Step | Hyp | Ref
| Expression |
1 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑝 = 1 →
(ℤ≥‘𝑝) =
(ℤ≥‘1)) |
2 | 1 | eleq2d 2824 |
. . . . . 6
⊢ (𝑝 = 1 → ((𝐹‘𝑛) ∈ (ℤ≥‘𝑝) ↔ (𝐹‘𝑛) ∈
(ℤ≥‘1))) |
3 | 2 | rexbidv 3225 |
. . . . 5
⊢ (𝑝 = 1 → (∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝑝) ↔ ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈
(ℤ≥‘1))) |
4 | 3 | imbi2d 340 |
. . . 4
⊢ (𝑝 = 1 → (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝑝)) ↔ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈
(ℤ≥‘1)))) |
5 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑝 = 𝑞 → (ℤ≥‘𝑝) =
(ℤ≥‘𝑞)) |
6 | 5 | eleq2d 2824 |
. . . . . 6
⊢ (𝑝 = 𝑞 → ((𝐹‘𝑛) ∈ (ℤ≥‘𝑝) ↔ (𝐹‘𝑛) ∈ (ℤ≥‘𝑞))) |
7 | 6 | rexbidv 3225 |
. . . . 5
⊢ (𝑝 = 𝑞 → (∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝑝) ↔ ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝑞))) |
8 | 7 | imbi2d 340 |
. . . 4
⊢ (𝑝 = 𝑞 → (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝑝)) ↔ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝑞)))) |
9 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑝 = (𝑞 + 1) →
(ℤ≥‘𝑝) = (ℤ≥‘(𝑞 + 1))) |
10 | 9 | eleq2d 2824 |
. . . . . 6
⊢ (𝑝 = (𝑞 + 1) → ((𝐹‘𝑛) ∈ (ℤ≥‘𝑝) ↔ (𝐹‘𝑛) ∈ (ℤ≥‘(𝑞 + 1)))) |
11 | 10 | rexbidv 3225 |
. . . . 5
⊢ (𝑝 = (𝑞 + 1) → (∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝑝) ↔ ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘(𝑞 + 1)))) |
12 | 11 | imbi2d 340 |
. . . 4
⊢ (𝑝 = (𝑞 + 1) → (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝑝)) ↔ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘(𝑞 + 1))))) |
13 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑝 = 𝐴 → (ℤ≥‘𝑝) =
(ℤ≥‘𝐴)) |
14 | 13 | eleq2d 2824 |
. . . . . 6
⊢ (𝑝 = 𝐴 → ((𝐹‘𝑛) ∈ (ℤ≥‘𝑝) ↔ (𝐹‘𝑛) ∈ (ℤ≥‘𝐴))) |
15 | 14 | rexbidv 3225 |
. . . . 5
⊢ (𝑝 = 𝐴 → (∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝑝) ↔ ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝐴))) |
16 | 15 | imbi2d 340 |
. . . 4
⊢ (𝑝 = 𝐴 → (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝑝)) ↔ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝐴)))) |
17 | | 1nn 11914 |
. . . . . . 7
⊢ 1 ∈
ℕ |
18 | 17 | ne0ii 4268 |
. . . . . 6
⊢ ℕ
≠ ∅ |
19 | | ffvelrn 6941 |
. . . . . . . 8
⊢ ((𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ) →
(𝐹‘𝑛) ∈ ℕ) |
20 | | elnnuz 12551 |
. . . . . . . 8
⊢ ((𝐹‘𝑛) ∈ ℕ ↔ (𝐹‘𝑛) ∈
(ℤ≥‘1)) |
21 | 19, 20 | sylib 217 |
. . . . . . 7
⊢ ((𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ) →
(𝐹‘𝑛) ∈
(ℤ≥‘1)) |
22 | 21 | ralrimiva 3107 |
. . . . . 6
⊢ (𝐹:ℕ⟶ℕ →
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ∈
(ℤ≥‘1)) |
23 | | r19.2z 4422 |
. . . . . 6
⊢ ((ℕ
≠ ∅ ∧ ∀𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘1))
→ ∃𝑛 ∈
ℕ (𝐹‘𝑛) ∈
(ℤ≥‘1)) |
24 | 18, 22, 23 | sylancr 586 |
. . . . 5
⊢ (𝐹:ℕ⟶ℕ →
∃𝑛 ∈ ℕ
(𝐹‘𝑛) ∈
(ℤ≥‘1)) |
25 | 24 | adantr 480 |
. . . 4
⊢ ((𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈
(ℤ≥‘1)) |
26 | | peano2nn 11915 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → (𝑛 + 1) ∈
ℕ) |
27 | 26 | adantl 481 |
