Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  incsequz Structured version   Visualization version   GIF version

Theorem incsequz 35186
Description: An increasing sequence of positive integers takes on indefinitely large values. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
incsequz ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) ∧ 𝐴 ∈ ℕ) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝐴))
Distinct variable groups:   𝑚,𝐹,𝑛   𝐴,𝑚,𝑛

Proof of Theorem incsequz
Dummy variables 𝑘 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6645 . . . . . . 7 (𝑝 = 1 → (ℤ𝑝) = (ℤ‘1))
21eleq2d 2875 . . . . . 6 (𝑝 = 1 → ((𝐹𝑛) ∈ (ℤ𝑝) ↔ (𝐹𝑛) ∈ (ℤ‘1)))
32rexbidv 3256 . . . . 5 (𝑝 = 1 → (∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑝) ↔ ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘1)))
43imbi2d 344 . . . 4 (𝑝 = 1 → (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑝)) ↔ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘1))))
5 fveq2 6645 . . . . . . 7 (𝑝 = 𝑞 → (ℤ𝑝) = (ℤ𝑞))
65eleq2d 2875 . . . . . 6 (𝑝 = 𝑞 → ((𝐹𝑛) ∈ (ℤ𝑝) ↔ (𝐹𝑛) ∈ (ℤ𝑞)))
76rexbidv 3256 . . . . 5 (𝑝 = 𝑞 → (∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑝) ↔ ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑞)))
87imbi2d 344 . . . 4 (𝑝 = 𝑞 → (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑝)) ↔ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑞))))
9 fveq2 6645 . . . . . . 7 (𝑝 = (𝑞 + 1) → (ℤ𝑝) = (ℤ‘(𝑞 + 1)))
109eleq2d 2875 . . . . . 6 (𝑝 = (𝑞 + 1) → ((𝐹𝑛) ∈ (ℤ𝑝) ↔ (𝐹𝑛) ∈ (ℤ‘(𝑞 + 1))))
1110rexbidv 3256 . . . . 5 (𝑝 = (𝑞 + 1) → (∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑝) ↔ ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘(𝑞 + 1))))
1211imbi2d 344 . . . 4 (𝑝 = (𝑞 + 1) → (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑝)) ↔ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘(𝑞 + 1)))))
13 fveq2 6645 . . . . . . 7 (𝑝 = 𝐴 → (ℤ𝑝) = (ℤ𝐴))
1413eleq2d 2875 . . . . . 6 (𝑝 = 𝐴 → ((𝐹𝑛) ∈ (ℤ𝑝) ↔ (𝐹𝑛) ∈ (ℤ𝐴)))
1514rexbidv 3256 . . . . 5 (𝑝 = 𝐴 → (∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑝) ↔ ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝐴)))
1615imbi2d 344 . . . 4 (𝑝 = 𝐴 → (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑝)) ↔ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝐴))))
17 1nn 11636 . . . . . . 7 1 ∈ ℕ
1817ne0ii 4253 . . . . . 6 ℕ ≠ ∅
19 ffvelrn 6826 . . . . . . . 8 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℕ)
20 elnnuz 12270 . . . . . . . 8 ((𝐹𝑛) ∈ ℕ ↔ (𝐹𝑛) ∈ (ℤ‘1))
2119, 20sylib 221 . . . . . . 7 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ (ℤ‘1))
2221ralrimiva 3149 . . . . . 6 (𝐹:ℕ⟶ℕ → ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘1))
23 r19.2z 4398 . . . . . 6 ((ℕ ≠ ∅ ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘1)) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘1))
2418, 22, 23sylancr 590 . . . . 5 (𝐹:ℕ⟶ℕ → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘1))
2524adantr 484 . . . 4 ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘1))
26 peano2nn 11637 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
2726adantl 485 . . . . . . . . 9 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
28 nnre 11632 . . . . . . . . . . . . 13 (𝑞 ∈ ℕ → 𝑞 ∈ ℝ)
2928ad2antrr 725 . . . . . . . . . . . 12 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → 𝑞 ∈ ℝ)
3019nnred 11640 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℝ)
3130adantlr 714 . . . . . . . . . . . . 13 (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℝ)
3231adantll 713 . . . . . . . . . . . 12 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℝ)
33 1red 10631 . . . . . . . . . . . 12 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → 1 ∈ ℝ)
3429, 32, 33leadd1d 11223 . . . . . . . . . . 11 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → (𝑞 ≤ (𝐹𝑛) ↔ (𝑞 + 1) ≤ ((𝐹𝑛) + 1)))
35 fveq2 6645 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
