Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  crngm4 Structured version   Visualization version   GIF version

Theorem crngm4 36674
Description: Commutative/associative law for commutative rings. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
crngm.1 𝐺 = (1st𝑅)
crngm.2 𝐻 = (2nd𝑅)
crngm.3 𝑋 = ran 𝐺
Assertion
Ref Expression
crngm4 ((𝑅 ∈ CRingOps ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐻𝐵)𝐻(𝐶𝐻𝐷)) = ((𝐴𝐻𝐶)𝐻(𝐵𝐻𝐷)))

Proof of Theorem crngm4
StepHypRef Expression
1 df-3an 1089 . . . . . 6 ((𝐴𝑋𝐵𝑋𝐶𝑋) ↔ ((𝐴𝑋𝐵𝑋) ∧ 𝐶𝑋))
2 crngm.1 . . . . . . 7 𝐺 = (1st𝑅)
3 crngm.2 . . . . . . 7 𝐻 = (2nd𝑅)
4 crngm.3 . . . . . . 7 𝑋 = ran 𝐺
52, 3, 4crngm23 36673 . . . . . 6 ((𝑅 ∈ CRingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐻𝐵))
61, 5sylan2br 595 . . . . 5 ((𝑅 ∈ CRingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ 𝐶𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐻𝐵))
76adantrrr 723 . . . 4 ((𝑅 ∈ CRingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → ((𝐴𝐻𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐻𝐵))
87oveq1d 7408 . . 3 ((𝑅 ∈ CRingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (((𝐴𝐻𝐵)𝐻𝐶)𝐻𝐷) = (((𝐴𝐻𝐶)𝐻𝐵)𝐻𝐷))
9 crngorngo 36671 . . . 4 (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps)
102, 3, 4rngocl 36572 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐻𝐵) ∈ 𝑋)
11103expb 1120 . . . . . . 7 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐻𝐵) ∈ 𝑋)
1211adantrr 715 . . . . . 6 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (𝐴𝐻𝐵) ∈ 𝑋)
13 simprrl 779 . . . . . 6 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → 𝐶𝑋)
14 simprrr 780 . . . . . 6 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → 𝐷𝑋)
1512, 13, 143jca 1128 . . . . 5 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → ((𝐴𝐻𝐵) ∈ 𝑋𝐶𝑋𝐷𝑋))
162, 3, 4rngoass 36577 . . . . 5 ((𝑅 ∈ RingOps ∧ ((𝐴𝐻𝐵) ∈ 𝑋𝐶𝑋𝐷𝑋)) → (((𝐴𝐻𝐵)𝐻𝐶)𝐻𝐷) = ((𝐴𝐻𝐵)𝐻(𝐶𝐻𝐷)))
1715, 16syldan 591 . . . 4 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (((𝐴𝐻𝐵)𝐻𝐶)𝐻𝐷) = ((𝐴𝐻𝐵)𝐻(𝐶𝐻𝐷)))
189, 17sylan 580 . . 3 ((𝑅 ∈ CRingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (((𝐴𝐻𝐵)𝐻𝐶)𝐻𝐷) = ((𝐴𝐻𝐵)𝐻(𝐶𝐻𝐷)))
192, 3, 4rngocl 36572 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝐻𝐶) ∈ 𝑋)
20193expb 1120 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐶𝑋)) → (𝐴𝐻𝐶) ∈ 𝑋)
2120adantrlr 721 . . . . . . 7 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ 𝐶𝑋)) → (𝐴𝐻𝐶) ∈ 𝑋)
2221adantrrr 723 . . . . . 6 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (𝐴𝐻𝐶) ∈ 𝑋)
23 simprlr 778 . . . . . 6 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → 𝐵𝑋)
2422, 23, 143jca 1128 . . . . 5 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → ((𝐴𝐻𝐶) ∈ 𝑋𝐵𝑋𝐷𝑋))
252, 3, 4rngoass 36577 . . . . 5 ((𝑅 ∈ RingOps ∧ ((𝐴𝐻𝐶) ∈ 𝑋𝐵𝑋𝐷𝑋)) → (((𝐴𝐻𝐶)𝐻𝐵)𝐻𝐷) = ((𝐴𝐻𝐶)𝐻(𝐵𝐻𝐷)))
2624, 25syldan 591 . . . 4 ((𝑅 ∈ RingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (((𝐴𝐻𝐶)𝐻𝐵)𝐻𝐷) = ((𝐴𝐻𝐶)𝐻(𝐵𝐻𝐷)))
279, 26sylan 580 . . 3 ((𝑅 ∈ CRingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (((𝐴𝐻𝐶)𝐻𝐵)𝐻𝐷) = ((𝐴𝐻𝐶)𝐻(𝐵𝐻𝐷)))
288, 18, 273eqtr3d 2779 . 2 ((𝑅 ∈ CRingOps ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → ((𝐴𝐻𝐵)𝐻(𝐶𝐻𝐷)) = ((𝐴𝐻𝐶)𝐻(𝐵𝐻𝐷)))
29283impb 1115 1 ((𝑅 ∈ CRingOps ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐻𝐵)𝐻(𝐶𝐻𝐷)) = ((𝐴𝐻𝐶)𝐻(𝐵𝐻𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  ran crn 5670  cfv 6532  (class class class)co 7393  1st c1st 7955  2nd c2nd 7956  RingOpscrngo 36565  CRingOpsccring 36664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-fv 6540  df-ov 7396  df-1st 7957  df-2nd 7958  df-rngo 36566  df-com2 36661  df-crngo 36665
This theorem is referenced by:  ispridlc  36741
  Copyright terms: Public domain W3C validator