Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  incsequz Structured version   Visualization version   GIF version

Theorem incsequz 37777
Description: An increasing sequence of positive integers takes on indefinitely large values. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
incsequz ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) ∧ 𝐴 ∈ ℕ) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝐴))
Distinct variable groups:   𝑚,𝐹,𝑛   𝐴,𝑚,𝑛

Proof of Theorem incsequz
Dummy variables 𝑘 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6881 . . . . . . 7 (𝑝 = 1 → (ℤ𝑝) = (ℤ‘1))
21eleq2d 2821 . . . . . 6 (𝑝 = 1 → ((𝐹𝑛) ∈ (ℤ𝑝) ↔ (𝐹𝑛) ∈ (ℤ‘1)))
32rexbidv 3165 . . . . 5 (𝑝 = 1 → (∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑝) ↔ ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘1)))
43imbi2d 340 . . . 4 (𝑝 = 1 → (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑝)) ↔ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘1))))
5 fveq2 6881 . . . . . . 7 (𝑝 = 𝑞 → (ℤ𝑝) = (ℤ𝑞))
65eleq2d 2821 . . . . . 6 (𝑝 = 𝑞 → ((𝐹𝑛) ∈ (ℤ𝑝) ↔ (𝐹𝑛) ∈ (ℤ𝑞)))
76rexbidv 3165 . . . . 5 (𝑝 = 𝑞 → (∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑝) ↔ ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑞)))
87imbi2d 340 . . . 4 (𝑝 = 𝑞 → (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑝)) ↔ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑞))))
9 fveq2 6881 . . . . . . 7 (𝑝 = (𝑞 + 1) → (ℤ𝑝) = (ℤ‘(𝑞 + 1)))
109eleq2d 2821 . . . . . 6 (𝑝 = (𝑞 + 1) → ((𝐹𝑛) ∈ (ℤ𝑝) ↔ (𝐹𝑛) ∈ (ℤ‘(𝑞 + 1))))
1110rexbidv 3165 . . . . 5 (𝑝 = (𝑞 + 1) → (∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑝) ↔ ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘(𝑞 + 1))))
1211imbi2d 340 . . . 4 (𝑝 = (𝑞 + 1) → (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑝)) ↔ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘(𝑞 + 1)))))
13 fveq2 6881 . . . . . . 7 (𝑝 = 𝐴 → (ℤ𝑝) = (ℤ𝐴))
1413eleq2d 2821 . . . . . 6 (𝑝 = 𝐴 → ((𝐹𝑛) ∈ (ℤ𝑝) ↔ (𝐹𝑛) ∈ (ℤ𝐴)))
1514rexbidv 3165 . . . . 5 (𝑝 = 𝐴 → (∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑝) ↔ ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝐴)))
1615imbi2d 340 . . . 4 (𝑝 = 𝐴 → (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑝)) ↔ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝐴))))
17 1nn 12256 . . . . . . 7 1 ∈ ℕ
1817ne0ii 4324 . . . . . 6 ℕ ≠ ∅
19 ffvelcdm 7076 . . . . . . . 8 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℕ)
20 elnnuz 12901 . . . . . . . 8 ((𝐹𝑛) ∈ ℕ ↔ (𝐹𝑛) ∈ (ℤ‘1))
2119, 20sylib 218 . . . . . . 7 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ (ℤ‘1))
2221ralrimiva 3133 . . . . . 6 (𝐹:ℕ⟶ℕ → ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘1))
23 r19.2z 4475 . . . . . 6 ((ℕ ≠ ∅ ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘1)) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘1))
2418, 22, 23sylancr 587 . . . . 5 (𝐹:ℕ⟶ℕ → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘1))
2524adantr 480 . . . 4 ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘1))
26 peano2nn 12257 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
2726adantl 481 . . . . . . . . 9 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
28 nnre 12252 . . . . . . . . . . . . 13 (𝑞 ∈ ℕ → 𝑞 ∈ ℝ)
2928ad2antrr 726 . . . . . . . . . . . 12 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → 𝑞 ∈ ℝ)
3019nnred 12260 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℝ)
3130adantlr 715 . . . . . . . . . . . . 13 (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℝ)
3231adantll 714 . . . . . . . . . . . 12 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℝ)
33 1red 11241 . . . . . . . . . . . 12 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → 1 ∈ ℝ)
3429, 32, 33leadd1d 11836 . . . . . . . . . . 11 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → (𝑞 ≤ (𝐹𝑛) ↔ (𝑞 + 1) ≤ ((𝐹𝑛) + 1)))
35 fveq2 6881 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
