Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  crngm4 Structured version   Visualization version   GIF version

Theorem crngm4 35898
Description: Commutative/associative law for commutative rings. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
crngm.1 𝐺 = (1st𝑅)
crngm.2 𝐻 = (2nd𝑅)
crngm.3 𝑋 = ran 𝐺
Assertion
Ref Expression
crngm4 ((𝑅 ∈ CRingOps ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐻𝐵)𝐻(𝐶𝐻𝐷)) = ((𝐴𝐻𝐶)𝐻(𝐵𝐻𝐷)))

Proof of Theorem crngm4
StepHypRef Expression
1 df-3an 1091 . . . . . 6 ((𝐴𝑋𝐵𝑋𝐶𝑋) ↔ ((𝐴𝑋𝐵𝑋) ∧ 𝐶𝑋))
2 crngm.1 . . . . . . 7 𝐺 = (1st𝑅)
3 crngm.2 . . . . . . 7 𝐻 = (2nd𝑅)
4 crngm.3 . . . . . . 7 𝑋 = ran 𝐺
52, 3, 4crngm23 35897 . . . . . 6 ((𝑅 ∈ CRingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐻𝐵))
61, 5sylan2br 598 . . . . 5 ((𝑅 ∈ CRingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ 𝐶𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐻𝐵))
76adantrrr 725 . . . 4 ((𝑅 ∈ CRingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → ((𝐴𝐻𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐻𝐵))
87oveq1d 7228 . . 3 ((𝑅 ∈ CRingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (((𝐴𝐻𝐵)𝐻𝐶)𝐻𝐷) = (((𝐴𝐻𝐶)𝐻𝐵)𝐻𝐷))
9 crngorngo 35895 . . . 4 (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps)
102, 3, 4rngocl 35796 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐻𝐵) ∈ 𝑋)
11103expb 1122 . . . . . . 7 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐻𝐵) ∈ 𝑋)
1211adantrr 717 . . . . . 6 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (𝐴𝐻𝐵) ∈ 𝑋)
13 simprrl 781 . . . . . 6 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → 𝐶𝑋)
14 simprrr 782 . . . . . 6 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → 𝐷𝑋)
1512, 13, 143jca 1130 . . . . 5 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → ((𝐴𝐻𝐵) ∈ 𝑋𝐶𝑋𝐷𝑋))
162, 3, 4rngoass 35801 . . . . 5 ((𝑅 ∈ RingOps ∧ ((𝐴𝐻𝐵) ∈ 𝑋𝐶𝑋𝐷𝑋)) → (((𝐴𝐻𝐵)𝐻𝐶)𝐻𝐷) = ((𝐴𝐻𝐵)𝐻(𝐶𝐻𝐷)))
1715, 16syldan 594 . . . 4 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (((𝐴𝐻𝐵)𝐻𝐶)𝐻𝐷) = ((𝐴𝐻𝐵)𝐻(𝐶𝐻𝐷)))
189, 17sylan 583 . . 3 ((𝑅 ∈ CRingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (((𝐴𝐻𝐵)𝐻𝐶)𝐻𝐷) = ((𝐴𝐻𝐵)𝐻(𝐶𝐻𝐷)))
192, 3, 4rngocl 35796 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝐻𝐶) ∈ 𝑋)
20193expb 1122 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐶𝑋)) → (𝐴𝐻𝐶) ∈ 𝑋)
2120adantrlr 723 . . . . . . 7 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ 𝐶𝑋)) → (𝐴𝐻𝐶) ∈ 𝑋)
2221adantrrr 725 . . . . . 6 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (𝐴𝐻𝐶) ∈ 𝑋)
23 simprlr 780 . . . . . 6 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → 𝐵𝑋)
2422, 23, 143jca 1130 . . . . 5 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → ((𝐴𝐻𝐶) ∈ 𝑋𝐵𝑋𝐷𝑋))
252, 3, 4rngoass 35801 . . . . 5 ((𝑅 ∈ RingOps ∧ ((𝐴𝐻𝐶) ∈ 𝑋𝐵𝑋𝐷𝑋)) → (((𝐴𝐻𝐶)𝐻𝐵)𝐻𝐷) = ((𝐴𝐻𝐶)𝐻(𝐵𝐻𝐷)))
2624, 25syldan 594 . . . 4 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (((𝐴𝐻𝐶)𝐻𝐵)𝐻𝐷) = ((𝐴𝐻𝐶)𝐻(𝐵𝐻𝐷)))
279, 26sylan 583 . . 3 ((𝑅 ∈ CRingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (((𝐴𝐻𝐶)𝐻𝐵)𝐻𝐷) = ((𝐴𝐻𝐶)𝐻(𝐵𝐻𝐷)))
288, 18, 273eqtr3d 2785 . 2 ((𝑅 ∈ CRingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → ((𝐴𝐻𝐵)𝐻(𝐶𝐻𝐷)) = ((𝐴𝐻𝐶)𝐻(𝐵𝐻𝐷)))
29283impb 1117 1 ((𝑅 ∈ CRingOps ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐻𝐵)𝐻(𝐶𝐻𝐷)) = ((𝐴𝐻𝐶)𝐻(𝐵𝐻𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  ran crn 5552  cfv 6380  (class class class)co 7213  1st c1st 7759  2nd c2nd 7760  RingOpscrngo 35789  CRingOpsccring 35888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-fv 6388  df-ov 7216  df-1st 7761  df-2nd 7762  df-rngo 35790  df-com2 35885  df-crngo 35889
This theorem is referenced by:  ispridlc  35965
  Copyright terms: Public domain W3C validator