Proof of Theorem ablo4
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simprll 779 | . . . . . 6
⊢ ((𝐺 ∈ AbelOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → 𝐴 ∈ 𝑋) | 
| 2 |  | simprlr 780 | . . . . . 6
⊢ ((𝐺 ∈ AbelOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → 𝐵 ∈ 𝑋) | 
| 3 |  | simprrl 781 | . . . . . 6
⊢ ((𝐺 ∈ AbelOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → 𝐶 ∈ 𝑋) | 
| 4 | 1, 2, 3 | 3jca 1129 | . . . . 5
⊢ ((𝐺 ∈ AbelOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) | 
| 5 |  | ablcom.1 | . . . . . 6
⊢ 𝑋 = ran 𝐺 | 
| 6 | 5 | ablo32 30568 | . . . . 5
⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐺𝐵)) | 
| 7 | 4, 6 | syldan 591 | . . . 4
⊢ ((𝐺 ∈ AbelOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → ((𝐴𝐺𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐺𝐵)) | 
| 8 | 7 | oveq1d 7446 | . . 3
⊢ ((𝐺 ∈ AbelOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → (((𝐴𝐺𝐵)𝐺𝐶)𝐺𝐷) = (((𝐴𝐺𝐶)𝐺𝐵)𝐺𝐷)) | 
| 9 |  | ablogrpo 30566 | . . . 4
⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) | 
| 10 | 5 | grpocl 30519 | . . . . . . . 8
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) | 
| 11 | 10 | 3expb 1121 | . . . . . . 7
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐺𝐵) ∈ 𝑋) | 
| 12 | 11 | adantrr 717 | . . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → (𝐴𝐺𝐵) ∈ 𝑋) | 
| 13 |  | simprrl 781 | . . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → 𝐶 ∈ 𝑋) | 
| 14 |  | simprrr 782 | . . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → 𝐷 ∈ 𝑋) | 
| 15 | 12, 13, 14 | 3jca 1129 | . . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → ((𝐴𝐺𝐵) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) | 
| 16 | 5 | grpoass 30522 | . . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ ((𝐴𝐺𝐵) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → (((𝐴𝐺𝐵)𝐺𝐶)𝐺𝐷) = ((𝐴𝐺𝐵)𝐺(𝐶𝐺𝐷))) | 
| 17 | 15, 16 | syldan 591 | . . . 4
⊢ ((𝐺 ∈ GrpOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → (((𝐴𝐺𝐵)𝐺𝐶)𝐺𝐷) = ((𝐴𝐺𝐵)𝐺(𝐶𝐺𝐷))) | 
| 18 | 9, 17 | sylan 580 | . . 3
⊢ ((𝐺 ∈ AbelOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → (((𝐴𝐺𝐵)𝐺𝐶)𝐺𝐷) = ((𝐴𝐺𝐵)𝐺(𝐶𝐺𝐷))) | 
| 19 | 5 | grpocl 30519 | . . . . . . . . 9
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴𝐺𝐶) ∈ 𝑋) | 
| 20 | 19 | 3expb 1121 | . . . . . . . 8
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐺𝐶) ∈ 𝑋) | 
| 21 | 20 | adantrlr 723 | . . . . . . 7
⊢ ((𝐺 ∈ GrpOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐺𝐶) ∈ 𝑋) | 
| 22 | 21 | adantrrr 725 | . . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → (𝐴𝐺𝐶) ∈ 𝑋) | 
| 23 |  | simprlr 780 | . . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → 𝐵 ∈ 𝑋) | 
| 24 | 22, 23, 14 | 3jca 1129 | . . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → ((𝐴𝐺𝐶) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) | 
| 25 | 5 | grpoass 30522 | . . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ ((𝐴𝐺𝐶) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → (((𝐴𝐺𝐶)𝐺𝐵)𝐺𝐷) = ((𝐴𝐺𝐶)𝐺(𝐵𝐺𝐷))) | 
| 26 | 24, 25 | syldan 591 | . . . 4
⊢ ((𝐺 ∈ GrpOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → (((𝐴𝐺𝐶)𝐺𝐵)𝐺𝐷) = ((𝐴𝐺𝐶)𝐺(𝐵𝐺𝐷))) | 
| 27 | 9, 26 | sylan 580 | . . 3
⊢ ((𝐺 ∈ AbelOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → (((𝐴𝐺𝐶)𝐺𝐵)𝐺𝐷) = ((𝐴𝐺𝐶)𝐺(𝐵𝐺𝐷))) | 
| 28 | 8, 18, 27 | 3eqtr3d 2785 | . 2
⊢ ((𝐺 ∈ AbelOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋))) → ((𝐴𝐺𝐵)𝐺(𝐶𝐺𝐷)) = ((𝐴𝐺𝐶)𝐺(𝐵𝐺𝐷))) | 
| 29 | 28 | 3impb 1115 | 1
⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺(𝐶𝐺𝐷)) = ((𝐴𝐺𝐶)𝐺(𝐵𝐺𝐷))) |