![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > afv2fv0b | Structured version Visualization version GIF version |
Description: The function's value at an argument is the empty set if and only if the alternate function value at this argument is the empty set or undefined. (Contributed by AV, 3-Sep-2022.) |
Ref | Expression |
---|---|
afv2fv0b | ⊢ ((𝐹‘𝐴) = ∅ ↔ ((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | afv2fv0 47180 | . 2 ⊢ ((𝐹‘𝐴) = ∅ → ((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹)) | |
2 | afv20fv0 47178 | . . 3 ⊢ ((𝐹''''𝐴) = ∅ → (𝐹‘𝐴) = ∅) | |
3 | afv2ndeffv0 47175 | . . 3 ⊢ ((𝐹''''𝐴) ∉ ran 𝐹 → (𝐹‘𝐴) = ∅) | |
4 | 2, 3 | jaoi 856 | . 2 ⊢ (((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹) → (𝐹‘𝐴) = ∅) |
5 | 1, 4 | impbii 209 | 1 ⊢ ((𝐹‘𝐴) = ∅ ↔ ((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∨ wo 846 = wceq 1537 ∉ wnel 3052 ∅c0 4352 ran crn 5701 ‘cfv 6573 ''''cafv2 47123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-iota 6525 df-fun 6575 df-fv 6581 df-dfat 47034 df-afv2 47124 |
This theorem is referenced by: afv2fv0xorb 47182 |
Copyright terms: Public domain | W3C validator |