| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > afv2fv0b | Structured version Visualization version GIF version | ||
| Description: The function's value at an argument is the empty set if and only if the alternate function value at this argument is the empty set or undefined. (Contributed by AV, 3-Sep-2022.) |
| Ref | Expression |
|---|---|
| afv2fv0b | ⊢ ((𝐹‘𝐴) = ∅ ↔ ((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | afv2fv0 47277 | . 2 ⊢ ((𝐹‘𝐴) = ∅ → ((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹)) | |
| 2 | afv20fv0 47275 | . . 3 ⊢ ((𝐹''''𝐴) = ∅ → (𝐹‘𝐴) = ∅) | |
| 3 | afv2ndeffv0 47272 | . . 3 ⊢ ((𝐹''''𝐴) ∉ ran 𝐹 → (𝐹‘𝐴) = ∅) | |
| 4 | 2, 3 | jaoi 858 | . 2 ⊢ (((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹) → (𝐹‘𝐴) = ∅) |
| 5 | 1, 4 | impbii 209 | 1 ⊢ ((𝐹‘𝐴) = ∅ ↔ ((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 848 = wceq 1540 ∉ wnel 3046 ∅c0 4333 ran crn 5686 ‘cfv 6561 ''''cafv2 47220 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-iota 6514 df-fun 6563 df-fv 6569 df-dfat 47131 df-afv2 47221 |
| This theorem is referenced by: afv2fv0xorb 47279 |
| Copyright terms: Public domain | W3C validator |