MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablo4 Structured version   Visualization version   GIF version

Theorem ablo4 28813
Description: Commutative/associative law for Abelian groups. (Contributed by NM, 26-Apr-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
ablcom.1 𝑋 = ran 𝐺
Assertion
Ref Expression
ablo4 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐺𝐵)𝐺(𝐶𝐺𝐷)) = ((𝐴𝐺𝐶)𝐺(𝐵𝐺𝐷)))

Proof of Theorem ablo4
StepHypRef Expression
1 simprll 775 . . . . . 6 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → 𝐴𝑋)
2 simprlr 776 . . . . . 6 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → 𝐵𝑋)
3 simprrl 777 . . . . . 6 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → 𝐶𝑋)
41, 2, 33jca 1126 . . . . 5 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (𝐴𝑋𝐵𝑋𝐶𝑋))
5 ablcom.1 . . . . . 6 𝑋 = ran 𝐺
65ablo32 28812 . . . . 5 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐺𝐵))
74, 6syldan 590 . . . 4 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → ((𝐴𝐺𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐺𝐵))
87oveq1d 7270 . . 3 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (((𝐴𝐺𝐵)𝐺𝐶)𝐺𝐷) = (((𝐴𝐺𝐶)𝐺𝐵)𝐺𝐷))
9 ablogrpo 28810 . . . 4 (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp)
105grpocl 28763 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
11103expb 1118 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐺𝐵) ∈ 𝑋)
1211adantrr 713 . . . . . 6 ((𝐺 ∈ GrpOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (𝐴𝐺𝐵) ∈ 𝑋)
13 simprrl 777 . . . . . 6 ((𝐺 ∈ GrpOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → 𝐶𝑋)
14 simprrr 778 . . . . . 6 ((𝐺 ∈ GrpOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → 𝐷𝑋)
1512, 13, 143jca 1126 . . . . 5 ((𝐺 ∈ GrpOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → ((𝐴𝐺𝐵) ∈ 𝑋𝐶𝑋𝐷𝑋))
165grpoass 28766 . . . . 5 ((𝐺 ∈ GrpOp ∧ ((𝐴𝐺𝐵) ∈ 𝑋𝐶𝑋𝐷𝑋)) → (((𝐴𝐺𝐵)𝐺𝐶)𝐺𝐷) = ((𝐴𝐺𝐵)𝐺(𝐶𝐺𝐷)))
1715, 16syldan 590 . . . 4 ((𝐺 ∈ GrpOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (((𝐴𝐺𝐵)𝐺𝐶)𝐺𝐷) = ((𝐴𝐺𝐵)𝐺(𝐶𝐺𝐷)))
189, 17sylan 579 . . 3 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (((𝐴𝐺𝐵)𝐺𝐶)𝐺𝐷) = ((𝐴𝐺𝐵)𝐺(𝐶𝐺𝐷)))
195grpocl 28763 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝐺𝐶) ∈ 𝑋)
20193expb 1118 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐶𝑋)) → (𝐴𝐺𝐶) ∈ 𝑋)
2120adantrlr 719 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ ((𝐴𝑋𝐵𝑋) ∧ 𝐶𝑋)) → (𝐴𝐺𝐶) ∈ 𝑋)
2221adantrrr 721 . . . . . 6 ((𝐺 ∈ GrpOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (𝐴𝐺𝐶) ∈ 𝑋)
23 simprlr 776 . . . . . 6 ((𝐺 ∈ GrpOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → 𝐵𝑋)
2422, 23, 143jca 1126 . . . . 5 ((𝐺 ∈ GrpOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → ((𝐴𝐺𝐶) ∈ 𝑋𝐵𝑋𝐷𝑋))
255grpoass 28766 . . . . 5 ((𝐺 ∈ GrpOp ∧ ((𝐴𝐺𝐶) ∈ 𝑋𝐵𝑋𝐷𝑋)) → (((𝐴𝐺𝐶)𝐺𝐵)𝐺𝐷) = ((𝐴𝐺𝐶)𝐺(𝐵𝐺𝐷)))
2624, 25syldan 590 . . . 4 ((𝐺 ∈ GrpOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (((𝐴𝐺𝐶)𝐺𝐵)𝐺𝐷) = ((𝐴𝐺𝐶)𝐺(𝐵𝐺𝐷)))
279, 26sylan 579 . . 3 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (((𝐴𝐺𝐶)𝐺𝐵)𝐺𝐷) = ((𝐴𝐺𝐶)𝐺(𝐵𝐺𝐷)))
288, 18, 273eqtr3d 2786 . 2 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → ((𝐴𝐺𝐵)𝐺(𝐶𝐺𝐷)) = ((𝐴𝐺𝐶)𝐺(𝐵𝐺𝐷)))
29283impb 1113 1 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐺𝐵)𝐺(𝐶𝐺𝐷)) = ((𝐴𝐺𝐶)𝐺(𝐵𝐺𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  ran crn 5581  (class class class)co 7255  GrpOpcgr 28752  AbelOpcablo 28807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fo 6424  df-fv 6426  df-ov 7258  df-grpo 28756  df-ablo 28808
This theorem is referenced by:  nvadd4  28888  ipdirilem  29092  rngoa4  36001
  Copyright terms: Public domain W3C validator