Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  incsequz Structured version   Visualization version   GIF version

Theorem incsequz 37216
Description: An increasing sequence of positive integers takes on indefinitely large values. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
incsequz ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) ∧ 𝐴 ∈ ℕ) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝐴))
Distinct variable groups:   𝑚,𝐹,𝑛   𝐴,𝑚,𝑛

Proof of Theorem incsequz
Dummy variables 𝑘 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6892 . . . . . . 7 (𝑝 = 1 → (ℤ𝑝) = (ℤ‘1))
21eleq2d 2815 . . . . . 6 (𝑝 = 1 → ((𝐹𝑛) ∈ (ℤ𝑝) ↔ (𝐹𝑛) ∈ (ℤ‘1)))
32rexbidv 3174 . . . . 5 (𝑝 = 1 → (∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑝) ↔ ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘1)))
43imbi2d 340 . . . 4 (𝑝 = 1 → (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑝)) ↔ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘1))))
5 fveq2 6892 . . . . . . 7 (𝑝 = 𝑞 → (ℤ𝑝) = (ℤ𝑞))
65eleq2d 2815 . . . . . 6 (𝑝 = 𝑞 → ((𝐹𝑛) ∈ (ℤ𝑝) ↔ (𝐹𝑛) ∈ (ℤ𝑞)))
76rexbidv 3174 . . . . 5 (𝑝 = 𝑞 → (∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑝) ↔ ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑞)))
87imbi2d 340 . . . 4 (𝑝 = 𝑞 → (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑝)) ↔ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑞))))
9 fveq2 6892 . . . . . . 7 (𝑝 = (𝑞 + 1) → (ℤ𝑝) = (ℤ‘(𝑞 + 1)))
109eleq2d 2815 . . . . . 6 (𝑝 = (𝑞 + 1) → ((𝐹𝑛) ∈ (ℤ𝑝) ↔ (𝐹𝑛) ∈ (ℤ‘(𝑞 + 1))))
1110rexbidv 3174 . . . . 5 (𝑝 = (𝑞 + 1) → (∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑝) ↔ ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘(𝑞 + 1))))
1211imbi2d 340 . . . 4 (𝑝 = (𝑞 + 1) → (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑝)) ↔ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘(𝑞 + 1)))))
13 fveq2 6892 . . . . . . 7 (𝑝 = 𝐴 → (ℤ𝑝) = (ℤ𝐴))
1413eleq2d 2815 . . . . . 6 (𝑝 = 𝐴 → ((𝐹𝑛) ∈ (ℤ𝑝) ↔ (𝐹𝑛) ∈ (ℤ𝐴)))
1514rexbidv 3174 . . . . 5 (𝑝 = 𝐴 → (∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑝) ↔ ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝐴)))
1615imbi2d 340 . . . 4 (𝑝 = 𝐴 → (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑝)) ↔ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝐴))))
17 1nn 12248 . . . . . . 7 1 ∈ ℕ
1817ne0ii 4334 . . . . . 6 ℕ ≠ ∅
19 ffvelcdm 7086 . . . . . . . 8 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℕ)
20 elnnuz 12891 . . . . . . . 8 ((𝐹𝑛) ∈ ℕ ↔ (𝐹𝑛) ∈ (ℤ‘1))
2119, 20sylib 217 . . . . . . 7 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ (ℤ‘1))
2221ralrimiva 3142 . . . . . 6 (𝐹:ℕ⟶ℕ → ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘1))
23 r19.2z 4491 . . . . . 6 ((ℕ ≠ ∅ ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘1)) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘1))
2418, 22, 23sylancr 586 . . . . 5 (𝐹:ℕ⟶ℕ → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘1))
2524adantr 480 . . . 4 ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘1))
26 peano2nn 12249 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
2726adantl 481 . . . . . . . . 9 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
28 nnre 12244 . . . . . . . . . . . . 13 (𝑞 ∈ ℕ → 𝑞 ∈ ℝ)
2928ad2antrr 725 . . . . . . . . . . . 12 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → 𝑞 ∈ ℝ)
3019nnred 12252 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℝ)
3130adantlr 714 . . . . . . . . . . . . 13 (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℝ)
3231adantll 713 . . . . . . . . . . . 12 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℝ)
33 1red 11240 . . . . . . . . . . . 12 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → 1 ∈ ℝ)
3429, 32, 33leadd1d 11833 . . . . . . . . . . 11 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → (𝑞 ≤ (𝐹𝑛) ↔ (𝑞 + 1) ≤ ((𝐹𝑛) + 1)))
35 fveq2 6892 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
36 fvoveq1 7438 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑛 → (𝐹‘(𝑚 + 1)) = (𝐹‘(𝑛 + 1)))