36 fvoveq1 7158 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑛 → (𝐹‘(𝑚 + 1)) = (𝐹‘(𝑛 + 1)))
3735, 36breq12d 5043 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑛 → ((𝐹𝑚) < (𝐹‘(𝑚 + 1)) ↔ (𝐹𝑛) < (𝐹‘(𝑛 + 1))))
3837rspcv 3566 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) → (𝐹𝑛) < (𝐹‘(𝑛 + 1))))
3938imdistani 572 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → (𝑛 ∈ ℕ ∧ (𝐹𝑛) < (𝐹‘(𝑛 + 1))))
40 ffvelrn 6826 . . . . . . . . . . . . . . . . . . 19 ((𝐹:ℕ⟶ℕ ∧ (𝑛 + 1) ∈ ℕ) → (𝐹‘(𝑛 + 1)) ∈ ℕ)
4126, 40sylan2 595 . . . . . . . . . . . . . . . . . 18 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹‘(𝑛 + 1)) ∈ ℕ)
42 nnltp1le 12026 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑛) ∈ ℕ ∧ (𝐹‘(𝑛 + 1)) ∈ ℕ) → ((𝐹𝑛) < (𝐹‘(𝑛 + 1)) ↔ ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))))
4319, 41, 42syl2anc 587 . . . . . . . . . . . . . . . . 17 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) < (𝐹‘(𝑛 + 1)) ↔ ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))))
4443biimpa 480 . . . . . . . . . . . . . . . 16 (((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐹𝑛) < (𝐹‘(𝑛 + 1))) → ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1)))
4544anasss 470 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶ℕ ∧ (𝑛 ∈ ℕ ∧ (𝐹𝑛) < (𝐹‘(𝑛 + 1)))) → ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1)))
4639, 45sylan2 595 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶ℕ ∧ (𝑛 ∈ ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) → ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1)))
4746anass1rs 654 . . . . . . . . . . . . 13 (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1)))
4847adantll 713 . . . . . . . . . . . 12 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1)))
49 peano2re 10802 . . . . . . . . . . . . . . . 16 (𝑞 ∈ ℝ → (𝑞 + 1) ∈ ℝ)
5028, 49syl 17 . . . . . . . . . . . . . . 15 (𝑞 ∈ ℕ → (𝑞 + 1) ∈ ℝ)
5150ad2antrr 725 . . . . . . . . . . . . . 14 (((𝑞 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ 𝑛 ∈ ℕ) → (𝑞 + 1) ∈ ℝ)
52 peano2nn 11637 . . . . . . . . . . . . . . . . 17 ((𝐹𝑛) ∈ ℕ → ((𝐹𝑛) + 1) ∈ ℕ)
5319, 52syl 17 . . . . . . . . . . . . . . . 16 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) + 1) ∈ ℕ)
5453nnred 11640 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) + 1) ∈ ℝ)
5554adantll 713 . . . . . . . . . . . . . 14 (((𝑞 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) + 1) ∈ ℝ)
5640nnred 11640 . . . . . . . . . . . . . . . 16 ((𝐹:ℕ⟶ℕ ∧ (𝑛 + 1) ∈ ℕ) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
5726, 56sylan2 595 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
5857adantll 713 . . . . . . . . . . . . . 14 (((𝑞 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ 𝑛 ∈ ℕ) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
59 letr 10723 . . . . . . . . . . . . . 14 (((𝑞 + 1) ∈ ℝ ∧ ((𝐹𝑛) + 1) ∈ ℝ ∧ (𝐹‘(𝑛 + 1)) ∈ ℝ) → (((𝑞 + 1) ≤ ((𝐹𝑛) + 1) ∧ ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))) → (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
6051, 55, 58, 59syl3anc 1368 . . . . . . . . . . . . 13 (((𝑞 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ 𝑛 ∈ ℕ) → (((𝑞 + 1) ≤ ((𝐹𝑛) + 1) ∧ ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))) → (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
6160adantlrr 720 . . . . . . . . . . . 12 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → (((𝑞 + 1) ≤ ((𝐹𝑛) + 1) ∧ ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))) → (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
6248, 61mpan2d 693 . . . . . . . . . . 11 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝑞 + 1) ≤ ((𝐹𝑛) + 1) → (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
6334, 62sylbid 243 . . . . . . . . . 10 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → (𝑞 ≤ (𝐹𝑛) → (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
64 nnz 11992 . . . . . . . . . . . . 13 (𝑞 ∈ ℕ → 𝑞 ∈ ℤ)
