Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  crngm4 Structured version   Visualization version   GIF version

Theorem crngm4 36465
Description: Commutative/associative law for commutative rings. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
crngm.1 𝐺 = (1st𝑅)
crngm.2 𝐻 = (2nd𝑅)
crngm.3 𝑋 = ran 𝐺
Assertion
Ref Expression
crngm4 ((𝑅 ∈ CRingOps ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐻𝐵)𝐻(𝐶𝐻𝐷)) = ((𝐴𝐻𝐶)𝐻(𝐵𝐻𝐷)))

Proof of Theorem crngm4
StepHypRef Expression
1 df-3an 1090 . . . . . 6 ((𝐴𝑋𝐵𝑋𝐶𝑋) ↔ ((𝐴𝑋𝐵𝑋) ∧ 𝐶𝑋))
2 crngm.1 . . . . . . 7 𝐺 = (1st𝑅)
3 crngm.2 . . . . . . 7 𝐻 = (2nd𝑅)
4 crngm.3 . . . . . . 7 𝑋 = ran 𝐺
52, 3, 4crngm23 36464 . . . . . 6 ((𝑅 ∈ CRingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐻𝐵))
61, 5sylan2br 596 . . . . 5 ((𝑅 ∈ CRingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ 𝐶𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐻𝐵))
76adantrrr 724 . . . 4 ((𝑅 ∈ CRingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → ((𝐴𝐻𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐻𝐵))
87oveq1d 7373 . . 3 ((𝑅 ∈ CRingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (((𝐴𝐻𝐵)𝐻𝐶)𝐻𝐷) = (((𝐴𝐻𝐶)𝐻𝐵)𝐻𝐷))
9 crngorngo 36462 . . . 4 (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps)
102, 3, 4rngocl 36363 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐻𝐵) ∈ 𝑋)
11103expb 1121 . . . . . . 7 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐻𝐵) ∈ 𝑋)
1211adantrr 716 . . . . . 6 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (𝐴𝐻𝐵) ∈ 𝑋)
13 simprrl 780 . . . . . 6 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → 𝐶𝑋)
14 simprrr 781 . . . . . 6 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → 𝐷𝑋)
1512, 13, 143jca 1129 . . . . 5 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → ((𝐴𝐻𝐵) ∈ 𝑋𝐶𝑋𝐷𝑋))
162, 3, 4rngoass 36368 . . . . 5 ((𝑅 ∈ RingOps ∧ ((𝐴𝐻𝐵) ∈ 𝑋𝐶𝑋𝐷𝑋)) → (((𝐴𝐻𝐵)𝐻𝐶)𝐻𝐷) = ((𝐴𝐻𝐵)𝐻(𝐶𝐻𝐷)))
1715, 16syldan 592 . . . 4 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (((𝐴𝐻𝐵)𝐻𝐶)𝐻𝐷) = ((𝐴𝐻𝐵)𝐻(𝐶𝐻𝐷)))
189, 17sylan 581 . . 3 ((𝑅 ∈ CRingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (((𝐴𝐻𝐵)𝐻𝐶)𝐻𝐷) = ((𝐴𝐻𝐵)𝐻(𝐶𝐻𝐷)))
192, 3, 4rngocl 36363 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝐻𝐶) ∈ 𝑋)
20193expb 1121 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐶𝑋)) → (𝐴𝐻𝐶) ∈ 𝑋)
2120adantrlr 722 . . . . . . 7 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ 𝐶𝑋)) → (𝐴𝐻𝐶) ∈ 𝑋)
2221adantrrr 724 . . . . . 6 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (𝐴𝐻𝐶) ∈ 𝑋)
23 simprlr 779 . . . . . 6 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → 𝐵𝑋)
2422, 23, 143jca 1129 . . . . 5 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → ((𝐴𝐻𝐶) ∈ 𝑋𝐵𝑋𝐷𝑋))
252, 3, 4rngoass 36368 . . . . 5 ((𝑅 ∈ RingOps ∧ ((𝐴𝐻𝐶) ∈ 𝑋𝐵𝑋𝐷𝑋)) → (((𝐴𝐻𝐶)𝐻𝐵)𝐻𝐷) = ((𝐴𝐻𝐶)𝐻(𝐵𝐻𝐷)))
2624, 25syldan 592 . . . 4 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (((𝐴𝐻𝐶)𝐻𝐵)𝐻𝐷) = ((𝐴𝐻𝐶)𝐻(𝐵𝐻𝐷)))
279, 26sylan 581 . . 3 ((𝑅 ∈ CRingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (((𝐴𝐻𝐶)𝐻𝐵)𝐻𝐷) = ((𝐴𝐻𝐶)𝐻(𝐵𝐻𝐷)))
288, 18, 273eqtr3d 2785 . 2 ((𝑅 ∈ CRingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → ((𝐴𝐻𝐵)𝐻(𝐶𝐻𝐷)) = ((𝐴𝐻𝐶)𝐻(𝐵𝐻𝐷)))
29283impb 1116 1 ((𝑅 ∈ CRingOps ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐻𝐵)𝐻(𝐶𝐻𝐷)) = ((𝐴𝐻𝐶)𝐻(𝐵𝐻𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  ran crn 5635  cfv 6497  (class class class)co 7358  1st c1st 7920  2nd c2nd 7921  RingOpscrngo 36356  CRingOpsccring 36455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3409  df-v 3448  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-fv 6505  df-ov 7361  df-1st 7922  df-2nd 7923  df-rngo 36357  df-com2 36452  df-crngo 36456
This theorem is referenced by:  ispridlc  36532
  Copyright terms: Public domain W3C validator