Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  incsequz Structured version   Visualization version   GIF version

Theorem incsequz 35833
Description: An increasing sequence of positive integers takes on indefinitely large values. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
incsequz ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) ∧ 𝐴 ∈ ℕ) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝐴))
Distinct variable groups:   𝑚,𝐹,𝑛   𝐴,𝑚,𝑛

Proof of Theorem incsequz
Dummy variables 𝑘 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6756 . . . . . . 7 (𝑝 = 1 → (ℤ𝑝) = (ℤ‘1))
21eleq2d 2824 . . . . . 6 (𝑝 = 1 → ((𝐹𝑛) ∈ (ℤ𝑝) ↔ (𝐹𝑛) ∈ (ℤ‘1)))
32rexbidv 3225 . . . . 5 (𝑝 = 1 → (∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑝) ↔ ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘1)))
43imbi2d 340 . . . 4 (𝑝 = 1 → (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑝)) ↔ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘1))))
5 fveq2 6756 . . . . . . 7 (𝑝 = 𝑞 → (ℤ𝑝) = (ℤ𝑞))
65eleq2d 2824 . . . . . 6 (𝑝 = 𝑞 → ((𝐹𝑛) ∈ (ℤ𝑝) ↔ (𝐹𝑛) ∈ (ℤ𝑞)))
76rexbidv 3225 . . . . 5 (𝑝 = 𝑞 → (∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑝) ↔ ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑞)))
87imbi2d 340 . . . 4 (𝑝 = 𝑞 → (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑝)) ↔ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑞))))
9 fveq2 6756 . . . . . . 7 (𝑝 = (𝑞 + 1) → (ℤ𝑝) = (ℤ‘(𝑞 + 1)))
109eleq2d 2824 . . . . . 6 (𝑝 = (𝑞 + 1) → ((𝐹𝑛) ∈ (ℤ𝑝) ↔ (𝐹𝑛) ∈ (ℤ‘(𝑞 + 1))))
1110rexbidv 3225 . . . . 5 (𝑝 = (𝑞 + 1) → (∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑝) ↔ ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘(𝑞 + 1))))
1211imbi2d 340 . . . 4 (𝑝 = (𝑞 + 1) → (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑝)) ↔ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘(𝑞 + 1)))))
13 fveq2 6756 . . . . . . 7 (𝑝 = 𝐴 → (ℤ𝑝) = (ℤ𝐴))
1413eleq2d 2824 . . . . . 6 (𝑝 = 𝐴 → ((𝐹𝑛) ∈ (ℤ𝑝) ↔ (𝐹𝑛) ∈ (ℤ𝐴)))
1514rexbidv 3225 . . . . 5 (𝑝 = 𝐴 → (∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑝) ↔ ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝐴)))
1615imbi2d 340 . . . 4 (𝑝 = 𝐴 → (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑝)) ↔ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝐴))))
17 1nn 11914 . . . . . . 7 1 ∈ ℕ
1817ne0ii 4268 . . . . . 6 ℕ ≠ ∅
19 ffvelrn 6941 . . . . . . . 8 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℕ)
20 elnnuz 12551 . . . . . . . 8 ((𝐹𝑛) ∈ ℕ ↔ (𝐹𝑛) ∈ (ℤ‘1))
2119, 20sylib 217 . . . . . . 7 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ (ℤ‘1))
2221ralrimiva 3107 . . . . . 6 (𝐹:ℕ⟶ℕ → ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘1))
23 r19.2z 4422 . . . . . 6 ((ℕ ≠ ∅ ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘1)) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘1))
2418, 22, 23sylancr 586 . . . . 5 (𝐹:ℕ⟶ℕ → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘1))
2524adantr 480 . . . 4 ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘1))
26 peano2nn 11915 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
2726adantl 481 . . . . . . . . 9 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
28 nnre 11910 . . . . . . . . . . . . 13 (𝑞 ∈ ℕ → 𝑞 ∈ ℝ)
2928ad2antrr 722 . . . . . . . . . . . 12 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → 𝑞 ∈ ℝ)
3019nnred 11918 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℝ)
3130adantlr 711 . . . . . . . . . . . . 13 (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℝ)
3231adantll 710 . . . . . . . . . . . 12 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℝ)
33 1red 10907 . . . . . . . . . . . 12 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → 1 ∈ ℝ)
3429, 32, 33leadd1d 11499 . . . . . . . . . . 11 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → (𝑞 ≤ (𝐹𝑛) ↔ (𝑞 + 1) ≤ ((𝐹𝑛) + 1)))
35 fveq2 6756 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