. . . . . . . . 9
⊢ (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ) |
28 | | nnre 11910 |
. . . . . . . . . . . . 13
⊢ (𝑞 ∈ ℕ → 𝑞 ∈
ℝ) |
29 | 28 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → 𝑞 ∈ ℝ) |
30 | 19 | nnred 11918 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ) →
(𝐹‘𝑛) ∈ ℝ) |
31 | 30 | adantlr 711 |
. . . . . . . . . . . . 13
⊢ (((𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ ℝ) |
32 | 31 | adantll 710 |
. . . . . . . . . . . 12
⊢ (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ ℝ) |
33 | | 1red 10907 |
. . . . . . . . . . . 12
⊢ (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → 1 ∈
ℝ) |
34 | 29, 32, 33 | leadd1d 11499 |
. . . . . . . . . . 11
⊢ (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → (𝑞 ≤ (𝐹‘𝑛) ↔ (𝑞 + 1) ≤ ((𝐹‘𝑛) + 1))) |
35 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = 𝑛 → (𝐹‘𝑚) = (𝐹‘𝑛)) |
36 | | fvoveq1 7278 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = 𝑛 → (𝐹‘(𝑚 + 1)) = (𝐹‘(𝑛 + 1))) |
37 | 35, 36 | breq12d 5083 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 𝑛 → ((𝐹‘𝑚) < (𝐹‘(𝑚 + 1)) ↔ (𝐹‘𝑛) < (𝐹‘(𝑛 + 1)))) |
38 | 37 | rspcv 3547 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ →
(∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)) → (𝐹‘𝑛) < (𝐹‘(𝑛 + 1)))) |
39 | 38 | imdistani 568 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → (𝑛 ∈ ℕ ∧ (𝐹‘𝑛) < (𝐹‘(𝑛 + 1)))) |
40 | | ffvelrn 6941 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹:ℕ⟶ℕ ∧
(𝑛 + 1) ∈ ℕ)
→ (𝐹‘(𝑛 + 1)) ∈
ℕ) |
41 | 26, 40 | sylan2 592 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ) →
(𝐹‘(𝑛 + 1)) ∈
ℕ) |
42 | | nnltp1le 12306 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹‘𝑛) ∈ ℕ ∧ (𝐹‘(𝑛 + 1)) ∈ ℕ) → ((𝐹‘𝑛) < (𝐹‘(𝑛 + 1)) ↔ ((𝐹‘𝑛) + 1) ≤ (𝐹‘(𝑛 + 1)))) |
43 | 19, 41, 42 | syl2anc 583 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ) →
((𝐹‘𝑛) < (𝐹‘(𝑛 + 1)) ↔ ((𝐹‘𝑛) + 1) ≤ (𝐹‘(𝑛 + 1)))) |
44 | 43 | biimpa 476 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ) ∧
(𝐹‘𝑛) < (𝐹‘(𝑛 + 1))) → ((𝐹‘𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))) |
45 | 44 | anasss 466 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:ℕ⟶ℕ ∧
(𝑛 ∈ ℕ ∧
(𝐹‘𝑛) < (𝐹‘(𝑛 + 1)))) → ((𝐹‘𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))) |
46 | 39, 45 | sylan2 592 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:ℕ⟶ℕ ∧
(𝑛 ∈ ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) → ((𝐹‘𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))) |
47 | 46 | anass1rs 651 |
. . . . . . . . . . . . 13
⊢ (((𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))) |
48 | 47 | adantll 710 |
. . . . . . . . . . . 12
⊢ (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))) |
49 | | peano2re 11078 |
. . . . . . . . . . . . . . . 16
⊢ (𝑞 ∈ ℝ → (𝑞 + 1) ∈
ℝ) |
50 | 28, 49 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑞 ∈ ℕ → (𝑞 + 1) ∈
ℝ) |
51 | 50 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢ (((𝑞 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧
𝑛 ∈ ℕ) →
(𝑞 + 1) ∈
ℝ) |
