| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fveq2 6906 | . . . . . . 7
⊢ (𝑝 = 1 →
(ℤ≥‘𝑝) =
(ℤ≥‘1)) | 
| 2 | 1 | eleq2d 2827 | . . . . . 6
⊢ (𝑝 = 1 → ((𝐹‘𝑛) ∈ (ℤ≥‘𝑝) ↔ (𝐹‘𝑛) ∈
(ℤ≥‘1))) | 
| 3 | 2 | rexbidv 3179 | . . . . 5
⊢ (𝑝 = 1 → (∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝑝) ↔ ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈
(ℤ≥‘1))) | 
| 4 | 3 | imbi2d 340 | . . . 4
⊢ (𝑝 = 1 → (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝑝)) ↔ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈
(ℤ≥‘1)))) | 
| 5 |  | fveq2 6906 | . . . . . . 7
⊢ (𝑝 = 𝑞 → (ℤ≥‘𝑝) =
(ℤ≥‘𝑞)) | 
| 6 | 5 | eleq2d 2827 | . . . . . 6
⊢ (𝑝 = 𝑞 → ((𝐹‘𝑛) ∈ (ℤ≥‘𝑝) ↔ (𝐹‘𝑛) ∈ (ℤ≥‘𝑞))) | 
| 7 | 6 | rexbidv 3179 | . . . . 5
⊢ (𝑝 = 𝑞 → (∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝑝) ↔ ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝑞))) | 
| 8 | 7 | imbi2d 340 | . . . 4
⊢ (𝑝 = 𝑞 → (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝑝)) ↔ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝑞)))) | 
| 9 |  | fveq2 6906 | . . . . . . 7
⊢ (𝑝 = (𝑞 + 1) →
(ℤ≥‘𝑝) = (ℤ≥‘(𝑞 + 1))) | 
| 10 | 9 | eleq2d 2827 | . . . . . 6
⊢ (𝑝 = (𝑞 + 1) → ((𝐹‘𝑛) ∈ (ℤ≥‘𝑝) ↔ (𝐹‘𝑛) ∈ (ℤ≥‘(𝑞 + 1)))) | 
| 11 | 10 | rexbidv 3179 | . . . . 5
⊢ (𝑝 = (𝑞 + 1) → (∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝑝) ↔ ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘(𝑞 + 1)))) | 
| 12 | 11 | imbi2d 340 | . . . 4
⊢ (𝑝 = (𝑞 + 1) → (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝑝)) ↔ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘(𝑞 + 1))))) | 
| 13 |  | fveq2 6906 | . . . . . . 7
⊢ (𝑝 = 𝐴 → (ℤ≥‘𝑝) =
(ℤ≥‘𝐴)) | 
| 14 | 13 | eleq2d 2827 | . . . . . 6
⊢ (𝑝 = 𝐴 → ((𝐹‘𝑛) ∈ (ℤ≥‘𝑝) ↔ (𝐹‘𝑛) ∈ (ℤ≥‘𝐴))) | 
| 15 | 14 | rexbidv 3179 | . . . . 5
⊢ (𝑝 = 𝐴 → (∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝑝) ↔ ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝐴))) | 
| 16 | 15 | imbi2d 340 | . . . 4
⊢ (𝑝 = 𝐴 → (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝑝)) ↔ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝐴)))) | 
| 17 |  | 1nn 12277 | . . . . . . 7
⊢ 1 ∈
ℕ | 
| 18 | 17 | ne0ii 4344 | . . . . . 6
⊢ ℕ
≠ ∅ | 
| 19 |  | ffvelcdm 7101 | . . . . . . . 8
⊢ ((𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ) →
(𝐹‘𝑛) ∈ ℕ) | 
| 20 |  | elnnuz 12922 | . . . . . . . 8
⊢ ((𝐹‘𝑛) ∈ ℕ ↔ (𝐹‘𝑛) ∈
(ℤ≥‘1)) | 
| 21 | 19, 20 | sylib 218 | . . . . . . 7
⊢ ((𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ) →
(𝐹‘𝑛) ∈
(ℤ≥‘1)) | 