6519nnzd 12074 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℤ)
66 eluz 12245 . . . . . . . . . . . . 13 ((𝑞 ∈ ℤ ∧ (𝐹𝑛) ∈ ℤ) → ((𝐹𝑛) ∈ (ℤ𝑞) ↔ 𝑞 ≤ (𝐹𝑛)))
6764, 65, 66syl2an 598 . . . . . . . . . . . 12 ((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐹𝑛) ∈ (ℤ𝑞) ↔ 𝑞 ≤ (𝐹𝑛)))
6867adantrlr 722 . . . . . . . . . . 11 ((𝑞 ∈ ℕ ∧ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) ∧ 𝑛 ∈ ℕ)) → ((𝐹𝑛) ∈ (ℤ𝑞) ↔ 𝑞 ≤ (𝐹𝑛)))
6968anassrs 471 . . . . . . . . . 10 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) ∈ (ℤ𝑞) ↔ 𝑞 ≤ (𝐹𝑛)))
7064peano2zd 12078 . . . . . . . . . . . . 13 (𝑞 ∈ ℕ → (𝑞 + 1) ∈ ℤ)
7140nnzd 12074 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶ℕ ∧ (𝑛 + 1) ∈ ℕ) → (𝐹‘(𝑛 + 1)) ∈ ℤ)
7226, 71sylan2 595 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹‘(𝑛 + 1)) ∈ ℤ)
73 eluz 12245 . . . . . . . . . . . . 13 (((𝑞 + 1) ∈ ℤ ∧ (𝐹‘(𝑛 + 1)) ∈ ℤ) → ((𝐹‘(𝑛 + 1)) ∈ (ℤ‘(𝑞 + 1)) ↔ (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
7470, 72, 73syl2an 598 . . . . . . . . . . . 12 ((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐹‘(𝑛 + 1)) ∈ (ℤ‘(𝑞 + 1)) ↔ (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
7574adantrlr 722 . . . . . . . . . . 11 ((𝑞 ∈ ℕ ∧ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) ∧ 𝑛 ∈ ℕ)) → ((𝐹‘(𝑛 + 1)) ∈ (ℤ‘(𝑞 + 1)) ↔ (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
7675anassrs 471 . . . . . . . . . 10 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝐹‘(𝑛 + 1)) ∈ (ℤ‘(𝑞 + 1)) ↔ (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
7763, 69, 763imtr4d 297 . . . . . . . . 9 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) ∈ (ℤ𝑞) → (𝐹‘(𝑛 + 1)) ∈ (ℤ‘(𝑞 + 1))))
78 fveq2 6645 . . . . . . . . . . 11 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
7978eleq1d 2874 . . . . . . . . . 10 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ (ℤ‘(𝑞 + 1)) ↔ (𝐹‘(𝑛 + 1)) ∈ (ℤ‘(𝑞 + 1))))
8079rspcev 3571 . . . . . . . . 9 (((𝑛 + 1) ∈ ℕ ∧ (𝐹‘(𝑛 + 1)) ∈ (ℤ‘(𝑞 + 1))) → ∃𝑘 ∈ ℕ (𝐹𝑘) ∈ (ℤ‘(𝑞 + 1)))
8127, 77, 80syl6an 683 . . . . . . . 8 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) ∈ (ℤ𝑞) → ∃𝑘 ∈ ℕ (𝐹𝑘) ∈ (ℤ‘(𝑞 + 1))))
8281rexlimdva 3243 . . . . . . 7 ((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) → (∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑞) → ∃𝑘 ∈ ℕ (𝐹𝑘) ∈ (ℤ‘(𝑞 + 1))))
83 fveq2 6645 . . . . . . . . 9 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
8483eleq1d 2874 . . . . . . . 8 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ (ℤ‘(𝑞 + 1)) ↔ (𝐹𝑛) ∈ (ℤ‘(𝑞 + 1))))
8584cbvrexvw 3397 . . . . . . 7 (∃𝑘 ∈ ℕ (𝐹𝑘) ∈ (ℤ‘(𝑞 + 1)) ↔ ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘(𝑞 + 1)))
8682, 85syl6ib 254 . . . . . 6 ((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) → (∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑞) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘(𝑞 + 1))))
8786ex 416 . . . . 5 (𝑞 ∈ ℕ → ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → (∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑞) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘(𝑞 + 1)))))
8887a2d 29 . . . 4 (𝑞 ∈ ℕ → (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑞)) → ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘(𝑞 + 1)))))
894, 8, 12, 16, 25, 88nnind 11643 . . 3 (𝐴 ∈ ℕ → ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝐴)))
9089com12 32 . 2 ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → (𝐴 ∈ ℕ → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝐴)))
91903impia 1114 1 ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) ∧ 𝐴 ∈ ℕ) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  c0 4243   class class class wbr 5030  wf 6320  cfv 6324  (class class class)co 7135  cr 10525  1c1 10527   + caddc 10529   < clt 10664  cle 10665  cn 11625  cz 11969  cuz 12231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232
This theorem is referenced by:  incsequz2  35187
  Copyright terms: Public domain W3C validator