Proof of Theorem ablo4
| Step | Hyp | Ref
| Expression |
| 1 | | simprll 778 |
. . . . . 6
⊢ ((𝐺 ∈ AbelOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → 𝐴 ∈ 𝑋) |
| 2 | | simprlr 779 |
. . . . . 6
⊢ ((𝐺 ∈ AbelOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → 𝐵 ∈ 𝑋) |
| 3 | | simprrl 780 |
. . . . . 6
⊢ ((𝐺 ∈ AbelOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → 𝐶 ∈ 𝑋) |
| 4 | 1, 2, 3 | 3jca 1128 |
. . . . 5
⊢ ((𝐺 ∈ AbelOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) |
| 5 | | ablcom.1 |
. . . . . 6
⊢ 𝑋 = ran 𝐺 |
| 6 | 5 | ablo32 30530 |
. . . . 5
⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐺𝐵)) |
| 7 | 4, 6 | syldan 591 |
. . . 4
⊢ ((𝐺 ∈ AbelOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → ((𝐴𝐺𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐺𝐵)) |
| 8 | 7 | oveq1d 7420 |
. . 3
⊢ ((𝐺 ∈ AbelOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → (((𝐴𝐺𝐵)𝐺𝐶)𝐺𝐷) = (((𝐴𝐺𝐶)𝐺𝐵)𝐺𝐷)) |
| 9 | | ablogrpo 30528 |
. . . 4
⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) |
| 10 | 5 | grpocl 30481 |
. . . . . . . 8
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) |
| 11 | 10 | 3expb 1120 |
. . . . . . 7
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐺𝐵) ∈ 𝑋) |
| 12 | 11 | adantrr 717 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → (𝐴𝐺𝐵) ∈ 𝑋) |
| 13 | | simprrl 780 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → 𝐶 ∈ 𝑋) |
| 14 | | simprrr 781 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → 𝐷 ∈ 𝑋) |
| 15 | 12, 13, 14 | 3jca 1128 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → ((𝐴𝐺𝐵) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) |
| 16 | 5 | grpoass 30484 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ ((𝐴𝐺𝐵) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → (((𝐴𝐺𝐵)𝐺𝐶)𝐺𝐷) = ((𝐴𝐺𝐵)𝐺(𝐶𝐺𝐷))) |
| 17 | 15, 16 | syldan 591 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → (((𝐴𝐺𝐵)𝐺𝐶)𝐺𝐷) = ((𝐴𝐺𝐵)𝐺(𝐶𝐺𝐷))) |
| 18 | 9, 17 | sylan 580 |
. . 3
⊢ ((𝐺 ∈ AbelOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → (((𝐴𝐺𝐵)𝐺𝐶)𝐺𝐷) = ((𝐴𝐺𝐵)𝐺(𝐶𝐺𝐷))) |
| 19 | 5 | grpocl 30481 |
. . . . . . . . 9
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴𝐺𝐶) ∈ 𝑋) |
| 20 | 19 | 3expb 1120 |
. . . . . . . 8
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐺𝐶) ∈ 𝑋) |
| 21 | 20 | adantrlr 723 |
. . . . . . 7
⊢ ((𝐺 ∈ GrpOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐺𝐶) ∈ 𝑋) |
| 22 | 21 | adantrrr 725 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → (𝐴𝐺𝐶) ∈ 𝑋) |
| 23 | | simprlr 779 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → 𝐵 ∈ 𝑋) |
| 24 | 22, 23, 14 | 3jca 1128 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → ((𝐴𝐺𝐶) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) |
| 25 | 5 | grpoass 30484 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ ((𝐴𝐺𝐶) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → (((𝐴𝐺𝐶)𝐺𝐵)𝐺𝐷) = ((𝐴𝐺𝐶)𝐺(𝐵𝐺𝐷))) |
| 26 | 24, 25 | syldan 591 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → (((𝐴𝐺𝐶)𝐺𝐵)𝐺𝐷) = ((𝐴𝐺𝐶)𝐺(𝐵𝐺𝐷))) |
| 27 | 9, 26 | sylan 580 |
. . 3
⊢ ((𝐺 ∈ AbelOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → (((𝐴𝐺𝐶)𝐺𝐵)𝐺𝐷) = ((𝐴𝐺𝐶)𝐺(𝐵𝐺𝐷))) |
| 28 | 8, 18, 27 | 3eqtr3d 2778 |
. 2
⊢ ((𝐺 ∈ AbelOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → ((𝐴𝐺𝐵)𝐺(𝐶𝐺𝐷)) = ((𝐴𝐺𝐶)𝐺(𝐵𝐺𝐷))) |
| 29 | 28 | 3impb 1114 |
1
⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺(𝐶𝐺𝐷)) = ((𝐴𝐺𝐶)𝐺(𝐵𝐺𝐷))) |