36 fvoveq1 7433 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑛 → (𝐹‘(𝑚 + 1)) = (𝐹‘(𝑛 + 1)))
3735, 36breq12d 5137 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑛 → ((𝐹𝑚) < (𝐹‘(𝑚 + 1)) ↔ (𝐹𝑛) < (𝐹‘(𝑛 + 1))))
3837rspcv 3602 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) → (𝐹𝑛) < (𝐹‘(𝑛 + 1))))
3938imdistani 568 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → (𝑛 ∈ ℕ ∧ (𝐹𝑛) < (𝐹‘(𝑛 + 1))))
40 ffvelcdm 7076 . . . . . . . . . . . . . . . . . . 19 ((𝐹:ℕ⟶ℕ ∧ (𝑛 + 1) ∈ ℕ) → (𝐹‘(𝑛 + 1)) ∈ ℕ)
4126, 40sylan2 593 . . . . . . . . . . . . . . . . . 18 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹‘(𝑛 + 1)) ∈ ℕ)
42 nnltp1le 12654 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑛) ∈ ℕ ∧ (𝐹‘(𝑛 + 1)) ∈ ℕ) → ((𝐹𝑛) < (𝐹‘(𝑛 + 1)) ↔ ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))))
4319, 41, 42syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) < (𝐹‘(𝑛 + 1)) ↔ ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))))
4443biimpa 476 . . . . . . . . . . . . . . . 16 (((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) ∧ (𝐹𝑛) < (𝐹‘(𝑛 + 1))) → ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1)))
4544anasss 466 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶ℕ ∧ (𝑛 ∈ ℕ ∧ (𝐹𝑛) < (𝐹‘(𝑛 + 1)))) → ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1)))
4639, 45sylan2 593 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶ℕ ∧ (𝑛 ∈ ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) → ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1)))
4746anass1rs 655 . . . . . . . . . . . . 13 (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1)))
4847adantll 714 . . . . . . . . . . . 12 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1)))
49 peano2re 11413 . . . . . . . . . . . . . . . 16 (𝑞 ∈ ℝ → (𝑞 + 1) ∈ ℝ)
5028, 49syl 17 . . . . . . . . . . . . . . 15 (𝑞 ∈ ℕ → (𝑞 + 1) ∈ ℝ)
5150ad2antrr 726 . . . . . . . . . . . . . 14 (((𝑞 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ 𝑛 ∈ ℕ) → (𝑞 + 1) ∈ ℝ)
52 peano2nn 12257 . . . . . . . . . . . . . . . . 17 ((𝐹𝑛) ∈ ℕ → ((𝐹𝑛) + 1) ∈ ℕ)
5319, 52syl 17 . . . . . . . . . . . . . . . 16 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) + 1) ∈ ℕ)
5453nnred 12260 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) + 1) ∈ ℝ)
5554adantll 714 . . . . . . . . . . . . . 14 (((𝑞 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) + 1) ∈ ℝ)
5640nnred 12260 . . . . . . . . . . . . . . . 16 ((𝐹:ℕ⟶ℕ ∧ (𝑛 + 1) ∈ ℕ) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
5726, 56sylan2 593 . . . . . . . . . . . . . . 15 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
5857adantll 714 . . . . . . . . . . . . . 14 (((𝑞 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ 𝑛 ∈ ℕ) → (𝐹‘(𝑛 + 1)) ∈ ℝ)
59 letr 11334 . . . . . . . . . . . . . 14 (((𝑞 + 1) ∈ ℝ ∧ ((𝐹𝑛) + 1) ∈ ℝ ∧ (𝐹‘(𝑛 + 1)) ∈ ℝ) → (((𝑞 + 1) ≤ ((𝐹𝑛) + 1) ∧ ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))) → (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
6051, 55, 58, 59syl3anc 1373 . . . . . . . . . . . . 13 (((𝑞 ∈ ℕ ∧ 𝐹:ℕ⟶ℕ) ∧ 𝑛 ∈ ℕ) → (((𝑞 + 1) ≤ ((𝐹𝑛) + 1) ∧ ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))) → (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
6160adantlrr 721 . . . . . . . . . . . 12 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → (((𝑞 + 1) ≤ ((𝐹𝑛) + 1) ∧ ((𝐹𝑛) + 1) ≤ (𝐹‘(𝑛 + 1))) → (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
6248, 61mpan2d 694 . . . . . . . . . . 11 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝑞 + 1) ≤ ((𝐹𝑛) + 1) → (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
6334, 62sylbid 240 . . . . . . . . . 10 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → (𝑞 ≤ (𝐹𝑛) → (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
64 nnz 12614 . . . . . . . . . . . . 13 (𝑞 ∈ ℕ → 𝑞 ∈ ℤ)
6519nnzd 12620 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℤ)