36 fvoveq1 7278 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑛 → (𝐹‘(𝑚 + 1)) = (𝐹‘(𝑛 + 1)))
3735, 36breq12d 5083 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑛 → ((𝐹𝑚) < (𝐹‘(𝑚 + 1)) ↔ (𝐹𝑛) < (𝐹‘(𝑛 + 1))))
3837rspcv 3547 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) → (𝐹𝑛) < (𝐹‘(𝑛 + 1))))
3938imdistani 568 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → (𝑛 ∈ ℕ ∧ (𝐹𝑛) < (𝐹‘(𝑛 + 1))))
40 ffvelrn 6941 . . . . . . . . . . . . . . . . . . 19 ((𝐹:ℕ⟶ℕ ∧ (𝑛 + 1) ∈ ℕ) → (𝐹‘(𝑛 + 1)) ∈ ℕ)
4126, 40sylan2 592 . . . . . . . . . . . . . . . . . 18 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹‘(𝑛 + 1)) ∈ ℕ)
42 nnltp1le 12306 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑛) ∈ ℕ ∧ (𝐹‘(𝑛 + 1)) ∈ ℕ) → ((𝐹𝑛) < (𝐹‘(𝑛 + 1)) ↔ ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))))
4319, 41, 42syl2anc 583 . . . . . . . . . . . . . . . . 17 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) < (𝐹‘(𝑛 + 1)) ↔ ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))))
4443biimpa 476 . . . . . . . . . . . . . . . 16 (((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐹𝑛) < (𝐹‘(𝑛 + 1))) → ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1)))
4544anasss 466 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶ℕ ∧ (𝑛 ∈ ℕ ∧ (𝐹𝑛) < (𝐹‘(𝑛 + 1)))) → ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1)))
4639, 45sylan2 592 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶ℕ ∧ (𝑛 ∈ ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) → ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1)))
4746anass1rs 651 . . . . . . . . . . . . 13 (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1)))
4847adantll 710 . . . . . . . . . . . 12 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1)))
49 peano2re 11078 . . . . . . . . . . . . . . . 16 (𝑞 ∈ ℝ → (𝑞 + 1) ∈ ℝ)
5028, 49syl 17 . . . . . . . . . . . . . . 15 (𝑞 ∈ ℕ → (𝑞 + 1) ∈ ℝ)
5150ad2antrr 722 . . . . . . . . . . . . . 14 (((𝑞 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ 𝑛 ∈ ℕ) → (𝑞 + 1) ∈ ℝ)
52 peano2nn 11915 . . . . . . . . . . . . . . . . 17 ((𝐹𝑛) ∈ ℕ → ((𝐹𝑛) + 1) ∈ ℕ)
5319, 52syl 17 . . . . . . . . . . . . . . . 16 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) + 1) ∈ ℕ)
5453nnred 11918 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) + 1) ∈ ℝ)
5554adantll 710 . . . . . . . . . . . . . 14 (((𝑞 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) + 1) ∈ ℝ)
5640nnred 11918 . . . . . . . . . . . . . . . 16 ((𝐹:ℕ⟶ℕ ∧ (𝑛 + 1) ∈ ℕ) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
5726, 56sylan2 592 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
5857adantll 710 . . . . . . . . . . . . . 14 (((𝑞 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ 𝑛 ∈ ℕ) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
59 letr 10999 . . . . . . . . . . . . . 14 (((𝑞 + 1) ∈ ℝ ∧ ((𝐹𝑛) + 1) ∈ ℝ ∧ (𝐹‘(𝑛 + 1)) ∈ ℝ) → (((𝑞 + 1) ≤ ((𝐹𝑛) + 1) ∧ ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))) → (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
6051, 55, 58, 59syl3anc 1369 . . . . . . . . . . . . 13 (((𝑞 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ 𝑛 ∈ ℕ) → (((𝑞 + 1) ≤ ((𝐹𝑛) + 1) ∧ ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))) → (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
6160adantlrr 717 . . . . . . . . . . . 12 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → (((𝑞 + 1) ≤ ((𝐹𝑛) + 1) ∧ ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))) → (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
6248, 61mpan2d 690 . . . . . . . . . . 11 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝑞 + 1) ≤ ((𝐹𝑛) + 1) → (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
6334, 62sylbid 239 . . . . . . . . . 10 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → (𝑞 ≤ (𝐹𝑛) → (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
64 nnz 12272 . . . . . . . . . . . . 13 (𝑞 ∈ ℕ → 𝑞 ∈ ℤ)
