MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablo4 Structured version   Visualization version   GIF version

Theorem ablo4 29790
Description: Commutative/associative law for Abelian groups. (Contributed by NM, 26-Apr-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
ablcom.1 𝑋 = ran 𝐺
Assertion
Ref Expression
ablo4 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐺𝐵)𝐺(𝐶𝐺𝐷)) = ((𝐴𝐺𝐶)𝐺(𝐵𝐺𝐷)))

Proof of Theorem ablo4
StepHypRef Expression
1 simprll 777 . . . . . 6 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → 𝐴𝑋)
2 simprlr 778 . . . . . 6 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → 𝐵𝑋)
3 simprrl 779 . . . . . 6 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → 𝐶𝑋)
41, 2, 33jca 1128 . . . . 5 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (𝐴𝑋𝐵𝑋𝐶𝑋))
5 ablcom.1 . . . . . 6 𝑋 = ran 𝐺
65ablo32 29789 . . . . 5 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐺𝐵))
74, 6syldan 591 . . . 4 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → ((𝐴𝐺𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐺𝐵))
87oveq1d 7420 . . 3 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (((𝐴𝐺𝐵)𝐺𝐶)𝐺𝐷) = (((𝐴𝐺𝐶)𝐺𝐵)𝐺𝐷))
9 ablogrpo 29787 . . . 4 (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp)
105grpocl 29740 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
11103expb 1120 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐺𝐵) ∈ 𝑋)
1211adantrr 715 . . . . . 6 ((𝐺 ∈ GrpOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (𝐴𝐺𝐵) ∈ 𝑋)
13 simprrl 779 . . . . . 6 ((𝐺 ∈ GrpOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → 𝐶𝑋)
14 simprrr 780 . . . . . 6 ((𝐺 ∈ GrpOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → 𝐷𝑋)
1512, 13, 143jca 1128 . . . . 5 ((𝐺 ∈ GrpOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → ((𝐴𝐺𝐵) ∈ 𝑋𝐶𝑋𝐷𝑋))
165grpoass 29743 . . . . 5 ((𝐺 ∈ GrpOp ∧ ((𝐴𝐺𝐵) ∈ 𝑋𝐶𝑋𝐷𝑋)) → (((𝐴𝐺𝐵)𝐺𝐶)𝐺𝐷) = ((𝐴𝐺𝐵)𝐺(𝐶𝐺𝐷)))
1715, 16syldan 591 . . . 4 ((𝐺 ∈ GrpOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (((𝐴𝐺𝐵)𝐺𝐶)𝐺𝐷) = ((𝐴𝐺𝐵)𝐺(𝐶𝐺𝐷)))
189, 17sylan 580 . . 3 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (((𝐴𝐺𝐵)𝐺𝐶)𝐺𝐷) = ((𝐴𝐺𝐵)𝐺(𝐶𝐺𝐷)))
195grpocl 29740 . . . . . . . . 9 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝐺𝐶) ∈ 𝑋)
20193expb 1120 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐶𝑋)) → (𝐴𝐺𝐶) ∈ 𝑋)
2120adantrlr 721 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ ((𝐴𝑋𝐵𝑋) ∧ 𝐶𝑋)) → (𝐴𝐺𝐶) ∈ 𝑋)
2221adantrrr 723 . . . . . 6 ((𝐺 ∈ GrpOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (𝐴𝐺𝐶) ∈ 𝑋)
23 simprlr 778 . . . . . 6 ((𝐺 ∈ GrpOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → 𝐵𝑋)
2422, 23, 143jca 1128 . . . . 5 ((𝐺 ∈ GrpOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → ((𝐴𝐺𝐶) ∈ 𝑋𝐵𝑋𝐷𝑋))
255grpoass 29743 . . . . 5 ((𝐺 ∈ GrpOp ∧ ((𝐴𝐺𝐶) ∈ 𝑋𝐵𝑋𝐷𝑋)) → (((𝐴𝐺𝐶)𝐺𝐵)𝐺𝐷) = ((𝐴𝐺𝐶)𝐺(𝐵𝐺𝐷)))
2624, 25syldan 591 . . . 4 ((𝐺 ∈ GrpOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (((𝐴𝐺𝐶)𝐺𝐵)𝐺𝐷) = ((𝐴𝐺𝐶)𝐺(𝐵𝐺𝐷)))
279, 26sylan 580 . . 3 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → (((𝐴𝐺𝐶)𝐺𝐵)𝐺𝐷) = ((𝐴𝐺𝐶)𝐺(𝐵𝐺𝐷)))
288, 18, 273eqtr3d 2780 . 2 ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋))) → ((𝐴𝐺𝐵)𝐺(𝐶𝐺𝐷)) = ((𝐴𝐺𝐶)𝐺(𝐵𝐺𝐷)))
29283impb 1115 1 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐷𝑋)) → ((𝐴𝐺𝐵)𝐺(𝐶𝐺𝐷)) = ((𝐴𝐺𝐶)𝐺(𝐵𝐺𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  ran crn 5676  (class class class)co 7405  GrpOpcgr 29729  AbelOpcablo 29784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fo 6546  df-fv 6548  df-ov 7408  df-grpo 29733  df-ablo 29785
This theorem is referenced by:  nvadd4  29865  ipdirilem  30069  rngoa4  36772
  Copyright terms: Public domain W3C validator