Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv2fv0b Structured version   Visualization version   GIF version

Theorem afv2fv0b 47296
Description: The function's value at an argument is the empty set if and only if the alternate function value at this argument is the empty set or undefined. (Contributed by AV, 3-Sep-2022.)
Assertion
Ref Expression
afv2fv0b ((𝐹𝐴) = ∅ ↔ ((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹))

Proof of Theorem afv2fv0b
StepHypRef Expression
1 afv2fv0 47295 . 2 ((𝐹𝐴) = ∅ → ((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹))
2 afv20fv0 47293 . . 3 ((𝐹''''𝐴) = ∅ → (𝐹𝐴) = ∅)
3 afv2ndeffv0 47290 . . 3 ((𝐹''''𝐴) ∉ ran 𝐹 → (𝐹𝐴) = ∅)
42, 3jaoi 857 . 2 (((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹) → (𝐹𝐴) = ∅)
51, 4impbii 209 1 ((𝐹𝐴) = ∅ ↔ ((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847   = wceq 1541  wnel 3032  c0 4283  ran crn 5617  cfv 6481  ''''cafv2 47238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-iota 6437  df-fun 6483  df-fv 6489  df-dfat 47149  df-afv2 47239
This theorem is referenced by:  afv2fv0xorb  47297
  Copyright terms: Public domain W3C validator