Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv2fv0b Structured version   Visualization version   GIF version

Theorem afv2fv0b 45974
Description: The function's value at an argument is the empty set if and only if the alternate function value at this argument is the empty set or undefined. (Contributed by AV, 3-Sep-2022.)
Assertion
Ref Expression
afv2fv0b ((𝐹𝐴) = ∅ ↔ ((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹))

Proof of Theorem afv2fv0b
StepHypRef Expression
1 afv2fv0 45973 . 2 ((𝐹𝐴) = ∅ → ((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹))
2 afv20fv0 45971 . . 3 ((𝐹''''𝐴) = ∅ → (𝐹𝐴) = ∅)
3 afv2ndeffv0 45968 . . 3 ((𝐹''''𝐴) ∉ ran 𝐹 → (𝐹𝐴) = ∅)
42, 3jaoi 856 . 2 (((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹) → (𝐹𝐴) = ∅)
51, 4impbii 208 1 ((𝐹𝐴) = ∅ ↔ ((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wo 846   = wceq 1542  wnel 3047  c0 4323  ran crn 5678  cfv 6544  ''''cafv2 45916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-iota 6496  df-fun 6546  df-fv 6552  df-dfat 45827  df-afv2 45917
This theorem is referenced by:  afv2fv0xorb  45975
  Copyright terms: Public domain W3C validator