52 | | peano2nn 11915 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹‘𝑛) ∈ ℕ → ((𝐹‘𝑛) + 1) ∈ ℕ) |
53 | 19, 52 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ) →
((𝐹‘𝑛) + 1) ∈
ℕ) |
54 | 53 | nnred 11918 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ) →
((𝐹‘𝑛) + 1) ∈
ℝ) |
55 | 54 | adantll 710 |
. . . . . . . . . . . . . 14
⊢ (((𝑞 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧
𝑛 ∈ ℕ) →
((𝐹‘𝑛) + 1) ∈
ℝ) |
56 | 40 | nnred 11918 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹:ℕ⟶ℕ ∧
(𝑛 + 1) ∈ ℕ)
→ (𝐹‘(𝑛 + 1)) ∈
ℝ) |
57 | 26, 56 | sylan2 592 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ) →
(𝐹‘(𝑛 + 1)) ∈
ℝ) |
58 | 57 | adantll 710 |
. . . . . . . . . . . . . 14
⊢ (((𝑞 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧
𝑛 ∈ ℕ) →
(𝐹‘(𝑛 + 1)) ∈
ℝ) |
59 | | letr 10999 |
. . . . . . . . . . . . . 14
⊢ (((𝑞 + 1) ∈ ℝ ∧
((𝐹‘𝑛) + 1) ∈ ℝ ∧
(𝐹‘(𝑛 + 1)) ∈ ℝ) →
(((𝑞 + 1) ≤ ((𝐹‘𝑛) + 1) ∧ ((𝐹‘𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))) → (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1)))) |
60 | 51, 55, 58, 59 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢ (((𝑞 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧
𝑛 ∈ ℕ) →
(((𝑞 + 1) ≤ ((𝐹‘𝑛) + 1) ∧ ((𝐹‘𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))) → (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1)))) |
61 | 60 | adantlrr 717 |
. . . . . . . . . . . 12
⊢ (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → (((𝑞 + 1) ≤ ((𝐹‘𝑛) + 1) ∧ ((𝐹‘𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))) → (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1)))) |
62 | 48, 61 | mpan2d 690 |
. . . . . . . . . . 11
⊢ (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝑞 + 1) ≤ ((𝐹‘𝑛) + 1) → (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1)))) |
63 | 34, 62 | sylbid 239 |
. . . . . . . . . 10
⊢ (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → (𝑞 ≤ (𝐹‘𝑛) → (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1)))) |
64 | | nnz 12272 |
. . . . . . . . . . . . 13
⊢ (𝑞 ∈ ℕ → 𝑞 ∈
ℤ) |
65 | 19 | nnzd 12354 |
. . . . . . . . . . . . 13
⊢ ((𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ) →
(𝐹‘𝑛) ∈ ℤ) |
66 | | eluz 12525 |
. . . . . . . . . . . . 13
⊢ ((𝑞 ∈ ℤ ∧ (𝐹‘𝑛) ∈ ℤ) → ((𝐹‘𝑛) ∈ (ℤ≥‘𝑞) ↔ 𝑞 ≤ (𝐹‘𝑛))) |
67 | 64, 65, 66 | syl2an 595 |
. . . . . . . . . . . 12
⊢ ((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ)) →
((𝐹‘𝑛) ∈
(ℤ≥‘𝑞) ↔ 𝑞 ≤ (𝐹‘𝑛))) |
68 | 67 | adantrlr 719 |
. . . . . . . . . . 11
⊢ ((𝑞 ∈ ℕ ∧ ((𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) ∧ 𝑛 ∈ ℕ)) → ((𝐹‘𝑛) ∈ (ℤ≥‘𝑞) ↔ 𝑞 ≤ (𝐹‘𝑛))) |
69 | 68 | anassrs 467 |
. . . . . . . . . 10
⊢ (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) ∈ (ℤ≥‘𝑞) ↔ 𝑞 ≤ (𝐹‘𝑛))) |
70 | 64 | peano2zd 12358 |
. . . . . . . . . . . . 13
⊢ (𝑞 ∈ ℕ → (𝑞 + 1) ∈
ℤ) |
71 | 40 | nnzd 12354 |
. . . . . . . . . . . . . 14
⊢ ((𝐹:ℕ⟶ℕ ∧
(𝑛 + 1) ∈ ℕ)
→ (𝐹‘(𝑛 + 1)) ∈
ℤ) |
72 | 26, 71 | sylan2 592 |
. . . . . . . . . . . . 13
⊢ ((𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ) →
(𝐹‘(𝑛 + 1)) ∈