3735, 36breq12d 5156 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑛 → ((𝐹𝑚) < (𝐹‘(𝑚 + 1)) ↔ (𝐹𝑛) < (𝐹‘(𝑛 + 1))))
3837rspcv 3604 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) → (𝐹𝑛) < (𝐹‘(𝑛 + 1))))
3938imdistani 568 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → (𝑛 ∈ ℕ ∧ (𝐹𝑛) < (𝐹‘(𝑛 + 1))))
40 ffvelcdm 7086 . . . . . . . . . . . . . . . . . . 19 ((𝐹:ℕ⟶ℕ ∧ (𝑛 + 1) ∈ ℕ) → (𝐹‘(𝑛 + 1)) ∈ ℕ)
4126, 40sylan2 592 . . . . . . . . . . . . . . . . . 18 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹‘(𝑛 + 1)) ∈ ℕ)
42 nnltp1le 12643 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑛) ∈ ℕ ∧ (𝐹‘(𝑛 + 1)) ∈ ℕ) → ((𝐹𝑛) < (𝐹‘(𝑛 + 1)) ↔ ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))))
4319, 41, 42syl2anc 583 . . . . . . . . . . . . . . . . 17 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) < (𝐹‘(𝑛 + 1)) ↔ ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))))
4443biimpa 476 . . . . . . . . . . . . . . . 16 (((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐹𝑛) < (𝐹‘(𝑛 + 1))) → ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1)))
4544anasss 466 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶ℕ ∧ (𝑛 ∈ ℕ ∧ (𝐹𝑛) < (𝐹‘(𝑛 + 1)))) → ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1)))
4639, 45sylan2 592 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶ℕ ∧ (𝑛 ∈ ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) → ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1)))
4746anass1rs 654 . . . . . . . . . . . . 13 (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1)))
4847adantll 713 . . . . . . . . . . . 12 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1)))
49 peano2re 11412 . . . . . . . . . . . . . . . 16 (𝑞 ∈ ℝ → (𝑞 + 1) ∈ ℝ)
5028, 49syl 17 . . . . . . . . . . . . . . 15 (𝑞 ∈ ℕ → (𝑞 + 1) ∈ ℝ)
5150ad2antrr 725 . . . . . . . . . . . . . 14 (((𝑞 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ 𝑛 ∈ ℕ) → (𝑞 + 1) ∈ ℝ)
52 peano2nn 12249 . . . . . . . . . . . . . . . . 17 ((𝐹𝑛) ∈ ℕ → ((𝐹𝑛) + 1) ∈ ℕ)
5319, 52syl 17 . . . . . . . . . . . . . . . 16 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) + 1) ∈ ℕ)
5453nnred 12252 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) + 1) ∈ ℝ)
5554adantll 713 . . . . . . . . . . . . . 14 (((𝑞 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) + 1) ∈ ℝ)
5640nnred 12252 . . . . . . . . . . . . . . . 16 ((𝐹:ℕ⟶ℕ ∧ (𝑛 + 1) ∈ ℕ) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
5726, 56sylan2 592 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
5857adantll 713 . . . . . . . . . . . . . 14 (((𝑞 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ 𝑛 ∈ ℕ) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
59 letr 11333 . . . . . . . . . . . . . 14 (((𝑞 + 1) ∈ ℝ ∧ ((𝐹𝑛) + 1) ∈ ℝ ∧ (𝐹‘(𝑛 + 1)) ∈ ℝ) → (((𝑞 + 1) ≤ ((𝐹𝑛) + 1) ∧ ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))) → (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
6051, 55, 58, 59syl3anc 1369 . . . . . . . . . . . . 13 (((𝑞 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ 𝑛 ∈ ℕ) → (((𝑞 + 1) ≤ ((𝐹𝑛) + 1) ∧ ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))) → (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
6160adantlrr 720 . . . . . . . . . . . 12 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → (((𝑞 + 1) ≤ ((𝐹𝑛) + 1) ∧ ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))) → (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
6248, 61mpan2d 693 . . . . . . . . . . 11 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝑞 + 1) ≤ ((𝐹𝑛) + 1) → (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
6334, 62sylbid 239 . . . . . . . . . 10 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → (𝑞 ≤ (𝐹𝑛) → (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
64 nnz 12604 . . . . . . . . . . . . 13 (𝑞 ∈ ℕ → 𝑞 ∈ ℤ)
6519nnzd 12610 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℤ)
66 eluz 12861 . . . . . . . . . . . . 13 ((𝑞 ∈ ℤ ∧ (𝐹𝑛) ∈ ℤ) → ((𝐹𝑛) ∈ (ℤ𝑞) ↔ 𝑞 ≤ (𝐹𝑛)))