| 22 | 21 | ralrimiva 3146 | . . . . . 6
⊢ (𝐹:ℕ⟶ℕ →
∀𝑛 ∈ ℕ
(𝐹‘𝑛) ∈
(ℤ≥‘1)) | 
| 23 |  | r19.2z 4495 | . . . . . 6
⊢ ((ℕ
≠ ∅ ∧ ∀𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘1))
→ ∃𝑛 ∈
ℕ (𝐹‘𝑛) ∈
(ℤ≥‘1)) | 
| 24 | 18, 22, 23 | sylancr 587 | . . . . 5
⊢ (𝐹:ℕ⟶ℕ →
∃𝑛 ∈ ℕ
(𝐹‘𝑛) ∈
(ℤ≥‘1)) | 
| 25 | 24 | adantr 480 | . . . 4
⊢ ((𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈
(ℤ≥‘1)) | 
| 26 |  | peano2nn 12278 | . . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → (𝑛 + 1) ∈
ℕ) | 
| 27 | 26 | adantl 481 | . . . . . . . . 9
⊢ (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ) | 
| 28 |  | nnre 12273 | . . . . . . . . . . . . 13
⊢ (𝑞 ∈ ℕ → 𝑞 ∈
ℝ) | 
| 29 | 28 | ad2antrr 726 | . . . . . . . . . . . 12
⊢ (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → 𝑞 ∈ ℝ) | 
| 30 | 19 | nnred 12281 | . . . . . . . . . . . . . 14
⊢ ((𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ) →
(𝐹‘𝑛) ∈ ℝ) | 
| 31 | 30 | adantlr 715 | . . . . . . . . . . . . 13
⊢ (((𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ ℝ) | 
| 32 | 31 | adantll 714 | . . . . . . . . . . . 12
⊢ (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ ℝ) | 
| 33 |  | 1red 11262 | . . . . . . . . . . . 12
⊢ (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → 1 ∈
ℝ) | 
| 34 | 29, 32, 33 | leadd1d 11857 | . . . . . . . . . . 11
⊢ (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → (𝑞 ≤ (𝐹‘𝑛) ↔ (𝑞 + 1) ≤ ((𝐹‘𝑛) + 1))) | 
| 35 |  | fveq2 6906 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = 𝑛 → (𝐹‘𝑚) = (𝐹‘𝑛)) | 
| 36 |  | fvoveq1 7454 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = 𝑛 → (𝐹‘(𝑚 + 1)) = (𝐹‘(𝑛 + 1))) | 
| 37 | 35, 36 | breq12d 5156 | . . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 𝑛 → ((𝐹‘𝑚) < (𝐹‘(𝑚 + 1)) ↔ (𝐹‘𝑛) < (𝐹‘(𝑛 + 1)))) | 
| 38 | 37 | rspcv 3618 | . . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ →
(∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)) → (𝐹‘𝑛) < (𝐹‘(𝑛 + 1)))) | 
| 39 | 38 | imdistani 568 | . . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → (𝑛 ∈ ℕ ∧ (𝐹‘𝑛) < (𝐹‘(𝑛 + 1)))) | 
| 40 |  | ffvelcdm 7101 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹:ℕ⟶ℕ ∧
(𝑛 + 1) ∈ ℕ)
→ (𝐹‘(𝑛 + 1)) ∈
ℕ) | 
| 41 | 26, 40 | sylan2 593 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ) →
(𝐹‘(𝑛 + 1)) ∈
ℕ) | 
| 42 |  | nnltp1le 12674 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐹‘𝑛) ∈ ℕ ∧ (𝐹‘(𝑛 + 1)) ∈ ℕ) → ((𝐹‘𝑛) < (𝐹‘(𝑛 + 1)) ↔ ((𝐹‘𝑛) + 1) ≤ (𝐹‘(𝑛 + 1)))) | 
| 43 | 19, 41, 42 | syl2anc 584 | . . . . . . . . . . . . . . . . 17