66 eluz 12871 . . . . . . . . . . . . 13 ((𝑞 ∈ ℤ ∧ (𝐹𝑛) ∈ ℤ) → ((𝐹𝑛) ∈ (ℤ𝑞) ↔ 𝑞 ≤ (𝐹𝑛)))
6764, 65, 66syl2an 596 . . . . . . . . . . . 12 ((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐹𝑛) ∈ (ℤ𝑞) ↔ 𝑞 ≤ (𝐹𝑛)))
6867adantrlr 723 . . . . . . . . . . 11 ((𝑞 ∈ ℕ ∧ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) ∧ 𝑛 ∈ ℕ)) → ((𝐹𝑛) ∈ (ℤ𝑞) ↔ 𝑞 ≤ (𝐹𝑛)))
6968anassrs 467 . . . . . . . . . 10 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) ∈ (ℤ𝑞) ↔ 𝑞 ≤ (𝐹𝑛)))
7064peano2zd 12705 . . . . . . . . . . . . 13 (𝑞 ∈ ℕ → (𝑞 + 1) ∈ ℤ)
7140nnzd 12620 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶ℕ ∧ (𝑛 + 1) ∈ ℕ) → (𝐹‘(𝑛 + 1)) ∈ ℤ)
7226, 71sylan2 593 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ) → (𝐹‘(𝑛 + 1)) ∈ ℤ)
73 eluz 12871 . . . . . . . . . . . . 13 (((𝑞 + 1) ∈ ℤ ∧ (𝐹‘(𝑛 + 1)) ∈ ℤ) → ((𝐹‘(𝑛 + 1)) ∈ (ℤ‘(𝑞 + 1)) ↔ (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
7470, 72, 73syl2an 596 . . . . . . . . . . . 12 ((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ 𝑛 ∈ ℕ)) → ((𝐹‘(𝑛 + 1)) ∈ (ℤ‘(𝑞 + 1)) ↔ (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
7574adantrlr 723 . . . . . . . . . . 11 ((𝑞 ∈ ℕ ∧ ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) ∧ 𝑛 ∈ ℕ)) → ((𝐹‘(𝑛 + 1)) ∈ (ℤ‘(𝑞 + 1)) ↔ (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
7675anassrs 467 . . . . . . . . . 10 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝐹‘(𝑛 + 1)) ∈ (ℤ‘(𝑞 + 1)) ↔ (𝑞 + 1) ≤ (𝐹‘(𝑛 + 1))))
7763, 69, 763imtr4d 294 . . . . . . . . 9 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) ∈ (ℤ𝑞) → (𝐹‘(𝑛 + 1)) ∈ (ℤ‘(𝑞 + 1))))
78 fveq2 6881 . . . . . . . . . . 11 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
7978eleq1d 2820 . . . . . . . . . 10 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ (ℤ‘(𝑞 + 1)) ↔ (𝐹‘(𝑛 + 1)) ∈ (ℤ‘(𝑞 + 1))))
8079rspcev 3606 . . . . . . . . 9 (((𝑛 + 1) ∈ ℕ ∧ (𝐹‘(𝑛 + 1)) ∈ (ℤ‘(𝑞 + 1))) → ∃𝑘 ∈ ℕ (𝐹𝑘) ∈ (ℤ‘(𝑞 + 1)))
8127, 77, 80syl6an 684 . . . . . . . 8 (((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) ∧ 𝑛 ∈ ℕ) → ((𝐹𝑛) ∈ (ℤ𝑞) → ∃𝑘 ∈ ℕ (𝐹𝑘) ∈ (ℤ‘(𝑞 + 1))))
8281rexlimdva 3142 . . . . . . 7 ((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) → (∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑞) → ∃𝑘 ∈ ℕ (𝐹𝑘) ∈ (ℤ‘(𝑞 + 1))))
83 fveq2 6881 . . . . . . . . 9 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
8483eleq1d 2820 . . . . . . . 8 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ (ℤ‘(𝑞 + 1)) ↔ (𝐹𝑛) ∈ (ℤ‘(𝑞 + 1))))
8584cbvrexvw 3225 . . . . . . 7 (∃𝑘 ∈ ℕ (𝐹𝑘) ∈ (ℤ‘(𝑞 + 1)) ↔ ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘(𝑞 + 1)))
8682, 85imbitrdi 251 . . . . . 6 ((𝑞 ∈ ℕ ∧ (𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)))) → (∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑞) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘(𝑞 + 1))))
8786ex 412 . . . . 5 (𝑞 ∈ ℕ → ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → (∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑞) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘(𝑞 + 1)))))
8887a2d 29 . . . 4 (𝑞 ∈ ℕ → (((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝑞)) → ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ‘(𝑞 + 1)))))
894, 8, 12, 16, 25, 88nnind 12263 . . 3 (𝐴 ∈ ℕ → ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝐴)))
9089com12 32 . 2 ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1))) → (𝐴 ∈ ℕ → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝐴)))
91903impia 1117 1 ((𝐹:ℕ⟶ℕ ∧ ∀𝑚 ∈ ℕ (𝐹𝑚) < (𝐹‘(𝑚 + 1)) ∧ 𝐴 ∈ ℕ) → ∃𝑛 ∈ ℕ (𝐹𝑛) ∈ (ℤ𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  c0 4313   class class class wbr 5124  wf 6532  cfv 6536  (class class class)co 7410  cr 11133  1c1 11135   + caddc 11137   < clt 11274  cle 11275  cn 12245  cz 12593  cuz 12857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858
This theorem is referenced by:  incsequz2  37778
  Copyright terms: Public domain W3C validator