . . . . . . 8 𝑗(𝜑𝑘 𝑗𝐴 𝐵)
76 esumiun.2 . . . . . . . . 9 (((𝜑𝑗𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
7776adantllr 719 . . . . . . . 8 ((((𝜑𝑘 𝑗𝐴 𝐵) ∧ 𝑗𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
78 eliun 4943 . . . . . . . . . 10 (𝑘 𝑗𝐴 𝐵 ↔ ∃𝑗𝐴 𝑘𝐵)
7978biimpi 216 . . . . . . . . 9 (𝑘 𝑗𝐴 𝐵 → ∃𝑗𝐴 𝑘𝐵)
8079adantl 481 . . . . . . . 8 ((𝜑𝑘 𝑗𝐴 𝐵) → ∃𝑗𝐴 𝑘𝐵)
8175, 77, 80r19.29af 3241 . . . . . . 7 ((𝜑𝑘 𝑗𝐴 𝐵) → 𝐶 ∈ (0[,]+∞))
8281adantlr 715 . . . . . 6 (((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑘 𝑗𝐴 𝐵) → 𝐶 ∈ (0[,]+∞))
8312, 13, 14, 15, 16, 17, 18, 22, 26, 72, 82esumf1o 34063 . . . . 5 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → Σ*𝑘 𝑗𝐴 𝐵𝐶 = Σ*𝑧 ∈ ran 𝑓(2nd𝑧) / 𝑘𝐶)
8483eqcomd 2737 . . . 4 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → Σ*𝑧 ∈ ran 𝑓(2nd𝑧) / 𝑘𝐶 = Σ*𝑘 𝑗𝐴 𝐵𝐶)
85 vsnex 5370 . . . . . . . . . 10 {𝑗} ∈ V
8685a1i 11 . . . . . . . . 9 ((𝜑𝑗𝐴) → {𝑗} ∈ V)
8786, 2xpexd 7684 . . . . . . . 8 ((𝜑𝑗𝐴) → ({𝑗} × 𝐵) ∈ V)
8887ralrimiva 3124 . . . . . . 7 (𝜑 → ∀𝑗𝐴 ({𝑗} × 𝐵) ∈ V)
89 iunexg 7895 . . . . . . 7 ((𝐴𝑉 ∧ ∀𝑗𝐴 ({𝑗} × 𝐵) ∈ V) → 𝑗𝐴 ({𝑗} × 𝐵) ∈ V)
901, 88, 89syl2anc 584 . . . . . 6 (𝜑 𝑗𝐴 ({𝑗} × 𝐵) ∈ V)
9190adantr 480 . . . . 5 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → 𝑗𝐴 ({𝑗} × 𝐵) ∈ V)
92 nfcv 2894 . . . . . . . . 9 𝑗𝑧
9392, 36nfel 2909 . . . . . . . 8 𝑗 𝑧 𝑗𝐴 ({𝑗} × 𝐵)
9427, 93nfan 1900 . . . . . . 7 𝑗(𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵))
95 nfcv 2894 . . . . . . . . 9 𝑗(2nd𝑧)
96 nfcv 2894 . . . . . . . . 9 𝑗𝐶
9795, 96nfcsbw 3871 . . . . . . . 8 𝑗(2nd𝑧) / 𝑘𝐶
98 nfcv 2894 . . . . . . . 8 𝑗(0[,]+∞)
9997, 98nfel 2909 . . . . . . 7 𝑗(2nd𝑧) / 𝑘𝐶 ∈ (0[,]+∞)
100 simprr 772 . . . . . . . 8 ((((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵)) → (2nd𝑧) ∈ 𝐵)
101 simplll 774 . . . . . . . . 9 ((((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵)) → 𝜑)
102 simplr 768 . . . . . . . . 9 ((((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵)) → 𝑗𝐴)
10376ralrimiva 3124 . . . . . . . . 9 ((𝜑𝑗𝐴) → ∀𝑘𝐵 𝐶 ∈ (0[,]+∞))
104101, 102, 103syl2anc 584 . . . . . . . 8 ((((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵)) → ∀𝑘𝐵 𝐶 ∈ (0[,]+∞))
105 rspcsbela 4385 . . . . . . . 8 (((2nd𝑧) ∈ 𝐵 ∧ ∀𝑘𝐵 𝐶 ∈ (0[,]+∞)) → (2nd𝑧) / 𝑘𝐶 ∈ (0[,]+∞))
106100, 104, 105syl2anc 584 . . . . . . 7 ((((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵)) → (2nd𝑧) / 𝑘𝐶 ∈ (0[,]+∞))
107 xp1st 7953 . . . . . . . . . . . 12 (𝑧 ∈ ({𝑗} × 𝐵) → (1st𝑧) ∈ {𝑗})
108 elsni 4590 . . . . . . . . . . . 12 ((1st𝑧) ∈ {𝑗} → (1st𝑧) = 𝑗)
109107, 108syl 17 . . . . . . . . . . 11 (𝑧 ∈ ({𝑗} × 𝐵) → (1st𝑧) = 𝑗)
110 xp2nd 7954 . . . . . . . . . . 11 (𝑧 ∈ ({𝑗} × 𝐵) → (2nd𝑧) ∈ 𝐵)
111109, 110jca 511 . . . . . . . . . 10 (𝑧 ∈ ({𝑗} × 𝐵) → ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵))
112111reximi 3070 . . . . . . . . 9 (∃𝑗𝐴 𝑧 ∈ ({𝑗} × 𝐵) → ∃𝑗𝐴 ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵))
11370, 112sylbi 217 . . . . . . . 8 (𝑧 𝑗𝐴 ({𝑗} × 𝐵) → ∃𝑗𝐴 ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵))