⊢ ((𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ) →
((𝐹‘𝑛) < (𝐹‘(𝑛 + 1)) ↔ ((𝐹‘𝑛) + 1) ≤ (𝐹‘(𝑛 + 1)))) | 
| 44 | 43 | biimpa 476 | . . . . . . . . . . . . . . . 16
⊢ (((𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ) ∧
(𝐹‘𝑛) < (𝐹‘(𝑛 + 1))) → ((𝐹‘𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))) | 
| 45 | 44 | anasss 466 | . . . . . . . . . . . . . . 15
⊢ ((𝐹:ℕ⟶ℕ ∧
(𝑛 ∈ ℕ ∧
(𝐹‘𝑛) < (𝐹‘(𝑛 + 1)))) → ((𝐹‘𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))) | 
| 46 | 39, 45 | sylan2 593 | . . . . . . . . . . . . . 14
⊢ ((𝐹:ℕ⟶ℕ ∧
(𝑛 ∈ ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) → ((𝐹‘𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))) | 
| 47 | 46 | anass1rs 655 | . . . . . . . . . . . . 13
⊢ (((𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))) | 
| 48 | 47 | adantll 714 | . . . . . . . . . . . 12
⊢ (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))) | 
| 49 |  | peano2re 11434 | . . . . . . . . . . . . . . . 16
⊢ (𝑞 ∈ ℝ → (𝑞 + 1) ∈
ℝ) | 
| 50 | 28, 49 | syl 17 | . . . . . . . . . . . . . . 15
⊢ (𝑞 ∈ ℕ → (𝑞 + 1) ∈
ℝ) | 
| 51 | 50 | ad2antrr 726 | . . . . . . . . . . . . . 14
⊢ (((𝑞 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧
𝑛 ∈ ℕ) →
(𝑞 + 1) ∈
ℝ) | 
| 52 |  | peano2nn 12278 | . . . . . . . . . . . . . . . . 17
⊢ ((𝐹‘𝑛) ∈ ℕ → ((𝐹‘𝑛) + 1) ∈ ℕ) | 
| 53 | 19, 52 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ ((𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ) →
((𝐹‘𝑛) + 1) ∈
ℕ) | 
| 54 | 53 | nnred 12281 | . . . . . . . . . . . . . . 15
⊢ ((𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ) →
((𝐹‘𝑛) + 1) ∈
ℝ) | 
| 55 | 54 | adantll 714 | . . . . . . . . . . . . . 14
⊢ (((𝑞 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧
𝑛 ∈ ℕ) →
((𝐹‘𝑛) + 1) ∈
ℝ) | 
| 56 | 40 | nnred 12281 | . . . . . . . . . . . . . . . 16
⊢ ((𝐹:ℕ⟶ℕ ∧
(𝑛 + 1) ∈ ℕ)
→ (𝐹‘(𝑛 + 1)) ∈
ℝ) | 
| 57 | 26, 56 | sylan2 593 | . . . . . . . . . . . . . . 15
⊢ ((𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ) →
(𝐹‘(𝑛 + 1)) ∈
ℝ) | 
| 58 | 57 | adantll 714 | . . . . . . . . . . . . . 14
⊢ (((𝑞 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧
𝑛 ∈ ℕ) →
(𝐹‘(𝑛 + 1)) ∈
ℝ) | 
| 59 |  | letr 11355 | . . . . . . . . . . . . . 14
⊢ (((𝑞 + 1) ∈ ℝ ∧
((𝐹‘𝑛) + 1) ∈ ℝ ∧
(𝐹‘(𝑛 + 1)) ∈ ℝ) →
(((𝑞 + 1) ≤ ((𝐹‘𝑛) + 1) ∧ ((𝐹‘𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))) → (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1)))) | 
| 60 | 51, 55, 58, 59 | syl3anc 1373 | . . . . . . . . . . . . 13