6519nnzd 12354 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℤ)
66 eluz 12525 . . . . . . . . . . . . 13 ((𝑞 ∈ ℤ ∧ (𝐹𝑛) ∈ ℤ) → ((𝐹𝑛) ∈ (ℤ𝑞) ↔ 𝑞 ≤ (𝐹𝑛)))
6764, 65, 66syl2an 595 . . . . . . . . . . . 12 ((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐹𝑛) ∈ (ℤ𝑞) ↔ 𝑞 ≤ (𝐹𝑛)))
6867adantrlr 719 . . . . . . . . . . 11 ((𝑞 ∈ ℕ ∧ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) ∧ 𝑛 ∈ ℕ)) → ((𝐹𝑛) ∈ (ℤ𝑞) ↔ 𝑞 ≤ (𝐹𝑛)))
6968anassrs 467 . . . . . . . . . 10 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) ∈ (ℤ𝑞) ↔ 𝑞 ≤ (𝐹𝑛)))
7064peano2zd 12358 . . . . . . . . . . . . 13 (𝑞 ∈ ℕ → (𝑞 + 1) ∈ ℤ)
7140nnzd 12354 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶ℕ ∧ (𝑛 + 1) ∈ ℕ) → (𝐹‘(𝑛 + 1)) ∈ ℤ)
7226, 71sylan2 592 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹‘(𝑛 + 1)) ∈ ℤ)
73 eluz 12525 . . . . . . . . . . . . 13 (((𝑞 + 1) ∈ ℤ ∧ (𝐹‘(𝑛 + 1)) ∈ ℤ) → ((𝐹‘(𝑛 + 1)) ∈ (ℤ‘(𝑞 + 1)) ↔ (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
7470, 72, 73syl2an 595 . . . . . . . . . . . 12 ((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐹‘(𝑛 + 1)) ∈ (ℤ‘(𝑞 + 1)) ↔ (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
7574adantrlr 719 . . . . . . . . . . 11 ((𝑞 ∈ ℕ ∧ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) ∧ 𝑛 ∈ ℕ)) → ((𝐹‘(𝑛 + 1)) ∈ (ℤ‘(𝑞 + 1)) ↔ (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
7675anassrs 467 . . . . . . . . . 10 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝐹‘(𝑛 + 1)) ∈ (ℤ‘(𝑞 + 1)) ↔ (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
7763, 69, 763imtr4d 293 . . . . . . . . 9 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) ∈ (ℤ𝑞) → (𝐹‘(𝑛 + 1)) ∈ (ℤ‘(𝑞 + 1))))
78 fveq2 6756 . . . . . . . . . . 11 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
7978eleq1d 2823 . . . . . . . . . 10 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ (ℤ‘(𝑞 + 1)) ↔ (𝐹‘(𝑛 + 1)) ∈ (ℤ‘(𝑞 + 1))))
8079rspcev 3552 . . . . . . . . 9 (((𝑛 + 1) ∈ ℕ ∧ (𝐹‘(𝑛 + 1)) ∈ (ℤ‘(𝑞 + 1))) → ∃𝑘 ∈ ℕ (𝐹𝑘) ∈ (ℤ‘(𝑞 + 1)))
8127, 77, 80syl6an 680 . . . . . . . 8 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) ∈ (ℤ𝑞) → ∃𝑘 ∈ ℕ (𝐹𝑘) ∈ (ℤ‘(𝑞 + 1))))
8281rexlimdva 3212 . . . . . . 7 ((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) → (∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑞) → ∃𝑘 ∈ ℕ (𝐹𝑘) ∈ (ℤ‘(𝑞 + 1))))
83 fveq2 6756 . . . . . . . . 9 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
8483eleq1d 2823 . . . . . . . 8 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ (ℤ‘(𝑞 + 1)) ↔ (𝐹𝑛) ∈ (ℤ‘(𝑞 + 1))))
8584cbvrexvw 3373 . . . . . . 7 (∃𝑘 ∈ ℕ (𝐹𝑘) ∈ (ℤ‘(𝑞 + 1)) ↔ ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘(𝑞 + 1)))
8682, 85syl6ib 250 . . . . . 6 ((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) → (∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑞) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘(𝑞 + 1))))
8786ex 412 . . . . 5 (𝑞 ∈ ℕ → ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → (∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑞) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘(𝑞 + 1)))))
8887a2d 29 . . . 4 (𝑞 ∈ ℕ → (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑞)) → ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘(𝑞 + 1)))))
894, 8, 12, 16, 25, 88nnind 11921 . . 3 (𝐴 ∈ ℕ → ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝐴)))
9089com12 32 . 2 ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → (𝐴 ∈ ℕ → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝐴)))
91903impia 1115 1 ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) ∧ 𝐴 ∈ ℕ) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  c0 4253   class class class wbr 5070  wf 6414  cfv 6418  (class class class)co 7255  cr 10801  1c1 10803   + caddc 10805   < clt 10940  cle 10941  cn 11903  cz 12249  cuz 12511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512
This theorem is referenced by:  incsequz2  35834
  Copyright terms: Public domain W3C validator