Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  crngm4 Structured version   Visualization version   GIF version

Theorem crngm4 35508
 Description: Commutative/associative law for commutative rings. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
crngm.1 𝐺 = (1st𝑅)
crngm.2 𝐻 = (2nd𝑅)
crngm.3 𝑋 = ran 𝐺
Assertion
Ref Expression
crngm4 ((𝑅 ∈ CRingOps ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐻𝐵)𝐻(𝐶𝐻𝐷)) = ((𝐴𝐻𝐶)𝐻(𝐵𝐻𝐷)))

Proof of Theorem crngm4
StepHypRef Expression
1 df-3an 1086 . . . . . 6 ((𝐴𝑋𝐵𝑋𝐶𝑋) ↔ ((𝐴𝑋𝐵𝑋) ∧ 𝐶𝑋))
2 crngm.1 . . . . . . 7 𝐺 = (1st𝑅)
3 crngm.2 . . . . . . 7 𝐻 = (2nd𝑅)
4 crngm.3 . . . . . . 7 𝑋 = ran 𝐺
52, 3, 4crngm23 35507 . . . . . 6 ((𝑅 ∈ CRingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐻𝐵))
61, 5sylan2br 597 . . . . 5 ((𝑅 ∈ CRingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ 𝐶𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐻𝐵))
76adantrrr 724 . . . 4 ((𝑅 ∈ CRingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → ((𝐴𝐻𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐻𝐵))
87oveq1d 7157 . . 3 ((𝑅 ∈ CRingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (((𝐴𝐻𝐵)𝐻𝐶)𝐻𝐷) = (((𝐴𝐻𝐶)𝐻𝐵)𝐻𝐷))
9 crngorngo 35505 . . . 4 (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps)
102, 3, 4rngocl 35406 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐻𝐵) ∈ 𝑋)
11103expb 1117 . . . . . . 7 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐻𝐵) ∈ 𝑋)
1211adantrr 716 . . . . . 6 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (𝐴𝐻𝐵) ∈ 𝑋)
13 simprrl 780 . . . . . 6 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → 𝐶𝑋)
14 simprrr 781 . . . . . 6 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → 𝐷𝑋)
1512, 13, 143jca 1125 . . . . 5 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → ((𝐴𝐻𝐵) ∈ 𝑋𝐶𝑋𝐷𝑋))
162, 3, 4rngoass 35411 . . . . 5 ((𝑅 ∈ RingOps ∧ ((𝐴𝐻𝐵) ∈ 𝑋𝐶𝑋𝐷𝑋)) → (((𝐴𝐻𝐵)𝐻𝐶)𝐻𝐷) = ((𝐴𝐻𝐵)𝐻(𝐶𝐻𝐷)))
1715, 16syldan 594 . . . 4 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (((𝐴𝐻𝐵)𝐻𝐶)𝐻𝐷) = ((𝐴𝐻𝐵)𝐻(𝐶𝐻𝐷)))
189, 17sylan 583 . . 3 ((𝑅 ∈ CRingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (((𝐴𝐻𝐵)𝐻𝐶)𝐻𝐷) = ((𝐴𝐻𝐵)𝐻(𝐶𝐻𝐷)))
192, 3, 4rngocl 35406 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝐻𝐶) ∈ 𝑋)
20193expb 1117 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐶𝑋)) → (𝐴𝐻𝐶) ∈ 𝑋)
2120adantrlr 722 . . . . . . 7 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ 𝐶𝑋)) → (𝐴𝐻𝐶) ∈ 𝑋)
2221adantrrr 724 . . . . . 6 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (𝐴𝐻𝐶) ∈ 𝑋)
23 simprlr 779 . . . . . 6 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → 𝐵𝑋)
2422, 23, 143jca 1125 . . . . 5 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → ((𝐴𝐻𝐶) ∈ 𝑋𝐵𝑋𝐷𝑋))
252, 3, 4rngoass 35411 . . . . 5 ((𝑅 ∈ RingOps ∧ ((𝐴𝐻𝐶) ∈ 𝑋𝐵𝑋𝐷𝑋)) → (((𝐴𝐻𝐶)𝐻𝐵)𝐻𝐷) = ((𝐴𝐻𝐶)𝐻(𝐵𝐻𝐷)))
2624, 25syldan 594 . . . 4 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (((𝐴𝐻𝐶)𝐻𝐵)𝐻𝐷) = ((𝐴𝐻𝐶)𝐻(𝐵𝐻𝐷)))
279, 26sylan 583 . . 3 ((𝑅 ∈ CRingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (((𝐴𝐻𝐶)𝐻𝐵)𝐻𝐷) = ((𝐴𝐻𝐶)𝐻(𝐵𝐻𝐷)))
288, 18, 273eqtr3d 2841 . 2 ((𝑅 ∈ CRingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → ((𝐴𝐻𝐵)𝐻(𝐶𝐻𝐷)) = ((𝐴𝐻𝐶)𝐻(𝐵𝐻𝐷)))
29283impb 1112 1 ((𝑅 ∈ CRingOps ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐻𝐵)𝐻(𝐶𝐻𝐷)) = ((𝐴𝐻𝐶)𝐻(𝐵𝐻𝐷)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ran crn 5523  ‘cfv 6329  (class class class)co 7142  1st c1st 7679  2nd c2nd 7680  RingOpscrngo 35399  CRingOpsccring 35498 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5170  ax-nul 5177  ax-pr 5298  ax-un 7451 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3722  df-dif 3885  df-un 3887  df-in 3889  df-ss 3899  df-nul 4246  df-if 4428  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-iota 6288  df-fun 6331  df-fn 6332  df-f 6333  df-fv 6337  df-ov 7145  df-1st 7681  df-2nd 7682  df-rngo 35400  df-com2 35495  df-crngo 35499 This theorem is referenced by:  ispridlc  35575
 Copyright terms: Public domain W3C validator