114113adantl 481 . . . . . . 7 ((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) → ∃𝑗𝐴 ((1st𝑧) = 𝑗 ∧ (2nd𝑧) ∈ 𝐵))
11594, 99, 106, 114r19.29af2 3240 . . . . . 6 ((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) → (2nd𝑧) / 𝑘𝐶 ∈ (0[,]+∞))
116115adantlr 715 . . . . 5 (((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) ∧ 𝑧 𝑗𝐴 ({𝑗} × 𝐵)) → (2nd𝑧) / 𝑘𝐶 ∈ (0[,]+∞))
117 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))
118117adantrlr 723 . . . . 5 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))
11912, 91, 116, 118esummono 34067 . . . 4 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → Σ*𝑧 ∈ ran 𝑓(2nd𝑧) / 𝑘𝐶 ≤ Σ*𝑧 𝑗𝐴 ({𝑗} × 𝐵)(2nd𝑧) / 𝑘𝐶)
12084, 119eqbrtrrd 5113 . . 3 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → Σ*𝑘 𝑗𝐴 𝐵𝐶 ≤ Σ*𝑧 𝑗𝐴 ({𝑗} × 𝐵)(2nd𝑧) / 𝑘𝐶)
121 vex 3440 . . . . . . . . 9 𝑗 ∈ V
122 vex 3440 . . . . . . . . 9 𝑘 ∈ V
123121, 122op2ndd 7932 . . . . . . . 8 (𝑧 = ⟨𝑗, 𝑘⟩ → (2nd𝑧) = 𝑘)
124123eqcomd 2737 . . . . . . 7 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝑘 = (2nd𝑧))
125124, 18syl 17 . . . . . 6 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐶 = (2nd𝑧) / 𝑘𝐶)
126125eqcomd 2737 . . . . 5 (𝑧 = ⟨𝑗, 𝑘⟩ → (2nd𝑧) / 𝑘𝐶 = 𝐶)
12776anasss 466 . . . . 5 ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ (0[,]+∞))
12814, 126, 1, 2, 127esum2d 34106 . . . 4 (𝜑 → Σ*𝑗𝐴Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗𝐴 ({𝑗} × 𝐵)(2nd𝑧) / 𝑘𝐶)
129128adantr 480 . . 3 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → Σ*𝑗𝐴Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗𝐴 ({𝑗} × 𝐵)(2nd𝑧) / 𝑘𝐶)
130120, 129breqtrrd 5117 . 2 ((𝜑 ∧ ((𝑓: 𝑗𝐴 𝐵1-1-onto→ran 𝑓 ∧ ∀𝑙 𝑗𝐴 𝐵(2nd ‘(𝑓𝑙)) = 𝑙) ∧ ran 𝑓 𝑗𝐴 ({𝑗} × 𝐵))) → Σ*𝑘 𝑗𝐴 𝐵𝐶 ≤ Σ*𝑗𝐴Σ*𝑘𝐵𝐶)
13111, 130exlimddv 1936 1 (𝜑 → Σ*𝑘 𝑗𝐴 𝐵𝐶 ≤ Σ*𝑗𝐴Σ*𝑘𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  csb 3845  wss 3897  {csn 4573  cop 4579   ciun 4939   class class class wbr 5089   × cxp 5612  ccnv 5613  ran crn 5615   Fn wfn 6476  1-1wf1 6478  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  0cc0 11006  +∞cpnf 11143  cle 11147  [,]cicc 13248  Σ*cesum 34040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-reg 9478  ax-inf2 9531  ax-ac2 10354  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-r1 9657  df-rank 9658  df-card 9832  df-ac 10007  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-ordt 17405  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-ps 18472  df-tsr 18473  df-plusf 18547  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-subrng 20461  df-subrg 20485  df-abv 20724  df-lmod 20795  df-scaf 20796  df-sra 21107  df-rgmod 21108  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-haus 23230  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-tmd 23987  df-tgp 23988  df-tsms 24042  df-trg 24075  df-xms 24235  df-ms 24236  df-tms 24237  df-nm 24497  df-ngp 24498  df-nrg 24500  df-nlm 24501  df-ii 24797  df-cncf 24798  df-limc 25794  df-dv 25795  df-log 26492  df-esum 34041
This theorem is referenced by:  omssubadd  34313
  Copyright terms: Public domain W3C validator