⊢ (((𝑞 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧
𝑛 ∈ ℕ) →
(((𝑞 + 1) ≤ ((𝐹‘𝑛) + 1) ∧ ((𝐹‘𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))) → (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1)))) | 
| 61 | 60 | adantlrr 721 | . . . . . . . . . . . 12
⊢ (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → (((𝑞 + 1) ≤ ((𝐹‘𝑛) + 1) ∧ ((𝐹‘𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))) → (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1)))) | 
| 62 | 48, 61 | mpan2d 694 | . . . . . . . . . . 11
⊢ (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝑞 + 1) ≤ ((𝐹‘𝑛) + 1) → (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1)))) | 
| 63 | 34, 62 | sylbid 240 | . . . . . . . . . 10
⊢ (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → (𝑞 ≤ (𝐹‘𝑛) → (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1)))) | 
| 64 |  | nnz 12634 | . . . . . . . . . . . . 13
⊢ (𝑞 ∈ ℕ → 𝑞 ∈
ℤ) | 
| 65 | 19 | nnzd 12640 | . . . . . . . . . . . . 13
⊢ ((𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ) →
(𝐹‘𝑛) ∈ ℤ) | 
| 66 |  | eluz 12892 | . . . . . . . . . . . . 13
⊢ ((𝑞 ∈ ℤ ∧ (𝐹‘𝑛) ∈ ℤ) → ((𝐹‘𝑛) ∈ (ℤ≥‘𝑞) ↔ 𝑞 ≤ (𝐹‘𝑛))) | 
| 67 | 64, 65, 66 | syl2an 596 | . . . . . . . . . . . 12
⊢ ((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ)) →
((𝐹‘𝑛) ∈
(ℤ≥‘𝑞) ↔ 𝑞 ≤ (𝐹‘𝑛))) | 
| 68 | 67 | adantrlr 723 | . . . . . . . . . . 11
⊢ ((𝑞 ∈ ℕ ∧ ((𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) ∧ 𝑛 ∈ ℕ)) → ((𝐹‘𝑛) ∈ (ℤ≥‘𝑞) ↔ 𝑞 ≤ (𝐹‘𝑛))) | 
| 69 | 68 | anassrs 467 | . . . . . . . . . 10
⊢ (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) ∈ (ℤ≥‘𝑞) ↔ 𝑞 ≤ (𝐹‘𝑛))) | 
| 70 | 64 | peano2zd 12725 | . . . . . . . . . . . . 13
⊢ (𝑞 ∈ ℕ → (𝑞 + 1) ∈
ℤ) | 
| 71 | 40 | nnzd 12640 | . . . . . . . . . . . . . 14
⊢ ((𝐹:ℕ⟶ℕ ∧
(𝑛 + 1) ∈ ℕ)
→ (𝐹‘(𝑛 + 1)) ∈
ℤ) | 
| 72 | 26, 71 | sylan2 593 | . . . . . . . . . . . . 13
⊢ ((𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ) →
(𝐹‘(𝑛 + 1)) ∈
ℤ) | 
| 73 |  | eluz 12892 | . . . . . . . . . . . . 13
⊢ (((𝑞 + 1) ∈ ℤ ∧
(𝐹‘(𝑛 + 1)) ∈ ℤ) →
((𝐹‘(𝑛 + 1)) ∈
(ℤ≥‘(𝑞 + 1)) ↔ (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1)))) | 
| 74 | 70, 72, 73 | syl2an 596 | . . . . . . . . . . . 12
⊢ ((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
𝑛 ∈ ℕ)) →
((𝐹‘(𝑛 + 1)) ∈
(ℤ≥‘(𝑞 + 1)) ↔ (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1)))) | 
| 75 | 74 | adantrlr 723 | . . . . . . . . . . 11
⊢ ((𝑞 ∈ ℕ ∧ ((𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) ∧ 𝑛 ∈ ℕ)) → ((𝐹‘(𝑛 + 1)) ∈