ℤ) |
73 | | eluz 12525 |
. . . . . . . . . . . . 13
⊢ (((𝑞 + 1) ∈ ℤ ∧
(𝐹‘(𝑛 + 1)) ∈ ℤ) →
((𝐹‘(𝑛 + 1)) ∈
(ℤ≥‘(𝑞 + 1)) ↔ (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1)))) |
74 | 70, 72, 73 | syl2an 595 |
. . . . . . . . . . . 12
⊢ ((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ)) →
((𝐹‘(𝑛 + 1)) ∈
(ℤ≥‘(𝑞 + 1)) ↔ (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1)))) |
75 | 74 | adantrlr 719 |
. . . . . . . . . . 11
⊢ ((𝑞 ∈ ℕ ∧ ((𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) ∧ 𝑛 ∈ ℕ)) → ((𝐹‘(𝑛 + 1)) ∈
(ℤ≥‘(𝑞 + 1)) ↔ (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1)))) |
76 | 75 | anassrs 467 |
. . . . . . . . . 10
⊢ (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝐹‘(𝑛 + 1)) ∈
(ℤ≥‘(𝑞 + 1)) ↔ (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1)))) |
77 | 63, 69, 76 | 3imtr4d 293 |
. . . . . . . . 9
⊢ (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) ∈ (ℤ≥‘𝑞) → (𝐹‘(𝑛 + 1)) ∈
(ℤ≥‘(𝑞 + 1)))) |
78 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑛 + 1) → (𝐹‘𝑘) = (𝐹‘(𝑛 + 1))) |
79 | 78 | eleq1d 2823 |
. . . . . . . . . 10
⊢ (𝑘 = (𝑛 + 1) → ((𝐹‘𝑘) ∈ (ℤ≥‘(𝑞 + 1)) ↔ (𝐹‘(𝑛 + 1)) ∈
(ℤ≥‘(𝑞 + 1)))) |
80 | 79 | rspcev 3552 |
. . . . . . . . 9
⊢ (((𝑛 + 1) ∈ ℕ ∧
(𝐹‘(𝑛 + 1)) ∈
(ℤ≥‘(𝑞 + 1))) → ∃𝑘 ∈ ℕ (𝐹‘𝑘) ∈ (ℤ≥‘(𝑞 + 1))) |
81 | 27, 77, 80 | syl6an 680 |
. . . . . . . 8
⊢ (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) ∈ (ℤ≥‘𝑞) → ∃𝑘 ∈ ℕ (𝐹‘𝑘) ∈ (ℤ≥‘(𝑞 + 1)))) |
82 | 81 | rexlimdva 3212 |
. . . . . . 7
⊢ ((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) → (∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝑞) → ∃𝑘 ∈ ℕ (𝐹‘𝑘) ∈ (ℤ≥‘(𝑞 + 1)))) |
83 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑘 = 𝑛 → (𝐹‘𝑘) = (𝐹‘𝑛)) |
84 | 83 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → ((𝐹‘𝑘) ∈ (ℤ≥‘(𝑞 + 1)) ↔ (𝐹‘𝑛) ∈ (ℤ≥‘(𝑞 + 1)))) |
85 | 84 | cbvrexvw 3373 |
. . . . . . 7
⊢
(∃𝑘 ∈
ℕ (𝐹‘𝑘) ∈
(ℤ≥‘(𝑞 + 1)) ↔ ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘(𝑞 + 1))) |
86 | 82, 85 | syl6ib 250 |
. . . . . 6
⊢ ((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) → (∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝑞) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘(𝑞 + 1)))) |
87 | 86 | ex 412 |
. . . . 5
⊢ (𝑞 ∈ ℕ → ((𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → (∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝑞) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘(𝑞 + 1))))) |
88 | 87 | a2d 29 |
. . . 4
⊢ (𝑞 ∈ ℕ → (((𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝑞)) → ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘(𝑞 + 1))))) |
89 | 4, 8, 12, 16, 25, 88 | nnind 11921 |
. . 3
⊢ (𝐴 ∈ ℕ → ((𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝐴))) |
90 | 89 | com12 32 |
. 2
⊢ ((𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → (𝐴 ∈ ℕ → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝐴))) |
91 | 90 | 3impia 1115 |
1
⊢ ((𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)) ∧ 𝐴 ∈ ℕ) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝐴)) |