Proof of Theorem crngm4
| Step | Hyp | Ref
| Expression |
| 1 | | df-3an 1089 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐶 ∈ 𝑋)) |
| 2 | | crngm.1 |
. . . . . . 7
⊢ 𝐺 = (1st ‘𝑅) |
| 3 | | crngm.2 |
. . . . . . 7
⊢ 𝐻 = (2nd ‘𝑅) |
| 4 | | crngm.3 |
. . . . . . 7
⊢ 𝑋 = ran 𝐺 |
| 5 | 2, 3, 4 | crngm23 38009 |
. . . . . 6
⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐻𝐵)) |
| 6 | 1, 5 | sylan2br 595 |
. . . . 5
⊢ ((𝑅 ∈ CRingOps ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐻𝐵)) |
| 7 | 6 | adantrrr 725 |
. . . 4
⊢ ((𝑅 ∈ CRingOps ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → ((𝐴𝐻𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐻𝐵)) |
| 8 | 7 | oveq1d 7446 |
. . 3
⊢ ((𝑅 ∈ CRingOps ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → (((𝐴𝐻𝐵)𝐻𝐶)𝐻𝐷) = (((𝐴𝐻𝐶)𝐻𝐵)𝐻𝐷)) |
| 9 | | crngorngo 38007 |
. . . 4
⊢ (𝑅 ∈ CRingOps → 𝑅 ∈
RingOps) |
| 10 | 2, 3, 4 | rngocl 37908 |
. . . . . . . 8
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐻𝐵) ∈ 𝑋) |
| 11 | 10 | 3expb 1121 |
. . . . . . 7
⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐻𝐵) ∈ 𝑋) |
| 12 | 11 | adantrr 717 |
. . . . . 6
⊢ ((𝑅 ∈ RingOps ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → (𝐴𝐻𝐵) ∈ 𝑋) |
| 13 | | simprrl 781 |
. . . . . 6
⊢ ((𝑅 ∈ RingOps ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → 𝐶 ∈ 𝑋) |
| 14 | | simprrr 782 |
. . . . . 6
⊢ ((𝑅 ∈ RingOps ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → 𝐷 ∈ 𝑋) |
| 15 | 12, 13, 14 | 3jca 1129 |
. . . . 5
⊢ ((𝑅 ∈ RingOps ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → ((𝐴𝐻𝐵) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) |
| 16 | 2, 3, 4 | rngoass 37913 |
. . . . 5
⊢ ((𝑅 ∈ RingOps ∧ ((𝐴𝐻𝐵) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → (((𝐴𝐻𝐵)𝐻𝐶)𝐻𝐷) = ((𝐴𝐻𝐵)𝐻(𝐶𝐻𝐷))) |
| 17 | 15, 16 | syldan 591 |
. . . 4
⊢ ((𝑅 ∈ RingOps ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → (((𝐴𝐻𝐵)𝐻𝐶)𝐻𝐷) = ((𝐴𝐻𝐵)𝐻(𝐶𝐻𝐷))) |
| 18 | 9, 17 | sylan 580 |
. . 3
⊢ ((𝑅 ∈ CRingOps ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → (((𝐴𝐻𝐵)𝐻𝐶)𝐻𝐷) = ((𝐴𝐻𝐵)𝐻(𝐶𝐻𝐷))) |
| 19 | 2, 3, 4 | rngocl 37908 |
. . . . . . . . 9
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴𝐻𝐶) ∈ 𝑋) |
| 20 | 19 | 3expb 1121 |
. . . . . . . 8
⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐻𝐶) ∈ 𝑋) |
| 21 | 20 | adantrlr 723 |
. . . . . . 7
⊢ ((𝑅 ∈ RingOps ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐻𝐶) ∈ 𝑋) |
| 22 | 21 | adantrrr 725 |
. . . . . 6
⊢ ((𝑅 ∈ RingOps ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → (𝐴𝐻𝐶) ∈ 𝑋) |
| 23 | | simprlr 780 |
. . . . . 6
⊢ ((𝑅 ∈ RingOps ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → 𝐵 ∈ 𝑋) |
| 24 | 22, 23, 14 | 3jca 1129 |
. . . . 5
⊢ ((𝑅 ∈ RingOps ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → ((𝐴𝐻𝐶) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) |
| 25 | 2, 3, 4 | rngoass 37913 |
. . . . 5
⊢ ((𝑅 ∈ RingOps ∧ ((𝐴𝐻𝐶) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → (((𝐴𝐻𝐶)𝐻𝐵)𝐻𝐷) = ((𝐴𝐻𝐶)𝐻(𝐵𝐻𝐷))) |
| 26 | 24, 25 | syldan 591 |
. . . 4
⊢ ((𝑅 ∈ RingOps ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → (((𝐴𝐻𝐶)𝐻𝐵)𝐻𝐷) = ((𝐴𝐻𝐶)𝐻(𝐵𝐻𝐷))) |
| 27 | 9, 26 | sylan 580 |
. . 3
⊢ ((𝑅 ∈ CRingOps ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → (((𝐴𝐻𝐶)𝐻𝐵)𝐻𝐷) = ((𝐴𝐻𝐶)𝐻(𝐵𝐻𝐷))) |
| 28 | 8, 18, 27 | 3eqtr3d 2785 |
. 2
⊢ ((𝑅 ∈ CRingOps ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → ((𝐴𝐻𝐵)𝐻(𝐶𝐻𝐷)) = ((𝐴𝐻𝐶)𝐻(𝐵𝐻𝐷))) |
| 29 | 28 | 3impb 1115 |
1
⊢ ((𝑅 ∈ CRingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → ((𝐴𝐻𝐵)𝐻(𝐶𝐻𝐷)) = ((𝐴𝐻𝐶)𝐻(𝐵𝐻𝐷))) |