(ℤ≥‘(𝑞 + 1)) ↔ (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1)))) | 
| 76 | 75 | anassrs 467 | . . . . . . . . . 10
⊢ (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝐹‘(𝑛 + 1)) ∈
(ℤ≥‘(𝑞 + 1)) ↔ (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1)))) | 
| 77 | 63, 69, 76 | 3imtr4d 294 | . . . . . . . . 9
⊢ (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) ∈ (ℤ≥‘𝑞) → (𝐹‘(𝑛 + 1)) ∈
(ℤ≥‘(𝑞 + 1)))) | 
| 78 |  | fveq2 6906 | . . . . . . . . . . 11
⊢ (𝑘 = (𝑛 + 1) → (𝐹‘𝑘) = (𝐹‘(𝑛 + 1))) | 
| 79 | 78 | eleq1d 2826 | . . . . . . . . . 10
⊢ (𝑘 = (𝑛 + 1) → ((𝐹‘𝑘) ∈ (ℤ≥‘(𝑞 + 1)) ↔ (𝐹‘(𝑛 + 1)) ∈
(ℤ≥‘(𝑞 + 1)))) | 
| 80 | 79 | rspcev 3622 | . . . . . . . . 9
⊢ (((𝑛 + 1) ∈ ℕ ∧
(𝐹‘(𝑛 + 1)) ∈
(ℤ≥‘(𝑞 + 1))) → ∃𝑘 ∈ ℕ (𝐹‘𝑘) ∈ (ℤ≥‘(𝑞 + 1))) | 
| 81 | 27, 77, 80 | syl6an 684 | . . . . . . . 8
⊢ (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝐹‘𝑛) ∈ (ℤ≥‘𝑞) → ∃𝑘 ∈ ℕ (𝐹‘𝑘) ∈ (ℤ≥‘(𝑞 + 1)))) | 
| 82 | 81 | rexlimdva 3155 | . . . . . . 7
⊢ ((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) → (∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝑞) → ∃𝑘 ∈ ℕ (𝐹‘𝑘) ∈ (ℤ≥‘(𝑞 + 1)))) | 
| 83 |  | fveq2 6906 | . . . . . . . . 9
⊢ (𝑘 = 𝑛 → (𝐹‘𝑘) = (𝐹‘𝑛)) | 
| 84 | 83 | eleq1d 2826 | . . . . . . . 8
⊢ (𝑘 = 𝑛 → ((𝐹‘𝑘) ∈ (ℤ≥‘(𝑞 + 1)) ↔ (𝐹‘𝑛) ∈ (ℤ≥‘(𝑞 + 1)))) | 
| 85 | 84 | cbvrexvw 3238 | . . . . . . 7
⊢
(∃𝑘 ∈
ℕ (𝐹‘𝑘) ∈
(ℤ≥‘(𝑞 + 1)) ↔ ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘(𝑞 + 1))) | 
| 86 | 82, 85 | imbitrdi 251 | . . . . . 6
⊢ ((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)))) → (∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝑞) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘(𝑞 + 1)))) | 
| 87 | 86 | ex 412 | . . . . 5
⊢ (𝑞 ∈ ℕ → ((𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → (∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝑞) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘(𝑞 + 1))))) | 
| 88 | 87 | a2d 29 | . . . 4
⊢ (𝑞 ∈ ℕ → (((𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝑞)) → ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘(𝑞 + 1))))) | 
| 89 | 4, 8, 12, 16, 25, 88 | nnind 12284 | . . 3
⊢ (𝐴 ∈ ℕ → ((𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝐴))) | 
| 90 | 89 | com12 32 | . 2
⊢ ((𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1))) → (𝐴 ∈ ℕ → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝐴))) | 
| 91 | 90 | 3impia 1118 | 1
⊢ ((𝐹:ℕ⟶ℕ ∧
∀𝑚 ∈ ℕ
(𝐹‘𝑚) < (𝐹‘(𝑚 + 1)) ∧ 𝐴 ∈ ℕ) → ∃𝑛 ∈ ℕ (𝐹‘𝑛) ∈ (ℤ≥‘𝐴)) |