6764, 65, 66syl2an 595 . . . . . . . . . . . 12 ((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐹𝑛) ∈ (ℤ𝑞) ↔ 𝑞 ≤ (𝐹𝑛)))
6867adantrlr 722 . . . . . . . . . . 11 ((𝑞 ∈ ℕ ∧ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) ∧ 𝑛 ∈ ℕ)) → ((𝐹𝑛) ∈ (ℤ𝑞) ↔ 𝑞 ≤ (𝐹𝑛)))
6968anassrs 467 . . . . . . . . . 10 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) ∈ (ℤ𝑞) ↔ 𝑞 ≤ (𝐹𝑛)))
7064peano2zd 12694 . . . . . . . . . . . . 13 (𝑞 ∈ ℕ → (𝑞 + 1) ∈ ℤ)
7140nnzd 12610 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶ℕ ∧ (𝑛 + 1) ∈ ℕ) → (𝐹‘(𝑛 + 1)) ∈ ℤ)
7226, 71sylan2 592 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹‘(𝑛 + 1)) ∈ ℤ)
73 eluz 12861 . . . . . . . . . . . . 13 (((𝑞 + 1) ∈ ℤ ∧ (𝐹‘(𝑛 + 1)) ∈ ℤ) → ((𝐹‘(𝑛 + 1)) ∈ (ℤ‘(𝑞 + 1)) ↔ (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
7470, 72, 73syl2an 595 . . . . . . . . . . . 12 ((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐹‘(𝑛 + 1)) ∈ (ℤ‘(𝑞 + 1)) ↔ (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
7574adantrlr 722 . . . . . . . . . . 11 ((𝑞 ∈ ℕ ∧ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) ∧ 𝑛 ∈ ℕ)) → ((𝐹‘(𝑛 + 1)) ∈ (ℤ‘(𝑞 + 1)) ↔ (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
7675anassrs 467 . . . . . . . . . 10 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝐹‘(𝑛 + 1)) ∈ (ℤ‘(𝑞 + 1)) ↔ (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
7763, 69, 763imtr4d 294 . . . . . . . . 9 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) ∈ (ℤ𝑞) → (𝐹‘(𝑛 + 1)) ∈ (ℤ‘(𝑞 + 1))))
78 fveq2 6892 . . . . . . . . . . 11 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
7978eleq1d 2814 . . . . . . . . . 10 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ (ℤ‘(𝑞 + 1)) ↔ (𝐹‘(𝑛 + 1)) ∈ (ℤ‘(𝑞 + 1))))
8079rspcev 3608 . . . . . . . . 9 (((𝑛 + 1) ∈ ℕ ∧ (𝐹‘(𝑛 + 1)) ∈ (ℤ‘(𝑞 + 1))) → ∃𝑘 ∈ ℕ (𝐹𝑘) ∈ (ℤ‘(𝑞 + 1)))
8127, 77, 80syl6an 683 . . . . . . . 8 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) ∈ (ℤ𝑞) → ∃𝑘 ∈ ℕ (𝐹𝑘) ∈ (ℤ‘(𝑞 + 1))))
8281rexlimdva 3151 . . . . . . 7 ((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) → (∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑞) → ∃𝑘 ∈ ℕ (𝐹𝑘) ∈ (ℤ‘(𝑞 + 1))))
83 fveq2 6892 . . . . . . . . 9 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
8483eleq1d 2814 . . . . . . . 8 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ (ℤ‘(𝑞 + 1)) ↔ (𝐹𝑛) ∈ (ℤ‘(𝑞 + 1))))
8584cbvrexvw 3231 . . . . . . 7 (∃𝑘 ∈ ℕ (𝐹𝑘) ∈ (ℤ‘(𝑞 + 1)) ↔ ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘(𝑞 + 1)))
8682, 85imbitrdi 250 . . . . . 6 ((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) → (∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑞) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘(𝑞 + 1))))
8786ex 412 . . . . 5 (𝑞 ∈ ℕ → ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → (∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑞) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘(𝑞 + 1)))))
8887a2d 29 . . . 4 (𝑞 ∈ ℕ → (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑞)) → ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘(𝑞 + 1)))))
894, 8, 12, 16, 25, 88nnind 12255 . . 3 (𝐴 ∈ ℕ → ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝐴)))
9089com12 32 . 2 ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → (𝐴 ∈ ℕ → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝐴)))
91903impia 1115 1 ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) ∧ 𝐴 ∈ ℕ) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2936  wral 3057  wrex 3066  c0 4319   class class class wbr 5143  wf 6539  cfv 6543  (class class class)co 7415  cr 11132  1c1 11134   + caddc 11136   < clt 11273  cle 11274  cn 12237  cz 12583  cuz 12847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7866  df-2nd 7989  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-er 8719  df-en 8959  df-dom 8960  df-sdom 8961  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-n0 12498  df-z 12584  df-uz 12848
This theorem is referenced by:  incsequz2  37217
  Copyright terms: Public domain W3C validator